Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.7 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.02 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 20.7909
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.857415 0.894286 0.176835 0.0201811 7660.18 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.657929 0.854513 0.179594 0.0201852 7527.81 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.594299 0.780008 0.172583 0.0208681 7909.55 0
: 4 | 0.491145 0.784948 0.169037 0.0124936 7665.62 1
: 5 | 0.463586 0.855885 0.125666 0.0102631 10398.4 2
: 6 Minimum Test error found - save the configuration
: 6 | 0.421204 0.765286 0.118214 0.0127496 11378.2 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.370976 0.687262 0.118301 0.0125454 11346.9 0
: 8 | 0.313954 0.699541 0.121069 0.0115984 10961.9 1
: 9 | 0.284422 0.688345 0.122325 0.0133833 11015.1 2
: 10 | 0.256077 0.797689 0.118299 0.0137401 11476.8 3
:
: Elapsed time for training with 1600 events: 1.46 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0958 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 50.5339
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.07003 0.987863 1.11289 0.0888091 1171.79 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.822968 0.700432 0.982524 0.0861717 1338.76 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.672136 0.675339 0.902921 0.0755657 1450.4 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.646487 0.661182 0.919945 0.0825481 1433.01 0
: 5 | 0.617656 0.693205 0.855301 0.0764262 1540.68 1
: 6 | 0.650332 0.670718 0.876115 0.0716865 1491.74 2
: 7 Minimum Test error found - save the configuration
: 7 | 0.583605 0.602115 0.90353 0.0736578 1446.01 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.5594 0.56978 0.909742 0.0721658 1432.71 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.514049 0.566828 0.906538 0.0740323 1441.43 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.482013 0.545817 0.899542 0.0784721 1461.51 0
:
: Elapsed time for training with 1600 events: 9.36 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.384 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.574e-03
: 2 : vars : 8.898e-03
: 3 : vars : 8.369e-03
: 4 : vars : 7.926e-03
: 5 : vars : 7.611e-03
: 6 : vars : 7.595e-03
: 7 : vars : 7.289e-03
: 8 : vars : 7.279e-03
: 9 : vars : 7.277e-03
: 10 : vars : 7.226e-03
: 11 : vars : 7.095e-03
: 12 : vars : 7.001e-03
: 13 : vars : 6.988e-03
: 14 : vars : 6.935e-03
: 15 : vars : 6.897e-03
: 16 : vars : 6.844e-03
: 17 : vars : 6.777e-03
: 18 : vars : 6.750e-03
: 19 : vars : 6.710e-03
: 20 : vars : 6.701e-03
: 21 : vars : 6.649e-03
: 22 : vars : 6.631e-03
: 23 : vars : 6.592e-03
: 24 : vars : 6.560e-03
: 25 : vars : 6.530e-03
: 26 : vars : 6.379e-03
: 27 : vars : 6.358e-03
: 28 : vars : 6.303e-03
: 29 : vars : 6.230e-03
: 30 : vars : 6.198e-03
: 31 : vars : 6.179e-03
: 32 : vars : 6.171e-03
: 33 : vars : 6.166e-03
: 34 : vars : 6.136e-03
: 35 : vars : 6.116e-03
: 36 : vars : 6.089e-03
: 37 : vars : 6.070e-03
: 38 : vars : 6.067e-03
: 39 : vars : 5.949e-03
: 40 : vars : 5.937e-03
: 41 : vars : 5.933e-03
: 42 : vars : 5.930e-03
: 43 : vars : 5.912e-03
: 44 : vars : 5.839e-03
: 45 : vars : 5.807e-03
: 46 : vars : 5.706e-03
: 47 : vars : 5.704e-03
: 48 : vars : 5.678e-03
: 49 : vars : 5.678e-03
: 50 : vars : 5.662e-03
: 51 : vars : 5.632e-03
: 52 : vars : 5.621e-03
: 53 : vars : 5.588e-03
: 54 : vars : 5.565e-03
: 55 : vars : 5.563e-03
: 56 : vars : 5.508e-03
: 57 : vars : 5.436e-03
: 58 : vars : 5.431e-03
: 59 : vars : 5.426e-03
: 60 : vars : 5.404e-03
: 61 : vars : 5.400e-03
: 62 : vars : 5.396e-03
: 63 : vars : 5.378e-03
: 64 : vars : 5.253e-03
: 65 : vars : 5.228e-03
: 66 : vars : 5.170e-03
: 67 : vars : 5.063e-03
: 68 : vars : 5.057e-03
: 69 : vars : 5.045e-03
: 70 : vars : 4.975e-03
: 71 : vars : 4.964e-03
: 72 : vars : 4.941e-03
: 73 : vars : 4.903e-03
: 74 : vars : 4.883e-03
: 75 : vars : 4.881e-03
: 76 : vars : 4.879e-03
: 77 : vars : 4.873e-03
: 78 : vars : 4.871e-03
: 79 : vars : 4.865e-03
: 80 : vars : 4.846e-03
: 81 : vars : 4.843e-03
: 82 : vars : 4.830e-03
: 83 : vars : 4.829e-03
: 84 : vars : 4.816e-03
: 85 : vars : 4.812e-03
: 86 : vars : 4.778e-03
: 87 : vars : 4.775e-03
: 88 : vars : 4.768e-03
: 89 : vars : 4.660e-03
: 90 : vars : 4.622e-03
: 91 : vars : 4.595e-03
: 92 : vars : 4.575e-03
: 93 : vars : 4.546e-03
: 94 : vars : 4.523e-03
: 95 : vars : 4.515e-03
: 96 : vars : 4.514e-03
: 97 : vars : 4.513e-03
: 98 : vars : 4.485e-03
: 99 : vars : 4.446e-03
: 100 : vars : 4.445e-03
: 101 : vars : 4.382e-03
: 102 : vars : 4.349e-03
: 103 : vars : 4.348e-03
: 104 : vars : 4.336e-03
: 105 : vars : 4.331e-03
: 106 : vars : 4.283e-03
: 107 : vars : 4.236e-03
: 108 : vars : 4.235e-03
: 109 : vars : 4.219e-03
: 110 : vars : 4.212e-03
: 111 : vars : 4.201e-03
: 112 : vars : 4.183e-03
: 113 : vars : 4.163e-03
: 114 : vars : 4.157e-03
: 115 : vars : 4.122e-03
: 116 : vars : 4.109e-03
: 117 : vars : 4.069e-03
: 118 : vars : 4.028e-03
: 119 : vars : 4.021e-03
: 120 : vars : 4.010e-03
: 121 : vars : 4.002e-03
: 122 : vars : 3.985e-03
: 123 : vars : 3.958e-03
: 124 : vars : 3.931e-03
: 125 : vars : 3.925e-03
: 126 : vars : 3.923e-03
: 127 : vars : 3.912e-03
: 128 : vars : 3.901e-03
: 129 : vars : 3.899e-03
: 130 : vars : 3.890e-03
: 131 : vars : 3.875e-03
: 132 : vars : 3.871e-03
: 133 : vars : 3.853e-03
: 134 : vars : 3.836e-03
: 135 : vars : 3.811e-03
: 136 : vars : 3.789e-03
: 137 : vars : 3.769e-03
: 138 : vars : 3.734e-03
: 139 : vars : 3.680e-03
: 140 : vars : 3.678e-03
: 141 : vars : 3.672e-03
: 142 : vars : 3.666e-03
: 143 : vars : 3.660e-03
: 144 : vars : 3.648e-03
: 145 : vars : 3.567e-03
: 146 : vars : 3.530e-03
: 147 : vars : 3.511e-03
: 148 : vars : 3.481e-03
: 149 : vars : 3.473e-03
: 150 : vars : 3.442e-03
: 151 : vars : 3.438e-03
: 152 : vars : 3.427e-03
: 153 : vars : 3.421e-03
: 154 : vars : 3.405e-03
: 155 : vars : 3.405e-03
: 156 : vars : 3.367e-03
: 157 : vars : 3.316e-03
: 158 : vars : 3.224e-03
: 159 : vars : 3.201e-03
: 160 : vars : 3.193e-03
: 161 : vars : 3.193e-03
: 162 : vars : 3.179e-03
: 163 : vars : 3.167e-03
: 164 : vars : 3.155e-03
: 165 : vars : 3.137e-03
: 166 : vars : 3.134e-03
: 167 : vars : 3.107e-03
: 168 : vars : 3.095e-03
: 169 : vars : 3.081e-03
: 170 : vars : 3.075e-03
: 171 : vars : 3.069e-03
: 172 : vars : 3.060e-03
: 173 : vars : 3.031e-03
: 174 : vars : 3.029e-03
: 175 : vars : 2.995e-03
: 176 : vars : 2.986e-03
: 177 : vars : 2.962e-03
: 178 : vars : 2.936e-03
: 179 : vars : 2.931e-03
: 180 : vars : 2.882e-03
: 181 : vars : 2.868e-03
: 182 : vars : 2.858e-03
: 183 : vars : 2.856e-03
: 184 : vars : 2.850e-03
: 185 : vars : 2.837e-03
: 186 : vars : 2.759e-03
: 187 : vars : 2.746e-03
: 188 : vars : 2.728e-03
: 189 : vars : 2.725e-03
: 190 : vars : 2.718e-03
: 191 : vars : 2.695e-03
: 192 : vars : 2.693e-03
: 193 : vars : 2.678e-03
: 194 : vars : 2.654e-03
: 195 : vars : 2.639e-03
: 196 : vars : 2.594e-03
: 197 : vars : 2.558e-03
: 198 : vars : 2.527e-03
: 199 : vars : 2.518e-03
: 200 : vars : 2.479e-03
: 201 : vars : 2.438e-03
: 202 : vars : 2.391e-03
: 203 : vars : 2.379e-03
: 204 : vars : 2.378e-03
: 205 : vars : 2.355e-03
: 206 : vars : 2.341e-03
: 207 : vars : 2.298e-03
: 208 : vars : 2.296e-03
: 209 : vars : 2.272e-03
: 210 : vars : 2.268e-03
: 211 : vars : 2.245e-03
: 212 : vars : 2.243e-03
: 213 : vars : 2.187e-03
: 214 : vars : 2.169e-03
: 215 : vars : 2.147e-03
: 216 : vars : 2.146e-03
: 217 : vars : 2.136e-03
: 218 : vars : 2.112e-03
: 219 : vars : 2.111e-03
: 220 : vars : 2.087e-03
: 221 : vars : 2.054e-03
: 222 : vars : 2.047e-03
: 223 : vars : 2.036e-03
: 224 : vars : 1.976e-03
: 225 : vars : 1.815e-03
: 226 : vars : 1.808e-03
: 227 : vars : 1.796e-03
: 228 : vars : 1.723e-03
: 229 : vars : 1.675e-03
: 230 : vars : 1.572e-03
: 231 : vars : 1.536e-03
: 232 : vars : 1.402e-03
: 233 : vars : 1.387e-03
: 234 : vars : 1.338e-03
: 235 : vars : 1.170e-03
: 236 : vars : 9.521e-04
: 237 : vars : 9.443e-04
: 238 : vars : 9.282e-04
: 239 : vars : 5.881e-04
: 240 : vars : 5.549e-04
: 241 : vars : 4.166e-04
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.71101
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.80776
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.61867
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.67328
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00368 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0147 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.101 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_CNN_CPU : 0.815
: dataset BDT : 0.753
: dataset TMVA_DNN_CPU : 0.696
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_CNN_CPU : 0.120 (0.145) 0.491 (0.508) 0.773 (0.850)
: dataset BDT : 0.090 (0.365) 0.405 (0.728) 0.728 (0.840)
: dataset TMVA_DNN_CPU : 0.015 (0.058) 0.228 (0.499) 0.555 (0.810)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m