This tutorial illustrates the basic features of RooFit. 
  
import ROOT
 
 
 
xframe = 
x.frame(Title=
"Gaussian pdf")  
 
 
 
 
 
 
xframe2 = 
x.frame(Title=
"Gaussian pdf with data")  
 
 
 
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
  [#1] INFO:Fitting -- RooAbsPdf::fitTo(gauss_over_gauss_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx512
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_gauss_over_gauss_Int[x]_gaussData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
RooRealVar::mean = 1.01746 +/- 0.0300144  L(-10 - 10) 
RooRealVar::sigma = 2.9787 +/- 0.0219217  L(0.1 - 10) 
- Date
 - February 2018 
 
- Authors
 - Clemens Lange, Wouter Verkerke (C++ version) 
 
Definition in file rf101_basics.py.