Multidimensional models: multi-dimensional pdfs with conditional pdfs in product 
pdf = gauss(x,f(y),sx | y ) * gauss(y,ms,sx) with f(y) = a0 + a1*y
  
import ROOT
 
 
 
 
gaussx = 
ROOT.RooGaussian(
"gaussx", 
"Gaussian in x with shifting mean in y", x, fy, sigmax)
 
 
 
 
 
model = 
ROOT.RooProdPdf(
"model", 
"gaussx(x|y)*gaussy(y)", {gaussy}, Conditional=({gaussx}, {x}))
 
 
 
 
 
 
 
c = 
ROOT.TCanvas(
"rf305_condcorrprod", 
"rf05_condcorrprod", 1200, 400)
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
  [#0] WARNING:InputArguments -- The parameter 'sigma' with range [-inf, inf] of the RooGaussian 'gaussx' exceeds the safe range of (0, inf). Advise to limit its range.
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x integrates over variables (y)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([gaussy_NORM[y]_X_gaussx_NORM[x]]_Int[y]) using numeric integrator RooIntegrator1D to calculate Int(y)
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on y integrates over variables (x)
- Date
 - February 2018 
 
- Authors
 - Clemens Lange, Wouter Verkerke (C++ version) 
 
Definition in file rf305_condcorrprod.py.