Multidimensional models: working with parametrized ranges in a fit. 
This an example of a fit with an acceptance that changes per-event
pdf = exp(-t/tau) with t[tmin,5]
where t and tmin are both observables in the dataset
 
  
 
 
{
 
   
   
 
   
 
   
   t.setRange(
tmin, RooConst(t.getMax()));
 
 
   
 
   
   
 
   
   std::unique_ptr<RooDataSet> 
dall{model.generate(t, 10000)};
 
 
   
 
   
   std::unique_ptr<RooDataSet> 
dacc{model.generate(t, 
ProtoData(*tmp))};
 
 
   
   
 
 
   
   
 
   
   model.plotOn(frame);
 
   
 
   new TCanvas(
"rf314_paramranges", 
"rf314_paramranges", 600, 600);
 
   gPad->SetLeftMargin(0.15);
 
 
   return;
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
 
RooFit::OwningPtr< RooDataSet > generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={})
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,...
 
Plot frame and a container for graphics objects within that frame.
 
static RooPlot * frame(const RooAbsRealLValue &var, double xmin, double xmax, Int_t nBins)
Create a new frame for a given variable in x.
 
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
 
Variable that can be changed from the outside.
 
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
 
RooCmdArg Save(bool flag=true)
 
RooCmdArg PrintLevel(Int_t code)
 
RooCmdArg ProtoData(const RooDataSet &protoData, bool randomizeOrder=false, bool resample=false)
 
RooCmdArg MarkerColor(Color_t color)
 
RooCmdArg LineColor(Color_t color)
 
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
 
   
[#1] INFO:Fitting -- RooAbsPdf::fitTo(model_over_model_Int[t]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx512
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_model_over_model_Int[t]_modelData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Plotting -- RooPlot::updateFitRangeNorm: New event count of 5000 will supersede previous event count of 10000 for normalization of PDF projections
 
  RooFitResult: minimized FCN value: 2823.97, estimated distance to minimum: 3.17108e-08
                covariance matrix quality: Full, accurate covariance matrix
                Status : MINIMIZE=0 HESSE=0 
 
    Floating Parameter  InitialValue    FinalValue +/-  Error     GblCorr.
  --------------------  ------------  --------------------------  --------
                   tau   -1.5400e+00   -1.5335e+00 +/-  2.22e-02  <none>
 
- Date
 - July 2008 
 
- Author
 - Wouter Verkerke 
 
Definition in file rf314_paramfitrange.C.