Multidimensional models: normalization and integration of pdfs, construction of cumulative distribution functions from pdfs in two dimensions 
  
from __future__ import print_function
import ROOT
 
 
 
 
 
 
 
nset_xy = {x, y}
 
x_and_y = {x, y}
 
 
nset_x = {x}
 
nset_y = {y}
 
 
 
 
 
 
 
 
c = 
ROOT.TCanvas(
"rf308_normintegration2d", 
"rf308_normintegration2d", 600, 600)
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
  gxy =  0.4856717852477124
gx_Norm[x,y] =  0.012933200957206766
gx_Int[x,y] =  37.552326516436096
gx_Norm[x] =  0.1068955044839622
gx_Norm[y] =  0.12098919425696865
[#1] INFO:Eval -- RooRealVar::setRange(x) new range named 'signal' created with bounds [-5,5]
[#1] INFO:Eval -- RooRealVar::setRange(y) new range named 'signal' created with bounds [-3,3]
gx_Int[x,y|signal]_Norm[x,y] =  0.5720351351990984
- Date
 - February 2018 
 
- Authors
 - Clemens Lange, Wouter Verkerke (C++ version) 
 
Definition in file rf308_normintegration2d.py.