Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.22 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0145 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 17.9971
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.945324 1.19 0.107832 0.0110211 12395.3 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.689549 0.788194 0.105973 0.0102368 12534.4 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.583991 0.712046 0.107466 0.0103115 12351.5 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.504013 0.698204 0.105421 0.0114681 12772.4 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.449237 0.676811 0.104718 0.0102976 12709.1 0
: 6 | 0.39075 0.677102 0.10528 0.0101451 12613.6 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.33494 0.659947 0.122399 0.012377 10906.9 0
: 8 | 0.285143 0.676666 0.107955 0.0104025 12301 1
: 9 | 0.257764 0.671083 0.107414 0.00987609 12302.9 2
: 10 | 0.213762 0.669877 0.107338 0.0103394 12371.3 3
:
: Elapsed time for training with 1600 events: 1.1 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0523 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 25.7923
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.77732 0.674282 0.76466 0.068239 1723.1 0
: 2 | 0.879478 0.674937 0.740088 0.0635995 1773.87 1
: 3 Minimum Test error found - save the configuration
: 3 | 0.730534 0.672974 0.754534 0.0672865 1746.09 0
: 4 | 0.687456 0.680174 0.73853 0.0650043 1781.67 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.663743 0.632051 0.736828 0.0654321 1787.32 0
: 6 | 0.649919 0.64225 0.748257 0.0648063 1755.8 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.632116 0.606237 0.750055 0.0661518 1754.63 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.610828 0.595219 0.752541 0.0649261 1745.16 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.598941 0.569752 0.745578 0.0660035 1765.81 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.561604 0.548162 0.755527 0.0648376 1737.4 0
:
: Elapsed time for training with 1600 events: 7.56 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.365 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.034e-02
: 2 : vars : 8.783e-03
: 3 : vars : 8.499e-03
: 4 : vars : 8.439e-03
: 5 : vars : 8.210e-03
: 6 : vars : 8.105e-03
: 7 : vars : 7.812e-03
: 8 : vars : 7.789e-03
: 9 : vars : 7.715e-03
: 10 : vars : 7.541e-03
: 11 : vars : 7.149e-03
: 12 : vars : 7.144e-03
: 13 : vars : 7.124e-03
: 14 : vars : 6.983e-03
: 15 : vars : 6.913e-03
: 16 : vars : 6.763e-03
: 17 : vars : 6.621e-03
: 18 : vars : 6.532e-03
: 19 : vars : 6.519e-03
: 20 : vars : 6.390e-03
: 21 : vars : 6.322e-03
: 22 : vars : 6.317e-03
: 23 : vars : 6.295e-03
: 24 : vars : 6.282e-03
: 25 : vars : 6.244e-03
: 26 : vars : 6.138e-03
: 27 : vars : 6.111e-03
: 28 : vars : 6.107e-03
: 29 : vars : 6.062e-03
: 30 : vars : 6.038e-03
: 31 : vars : 6.035e-03
: 32 : vars : 6.024e-03
: 33 : vars : 5.972e-03
: 34 : vars : 5.971e-03
: 35 : vars : 5.948e-03
: 36 : vars : 5.853e-03
: 37 : vars : 5.811e-03
: 38 : vars : 5.769e-03
: 39 : vars : 5.686e-03
: 40 : vars : 5.658e-03
: 41 : vars : 5.647e-03
: 42 : vars : 5.609e-03
: 43 : vars : 5.608e-03
: 44 : vars : 5.596e-03
: 45 : vars : 5.583e-03
: 46 : vars : 5.564e-03
: 47 : vars : 5.547e-03
: 48 : vars : 5.547e-03
: 49 : vars : 5.498e-03
: 50 : vars : 5.473e-03
: 51 : vars : 5.342e-03
: 52 : vars : 5.307e-03
: 53 : vars : 5.241e-03
: 54 : vars : 5.234e-03
: 55 : vars : 5.227e-03
: 56 : vars : 5.221e-03
: 57 : vars : 5.220e-03
: 58 : vars : 5.158e-03
: 59 : vars : 5.153e-03
: 60 : vars : 5.089e-03
: 61 : vars : 5.048e-03
: 62 : vars : 5.019e-03
: 63 : vars : 4.996e-03
: 64 : vars : 4.985e-03
: 65 : vars : 4.976e-03
: 66 : vars : 4.973e-03
: 67 : vars : 4.954e-03
: 68 : vars : 4.951e-03
: 69 : vars : 4.918e-03
: 70 : vars : 4.898e-03
: 71 : vars : 4.885e-03
: 72 : vars : 4.864e-03
: 73 : vars : 4.826e-03
: 74 : vars : 4.825e-03
: 75 : vars : 4.780e-03
: 76 : vars : 4.758e-03
: 77 : vars : 4.744e-03
: 78 : vars : 4.734e-03
: 79 : vars : 4.705e-03
: 80 : vars : 4.695e-03
: 81 : vars : 4.694e-03
: 82 : vars : 4.694e-03
: 83 : vars : 4.646e-03
: 84 : vars : 4.636e-03
: 85 : vars : 4.600e-03
: 86 : vars : 4.559e-03
: 87 : vars : 4.558e-03
: 88 : vars : 4.553e-03
: 89 : vars : 4.538e-03
: 90 : vars : 4.536e-03
: 91 : vars : 4.526e-03
: 92 : vars : 4.507e-03
: 93 : vars : 4.495e-03
: 94 : vars : 4.474e-03
: 95 : vars : 4.464e-03
: 96 : vars : 4.449e-03
: 97 : vars : 4.438e-03
: 98 : vars : 4.420e-03
: 99 : vars : 4.419e-03
: 100 : vars : 4.407e-03
: 101 : vars : 4.407e-03
: 102 : vars : 4.386e-03
: 103 : vars : 4.386e-03
: 104 : vars : 4.382e-03
: 105 : vars : 4.377e-03
: 106 : vars : 4.354e-03
: 107 : vars : 4.333e-03
: 108 : vars : 4.333e-03
: 109 : vars : 4.329e-03
: 110 : vars : 4.311e-03
: 111 : vars : 4.256e-03
: 112 : vars : 4.251e-03
: 113 : vars : 4.214e-03
: 114 : vars : 4.189e-03
: 115 : vars : 4.186e-03
: 116 : vars : 4.179e-03
: 117 : vars : 4.174e-03
: 118 : vars : 4.172e-03
: 119 : vars : 4.172e-03
: 120 : vars : 4.157e-03
: 121 : vars : 4.126e-03
: 122 : vars : 4.116e-03
: 123 : vars : 4.084e-03
: 124 : vars : 4.077e-03
: 125 : vars : 4.015e-03
: 126 : vars : 4.008e-03
: 127 : vars : 4.000e-03
: 128 : vars : 3.995e-03
: 129 : vars : 3.994e-03
: 130 : vars : 3.992e-03
: 131 : vars : 3.978e-03
: 132 : vars : 3.961e-03
: 133 : vars : 3.929e-03
: 134 : vars : 3.888e-03
: 135 : vars : 3.871e-03
: 136 : vars : 3.826e-03
: 137 : vars : 3.798e-03
: 138 : vars : 3.752e-03
: 139 : vars : 3.748e-03
: 140 : vars : 3.739e-03
: 141 : vars : 3.739e-03
: 142 : vars : 3.712e-03
: 143 : vars : 3.708e-03
: 144 : vars : 3.707e-03
: 145 : vars : 3.694e-03
: 146 : vars : 3.674e-03
: 147 : vars : 3.660e-03
: 148 : vars : 3.643e-03
: 149 : vars : 3.632e-03
: 150 : vars : 3.605e-03
: 151 : vars : 3.600e-03
: 152 : vars : 3.566e-03
: 153 : vars : 3.515e-03
: 154 : vars : 3.507e-03
: 155 : vars : 3.486e-03
: 156 : vars : 3.477e-03
: 157 : vars : 3.459e-03
: 158 : vars : 3.443e-03
: 159 : vars : 3.398e-03
: 160 : vars : 3.397e-03
: 161 : vars : 3.333e-03
: 162 : vars : 3.291e-03
: 163 : vars : 3.259e-03
: 164 : vars : 3.255e-03
: 165 : vars : 3.233e-03
: 166 : vars : 3.217e-03
: 167 : vars : 3.208e-03
: 168 : vars : 3.167e-03
: 169 : vars : 3.116e-03
: 170 : vars : 3.057e-03
: 171 : vars : 3.050e-03
: 172 : vars : 3.038e-03
: 173 : vars : 3.022e-03
: 174 : vars : 3.017e-03
: 175 : vars : 3.008e-03
: 176 : vars : 3.001e-03
: 177 : vars : 2.985e-03
: 178 : vars : 2.985e-03
: 179 : vars : 2.983e-03
: 180 : vars : 2.976e-03
: 181 : vars : 2.906e-03
: 182 : vars : 2.898e-03
: 183 : vars : 2.877e-03
: 184 : vars : 2.862e-03
: 185 : vars : 2.840e-03
: 186 : vars : 2.828e-03
: 187 : vars : 2.826e-03
: 188 : vars : 2.817e-03
: 189 : vars : 2.809e-03
: 190 : vars : 2.806e-03
: 191 : vars : 2.786e-03
: 192 : vars : 2.773e-03
: 193 : vars : 2.762e-03
: 194 : vars : 2.732e-03
: 195 : vars : 2.732e-03
: 196 : vars : 2.596e-03
: 197 : vars : 2.501e-03
: 198 : vars : 2.501e-03
: 199 : vars : 2.491e-03
: 200 : vars : 2.443e-03
: 201 : vars : 2.442e-03
: 202 : vars : 2.392e-03
: 203 : vars : 2.377e-03
: 204 : vars : 2.377e-03
: 205 : vars : 2.371e-03
: 206 : vars : 2.358e-03
: 207 : vars : 2.299e-03
: 208 : vars : 2.298e-03
: 209 : vars : 2.286e-03
: 210 : vars : 2.280e-03
: 211 : vars : 2.265e-03
: 212 : vars : 2.235e-03
: 213 : vars : 2.212e-03
: 214 : vars : 2.193e-03
: 215 : vars : 2.189e-03
: 216 : vars : 2.117e-03
: 217 : vars : 2.104e-03
: 218 : vars : 2.091e-03
: 219 : vars : 2.046e-03
: 220 : vars : 2.016e-03
: 221 : vars : 1.965e-03
: 222 : vars : 1.930e-03
: 223 : vars : 1.858e-03
: 224 : vars : 1.858e-03
: 225 : vars : 1.847e-03
: 226 : vars : 1.827e-03
: 227 : vars : 1.821e-03
: 228 : vars : 1.817e-03
: 229 : vars : 1.785e-03
: 230 : vars : 1.772e-03
: 231 : vars : 1.746e-03
: 232 : vars : 1.559e-03
: 233 : vars : 1.536e-03
: 234 : vars : 1.457e-03
: 235 : vars : 1.372e-03
: 236 : vars : 1.329e-03
: 237 : vars : 1.309e-03
: 238 : vars : 1.290e-03
: 239 : vars : 1.268e-03
: 240 : vars : 1.255e-03
: 241 : vars : 6.938e-04
: 242 : vars : 6.792e-04
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.65447
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.41992
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.79194
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.29604
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00361 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0135 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0904 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_CNN_CPU : 0.805
: dataset BDT : 0.800
: dataset TMVA_DNN_CPU : 0.672
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_CNN_CPU : 0.145 (0.225) 0.475 (0.536) 0.743 (0.798)
: dataset BDT : 0.145 (0.438) 0.440 (0.748) 0.723 (0.895)
: dataset TMVA_DNN_CPU : 0.015 (0.145) 0.245 (0.550) 0.535 (0.811)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m