Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.34 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0144 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 19.2029
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.906981 0.809055 0.108813 0.0107381 12235.6 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.718123 0.683037 0.105681 0.010424 12597.5 0
: 3 | 0.623076 0.690068 0.105936 0.0101761 12531.4 1
: 4 Minimum Test error found - save the configuration
: 4 | 0.539658 0.669754 0.107702 0.0126598 12626 0
: 5 | 0.473138 0.695406 0.106354 0.00998158 12451.7 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.421491 0.667716 0.107143 0.0105517 12423.4 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.369853 0.631139 0.106659 0.0115324 12614.7 0
: 8 | 0.329922 0.658598 0.108157 0.0104997 12287.9 1
: 9 | 0.307817 0.638434 0.105612 0.00993062 12541.6 2
: 10 | 0.2635 0.654966 0.106425 0.0100068 12445.7 3
:
: Elapsed time for training with 1600 events: 1.09 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0553 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 412.465
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.11635 0.781505 0.763408 0.0716577 1734.73 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.823698 0.765226 0.832618 0.072656 1579.03 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.700699 0.699758 0.837521 0.0644045 1552.16 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.678084 0.667187 0.788386 0.0692343 1668.63 0
: 5 | 0.649531 0.678283 0.848272 0.0802322 1562.42 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.615763 0.635607 0.799601 0.0731873 1651.95 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.58354 0.617174 0.819236 0.0666463 1594.49 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.555831 0.616717 0.786944 0.0646892 1661.46 0
: 9 | 0.531816 0.634191 0.783317 0.0648017 1670.11 1
: 10 | 0.51092 0.666813 0.801987 0.0643778 1626.88 2
:
: Elapsed time for training with 1600 events: 8.13 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.36 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.442e-03
: 2 : vars : 8.604e-03
: 3 : vars : 8.472e-03
: 4 : vars : 8.371e-03
: 5 : vars : 8.285e-03
: 6 : vars : 8.089e-03
: 7 : vars : 7.853e-03
: 8 : vars : 7.841e-03
: 9 : vars : 7.777e-03
: 10 : vars : 7.723e-03
: 11 : vars : 7.018e-03
: 12 : vars : 6.949e-03
: 13 : vars : 6.925e-03
: 14 : vars : 6.889e-03
: 15 : vars : 6.877e-03
: 16 : vars : 6.769e-03
: 17 : vars : 6.746e-03
: 18 : vars : 6.716e-03
: 19 : vars : 6.582e-03
: 20 : vars : 6.329e-03
: 21 : vars : 6.258e-03
: 22 : vars : 6.255e-03
: 23 : vars : 6.238e-03
: 24 : vars : 6.207e-03
: 25 : vars : 6.176e-03
: 26 : vars : 6.174e-03
: 27 : vars : 6.084e-03
: 28 : vars : 6.071e-03
: 29 : vars : 6.060e-03
: 30 : vars : 6.027e-03
: 31 : vars : 5.997e-03
: 32 : vars : 5.976e-03
: 33 : vars : 5.965e-03
: 34 : vars : 5.962e-03
: 35 : vars : 5.959e-03
: 36 : vars : 5.932e-03
: 37 : vars : 5.925e-03
: 38 : vars : 5.889e-03
: 39 : vars : 5.876e-03
: 40 : vars : 5.836e-03
: 41 : vars : 5.780e-03
: 42 : vars : 5.763e-03
: 43 : vars : 5.747e-03
: 44 : vars : 5.715e-03
: 45 : vars : 5.700e-03
: 46 : vars : 5.687e-03
: 47 : vars : 5.673e-03
: 48 : vars : 5.618e-03
: 49 : vars : 5.453e-03
: 50 : vars : 5.439e-03
: 51 : vars : 5.432e-03
: 52 : vars : 5.377e-03
: 53 : vars : 5.344e-03
: 54 : vars : 5.319e-03
: 55 : vars : 5.284e-03
: 56 : vars : 5.254e-03
: 57 : vars : 5.247e-03
: 58 : vars : 5.205e-03
: 59 : vars : 5.182e-03
: 60 : vars : 5.130e-03
: 61 : vars : 5.110e-03
: 62 : vars : 5.066e-03
: 63 : vars : 5.051e-03
: 64 : vars : 5.028e-03
: 65 : vars : 5.017e-03
: 66 : vars : 5.008e-03
: 67 : vars : 5.007e-03
: 68 : vars : 5.002e-03
: 69 : vars : 4.999e-03
: 70 : vars : 4.984e-03
: 71 : vars : 4.933e-03
: 72 : vars : 4.925e-03
: 73 : vars : 4.917e-03
: 74 : vars : 4.907e-03
: 75 : vars : 4.851e-03
: 76 : vars : 4.833e-03
: 77 : vars : 4.832e-03
: 78 : vars : 4.814e-03
: 79 : vars : 4.810e-03
: 80 : vars : 4.759e-03
: 81 : vars : 4.740e-03
: 82 : vars : 4.739e-03
: 83 : vars : 4.731e-03
: 84 : vars : 4.711e-03
: 85 : vars : 4.701e-03
: 86 : vars : 4.692e-03
: 87 : vars : 4.680e-03
: 88 : vars : 4.677e-03
: 89 : vars : 4.675e-03
: 90 : vars : 4.668e-03
: 91 : vars : 4.668e-03
: 92 : vars : 4.667e-03
: 93 : vars : 4.662e-03
: 94 : vars : 4.613e-03
: 95 : vars : 4.603e-03
: 96 : vars : 4.587e-03
: 97 : vars : 4.551e-03
: 98 : vars : 4.473e-03
: 99 : vars : 4.456e-03
: 100 : vars : 4.407e-03
: 101 : vars : 4.397e-03
: 102 : vars : 4.353e-03
: 103 : vars : 4.335e-03
: 104 : vars : 4.291e-03
: 105 : vars : 4.269e-03
: 106 : vars : 4.233e-03
: 107 : vars : 4.230e-03
: 108 : vars : 4.226e-03
: 109 : vars : 4.193e-03
: 110 : vars : 4.186e-03
: 111 : vars : 4.179e-03
: 112 : vars : 4.176e-03
: 113 : vars : 4.176e-03
: 114 : vars : 4.122e-03
: 115 : vars : 4.105e-03
: 116 : vars : 4.081e-03
: 117 : vars : 4.080e-03
: 118 : vars : 4.071e-03
: 119 : vars : 4.067e-03
: 120 : vars : 4.062e-03
: 121 : vars : 4.043e-03
: 122 : vars : 4.022e-03
: 123 : vars : 3.997e-03
: 124 : vars : 3.989e-03
: 125 : vars : 3.968e-03
: 126 : vars : 3.896e-03
: 127 : vars : 3.896e-03
: 128 : vars : 3.895e-03
: 129 : vars : 3.874e-03
: 130 : vars : 3.863e-03
: 131 : vars : 3.839e-03
: 132 : vars : 3.836e-03
: 133 : vars : 3.827e-03
: 134 : vars : 3.821e-03
: 135 : vars : 3.783e-03
: 136 : vars : 3.781e-03
: 137 : vars : 3.726e-03
: 138 : vars : 3.646e-03
: 139 : vars : 3.646e-03
: 140 : vars : 3.613e-03
: 141 : vars : 3.601e-03
: 142 : vars : 3.560e-03
: 143 : vars : 3.549e-03
: 144 : vars : 3.544e-03
: 145 : vars : 3.540e-03
: 146 : vars : 3.533e-03
: 147 : vars : 3.476e-03
: 148 : vars : 3.462e-03
: 149 : vars : 3.433e-03
: 150 : vars : 3.399e-03
: 151 : vars : 3.393e-03
: 152 : vars : 3.388e-03
: 153 : vars : 3.376e-03
: 154 : vars : 3.373e-03
: 155 : vars : 3.372e-03
: 156 : vars : 3.347e-03
: 157 : vars : 3.342e-03
: 158 : vars : 3.317e-03
: 159 : vars : 3.311e-03
: 160 : vars : 3.280e-03
: 161 : vars : 3.276e-03
: 162 : vars : 3.260e-03
: 163 : vars : 3.249e-03
: 164 : vars : 3.247e-03
: 165 : vars : 3.221e-03
: 166 : vars : 3.204e-03
: 167 : vars : 3.160e-03
: 168 : vars : 3.152e-03
: 169 : vars : 3.116e-03
: 170 : vars : 3.102e-03
: 171 : vars : 3.085e-03
: 172 : vars : 3.081e-03
: 173 : vars : 3.070e-03
: 174 : vars : 3.067e-03
: 175 : vars : 3.043e-03
: 176 : vars : 3.013e-03
: 177 : vars : 2.995e-03
: 178 : vars : 2.969e-03
: 179 : vars : 2.962e-03
: 180 : vars : 2.950e-03
: 181 : vars : 2.935e-03
: 182 : vars : 2.917e-03
: 183 : vars : 2.891e-03
: 184 : vars : 2.887e-03
: 185 : vars : 2.879e-03
: 186 : vars : 2.859e-03
: 187 : vars : 2.850e-03
: 188 : vars : 2.828e-03
: 189 : vars : 2.725e-03
: 190 : vars : 2.709e-03
: 191 : vars : 2.708e-03
: 192 : vars : 2.706e-03
: 193 : vars : 2.702e-03
: 194 : vars : 2.686e-03
: 195 : vars : 2.631e-03
: 196 : vars : 2.616e-03
: 197 : vars : 2.616e-03
: 198 : vars : 2.603e-03
: 199 : vars : 2.590e-03
: 200 : vars : 2.580e-03
: 201 : vars : 2.503e-03
: 202 : vars : 2.498e-03
: 203 : vars : 2.483e-03
: 204 : vars : 2.482e-03
: 205 : vars : 2.474e-03
: 206 : vars : 2.451e-03
: 207 : vars : 2.440e-03
: 208 : vars : 2.437e-03
: 209 : vars : 2.421e-03
: 210 : vars : 2.421e-03
: 211 : vars : 2.410e-03
: 212 : vars : 2.399e-03
: 213 : vars : 2.363e-03
: 214 : vars : 2.356e-03
: 215 : vars : 2.325e-03
: 216 : vars : 2.300e-03
: 217 : vars : 2.282e-03
: 218 : vars : 2.270e-03
: 219 : vars : 2.211e-03
: 220 : vars : 2.190e-03
: 221 : vars : 2.130e-03
: 222 : vars : 2.042e-03
: 223 : vars : 1.955e-03
: 224 : vars : 1.947e-03
: 225 : vars : 1.938e-03
: 226 : vars : 1.850e-03
: 227 : vars : 1.837e-03
: 228 : vars : 1.821e-03
: 229 : vars : 1.819e-03
: 230 : vars : 1.802e-03
: 231 : vars : 1.635e-03
: 232 : vars : 1.565e-03
: 233 : vars : 1.548e-03
: 234 : vars : 1.501e-03
: 235 : vars : 1.423e-03
: 236 : vars : 1.414e-03
: 237 : vars : 1.413e-03
: 238 : vars : 1.286e-03
: 239 : vars : 1.026e-03
: 240 : vars : 8.964e-04
: 241 : vars : 8.811e-04
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.95356
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 6.79817
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.76623
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.76246
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0038 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.014 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0959 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.784
: dataset TMVA_CNN_CPU : 0.667
: dataset TMVA_DNN_CPU : 0.657
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.135 (0.385) 0.475 (0.742) 0.752 (0.872)
: dataset TMVA_CNN_CPU : 0.105 (0.080) 0.245 (0.343) 0.475 (0.648)
: dataset TMVA_DNN_CPU : 0.055 (0.115) 0.275 (0.495) 0.495 (0.742)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m