Multidimensional models: using the likelihood ratio technique to construct a signal enhanced one-dimensional projection of a multi-dimensional pdf 
  
import ROOT
 
 
 
 
 
 
 
 
 
frame = 
x.frame(Title=
"Projection of 3D data and pdf on X", Bins=40)
 
 
 
 
 
 
 
 
frame2 = 
x.frame(Title=
"Same projection on X with LLratio(y,z)>0.7", Bins=40)
 
 
 
 
 
 
 
c = 
ROOT.TCanvas(
"rf316_llratioplot", 
"rf316_llratioplot", 800, 400)
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
  [#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x integrates over variables (y,z)
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data variables (y,z)
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) only the following components of the projection data will be used: (y,z)
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx512
- Date
 - February 2018 
 
- Authors
 - Clemens Lange, Wouter Verkerke (C++ version) 
 
Definition in file rf316_llratioplot.py.