Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
batch_normalization (Batch (None, 16, 16, 10) 40
Normalization)
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 15, 15, 10) 0
D)
flatten (Flatten) (None, 2250) 0
dense (Dense) (None, 256) 576256
dense_1 (Dense) (None, 2) 514
=================================================================
Total params: 577820 (2.20 MB)
Trainable params: 577800 (2.20 MB)
Non-trainable params: 20 (80.00 Byte)
_________________________________________________________________
Factory : Booking method: ␛[1mPyKeras␛[0m
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Loading Keras Model
: Loaded model from file: model_cnn.h5
Factory : Booking method: ␛[1mPyTorch␛[0m
:
: Using PyTorch - setting special configuration options
: Using PyTorch version 2
: Setup PyTorch Model for training
: Executing user initialization code from /github/home/ROOT-CI/build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
custom objects for loading model : {'optimizer': <class 'torch.optim.adam.Adam'>, 'criterion': BCELoss(), 'train_func': <function fit at 0x7fe090045c10>, 'predict_func': <function predict at 0x7fe090045ca0>}
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchModelCNN.pt
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.815 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0126 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 55.9242
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.903846 0.878002 0.0267645 0.00254996 49556.9 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.662094 0.802488 0.0240634 0.00235519 55278.6 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.590091 0.766646 0.0240102 0.00229931 55271.8 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.517593 0.707145 0.0238882 0.00229118 55563.3 0
: 5 | 0.450089 0.728706 0.023327 0.00150656 54994.2 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.395614 0.705426 0.0240404 0.00232628 55263.5 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.351755 0.687489 0.0242198 0.0023066 54761.5 0
: 8 | 0.291487 0.738776 0.0233498 0.00146654 54836.4 1
: 9 | 0.265619 0.767674 0.0230724 0.00150569 55641.4 2
: 10 | 0.220697 0.732345 0.0239599 0.00157137 53598.9 3
:
: Elapsed time for training with 1600 events: 0.26 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0083 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 92.9105
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.76787 0.714832 0.531554 0.0403641 2443.04 0
: 2 | 0.781803 0.736042 0.524755 0.0401652 2476.32 1
: 3 Minimum Test error found - save the configuration
: 3 | 0.709358 0.704204 0.476771 0.0425366 2763.49 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.695135 0.691598 0.516922 0.0430165 2532.15 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.685968 0.69011 0.552385 0.0426368 2354.1 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.680002 0.684613 0.556716 0.0430292 2336.05 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.677171 0.683112 0.512614 0.0450889 2566.71 0
: 8 | 0.671493 0.686612 0.484962 0.042857 2714.29 1
: 9 Minimum Test error found - save the configuration
: 9 | 0.666061 0.682254 0.539859 0.0418702 2409.69 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.654266 0.657698 0.55653 0.0426019 2334.96 0
:
: Elapsed time for training with 1600 events: 5.31 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.192 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyKeras for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyKeras ] :␛[0m
:
: Keras is a high-level API for the Theano and Tensorflow packages.
: This method wraps the training and predictions steps of the Keras
: Python package for TMVA, so that dataloading, preprocessing and
: evaluation can be done within the TMVA system. To use this Keras
: interface, you have to generate a model with Keras first. Then,
: this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Training Model Summary
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
batch_normalization (Batch (None, 16, 16, 10) 40
Normalization)
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 15, 15, 10) 0
D)
flatten (Flatten) (None, 2250) 0
dense (Dense) (None, 256) 576256
dense_1 (Dense) (None, 2) 514
=================================================================
Total params: 577820 (2.20 MB)
Trainable params: 577800 (2.20 MB)
Non-trainable params: 20 (80.00 Byte)
_________________________________________________________________
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
Epoch 1/10
1/13 [=>............................] - ETA: 8s - loss: 0.9262 - accuracy: 0.4900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 1.7146 - accuracy: 0.4860␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 1.3857 - accuracy: 0.4978␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 1.1909 - accuracy: 0.5133
Epoch 1: val_loss improved from inf to 0.94225, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 1s 44ms/step - loss: 1.1909 - accuracy: 0.5133 - val_loss: 0.9422 - val_accuracy: 0.4938
Epoch 2/10
1/13 [=>............................] - ETA: 0s - loss: 0.7429 - accuracy: 0.5700␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.7388 - accuracy: 0.5300␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.7186 - accuracy: 0.5378␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.7110 - accuracy: 0.5375
Epoch 2: val_loss improved from 0.94225 to 0.70134, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 21ms/step - loss: 0.7110 - accuracy: 0.5375 - val_loss: 0.7013 - val_accuracy: 0.5406
Epoch 3/10
1/13 [=>............................] - ETA: 0s - loss: 0.6979 - accuracy: 0.5000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6866 - accuracy: 0.5500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6827 - accuracy: 0.5533␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.6800 - accuracy: 0.5641
Epoch 3: val_loss did not improve from 0.70134
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.6800 - accuracy: 0.5641 - val_loss: 0.7128 - val_accuracy: 0.5125
Epoch 4/10
1/13 [=>............................] - ETA: 0s - loss: 0.6873 - accuracy: 0.5400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6629 - accuracy: 0.6200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6617 - accuracy: 0.6278␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.6623 - accuracy: 0.6313
Epoch 4: val_loss improved from 0.70134 to 0.67519, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 21ms/step - loss: 0.6623 - accuracy: 0.6313 - val_loss: 0.6752 - val_accuracy: 0.6000
Epoch 5/10
1/13 [=>............................] - ETA: 0s - loss: 0.6438 - accuracy: 0.7100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6511 - accuracy: 0.6640␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6488 - accuracy: 0.6556␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.6475 - accuracy: 0.6609
Epoch 5: val_loss improved from 0.67519 to 0.66816, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 21ms/step - loss: 0.6475 - accuracy: 0.6609 - val_loss: 0.6682 - val_accuracy: 0.6094
Epoch 6/10
1/13 [=>............................] - ETA: 0s - loss: 0.6312 - accuracy: 0.6800␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6457 - accuracy: 0.6580␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6416 - accuracy: 0.6589␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.6349 - accuracy: 0.6789
Epoch 6: val_loss improved from 0.66816 to 0.66435, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 21ms/step - loss: 0.6349 - accuracy: 0.6789 - val_loss: 0.6644 - val_accuracy: 0.6281
Epoch 7/10
1/13 [=>............................] - ETA: 0s - loss: 0.6033 - accuracy: 0.7800␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6196 - accuracy: 0.7200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6164 - accuracy: 0.7222␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.6187 - accuracy: 0.7102
Epoch 7: val_loss improved from 0.66435 to 0.65774, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 20ms/step - loss: 0.6187 - accuracy: 0.7102 - val_loss: 0.6577 - val_accuracy: 0.6281
Epoch 8/10
1/13 [=>............................] - ETA: 0s - loss: 0.5940 - accuracy: 0.6900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6023 - accuracy: 0.7240␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6056 - accuracy: 0.7044␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.5990 - accuracy: 0.7148
Epoch 8: val_loss did not improve from 0.65774
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.5990 - accuracy: 0.7148 - val_loss: 0.6591 - val_accuracy: 0.5938
Epoch 9/10
1/13 [=>............................] - ETA: 0s - loss: 0.5997 - accuracy: 0.6600␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.5831 - accuracy: 0.7100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.5930 - accuracy: 0.6978␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.5922 - accuracy: 0.6945
Epoch 9: val_loss improved from 0.65774 to 0.64599, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 22ms/step - loss: 0.5922 - accuracy: 0.6945 - val_loss: 0.6460 - val_accuracy: 0.6562
Epoch 10/10
1/13 [=>............................] - ETA: 0s - loss: 0.5617 - accuracy: 0.8100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.5669 - accuracy: 0.7300␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.5692 - accuracy: 0.7233␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.5663 - accuracy: 0.7281
Epoch 10: val_loss improved from 0.64599 to 0.63946, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 21ms/step - loss: 0.5663 - accuracy: 0.7281 - val_loss: 0.6395 - val_accuracy: 0.6687
: Getting training history for item:0 name = 'loss'
: Getting training history for item:1 name = 'accuracy'
: Getting training history for item:2 name = 'val_loss'
: Getting training history for item:3 name = 'val_accuracy'
: Elapsed time for training with 1600 events: 3.7 sec
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.205 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyTorch for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyTorch ] :␛[0m
:
: PyTorch is a scientific computing package supporting
: automatic differentiation. This method wraps the training
: and predictions steps of the PyTorch Python package for
: TMVA, so that dataloading, preprocessing and evaluation
: can be done within the TMVA system. To use this PyTorch
: interface, you need to generatea model with PyTorch first.
: Then, this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Print Training Model Architecture
RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Reshape)
(1): RecursiveScriptModule(original_name=Conv2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=BatchNorm2d)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ReLU)
(6): RecursiveScriptModule(original_name=MaxPool2d)
(7): RecursiveScriptModule(original_name=Flatten)
(8): RecursiveScriptModule(original_name=Linear)
(9): RecursiveScriptModule(original_name=ReLU)
(10): RecursiveScriptModule(original_name=Linear)
(11): RecursiveScriptModule(original_name=Sigmoid)
)
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
[1, 4] train loss: 1.324
[1, 8] train loss: 0.730
[1, 12] train loss: 0.698
[1] val loss: 0.699
[2, 4] train loss: 0.706
[2, 8] train loss: 0.696
[2, 12] train loss: 0.691
[2] val loss: 0.683
[3, 4] train loss: 0.693
[3, 8] train loss: 0.693
[3, 12] train loss: 0.683
[3] val loss: 0.680
[4, 4] train loss: 0.683
[4, 8] train loss: 0.685
[4, 12] train loss: 0.667
[4] val loss: 0.651
[5, 4] train loss: 0.675
[5, 8] train loss: 0.671
[5, 12] train loss: 0.651
[5] val loss: 0.649
[6, 4] train loss: 0.630
[6, 8] train loss: 0.618
[6, 12] train loss: 0.587
[6] val loss: 0.774
[7, 4] train loss: 0.581
[7, 8] train loss: 0.574
[7, 12] train loss: 0.586
[7] val loss: 0.725
[8, 4] train loss: 0.564
[8, 8] train loss: 0.564
[8, 12] train loss: 0.469
[8] val loss: 0.599
[9, 4] train loss: 0.457
[9, 8] train loss: 0.499
[9, 12] train loss: 0.420
[9] val loss: 0.682
[10, 4] train loss: 0.440
[10, 8] train loss: 0.411
[10, 12] train loss: 0.358
[10] val loss: 0.642
Finished Training on 10 Epochs!
: Elapsed time for training with 1600 events: 2.06 sec
PyTorch : [dataset] : Evaluation of PyTorch on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0349 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.240e-02
: 2 : vars : 1.221e-02
: 3 : vars : 1.186e-02
: 4 : vars : 1.117e-02
: 5 : vars : 9.855e-03
: 6 : vars : 9.609e-03
: 7 : vars : 9.250e-03
: 8 : vars : 9.248e-03
: 9 : vars : 9.177e-03
: 10 : vars : 9.171e-03
: 11 : vars : 8.978e-03
: 12 : vars : 8.479e-03
: 13 : vars : 8.338e-03
: 14 : vars : 8.153e-03
: 15 : vars : 8.144e-03
: 16 : vars : 8.122e-03
: 17 : vars : 8.058e-03
: 18 : vars : 7.922e-03
: 19 : vars : 7.907e-03
: 20 : vars : 7.763e-03
: 21 : vars : 7.599e-03
: 22 : vars : 7.335e-03
: 23 : vars : 7.318e-03
: 24 : vars : 7.317e-03
: 25 : vars : 7.268e-03
: 26 : vars : 7.156e-03
: 27 : vars : 7.044e-03
: 28 : vars : 7.017e-03
: 29 : vars : 7.017e-03
: 30 : vars : 6.972e-03
: 31 : vars : 6.931e-03
: 32 : vars : 6.768e-03
: 33 : vars : 6.756e-03
: 34 : vars : 6.749e-03
: 35 : vars : 6.614e-03
: 36 : vars : 6.572e-03
: 37 : vars : 6.546e-03
: 38 : vars : 6.475e-03
: 39 : vars : 6.434e-03
: 40 : vars : 6.428e-03
: 41 : vars : 6.379e-03
: 42 : vars : 6.361e-03
: 43 : vars : 6.336e-03
: 44 : vars : 6.326e-03
: 45 : vars : 6.315e-03
: 46 : vars : 6.294e-03
: 47 : vars : 6.263e-03
: 48 : vars : 6.234e-03
: 49 : vars : 6.228e-03
: 50 : vars : 6.214e-03
: 51 : vars : 6.209e-03
: 52 : vars : 6.156e-03
: 53 : vars : 6.120e-03
: 54 : vars : 5.994e-03
: 55 : vars : 5.934e-03
: 56 : vars : 5.925e-03
: 57 : vars : 5.853e-03
: 58 : vars : 5.806e-03
: 59 : vars : 5.777e-03
: 60 : vars : 5.775e-03
: 61 : vars : 5.685e-03
: 62 : vars : 5.677e-03
: 63 : vars : 5.660e-03
: 64 : vars : 5.585e-03
: 65 : vars : 5.584e-03
: 66 : vars : 5.577e-03
: 67 : vars : 5.561e-03
: 68 : vars : 5.538e-03
: 69 : vars : 5.494e-03
: 70 : vars : 5.461e-03
: 71 : vars : 5.455e-03
: 72 : vars : 5.410e-03
: 73 : vars : 5.405e-03
: 74 : vars : 5.401e-03
: 75 : vars : 5.401e-03
: 76 : vars : 5.383e-03
: 77 : vars : 5.368e-03
: 78 : vars : 5.306e-03
: 79 : vars : 5.306e-03
: 80 : vars : 5.255e-03
: 81 : vars : 5.173e-03
: 82 : vars : 5.068e-03
: 83 : vars : 5.031e-03
: 84 : vars : 4.996e-03
: 85 : vars : 4.974e-03
: 86 : vars : 4.971e-03
: 87 : vars : 4.971e-03
: 88 : vars : 4.951e-03
: 89 : vars : 4.928e-03
: 90 : vars : 4.927e-03
: 91 : vars : 4.863e-03
: 92 : vars : 4.845e-03
: 93 : vars : 4.799e-03
: 94 : vars : 4.759e-03
: 95 : vars : 4.750e-03
: 96 : vars : 4.656e-03
: 97 : vars : 4.638e-03
: 98 : vars : 4.513e-03
: 99 : vars : 4.498e-03
: 100 : vars : 4.493e-03
: 101 : vars : 4.478e-03
: 102 : vars : 4.427e-03
: 103 : vars : 4.373e-03
: 104 : vars : 4.334e-03
: 105 : vars : 4.332e-03
: 106 : vars : 4.331e-03
: 107 : vars : 4.301e-03
: 108 : vars : 4.292e-03
: 109 : vars : 4.279e-03
: 110 : vars : 4.271e-03
: 111 : vars : 4.255e-03
: 112 : vars : 4.218e-03
: 113 : vars : 4.210e-03
: 114 : vars : 4.199e-03
: 115 : vars : 4.189e-03
: 116 : vars : 4.184e-03
: 117 : vars : 4.122e-03
: 118 : vars : 4.122e-03
: 119 : vars : 4.089e-03
: 120 : vars : 4.074e-03
: 121 : vars : 3.933e-03
: 122 : vars : 3.918e-03
: 123 : vars : 3.860e-03
: 124 : vars : 3.837e-03
: 125 : vars : 3.828e-03
: 126 : vars : 3.816e-03
: 127 : vars : 3.812e-03
: 128 : vars : 3.780e-03
: 129 : vars : 3.775e-03
: 130 : vars : 3.755e-03
: 131 : vars : 3.708e-03
: 132 : vars : 3.666e-03
: 133 : vars : 3.655e-03
: 134 : vars : 3.639e-03
: 135 : vars : 3.639e-03
: 136 : vars : 3.635e-03
: 137 : vars : 3.615e-03
: 138 : vars : 3.613e-03
: 139 : vars : 3.603e-03
: 140 : vars : 3.577e-03
: 141 : vars : 3.532e-03
: 142 : vars : 3.514e-03
: 143 : vars : 3.511e-03
: 144 : vars : 3.495e-03
: 145 : vars : 3.492e-03
: 146 : vars : 3.479e-03
: 147 : vars : 3.465e-03
: 148 : vars : 3.431e-03
: 149 : vars : 3.401e-03
: 150 : vars : 3.376e-03
: 151 : vars : 3.315e-03
: 152 : vars : 3.295e-03
: 153 : vars : 3.255e-03
: 154 : vars : 3.237e-03
: 155 : vars : 3.233e-03
: 156 : vars : 3.222e-03
: 157 : vars : 3.200e-03
: 158 : vars : 3.152e-03
: 159 : vars : 3.131e-03
: 160 : vars : 3.089e-03
: 161 : vars : 3.049e-03
: 162 : vars : 3.047e-03
: 163 : vars : 3.030e-03
: 164 : vars : 3.018e-03
: 165 : vars : 2.989e-03
: 166 : vars : 2.952e-03
: 167 : vars : 2.911e-03
: 168 : vars : 2.883e-03
: 169 : vars : 2.875e-03
: 170 : vars : 2.848e-03
: 171 : vars : 2.835e-03
: 172 : vars : 2.832e-03
: 173 : vars : 2.825e-03
: 174 : vars : 2.806e-03
: 175 : vars : 2.798e-03
: 176 : vars : 2.713e-03
: 177 : vars : 2.690e-03
: 178 : vars : 2.678e-03
: 179 : vars : 2.628e-03
: 180 : vars : 2.608e-03
: 181 : vars : 2.573e-03
: 182 : vars : 2.568e-03
: 183 : vars : 2.462e-03
: 184 : vars : 2.451e-03
: 185 : vars : 2.442e-03
: 186 : vars : 2.434e-03
: 187 : vars : 2.434e-03
: 188 : vars : 2.430e-03
: 189 : vars : 2.428e-03
: 190 : vars : 2.420e-03
: 191 : vars : 2.380e-03
: 192 : vars : 2.378e-03
: 193 : vars : 2.371e-03
: 194 : vars : 2.246e-03
: 195 : vars : 2.218e-03
: 196 : vars : 2.182e-03
: 197 : vars : 2.127e-03
: 198 : vars : 2.104e-03
: 199 : vars : 2.062e-03
: 200 : vars : 2.002e-03
: 201 : vars : 1.859e-03
: 202 : vars : 1.792e-03
: 203 : vars : 1.778e-03
: 204 : vars : 1.765e-03
: 205 : vars : 1.702e-03
: 206 : vars : 1.570e-03
: 207 : vars : 1.496e-03
: 208 : vars : 1.348e-03
: 209 : vars : 1.311e-03
: 210 : vars : 1.146e-03
: 211 : vars : 9.801e-04
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
: No variable ranking supplied by classifier: PyKeras
: No variable ranking supplied by classifier: PyTorch
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.64888
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.5147
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.98913
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.93107
TH1.Print Name = TrainingHistory_PyKeras_'accuracy', Entries= 0, Total sum= 6.43359
TH1.Print Name = TrainingHistory_PyKeras_'loss', Entries= 0, Total sum= 6.90294
TH1.Print Name = TrainingHistory_PyKeras_'val_accuracy', Entries= 0, Total sum= 5.93125
TH1.Print Name = TrainingHistory_PyKeras_'val_loss', Entries= 0, Total sum= 6.96643
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00391 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00199 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0552 sec
Factory : Test method: PyKeras for Classification performance
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.165 sec
Factory : Test method: PyTorch for Classification performance
:
: Setup PyTorch Model for training
: Executing user initialization code from /github/home/ROOT-CI/build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
custom objects for loading model : {'optimizer': <class 'torch.optim.adam.Adam'>, 'criterion': BCELoss(), 'train_func': <function fit at 0x7fdf458b8dc0>, 'predict_func': <function predict at 0x7fe08470c670>}
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchTrainedModelCNN.pt
PyTorch : [dataset] : Evaluation of PyTorch on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0249 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyKeras
:
PyKeras : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyTorch
:
PyTorch : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset PyTorch : 0.849
: dataset BDT : 0.730
: dataset TMVA_DNN_CPU : 0.704
: dataset TMVA_CNN_CPU : 0.699
: dataset PyKeras : 0.688
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset PyTorch : 0.175 (0.205) 0.565 (0.615) 0.846 (0.849)
: dataset BDT : 0.025 (0.215) 0.335 (0.590) 0.638 (0.783)
: dataset TMVA_DNN_CPU : 0.040 (0.100) 0.310 (0.523) 0.585 (0.777)
: dataset TMVA_CNN_CPU : 0.065 (0.050) 0.285 (0.313) 0.565 (0.620)
: dataset PyKeras : 0.025 (0.055) 0.275 (0.353) 0.585 (0.652)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m