Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.4 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0169 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 18.8691
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.861331 0.909512 0.125236 0.0120267 10599.8 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.659122 0.817545 0.125744 0.0124391 10590.9 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.583838 0.794356 0.124561 0.0123453 10693.7 0
: 4 | 0.516824 0.79845 0.128587 0.0125959 10345.6 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.456405 0.768829 0.125102 0.0129256 10697.4 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.403954 0.748222 0.122829 0.0125213 10878.6 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.342631 0.721015 0.122865 0.0124359 10866.7 0
: 8 | 0.296443 0.723618 0.122875 0.0122165 10844.2 1
: 9 Minimum Test error found - save the configuration
: 9 | 0.249121 0.701946 0.126543 0.0128946 10558.9 0
: 10 | 0.225878 0.781729 0.125478 0.0120358 10578.1 1
:
: Elapsed time for training with 1600 events: 1.27 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0678 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 14.5218
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.2402 1.73161 0.906154 0.0845106 1460.49 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.995406 0.820721 0.907734 0.0765221 1443.68 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.714084 0.725821 0.875193 0.0809355 1510.84 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.674073 0.703655 0.899796 0.0807128 1465.05 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.648885 0.687273 0.935177 0.0793946 1402.23 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.640973 0.681021 0.981479 0.0812543 1333 0
: 7 | 0.617996 0.709013 0.95411 0.0741646 1363.72 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.616208 0.656063 0.952719 0.08478 1382.59 0
: 9 | 0.590767 0.673332 0.915363 0.0727978 1424.22 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.553344 0.618381 0.88688 0.0744349 1477.02 0
:
: Elapsed time for training with 1600 events: 9.3 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.402 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 8.916e-03
: 2 : vars : 8.727e-03
: 3 : vars : 8.231e-03
: 4 : vars : 8.046e-03
: 5 : vars : 7.846e-03
: 6 : vars : 7.557e-03
: 7 : vars : 7.488e-03
: 8 : vars : 7.264e-03
: 9 : vars : 7.237e-03
: 10 : vars : 7.216e-03
: 11 : vars : 7.021e-03
: 12 : vars : 6.886e-03
: 13 : vars : 6.807e-03
: 14 : vars : 6.806e-03
: 15 : vars : 6.751e-03
: 16 : vars : 6.710e-03
: 17 : vars : 6.660e-03
: 18 : vars : 6.626e-03
: 19 : vars : 6.564e-03
: 20 : vars : 6.540e-03
: 21 : vars : 6.539e-03
: 22 : vars : 6.466e-03
: 23 : vars : 6.412e-03
: 24 : vars : 6.403e-03
: 25 : vars : 6.358e-03
: 26 : vars : 6.286e-03
: 27 : vars : 6.275e-03
: 28 : vars : 6.269e-03
: 29 : vars : 6.209e-03
: 30 : vars : 6.190e-03
: 31 : vars : 6.153e-03
: 32 : vars : 6.152e-03
: 33 : vars : 6.080e-03
: 34 : vars : 6.079e-03
: 35 : vars : 6.022e-03
: 36 : vars : 6.016e-03
: 37 : vars : 5.965e-03
: 38 : vars : 5.901e-03
: 39 : vars : 5.899e-03
: 40 : vars : 5.765e-03
: 41 : vars : 5.762e-03
: 42 : vars : 5.733e-03
: 43 : vars : 5.664e-03
: 44 : vars : 5.646e-03
: 45 : vars : 5.612e-03
: 46 : vars : 5.602e-03
: 47 : vars : 5.500e-03
: 48 : vars : 5.476e-03
: 49 : vars : 5.465e-03
: 50 : vars : 5.436e-03
: 51 : vars : 5.404e-03
: 52 : vars : 5.371e-03
: 53 : vars : 5.310e-03
: 54 : vars : 5.266e-03
: 55 : vars : 5.226e-03
: 56 : vars : 5.202e-03
: 57 : vars : 5.200e-03
: 58 : vars : 5.178e-03
: 59 : vars : 5.174e-03
: 60 : vars : 5.122e-03
: 61 : vars : 5.090e-03
: 62 : vars : 5.050e-03
: 63 : vars : 4.989e-03
: 64 : vars : 4.971e-03
: 65 : vars : 4.966e-03
: 66 : vars : 4.932e-03
: 67 : vars : 4.914e-03
: 68 : vars : 4.858e-03
: 69 : vars : 4.787e-03
: 70 : vars : 4.787e-03
: 71 : vars : 4.781e-03
: 72 : vars : 4.778e-03
: 73 : vars : 4.775e-03
: 74 : vars : 4.767e-03
: 75 : vars : 4.714e-03
: 76 : vars : 4.712e-03
: 77 : vars : 4.706e-03
: 78 : vars : 4.677e-03
: 79 : vars : 4.670e-03
: 80 : vars : 4.626e-03
: 81 : vars : 4.615e-03
: 82 : vars : 4.599e-03
: 83 : vars : 4.565e-03
: 84 : vars : 4.533e-03
: 85 : vars : 4.499e-03
: 86 : vars : 4.473e-03
: 87 : vars : 4.462e-03
: 88 : vars : 4.444e-03
: 89 : vars : 4.434e-03
: 90 : vars : 4.374e-03
: 91 : vars : 4.364e-03
: 92 : vars : 4.355e-03
: 93 : vars : 4.335e-03
: 94 : vars : 4.327e-03
: 95 : vars : 4.316e-03
: 96 : vars : 4.271e-03
: 97 : vars : 4.264e-03
: 98 : vars : 4.244e-03
: 99 : vars : 4.242e-03
: 100 : vars : 4.235e-03
: 101 : vars : 4.227e-03
: 102 : vars : 4.223e-03
: 103 : vars : 4.223e-03
: 104 : vars : 4.204e-03
: 105 : vars : 4.196e-03
: 106 : vars : 4.172e-03
: 107 : vars : 4.154e-03
: 108 : vars : 4.153e-03
: 109 : vars : 4.151e-03
: 110 : vars : 4.080e-03
: 111 : vars : 4.060e-03
: 112 : vars : 4.050e-03
: 113 : vars : 4.050e-03
: 114 : vars : 4.049e-03
: 115 : vars : 4.006e-03
: 116 : vars : 3.997e-03
: 117 : vars : 3.980e-03
: 118 : vars : 3.956e-03
: 119 : vars : 3.948e-03
: 120 : vars : 3.923e-03
: 121 : vars : 3.909e-03
: 122 : vars : 3.899e-03
: 123 : vars : 3.873e-03
: 124 : vars : 3.873e-03
: 125 : vars : 3.856e-03
: 126 : vars : 3.844e-03
: 127 : vars : 3.828e-03
: 128 : vars : 3.824e-03
: 129 : vars : 3.817e-03
: 130 : vars : 3.807e-03
: 131 : vars : 3.789e-03
: 132 : vars : 3.778e-03
: 133 : vars : 3.772e-03
: 134 : vars : 3.771e-03
: 135 : vars : 3.760e-03
: 136 : vars : 3.757e-03
: 137 : vars : 3.747e-03
: 138 : vars : 3.740e-03
: 139 : vars : 3.735e-03
: 140 : vars : 3.684e-03
: 141 : vars : 3.670e-03
: 142 : vars : 3.662e-03
: 143 : vars : 3.653e-03
: 144 : vars : 3.615e-03
: 145 : vars : 3.591e-03
: 146 : vars : 3.584e-03
: 147 : vars : 3.584e-03
: 148 : vars : 3.567e-03
: 149 : vars : 3.566e-03
: 150 : vars : 3.544e-03
: 151 : vars : 3.508e-03
: 152 : vars : 3.493e-03
: 153 : vars : 3.476e-03
: 154 : vars : 3.407e-03
: 155 : vars : 3.396e-03
: 156 : vars : 3.387e-03
: 157 : vars : 3.368e-03
: 158 : vars : 3.366e-03
: 159 : vars : 3.361e-03
: 160 : vars : 3.324e-03
: 161 : vars : 3.313e-03
: 162 : vars : 3.307e-03
: 163 : vars : 3.298e-03
: 164 : vars : 3.276e-03
: 165 : vars : 3.261e-03
: 166 : vars : 3.253e-03
: 167 : vars : 3.227e-03
: 168 : vars : 3.172e-03
: 169 : vars : 3.099e-03
: 170 : vars : 3.094e-03
: 171 : vars : 3.094e-03
: 172 : vars : 3.093e-03
: 173 : vars : 3.083e-03
: 174 : vars : 3.079e-03
: 175 : vars : 3.070e-03
: 176 : vars : 3.030e-03
: 177 : vars : 2.998e-03
: 178 : vars : 2.978e-03
: 179 : vars : 2.978e-03
: 180 : vars : 2.974e-03
: 181 : vars : 2.970e-03
: 182 : vars : 2.908e-03
: 183 : vars : 2.864e-03
: 184 : vars : 2.860e-03
: 185 : vars : 2.802e-03
: 186 : vars : 2.788e-03
: 187 : vars : 2.755e-03
: 188 : vars : 2.750e-03
: 189 : vars : 2.725e-03
: 190 : vars : 2.723e-03
: 191 : vars : 2.698e-03
: 192 : vars : 2.690e-03
: 193 : vars : 2.673e-03
: 194 : vars : 2.665e-03
: 195 : vars : 2.652e-03
: 196 : vars : 2.650e-03
: 197 : vars : 2.608e-03
: 198 : vars : 2.593e-03
: 199 : vars : 2.564e-03
: 200 : vars : 2.537e-03
: 201 : vars : 2.536e-03
: 202 : vars : 2.516e-03
: 203 : vars : 2.478e-03
: 204 : vars : 2.476e-03
: 205 : vars : 2.467e-03
: 206 : vars : 2.453e-03
: 207 : vars : 2.435e-03
: 208 : vars : 2.434e-03
: 209 : vars : 2.425e-03
: 210 : vars : 2.412e-03
: 211 : vars : 2.402e-03
: 212 : vars : 2.374e-03
: 213 : vars : 2.357e-03
: 214 : vars : 2.341e-03
: 215 : vars : 2.308e-03
: 216 : vars : 2.299e-03
: 217 : vars : 2.182e-03
: 218 : vars : 2.176e-03
: 219 : vars : 2.168e-03
: 220 : vars : 2.168e-03
: 221 : vars : 2.137e-03
: 222 : vars : 2.115e-03
: 223 : vars : 2.106e-03
: 224 : vars : 2.092e-03
: 225 : vars : 2.008e-03
: 226 : vars : 1.972e-03
: 227 : vars : 1.969e-03
: 228 : vars : 1.960e-03
: 229 : vars : 1.925e-03
: 230 : vars : 1.922e-03
: 231 : vars : 1.905e-03
: 232 : vars : 1.875e-03
: 233 : vars : 1.860e-03
: 234 : vars : 1.832e-03
: 235 : vars : 1.806e-03
: 236 : vars : 1.786e-03
: 237 : vars : 1.666e-03
: 238 : vars : 1.625e-03
: 239 : vars : 1.597e-03
: 240 : vars : 1.580e-03
: 241 : vars : 1.546e-03
: 242 : vars : 1.541e-03
: 243 : vars : 1.492e-03
: 244 : vars : 1.296e-03
: 245 : vars : 1.096e-03
: 246 : vars : 5.590e-04
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.59555
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.76522
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.29194
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 8.00689
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00423 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0141 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.116 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.773
: dataset TMVA_CNN_CPU : 0.741
: dataset TMVA_DNN_CPU : 0.694
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.065 (0.328) 0.415 (0.705) 0.701 (0.889)
: dataset TMVA_CNN_CPU : 0.130 (0.195) 0.380 (0.476) 0.635 (0.722)
: dataset TMVA_DNN_CPU : 0.025 (0.177) 0.295 (0.657) 0.590 (0.825)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m