Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.755 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00682 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 12.6842
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.858271 0.831809 0.12349 0.0156915 11131.9 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.682074 0.758604 0.111957 0.0101718 11789.5 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.573725 0.738444 0.105938 0.0103203 12550 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.50731 0.706077 0.110142 0.0108416 12084.5 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.454604 0.661896 0.111989 0.0131036 12135.2 0
: 6 | 0.410657 0.678799 0.116603 0.0105976 11320.1 1
: 7 | 0.340953 0.748409 0.110524 0.0101854 11959.5 2
: 8 | 0.295113 0.699915 0.113586 0.0109872 11696 3
: 9 | 0.262635 0.69765 0.114235 0.0129898 11852.4 4
: 10 | 0.225886 0.721023 0.107253 0.00992553 12329.5 5
:
: Elapsed time for training with 1600 events: 1.15 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0543 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 79.7162
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 4.38638 1.90281 0.929459 0.0725511 1400.38 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.19459 0.826402 0.842952 0.068407 1549.3 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.78217 0.699656 0.838665 0.0685414 1558.19 0
: 4 | 0.715212 0.703455 0.812754 0.0728747 1621.89 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.698204 0.687677 0.796948 0.0677921 1645.74 0
: 6 | 0.684393 0.688571 0.770939 0.0679451 1706.99 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.672011 0.682968 0.817396 0.0769694 1620.69 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.661751 0.679384 0.763363 0.0696061 1729.71 0
: 9 | 0.656031 0.682118 0.763017 0.0676089 1725.6 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.649437 0.672256 0.757967 0.0694653 1742.92 0
:
: Elapsed time for training with 1600 events: 8.17 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.379 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.107e-02
: 2 : vars : 1.014e-02
: 3 : vars : 9.466e-03
: 4 : vars : 9.287e-03
: 5 : vars : 9.229e-03
: 6 : vars : 9.123e-03
: 7 : vars : 9.051e-03
: 8 : vars : 8.801e-03
: 9 : vars : 8.638e-03
: 10 : vars : 8.492e-03
: 11 : vars : 8.288e-03
: 12 : vars : 8.281e-03
: 13 : vars : 8.230e-03
: 14 : vars : 8.096e-03
: 15 : vars : 8.021e-03
: 16 : vars : 8.008e-03
: 17 : vars : 7.984e-03
: 18 : vars : 7.935e-03
: 19 : vars : 7.925e-03
: 20 : vars : 7.831e-03
: 21 : vars : 7.618e-03
: 22 : vars : 7.560e-03
: 23 : vars : 7.464e-03
: 24 : vars : 7.447e-03
: 25 : vars : 7.382e-03
: 26 : vars : 7.323e-03
: 27 : vars : 7.278e-03
: 28 : vars : 7.261e-03
: 29 : vars : 7.117e-03
: 30 : vars : 7.083e-03
: 31 : vars : 7.065e-03
: 32 : vars : 7.061e-03
: 33 : vars : 7.061e-03
: 34 : vars : 7.039e-03
: 35 : vars : 6.970e-03
: 36 : vars : 6.968e-03
: 37 : vars : 6.875e-03
: 38 : vars : 6.859e-03
: 39 : vars : 6.804e-03
: 40 : vars : 6.684e-03
: 41 : vars : 6.679e-03
: 42 : vars : 6.641e-03
: 43 : vars : 6.611e-03
: 44 : vars : 6.591e-03
: 45 : vars : 6.451e-03
: 46 : vars : 6.357e-03
: 47 : vars : 6.287e-03
: 48 : vars : 6.260e-03
: 49 : vars : 6.237e-03
: 50 : vars : 6.145e-03
: 51 : vars : 6.137e-03
: 52 : vars : 6.114e-03
: 53 : vars : 6.054e-03
: 54 : vars : 6.039e-03
: 55 : vars : 5.949e-03
: 56 : vars : 5.935e-03
: 57 : vars : 5.865e-03
: 58 : vars : 5.864e-03
: 59 : vars : 5.839e-03
: 60 : vars : 5.829e-03
: 61 : vars : 5.825e-03
: 62 : vars : 5.799e-03
: 63 : vars : 5.767e-03
: 64 : vars : 5.734e-03
: 65 : vars : 5.716e-03
: 66 : vars : 5.667e-03
: 67 : vars : 5.655e-03
: 68 : vars : 5.617e-03
: 69 : vars : 5.612e-03
: 70 : vars : 5.604e-03
: 71 : vars : 5.561e-03
: 72 : vars : 5.514e-03
: 73 : vars : 5.429e-03
: 74 : vars : 5.428e-03
: 75 : vars : 5.373e-03
: 76 : vars : 5.367e-03
: 77 : vars : 5.322e-03
: 78 : vars : 5.288e-03
: 79 : vars : 5.269e-03
: 80 : vars : 5.241e-03
: 81 : vars : 5.201e-03
: 82 : vars : 5.193e-03
: 83 : vars : 5.192e-03
: 84 : vars : 5.125e-03
: 85 : vars : 5.125e-03
: 86 : vars : 5.118e-03
: 87 : vars : 5.067e-03
: 88 : vars : 5.060e-03
: 89 : vars : 5.049e-03
: 90 : vars : 5.005e-03
: 91 : vars : 4.966e-03
: 92 : vars : 4.952e-03
: 93 : vars : 4.944e-03
: 94 : vars : 4.941e-03
: 95 : vars : 4.931e-03
: 96 : vars : 4.906e-03
: 97 : vars : 4.880e-03
: 98 : vars : 4.866e-03
: 99 : vars : 4.827e-03
: 100 : vars : 4.815e-03
: 101 : vars : 4.790e-03
: 102 : vars : 4.752e-03
: 103 : vars : 4.736e-03
: 104 : vars : 4.701e-03
: 105 : vars : 4.583e-03
: 106 : vars : 4.571e-03
: 107 : vars : 4.570e-03
: 108 : vars : 4.569e-03
: 109 : vars : 4.565e-03
: 110 : vars : 4.565e-03
: 111 : vars : 4.481e-03
: 112 : vars : 4.478e-03
: 113 : vars : 4.473e-03
: 114 : vars : 4.461e-03
: 115 : vars : 4.459e-03
: 116 : vars : 4.444e-03
: 117 : vars : 4.410e-03
: 118 : vars : 4.397e-03
: 119 : vars : 4.380e-03
: 120 : vars : 4.368e-03
: 121 : vars : 4.356e-03
: 122 : vars : 4.351e-03
: 123 : vars : 4.336e-03
: 124 : vars : 4.300e-03
: 125 : vars : 4.294e-03
: 126 : vars : 4.277e-03
: 127 : vars : 4.248e-03
: 128 : vars : 4.179e-03
: 129 : vars : 4.177e-03
: 130 : vars : 4.162e-03
: 131 : vars : 4.148e-03
: 132 : vars : 4.138e-03
: 133 : vars : 4.094e-03
: 134 : vars : 4.038e-03
: 135 : vars : 4.008e-03
: 136 : vars : 4.001e-03
: 137 : vars : 3.985e-03
: 138 : vars : 3.914e-03
: 139 : vars : 3.890e-03
: 140 : vars : 3.890e-03
: 141 : vars : 3.875e-03
: 142 : vars : 3.872e-03
: 143 : vars : 3.871e-03
: 144 : vars : 3.866e-03
: 145 : vars : 3.816e-03
: 146 : vars : 3.777e-03
: 147 : vars : 3.768e-03
: 148 : vars : 3.742e-03
: 149 : vars : 3.732e-03
: 150 : vars : 3.707e-03
: 151 : vars : 3.673e-03
: 152 : vars : 3.588e-03
: 153 : vars : 3.555e-03
: 154 : vars : 3.549e-03
: 155 : vars : 3.508e-03
: 156 : vars : 3.500e-03
: 157 : vars : 3.482e-03
: 158 : vars : 3.408e-03
: 159 : vars : 3.336e-03
: 160 : vars : 3.309e-03
: 161 : vars : 3.301e-03
: 162 : vars : 3.230e-03
: 163 : vars : 3.201e-03
: 164 : vars : 3.186e-03
: 165 : vars : 3.178e-03
: 166 : vars : 3.159e-03
: 167 : vars : 3.125e-03
: 168 : vars : 3.022e-03
: 169 : vars : 3.021e-03
: 170 : vars : 2.994e-03
: 171 : vars : 2.983e-03
: 172 : vars : 2.975e-03
: 173 : vars : 2.965e-03
: 174 : vars : 2.944e-03
: 175 : vars : 2.932e-03
: 176 : vars : 2.895e-03
: 177 : vars : 2.892e-03
: 178 : vars : 2.887e-03
: 179 : vars : 2.872e-03
: 180 : vars : 2.776e-03
: 181 : vars : 2.737e-03
: 182 : vars : 2.728e-03
: 183 : vars : 2.719e-03
: 184 : vars : 2.704e-03
: 185 : vars : 2.683e-03
: 186 : vars : 2.654e-03
: 187 : vars : 2.650e-03
: 188 : vars : 2.613e-03
: 189 : vars : 2.609e-03
: 190 : vars : 2.517e-03
: 191 : vars : 2.480e-03
: 192 : vars : 2.427e-03
: 193 : vars : 2.381e-03
: 194 : vars : 2.170e-03
: 195 : vars : 1.685e-03
: 196 : vars : 1.180e-03
: 197 : vars : 1.040e-03
: 198 : vars : 1.036e-03
: 199 : vars : 3.206e-04
: 200 : vars : 0.000e+00
: 201 : vars : 0.000e+00
: 202 : vars : 0.000e+00
: 203 : vars : 0.000e+00
: 204 : vars : 0.000e+00
: 205 : vars : 0.000e+00
: 206 : vars : 0.000e+00
: 207 : vars : 0.000e+00
: 208 : vars : 0.000e+00
: 209 : vars : 0.000e+00
: 210 : vars : 0.000e+00
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.61123
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.24263
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 11.1002
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 8.2253
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00185 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0133 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.101 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.733
: dataset TMVA_DNN_CPU : 0.649
: dataset TMVA_CNN_CPU : 0.642
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.100 (0.218) 0.345 (0.545) 0.625 (0.838)
: dataset TMVA_DNN_CPU : 0.040 (0.110) 0.252 (0.421) 0.425 (0.716)
: dataset TMVA_CNN_CPU : 0.012 (0.012) 0.228 (0.255) 0.545 (0.572)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m