This tutorial explains the concept of global observables in RooFit, and showcases how their values can be stored either in the model or in the dataset. 
Introduction
Note: in this tutorial, we are multiplying the likelihood with an additional likelihood to constrain the parameters with auxiliary measurements. This is different from the rf604_constraints tutorial, where the likelihood is multiplied with a Bayesian prior to constrain the parameters.
With RooFit, you usually optimize some model parameters p to maximize the likelihood L given the per-event or per-bin observations x:
\[ L( x | p ) \]
Often, the parameters are constrained with some prior likelihood C, which doesn't depend on the observables x:
\[ L'( x | p ) = L( x | p ) * C( p ) \]
Usually, these constraint terms depend on some auxiliary measurements of other observables g. The constraint term is then the likelihood of the so-called global observables:
\[ L'( x | p ) = L( x | p ) * C( g | p ) \]
For example, think of a model where the true luminosity lumi is a nuisance parameter that is constrained by an auxiliary measurement lumi_obs with uncertainty lumi_obs_sigma:
\[ L'(data | mu, lumi) = L(data | mu, lumi) * \text{Gauss}(lumi_obs | lumi, lumi_obs_sigma) \]
As a Gaussian is symmetric under exchange of the observable and the mean parameter, you can also sometimes find this equivalent but less conventional formulation for Gaussian constraints:
\[ L'(data | mu, lumi) = L(data | mu, lumi) * \text{Gauss}(lumi | lumi_obs, lumi_obs_sigma) \]
If you wanted to constrain a parameter that represents event counts, you would use a Poissonian constraint, e.g.:
\[ L'(data | mu, count) = L(data | mu, count) * \text{Poisson}(count_obs | count) \]
Unlike a Gaussian, a Poissonian is not symmetric under exchange of the observable and the parameter, so here you need to be more careful to follow the global observable prescription correctly.
 
 
{
 
   
 
   
   
 
   
 
   
 
   
 
   
 
   
   
 
   
 
   
   RooProdPdf model(
"model", 
"model", {gauss, constraint});
 
 
   
   
 
   
   
   
   
   
   
 
 
   
   
 
 
   
   
   
   std::unique_ptr<RooDataSet> 
data{model.generate({
x}, 50)};
 
 
   
   
   
   
   
 
 
   
 
   
   
 
   
 
   using FitRes = std::unique_ptr<RooFitResult>;
 
   
   
   
   
   
   
   std::cout << "1. model.fitTo(*data, GlobalObservables(mu_obs))\n";
   std::cout << "------------------------------------------------\n";
 
   
   
   
   
   
   std::cout << "2. model.fitTo(*data)\n";
   std::cout << "---------------------\n";
 
   
   
   
   
   std::cout << "3. model.fitTo(*data, GlobalObservables(mu_obs), GlobalObservablesSource(\"model\"))\n";
   std::cout << "------------------------------------------------\n";
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
RooArgSet is a container object that can hold multiple RooAbsArg objects.
 
static RooMsgService & instance()
Return reference to singleton instance.
 
Efficient implementation of a product of PDFs of the form.
 
Variable that can be changed from the outside.
 
RooCmdArg Save(bool flag=true)
 
RooCmdArg GlobalObservables(Args_t &&... argsOrArgSet)
 
RooCmdArg GlobalObservablesSource(const char *sourceName)
 
RooCmdArg PrintLevel(Int_t code)
 
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
 
   
1. model.fitTo(*data, GlobalObservables(mu_obs))
------------------------------------------------
 
  RooFitResult: minimized FCN value: 68.2482, estimated distance to minimum: 9.80327e-07
                covariance matrix quality: Full, accurate covariance matrix
                Status : MINIMIZE=0 HESSE=0 
 
    Floating Parameter    FinalValue +/-  Error   
  --------------------  --------------------------
                    mu    5.2717e-02 +/-  8.11e-02
                 sigma    9.7190e-01 +/-  9.73e-02
 
2. model.fitTo(*data)
---------------------
 
  RooFitResult: minimized FCN value: 68.2482, estimated distance to minimum: 9.80327e-07
                covariance matrix quality: Full, accurate covariance matrix
                Status : MINIMIZE=0 HESSE=0 
 
    Floating Parameter    FinalValue +/-  Error   
  --------------------  --------------------------
                    mu    5.2717e-02 +/-  8.11e-02
                 sigma    9.7190e-01 +/-  9.73e-02
 
3. model.fitTo(*data, GlobalObservables(mu_obs), GlobalObservablesSource("model"))
------------------------------------------------
 
  RooFitResult: minimized FCN value: 83.7181, estimated distance to minimum: 6.67911e-07
                covariance matrix quality: Full, accurate covariance matrix
                Status : MINIMIZE=0 HESSE=0 
 
    Floating Parameter    FinalValue +/-  Error   
  --------------------  --------------------------
                    mu    7.4744e-01 +/-  9.68e-02
                 sigma    1.2451e+00 +/-  1.38e-01
 
- Date
 - January 2022 
 
- Author
 - Jonas Rembser 
 
Definition in file rf613_global_observables.C.