Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
batch_normalization (Batch (None, 16, 16, 10) 40
Normalization)
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 15, 15, 10) 0
D)
flatten (Flatten) (None, 2250) 0
dense (Dense) (None, 256) 576256
dense_1 (Dense) (None, 2) 514
=================================================================
Total params: 577820 (2.20 MB)
Trainable params: 577800 (2.20 MB)
Non-trainable params: 20 (80.00 Byte)
_________________________________________________________________
Factory : Booking method: ␛[1mPyKeras␛[0m
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Loading Keras Model
: Loaded model from file: model_cnn.h5
Factory : Booking method: ␛[1mPyTorch␛[0m
:
: Using PyTorch - setting special configuration options
: Using PyTorch version 2
: Setup PyTorch Model for training
: Executing user initialization code from /home/sftnight/build/workspace/root-makedoc-master/rootspi/rdoc/src/master.build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchModelCNN.pt
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.917 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0172 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 75.9399
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.912229 0.871316 0.186054 0.0172226 7107.69 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.689126 0.729496 0.183773 0.0160086 7152.9 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.595165 0.696942 0.182246 0.0159299 7215.19 0
: 4 | 0.52078 0.747231 0.181499 0.0151648 7214.4 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.463373 0.691049 0.181808 0.0158857 7232.31 0
: 6 | 0.420036 0.750244 0.181529 0.0152121 7215.16 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.368165 0.689516 0.182192 0.0160428 7222.42 0
: 8 | 0.318431 0.708934 0.181543 0.0152276 7215.19 1
: 9 | 0.269084 0.733215 0.182448 0.0151556 7173.08 2
: 10 | 0.240448 0.786903 0.18412 0.0174455 7199.68 3
:
: Elapsed time for training with 1600 events: 1.87 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0806 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 156.725
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.41216 1.80258 1.47028 0.115395 885.685 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.106 0.954276 1.44655 0.111257 898.682 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.839454 0.753444 1.45543 0.111668 893.012 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.750334 0.699801 1.45151 0.111375 895.434 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.704987 0.673424 1.45222 0.111463 895.02 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.71647 0.666987 1.45007 0.111396 896.41 0
: 7 | 0.689325 0.690943 1.45457 0.109797 892.341 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.668741 0.659979 1.45217 0.111143 894.837 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.646073 0.647741 1.44064 0.111024 902.516 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.639497 0.64467 1.45061 0.112753 896.954 0
:
: Elapsed time for training with 1600 events: 14.7 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.59 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyKeras for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyKeras ] :␛[0m
:
: Keras is a high-level API for the Theano and Tensorflow packages.
: This method wraps the training and predictions steps of the Keras
: Python package for TMVA, so that dataloading, preprocessing and
: evaluation can be done within the TMVA system. To use this Keras
: interface, you have to generate a model with Keras first. Then,
: this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Training Model Summary
custom objects for loading model : {'optimizer': <class 'torch.optim.adam.Adam'>, 'criterion': BCELoss(), 'train_func': <function fit at 0x7f287cdb2b80>, 'predict_func': <function predict at 0x7f287cdb2ca0>}
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
batch_normalization (Batch (None, 16, 16, 10) 40
Normalization)
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 15, 15, 10) 0
D)
flatten (Flatten) (None, 2250) 0
dense (Dense) (None, 256) 576256
dense_1 (Dense) (None, 2) 514
=================================================================
Total params: 577820 (2.20 MB)
Trainable params: 577800 (2.20 MB)
Non-trainable params: 20 (80.00 Byte)
_________________________________________________________________
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
Epoch 1/10
1/13 [=>............................] - ETA: 10s - loss: 0.8720 - accuracy: 0.4100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
4/13 [========>.....................] - ETA: 0s - loss: 1.7723 - accuracy: 0.4650 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
8/13 [=================>............] - ETA: 0s - loss: 1.4083 - accuracy: 0.4787␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/13 [==========================>...] - ETA: 0s - loss: 1.1766 - accuracy: 0.4967
Epoch 1: val_loss improved from inf to 0.96544, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 2s 53ms/step - loss: 1.1461 - accuracy: 0.5023 - val_loss: 0.9654 - val_accuracy: 0.4719
Epoch 2/10
1/13 [=>............................] - ETA: 0s - loss: 0.7631 - accuracy: 0.5000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.7189 - accuracy: 0.5360␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.7017 - accuracy: 0.5500
Epoch 2: val_loss improved from 0.96544 to 0.74216, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 21ms/step - loss: 0.6946 - accuracy: 0.5562 - val_loss: 0.7422 - val_accuracy: 0.4844
Epoch 3/10
1/13 [=>............................] - ETA: 0s - loss: 0.6495 - accuracy: 0.6200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.6512 - accuracy: 0.6450␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6577 - accuracy: 0.6264
Epoch 3: val_loss improved from 0.74216 to 0.68941, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 19ms/step - loss: 0.6544 - accuracy: 0.6336 - val_loss: 0.6894 - val_accuracy: 0.5344
Epoch 4/10
1/13 [=>............................] - ETA: 0s - loss: 0.6203 - accuracy: 0.7400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.6285 - accuracy: 0.6900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6259 - accuracy: 0.6836
Epoch 4: val_loss did not improve from 0.68941
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 16ms/step - loss: 0.6244 - accuracy: 0.6852 - val_loss: 0.6973 - val_accuracy: 0.5469
Epoch 5/10
1/13 [=>............................] - ETA: 0s - loss: 0.6225 - accuracy: 0.6900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.5995 - accuracy: 0.7017␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6047 - accuracy: 0.6927
Epoch 5: val_loss improved from 0.68941 to 0.67138, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 19ms/step - loss: 0.6036 - accuracy: 0.7008 - val_loss: 0.6714 - val_accuracy: 0.5844
Epoch 6/10
1/13 [=>............................] - ETA: 0s - loss: 0.5347 - accuracy: 0.8000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.5687 - accuracy: 0.7550␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.5752 - accuracy: 0.7164
Epoch 6: val_loss did not improve from 0.67138
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 15ms/step - loss: 0.5742 - accuracy: 0.7195 - val_loss: 0.8063 - val_accuracy: 0.4906
Epoch 7/10
1/13 [=>............................] - ETA: 0s - loss: 0.5394 - accuracy: 0.7200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.5473 - accuracy: 0.7267␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.5556 - accuracy: 0.7209
Epoch 7: val_loss did not improve from 0.67138
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 15ms/step - loss: 0.5486 - accuracy: 0.7281 - val_loss: 0.7403 - val_accuracy: 0.5219
Epoch 8/10
1/13 [=>............................] - ETA: 0s - loss: 0.4901 - accuracy: 0.8000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.5131 - accuracy: 0.7667␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.5174 - accuracy: 0.7518
Epoch 8: val_loss did not improve from 0.67138
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 16ms/step - loss: 0.5147 - accuracy: 0.7547 - val_loss: 0.7368 - val_accuracy: 0.5469
Epoch 9/10
1/13 [=>............................] - ETA: 0s - loss: 0.4864 - accuracy: 0.8000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.4869 - accuracy: 0.7850␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.4915 - accuracy: 0.7791
Epoch 9: val_loss did not improve from 0.67138
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 15ms/step - loss: 0.4947 - accuracy: 0.7719 - val_loss: 0.7517 - val_accuracy: 0.5500
Epoch 10/10
1/13 [=>............................] - ETA: 0s - loss: 0.5351 - accuracy: 0.7100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.4592 - accuracy: 0.8200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.4603 - accuracy: 0.8118
Epoch 10: val_loss did not improve from 0.67138
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 16ms/step - loss: 0.4608 - accuracy: 0.8078 - val_loss: 0.8814 - val_accuracy: 0.5031
: Getting training history for item:0 name = 'loss'
: Getting training history for item:1 name = 'accuracy'
: Getting training history for item:2 name = 'val_loss'
: Getting training history for item:3 name = 'val_accuracy'
: Elapsed time for training with 1600 events: 3.69 sec
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.226 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyTorch for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyTorch ] :␛[0m
:
: PyTorch is a scientific computing package supporting
: automatic differentiation. This method wraps the training
: and predictions steps of the PyTorch Python package for
: TMVA, so that dataloading, preprocessing and evaluation
: can be done within the TMVA system. To use this PyTorch
: interface, you need to generatea model with PyTorch first.
: Then, this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Print Training Model Architecture
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
: Elapsed time for training with 1600 events: 23.2 sec
PyTorch : [dataset] : Evaluation of PyTorch on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.433 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.136e-02
: 2 : vars : 1.097e-02
: 3 : vars : 9.560e-03
: 4 : vars : 9.535e-03
: 5 : vars : 9.382e-03
: 6 : vars : 9.079e-03
: 7 : vars : 8.811e-03
: 8 : vars : 8.712e-03
: 9 : vars : 8.614e-03
: 10 : vars : 8.581e-03
: 11 : vars : 8.458e-03
: 12 : vars : 8.197e-03
: 13 : vars : 7.894e-03
: 14 : vars : 7.647e-03
: 15 : vars : 7.626e-03
: 16 : vars : 7.621e-03
: 17 : vars : 7.476e-03
: 18 : vars : 7.476e-03
: 19 : vars : 7.388e-03
: 20 : vars : 7.289e-03
: 21 : vars : 7.174e-03
: 22 : vars : 7.174e-03
: 23 : vars : 7.098e-03
: 24 : vars : 7.083e-03
: 25 : vars : 7.079e-03
: 26 : vars : 7.032e-03
: 27 : vars : 7.018e-03
: 28 : vars : 6.998e-03
: 29 : vars : 6.978e-03
: 30 : vars : 6.922e-03
: 31 : vars : 6.869e-03
: 32 : vars : 6.799e-03
: 33 : vars : 6.790e-03
: 34 : vars : 6.761e-03
: 35 : vars : 6.712e-03
: 36 : vars : 6.654e-03
: 37 : vars : 6.649e-03
: 38 : vars : 6.580e-03
: 39 : vars : 6.494e-03
: 40 : vars : 6.486e-03
: 41 : vars : 6.466e-03
: 42 : vars : 6.391e-03
: 43 : vars : 6.357e-03
: 44 : vars : 6.347e-03
: 45 : vars : 6.261e-03
: 46 : vars : 6.189e-03
: 47 : vars : 6.132e-03
: 48 : vars : 6.123e-03
: 49 : vars : 6.090e-03
: 50 : vars : 6.068e-03
: 51 : vars : 6.062e-03
: 52 : vars : 6.037e-03
: 53 : vars : 6.016e-03
: 54 : vars : 5.986e-03
: 55 : vars : 5.982e-03
: 56 : vars : 5.931e-03
: 57 : vars : 5.828e-03
: 58 : vars : 5.720e-03
: 59 : vars : 5.699e-03
: 60 : vars : 5.673e-03
: 61 : vars : 5.645e-03
: 62 : vars : 5.636e-03
: 63 : vars : 5.564e-03
: 64 : vars : 5.555e-03
: 65 : vars : 5.514e-03
: 66 : vars : 5.481e-03
: 67 : vars : 5.476e-03
: 68 : vars : 5.447e-03
: 69 : vars : 5.422e-03
: 70 : vars : 5.400e-03
: 71 : vars : 5.390e-03
: 72 : vars : 5.387e-03
: 73 : vars : 5.377e-03
: 74 : vars : 5.362e-03
: 75 : vars : 5.342e-03
: 76 : vars : 5.341e-03
: 77 : vars : 5.337e-03
: 78 : vars : 5.336e-03
: 79 : vars : 5.306e-03
: 80 : vars : 5.250e-03
: 81 : vars : 5.244e-03
: 82 : vars : 5.240e-03
: 83 : vars : 5.216e-03
: 84 : vars : 5.215e-03
: 85 : vars : 5.155e-03
: 86 : vars : 5.141e-03
: 87 : vars : 5.093e-03
: 88 : vars : 5.045e-03
: 89 : vars : 5.003e-03
: 90 : vars : 4.887e-03
: 91 : vars : 4.849e-03
: 92 : vars : 4.846e-03
: 93 : vars : 4.800e-03
: 94 : vars : 4.796e-03
: 95 : vars : 4.780e-03
: 96 : vars : 4.778e-03
: 97 : vars : 4.766e-03
: 98 : vars : 4.765e-03
: 99 : vars : 4.756e-03
: 100 : vars : 4.740e-03
: 101 : vars : 4.721e-03
: 102 : vars : 4.710e-03
: 103 : vars : 4.702e-03
: 104 : vars : 4.681e-03
: 105 : vars : 4.638e-03
: 106 : vars : 4.621e-03
: 107 : vars : 4.614e-03
: 108 : vars : 4.552e-03
: 109 : vars : 4.471e-03
: 110 : vars : 4.463e-03
: 111 : vars : 4.425e-03
: 112 : vars : 4.367e-03
: 113 : vars : 4.360e-03
: 114 : vars : 4.303e-03
: 115 : vars : 4.295e-03
: 116 : vars : 4.258e-03
: 117 : vars : 4.241e-03
: 118 : vars : 4.197e-03
: 119 : vars : 4.188e-03
: 120 : vars : 4.156e-03
: 121 : vars : 4.089e-03
: 122 : vars : 4.067e-03
: 123 : vars : 4.055e-03
: 124 : vars : 4.046e-03
: 125 : vars : 4.030e-03
: 126 : vars : 4.009e-03
: 127 : vars : 3.997e-03
: 128 : vars : 3.936e-03
: 129 : vars : 3.926e-03
: 130 : vars : 3.924e-03
: 131 : vars : 3.888e-03
: 132 : vars : 3.885e-03
: 133 : vars : 3.856e-03
: 134 : vars : 3.822e-03
: 135 : vars : 3.800e-03
: 136 : vars : 3.799e-03
: 137 : vars : 3.785e-03
: 138 : vars : 3.717e-03
: 139 : vars : 3.704e-03
: 140 : vars : 3.668e-03
: 141 : vars : 3.636e-03
: 142 : vars : 3.627e-03
: 143 : vars : 3.591e-03
: 144 : vars : 3.584e-03
: 145 : vars : 3.569e-03
: 146 : vars : 3.555e-03
: 147 : vars : 3.539e-03
: 148 : vars : 3.529e-03
: 149 : vars : 3.517e-03
: 150 : vars : 3.502e-03
: 151 : vars : 3.476e-03
: 152 : vars : 3.467e-03
: 153 : vars : 3.428e-03
: 154 : vars : 3.401e-03
: 155 : vars : 3.391e-03
: 156 : vars : 3.359e-03
: 157 : vars : 3.349e-03
: 158 : vars : 3.342e-03
: 159 : vars : 3.340e-03
: 160 : vars : 3.319e-03
: 161 : vars : 3.298e-03
: 162 : vars : 3.275e-03
: 163 : vars : 3.261e-03
: 164 : vars : 3.248e-03
: 165 : vars : 3.195e-03
: 166 : vars : 3.183e-03
: 167 : vars : 3.118e-03
: 168 : vars : 3.078e-03
: 169 : vars : 3.047e-03
: 170 : vars : 3.038e-03
: 171 : vars : 3.014e-03
: 172 : vars : 3.002e-03
: 173 : vars : 2.913e-03
: 174 : vars : 2.889e-03
: 175 : vars : 2.880e-03
: 176 : vars : 2.834e-03
: 177 : vars : 2.825e-03
: 178 : vars : 2.822e-03
: 179 : vars : 2.811e-03
: 180 : vars : 2.795e-03
: 181 : vars : 2.793e-03
: 182 : vars : 2.781e-03
: 183 : vars : 2.748e-03
: 184 : vars : 2.681e-03
: 185 : vars : 2.667e-03
: 186 : vars : 2.662e-03
: 187 : vars : 2.581e-03
: 188 : vars : 2.573e-03
: 189 : vars : 2.561e-03
: 190 : vars : 2.537e-03
: 191 : vars : 2.535e-03
: 192 : vars : 2.417e-03
: 193 : vars : 2.319e-03
: 194 : vars : 2.307e-03
: 195 : vars : 2.295e-03
: 196 : vars : 2.266e-03
: 197 : vars : 2.242e-03
: 198 : vars : 2.146e-03
: 199 : vars : 2.071e-03
: 200 : vars : 2.061e-03
: 201 : vars : 2.044e-03
: 202 : vars : 2.041e-03
: 203 : vars : 1.991e-03
: 204 : vars : 1.918e-03
: 205 : vars : 1.917e-03
: 206 : vars : 1.576e-03
: 207 : vars : 1.424e-03
: 208 : vars : 1.279e-03
: 209 : vars : 9.380e-04
: 210 : vars : 5.556e-04
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
: No variable ranking supplied by classifier: PyKeras
: No variable ranking supplied by classifier: PyTorch
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.79684
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.40485
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 9.17304
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 8.19385
TH1.Print Name = TrainingHistory_PyKeras_'accuracy', Entries= 0, Total sum= 6.86016
TH1.Print Name = TrainingHistory_PyKeras_'loss', Entries= 0, Total sum= 6.31608
TH1.Print Name = TrainingHistory_PyKeras_'val_accuracy', Entries= 0, Total sum= 5.23438
TH1.Print Name = TrainingHistory_PyKeras_'val_loss', Entries= 0, Total sum= 7.68217
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00567 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0189 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.154 sec
Factory : Test method: PyKeras for Classification performance
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.197 sec
Factory : Test method: PyTorch for Classification performance
:
: Setup PyTorch Model for training
: Executing user initialization code from /home/sftnight/build/workspace/root-makedoc-master/rootspi/rdoc/src/master.build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Reshape)
(1): RecursiveScriptModule(original_name=Conv2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=BatchNorm2d)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ReLU)
(6): RecursiveScriptModule(original_name=MaxPool2d)
(7): RecursiveScriptModule(original_name=Flatten)
(8): RecursiveScriptModule(original_name=Linear)
(9): RecursiveScriptModule(original_name=ReLU)
(10): RecursiveScriptModule(original_name=Linear)
(11): RecursiveScriptModule(original_name=Sigmoid)
)
[1, 4] train loss: 1.129
[1, 8] train loss: 0.753
[1, 12] train loss: 0.705
[1] val loss: 0.739
[2, 4] train loss: 0.702
[2, 8] train loss: 0.693
[2, 12] train loss: 0.697
[2] val loss: 0.694
[3, 4] train loss: 0.687
[3, 8] train loss: 0.688
[3, 12] train loss: 0.688
[3] val loss: 0.684
[4, 4] train loss: 0.675
[4, 8] train loss: 0.678
[4, 12] train loss: 0.678
[4] val loss: 0.673
[5, 4] train loss: 0.658
[5, 8] train loss: 0.666
[5, 12] train loss: 0.650
[5] val loss: 0.681
[6, 4] train loss: 0.634
[6, 8] train loss: 0.656
[6, 12] train loss: 0.613
[6] val loss: 0.668
[7, 4] train loss: 0.593
[7, 8] train loss: 0.620
[7, 12] train loss: 0.560
[7] val loss: 0.684
[8, 4] train loss: 0.545
[8, 8] train loss: 0.599
[8, 12] train loss: 0.535
[8] val loss: 0.653
[9, 4] train loss: 0.512
[9, 8] train loss: 0.565
[9, 12] train loss: 0.485
[9] val loss: 0.771
[10, 4] train loss: 0.487
[10, 8] train loss: 0.485
[10, 12] train loss: 0.442
[10] val loss: 0.728
Finished Training on 10 Epochs!
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchTrainedModelCNN.pt
PyTorch : [dataset] : Evaluation of PyTorch on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.122 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyKeras
:
PyKeras : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyTorch
:
PyTorch : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_DNN_CPU : 0.725
: dataset PyTorch : 0.722
: dataset BDT : 0.698
: dataset TMVA_CNN_CPU : 0.670
: dataset PyKeras : 0.668
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_DNN_CPU : 0.045 (0.180) 0.235 (0.543) 0.645 (0.805)
: dataset PyTorch : 0.015 (0.065) 0.365 (0.439) 0.655 (0.730)
: dataset BDT : 0.042 (0.215) 0.285 (0.535) 0.585 (0.794)
: dataset TMVA_CNN_CPU : 0.025 (0.078) 0.258 (0.312) 0.550 (0.612)
: dataset PyKeras : 0.035 (0.088) 0.205 (0.385) 0.618 (0.712)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m