Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TH1.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// Author: Rene Brun 26/12/94
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#include <array>
13#include <cctype>
14#include <climits>
15#include <cmath>
16#include <cstdio>
17#include <cstdlib>
18#include <cstring>
19#include <iostream>
20#include <sstream>
21#include <fstream>
22#include <limits>
23#include <iomanip>
24
25#include "TROOT.h"
26#include "TBuffer.h"
27#include "TEnv.h"
28#include "TClass.h"
29#include "TMath.h"
30#include "THashList.h"
31#include "TH1.h"
32#include "TH2.h"
33#include "TH3.h"
34#include "TF2.h"
35#include "TF3.h"
36#include "TPluginManager.h"
37#include "TVirtualPad.h"
38#include "TRandom.h"
39#include "TVirtualFitter.h"
40#include "THLimitsFinder.h"
41#include "TProfile.h"
42#include "TStyle.h"
43#include "TVectorF.h"
44#include "TVectorD.h"
45#include "TBrowser.h"
46#include "TError.h"
47#include "TVirtualHistPainter.h"
48#include "TVirtualFFT.h"
49#include "TVirtualPaveStats.h"
50
51#include "HFitInterface.h"
52#include "Fit/DataRange.h"
53#include "Fit/BinData.h"
54#include "Math/GoFTest.h"
57
58#include "TH1Merger.h"
59
60/** \addtogroup Histograms
61@{
62\class TH1C
63\brief 1-D histogram with a byte per channel (see TH1 documentation)
64\class TH1S
65\brief 1-D histogram with a short per channel (see TH1 documentation)
66\class TH1I
67\brief 1-D histogram with an int per channel (see TH1 documentation)
68\class TH1L
69\brief 1-D histogram with a long64 per channel (see TH1 documentation)
70\class TH1F
71\brief 1-D histogram with a float per channel (see TH1 documentation)
72\class TH1D
73\brief 1-D histogram with a double per channel (see TH1 documentation)
74@}
75*/
76
77/** \class TH1
78 \ingroup Histograms
79TH1 is the base class of all histogram classes in %ROOT.
80
81It provides the common interface for operations such as binning, filling, drawing, which
82will be detailed below.
83
84-# [Creating histograms](\ref creating-histograms)
85 - [Labelling axes](\ref labelling-axis)
86-# [Binning](\ref binning)
87 - [Fix or variable bin size](\ref fix-var)
88 - [Convention for numbering bins](\ref convention)
89 - [Alphanumeric Bin Labels](\ref alpha)
90 - [Histograms with automatic bins](\ref auto-bin)
91 - [Rebinning](\ref rebinning)
92-# [Filling histograms](\ref filling-histograms)
93 - [Associated errors](\ref associated-errors)
94 - [Associated functions](\ref associated-functions)
95 - [Projections of histograms](\ref prof-hist)
96 - [Random Numbers and histograms](\ref random-numbers)
97 - [Making a copy of a histogram](\ref making-a-copy)
98 - [Normalizing histograms](\ref normalizing)
99-# [Drawing histograms](\ref drawing-histograms)
100 - [Setting Drawing histogram contour levels (2-D hists only)](\ref cont-level)
101 - [Setting histogram graphics attributes](\ref graph-att)
102 - [Customising how axes are drawn](\ref axis-drawing)
103-# [Fitting histograms](\ref fitting-histograms)
104-# [Saving/reading histograms to/from a ROOT file](\ref saving-histograms)
105-# [Operations on histograms](\ref operations-on-histograms)
106-# [Miscellaneous operations](\ref misc)
107
108ROOT supports the following histogram types:
109
110 - 1-D histograms:
111 - TH1C : histograms with one byte per channel. Maximum bin content = 127
112 - TH1S : histograms with one short per channel. Maximum bin content = 32767
113 - TH1I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
114 - TH1L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
115 - TH1F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
116 - TH1D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
117 - 2-D histograms:
118 - TH2C : histograms with one byte per channel. Maximum bin content = 127
119 - TH2S : histograms with one short per channel. Maximum bin content = 32767
120 - TH2I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
121 - TH2L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
122 - TH2F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
123 - TH2D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
124 - 3-D histograms:
125 - TH3C : histograms with one byte per channel. Maximum bin content = 127
126 - TH3S : histograms with one short per channel. Maximum bin content = 32767
127 - TH3I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
128 - TH3L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
129 - TH3F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
130 - TH3D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
131 - Profile histograms: See classes TProfile, TProfile2D and TProfile3D.
132 Profile histograms are used to display the mean value of Y and its standard deviation
133 for each bin in X. Profile histograms are in many cases an elegant
134 replacement of two-dimensional histograms : the inter-relation of two
135 measured quantities X and Y can always be visualized by a two-dimensional
136 histogram or scatter-plot; If Y is an unknown (but single-valued)
137 approximate function of X, this function is displayed by a profile
138 histogram with much better precision than by a scatter-plot.
139
140<sup>
141\anchor intmax (*) INT_MAX = 2147483647 is the [maximum value for a variable of type int.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
142\anchor llongmax (**) LLONG_MAX = 9223372036854775807 is the [maximum value for a variable of type long64.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
143\anchor floatmax (***) 2^24 = 16777216 is the [maximum integer that can be properly represented by a float32 with 23-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)<br>
144\anchor doublemax (****) 2^53 = 9007199254740992 is the [maximum integer that can be properly represented by a double64 with 52-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)
145</sup>
146
147The inheritance hierarchy looks as follows:
148
149\image html classTH1__inherit__graph_org.svg width=100%
150
151\anchor creating-histograms
152## Creating histograms
153
154Histograms are created by invoking one of the constructors, e.g.
155~~~ {.cpp}
156 TH1F *h1 = new TH1F("h1", "h1 title", 100, 0, 4.4);
157 TH2F *h2 = new TH2F("h2", "h2 title", 40, 0, 4, 30, -3, 3);
158~~~
159Histograms may also be created by:
160
161 - calling the Clone() function, see below
162 - making a projection from a 2-D or 3-D histogram, see below
163 - reading a histogram from a file
164
165 When a histogram is created, a reference to it is automatically added
166 to the list of in-memory objects for the current file or directory.
167 Then the pointer to this histogram in the current directory can be found
168 by its name, doing:
169~~~ {.cpp}
170 TH1F *h1 = (TH1F*)gDirectory->FindObject(name);
171~~~
172
173 This default behaviour can be changed by:
174~~~ {.cpp}
175 h->SetDirectory(nullptr); // for the current histogram h
176 TH1::AddDirectory(kFALSE); // sets a global switch disabling the referencing
177~~~
178 When the histogram is deleted, the reference to it is removed from
179 the list of objects in memory.
180 When a file is closed, all histograms in memory associated with this file
181 are automatically deleted.
182
183\anchor labelling-axis
184### Labelling axes
185
186 Axis titles can be specified in the title argument of the constructor.
187 They must be separated by ";":
188~~~ {.cpp}
189 TH1F* h=new TH1F("h", "Histogram title;X Axis;Y Axis", 100, 0, 1);
190~~~
191 The histogram title and the axis titles can be any TLatex string, and
192 are persisted if a histogram is written to a file.
193
194 Any title can be omitted:
195~~~ {.cpp}
196 TH1F* h=new TH1F("h", "Histogram title;;Y Axis", 100, 0, 1);
197 TH1F* h=new TH1F("h", ";;Y Axis", 100, 0, 1);
198~~~
199 The method SetTitle() has the same syntax:
200~~~ {.cpp}
201 h->SetTitle("Histogram title;Another X title Axis");
202~~~
203Alternatively, the title of each axis can be set directly:
204~~~ {.cpp}
205 h->GetXaxis()->SetTitle("X axis title");
206 h->GetYaxis()->SetTitle("Y axis title");
207~~~
208For bin labels see \ref binning.
209
210\anchor binning
211## Binning
212
213\anchor fix-var
214### Fix or variable bin size
215
216 All histogram types support either fix or variable bin sizes.
217 2-D histograms may have fix size bins along X and variable size bins
218 along Y or vice-versa. The functions to fill, manipulate, draw or access
219 histograms are identical in both cases.
220
221 Each histogram always contains 3 axis objects of type TAxis: fXaxis, fYaxis and fZaxis.
222 To access the axis parameters, use:
223~~~ {.cpp}
224 TAxis *xaxis = h->GetXaxis(); etc.
225 Double_t binCenter = xaxis->GetBinCenter(bin), etc.
226~~~
227 See class TAxis for a description of all the access functions.
228 The axis range is always stored internally in double precision.
229
230\anchor convention
231### Convention for numbering bins
232
233 For all histogram types: nbins, xlow, xup
234~~~ {.cpp}
235 bin = 0; underflow bin
236 bin = 1; first bin with low-edge xlow INCLUDED
237 bin = nbins; last bin with upper-edge xup EXCLUDED
238 bin = nbins+1; overflow bin
239~~~
240 In case of 2-D or 3-D histograms, a "global bin" number is defined.
241 For example, assuming a 3-D histogram with (binx, biny, binz), the function
242~~~ {.cpp}
243 Int_t gbin = h->GetBin(binx, biny, binz);
244~~~
245 returns a global/linearized gbin number. This global gbin is useful
246 to access the bin content/error information independently of the dimension.
247 Note that to access the information other than bin content and errors
248 one should use the TAxis object directly with e.g.:
249~~~ {.cpp}
250 Double_t xcenter = h3->GetZaxis()->GetBinCenter(27);
251~~~
252 returns the center along z of bin number 27 (not the global bin)
253 in the 3-D histogram h3.
254
255\anchor alpha
256### Alphanumeric Bin Labels
257
258 By default, a histogram axis is drawn with its numeric bin labels.
259 One can specify alphanumeric labels instead with:
260
261 - call TAxis::SetBinLabel(bin, label);
262 This can always be done before or after filling.
263 When the histogram is drawn, bin labels will be automatically drawn.
264 See examples labels1.C and labels2.C
265 - call to a Fill function with one of the arguments being a string, e.g.
266~~~ {.cpp}
267 hist1->Fill(somename, weight);
268 hist2->Fill(x, somename, weight);
269 hist2->Fill(somename, y, weight);
270 hist2->Fill(somenamex, somenamey, weight);
271~~~
272 See examples hlabels1.C and hlabels2.C
273 - via TTree::Draw. see for example cernstaff.C
274~~~ {.cpp}
275 tree.Draw("Nation::Division");
276~~~
277 where "Nation" and "Division" are two branches of a Tree.
278
279When using the options 2 or 3 above, the labels are automatically
280 added to the list (THashList) of labels for a given axis.
281 By default, an axis is drawn with the order of bins corresponding
282 to the filling sequence. It is possible to reorder the axis
283
284 - alphabetically
285 - by increasing or decreasing values
286
287 The reordering can be triggered via the TAxis context menu by selecting
288 the menu item "LabelsOption" or by calling directly
289 TH1::LabelsOption(option, axis) where
290
291 - axis may be "X", "Y" or "Z"
292 - option may be:
293 - "a" sort by alphabetic order
294 - ">" sort by decreasing values
295 - "<" sort by increasing values
296 - "h" draw labels horizontal
297 - "v" draw labels vertical
298 - "u" draw labels up (end of label right adjusted)
299 - "d" draw labels down (start of label left adjusted)
300
301 When using the option 2 above, new labels are added by doubling the current
302 number of bins in case one label does not exist yet.
303 When the Filling is terminated, it is possible to trim the number
304 of bins to match the number of active labels by calling
305~~~ {.cpp}
306 TH1::LabelsDeflate(axis) with axis = "X", "Y" or "Z"
307~~~
308 This operation is automatic when using TTree::Draw.
309 Once bin labels have been created, they become persistent if the histogram
310 is written to a file or when generating the C++ code via SavePrimitive.
311
312\anchor auto-bin
313### Histograms with automatic bins
314
315 When a histogram is created with an axis lower limit greater or equal
316 to its upper limit, the SetBuffer is automatically called with an
317 argument fBufferSize equal to fgBufferSize (default value=1000).
318 fgBufferSize may be reset via the static function TH1::SetDefaultBufferSize.
319 The axis limits will be automatically computed when the buffer will
320 be full or when the function BufferEmpty is called.
321
322\anchor rebinning
323### Rebinning
324
325 At any time, a histogram can be rebinned via TH1::Rebin. This function
326 returns a new histogram with the rebinned contents.
327 If bin errors were stored, they are recomputed during the rebinning.
328
329
330\anchor filling-histograms
331## Filling histograms
332
333 A histogram is typically filled with statements like:
334~~~ {.cpp}
335 h1->Fill(x);
336 h1->Fill(x, w); //fill with weight
337 h2->Fill(x, y)
338 h2->Fill(x, y, w)
339 h3->Fill(x, y, z)
340 h3->Fill(x, y, z, w)
341~~~
342 or via one of the Fill functions accepting names described above.
343 The Fill functions compute the bin number corresponding to the given
344 x, y or z argument and increment this bin by the given weight.
345 The Fill functions return the bin number for 1-D histograms or global
346 bin number for 2-D and 3-D histograms.
347 If TH1::Sumw2 has been called before filling, the sum of squares of
348 weights is also stored.
349 One can also increment directly a bin number via TH1::AddBinContent
350 or replace the existing content via TH1::SetBinContent. Passing an
351 out-of-range bin to TH1::AddBinContent leads to undefined behavior.
352 To access the bin content of a given bin, do:
353~~~ {.cpp}
354 Double_t binContent = h->GetBinContent(bin);
355~~~
356
357 By default, the bin number is computed using the current axis ranges.
358 If the automatic binning option has been set via
359~~~ {.cpp}
360 h->SetCanExtend(TH1::kAllAxes);
361~~~
362 then, the Fill Function will automatically extend the axis range to
363 accomodate the new value specified in the Fill argument. The method
364 used is to double the bin size until the new value fits in the range,
365 merging bins two by two. This automatic binning options is extensively
366 used by the TTree::Draw function when histogramming Tree variables
367 with an unknown range.
368 This automatic binning option is supported for 1-D, 2-D and 3-D histograms.
369
370 During filling, some statistics parameters are incremented to compute
371 the mean value and Root Mean Square with the maximum precision.
372
373 In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S
374 a check is made that the bin contents do not exceed the maximum positive
375 capacity (127 or 32767). Histograms of all types may have positive
376 or/and negative bin contents.
377
378\anchor associated-errors
379### Associated errors
380 By default, for each bin, the sum of weights is computed at fill time.
381 One can also call TH1::Sumw2 to force the storage and computation
382 of the sum of the square of weights per bin.
383 If Sumw2 has been called, the error per bin is computed as the
384 sqrt(sum of squares of weights), otherwise the error is set equal
385 to the sqrt(bin content).
386 To return the error for a given bin number, do:
387~~~ {.cpp}
388 Double_t error = h->GetBinError(bin);
389~~~
390
391\anchor associated-functions
392### Associated functions
393 One or more object (typically a TF1*) can be added to the list
394 of functions (fFunctions) associated to each histogram.
395 When TH1::Fit is invoked, the fitted function is added to this list.
396 Given a histogram h, one can retrieve an associated function
397 with:
398~~~ {.cpp}
399 TF1 *myfunc = h->GetFunction("myfunc");
400~~~
401
402
403\anchor operations-on-histograms
404## Operations on histograms
405
406 Many types of operations are supported on histograms or between histograms
407
408 - Addition of a histogram to the current histogram.
409 - Additions of two histograms with coefficients and storage into the current
410 histogram.
411 - Multiplications and Divisions are supported in the same way as additions.
412 - The Add, Divide and Multiply functions also exist to add, divide or multiply
413 a histogram by a function.
414
415 If a histogram has associated error bars (TH1::Sumw2 has been called),
416 the resulting error bars are also computed assuming independent histograms.
417 In case of divisions, Binomial errors are also supported.
418 One can mark a histogram to be an "average" histogram by setting its bit kIsAverage via
419 myhist.SetBit(TH1::kIsAverage);
420 When adding (see TH1::Add) average histograms, the histograms are averaged and not summed.
421
422
423\anchor prof-hist
424### Projections of histograms
425
426 One can:
427
428 - make a 1-D projection of a 2-D histogram or Profile
429 see functions TH2::ProjectionX,Y, TH2::ProfileX,Y, TProfile::ProjectionX
430 - make a 1-D, 2-D or profile out of a 3-D histogram
431 see functions TH3::ProjectionZ, TH3::Project3D.
432
433 One can fit these projections via:
434~~~ {.cpp}
435 TH2::FitSlicesX,Y, TH3::FitSlicesZ.
436~~~
437
438\anchor random-numbers
439### Random Numbers and histograms
440
441 TH1::FillRandom can be used to randomly fill a histogram using
442 the contents of an existing TF1 function or another
443 TH1 histogram (for all dimensions).
444 For example, the following two statements create and fill a histogram
445 10000 times with a default gaussian distribution of mean 0 and sigma 1:
446~~~ {.cpp}
447 TH1F h1("h1", "histo from a gaussian", 100, -3, 3);
448 h1.FillRandom("gaus", 10000);
449~~~
450 TH1::GetRandom can be used to return a random number distributed
451 according to the contents of a histogram.
452
453\anchor making-a-copy
454### Making a copy of a histogram
455 Like for any other ROOT object derived from TObject, one can use
456 the Clone() function. This makes an identical copy of the original
457 histogram including all associated errors and functions, e.g.:
458~~~ {.cpp}
459 TH1F *hnew = (TH1F*)h->Clone("hnew");
460~~~
461
462\anchor normalizing
463### Normalizing histograms
464
465 One can scale a histogram such that the bins integral is equal to
466 the normalization parameter via TH1::Scale(Double_t norm), where norm
467 is the desired normalization divided by the integral of the histogram.
468
469
470\anchor drawing-histograms
471## Drawing histograms
472
473 Histograms are drawn via the THistPainter class. Each histogram has
474 a pointer to its own painter (to be usable in a multithreaded program).
475 Many drawing options are supported.
476 See THistPainter::Paint() for more details.
477
478 The same histogram can be drawn with different options in different pads.
479 When a histogram drawn in a pad is deleted, the histogram is
480 automatically removed from the pad or pads where it was drawn.
481 If a histogram is drawn in a pad, then filled again, the new status
482 of the histogram will be automatically shown in the pad next time
483 the pad is updated. One does not need to redraw the histogram.
484 To draw the current version of a histogram in a pad, one can use
485~~~ {.cpp}
486 h->DrawCopy();
487~~~
488 This makes a clone (see Clone below) of the histogram. Once the clone
489 is drawn, the original histogram may be modified or deleted without
490 affecting the aspect of the clone.
491
492 One can use TH1::SetMaximum() and TH1::SetMinimum() to force a particular
493 value for the maximum or the minimum scale on the plot. (For 1-D
494 histograms this means the y-axis, while for 2-D histograms these
495 functions affect the z-axis).
496
497 TH1::UseCurrentStyle() can be used to change all histogram graphics
498 attributes to correspond to the current selected style.
499 This function must be called for each histogram.
500 In case one reads and draws many histograms from a file, one can force
501 the histograms to inherit automatically the current graphics style
502 by calling before gROOT->ForceStyle().
503
504\anchor cont-level
505### Setting Drawing histogram contour levels (2-D hists only)
506
507 By default contours are automatically generated at equidistant
508 intervals. A default value of 20 levels is used. This can be modified
509 via TH1::SetContour() or TH1::SetContourLevel().
510 the contours level info is used by the drawing options "cont", "surf",
511 and "lego".
512
513\anchor graph-att
514### Setting histogram graphics attributes
515
516 The histogram classes inherit from the attribute classes:
517 TAttLine, TAttFill, and TAttMarker.
518 See the member functions of these classes for the list of options.
519
520\anchor axis-drawing
521### Customizing how axes are drawn
522
523 Use the functions of TAxis, such as
524~~~ {.cpp}
525 histogram.GetXaxis()->SetTicks("+");
526 histogram.GetYaxis()->SetRangeUser(1., 5.);
527~~~
528
529\anchor fitting-histograms
530## Fitting histograms
531
532 Histograms (1-D, 2-D, 3-D and Profiles) can be fitted with a user
533 specified function or a pre-defined function via TH1::Fit.
534 See TH1::Fit(TF1*, Option_t *, Option_t *, Double_t, Double_t) for the fitting documentation and the possible [fitting options](\ref HFitOpt)
535
536 The FitPanel can also be used for fitting an histogram. See the [FitPanel documentation](https://root.cern/manual/fitting/#using-the-fit-panel).
537
538\anchor saving-histograms
539## Saving/reading histograms to/from a ROOT file
540
541 The following statements create a ROOT file and store a histogram
542 on the file. Because TH1 derives from TNamed, the key identifier on
543 the file is the histogram name:
544~~~ {.cpp}
545 TFile f("histos.root", "new");
546 TH1F h1("hgaus", "histo from a gaussian", 100, -3, 3);
547 h1.FillRandom("gaus", 10000);
548 h1->Write();
549~~~
550 To read this histogram in another Root session, do:
551~~~ {.cpp}
552 TFile f("histos.root");
553 TH1F *h = (TH1F*)f.Get("hgaus");
554~~~
555 One can save all histograms in memory to the file by:
556~~~ {.cpp}
557 file->Write();
558~~~
559
560
561\anchor misc
562## Miscellaneous operations
563
564~~~ {.cpp}
565 TH1::KolmogorovTest(): statistical test of compatibility in shape
566 between two histograms
567 TH1::Smooth() smooths the bin contents of a 1-d histogram
568 TH1::Integral() returns the integral of bin contents in a given bin range
569 TH1::GetMean(int axis) returns the mean value along axis
570 TH1::GetStdDev(int axis) returns the sigma distribution along axis
571 TH1::GetEntries() returns the number of entries
572 TH1::Reset() resets the bin contents and errors of a histogram
573~~~
574 IMPORTANT NOTE: The returned values for GetMean and GetStdDev depend on how the
575 histogram statistics are calculated. By default, if no range has been set, the
576 returned values are the (unbinned) ones calculated at fill time. If a range has been
577 set, however, the values are calculated using the bins in range; THIS IS TRUE EVEN
578 IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset the range.
579 To ensure that the returned values are always those of the binned data stored in the
580 histogram, call TH1::ResetStats. See TH1::GetStats.
581*/
582
583TF1 *gF1=nullptr; //left for back compatibility (use TVirtualFitter::GetUserFunc instead)
584
589
590extern void H1InitGaus();
591extern void H1InitExpo();
592extern void H1InitPolynom();
593extern void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a);
596
598
599////////////////////////////////////////////////////////////////////////////////
600/// Histogram default constructor.
601
603{
604 fDirectory = nullptr;
605 fFunctions = new TList;
606 fNcells = 0;
607 fIntegral = nullptr;
608 fPainter = nullptr;
609 fEntries = 0;
610 fNormFactor = 0;
612 fMaximum = -1111;
613 fMinimum = -1111;
614 fBufferSize = 0;
615 fBuffer = nullptr;
618 fXaxis.SetName("xaxis");
619 fYaxis.SetName("yaxis");
620 fZaxis.SetName("zaxis");
621 fXaxis.SetParent(this);
622 fYaxis.SetParent(this);
623 fZaxis.SetParent(this);
625}
626
627////////////////////////////////////////////////////////////////////////////////
628/// Histogram default destructor.
629
631{
633 return;
634 }
635 delete[] fIntegral;
636 fIntegral = nullptr;
637 delete[] fBuffer;
638 fBuffer = nullptr;
639 if (fFunctions) {
641
643 TObject* obj = nullptr;
644 //special logic to support the case where the same object is
645 //added multiple times in fFunctions.
646 //This case happens when the same object is added with different
647 //drawing modes
648 //In the loop below we must be careful with objects (eg TCutG) that may
649 // have been added to the list of functions of several histograms
650 //and may have been already deleted.
651 while ((obj = fFunctions->First())) {
652 while(fFunctions->Remove(obj)) { }
654 break;
655 }
656 delete obj;
657 obj = nullptr;
658 }
659 delete fFunctions;
660 fFunctions = nullptr;
661 }
662 if (fDirectory) {
663 fDirectory->Remove(this);
664 fDirectory = nullptr;
665 }
666 delete fPainter;
667 fPainter = nullptr;
668}
669
670////////////////////////////////////////////////////////////////////////////////
671/// Constructor for fix bin size histograms.
672/// Creates the main histogram structure.
673///
674/// \param[in] name name of histogram (avoid blanks)
675/// \param[in] title histogram title.
676/// If title is of the form `stringt;stringx;stringy;stringz`,
677/// the histogram title is set to `stringt`,
678/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
679/// \param[in] nbins number of bins
680/// \param[in] xlow low edge of first bin
681/// \param[in] xup upper edge of last bin (not included in last bin)
682
683
684TH1::TH1(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
685 :TNamed(name,title)
686{
687 Build();
688 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
689 fXaxis.Set(nbins,xlow,xup);
690 fNcells = fXaxis.GetNbins()+2;
691}
692
693////////////////////////////////////////////////////////////////////////////////
694/// Constructor for variable bin size histograms using an input array of type float.
695/// Creates the main histogram structure.
696///
697/// \param[in] name name of histogram (avoid blanks)
698/// \param[in] title histogram title.
699/// If title is of the form `stringt;stringx;stringy;stringz`
700/// the histogram title is set to `stringt`,
701/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
702/// \param[in] nbins number of bins
703/// \param[in] xbins array of low-edges for each bin.
704/// This is an array of type float and size nbins+1
705
706TH1::TH1(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
707 :TNamed(name,title)
708{
709 Build();
710 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
711 if (xbins) fXaxis.Set(nbins,xbins);
712 else fXaxis.Set(nbins,0,1);
713 fNcells = fXaxis.GetNbins()+2;
714}
715
716////////////////////////////////////////////////////////////////////////////////
717/// Constructor for variable bin size histograms using an input array of type double.
718///
719/// \param[in] name name of histogram (avoid blanks)
720/// \param[in] title histogram title.
721/// If title is of the form `stringt;stringx;stringy;stringz`
722/// the histogram title is set to `stringt`,
723/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
724/// \param[in] nbins number of bins
725/// \param[in] xbins array of low-edges for each bin.
726/// This is an array of type double and size nbins+1
727
728TH1::TH1(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
729 :TNamed(name,title)
730{
731 Build();
732 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
733 if (xbins) fXaxis.Set(nbins,xbins);
734 else fXaxis.Set(nbins,0,1);
735 fNcells = fXaxis.GetNbins()+2;
736}
737
738////////////////////////////////////////////////////////////////////////////////
739/// Static function: cannot be inlined on Windows/NT.
740
745
746////////////////////////////////////////////////////////////////////////////////
747/// Browse the Histogram object.
748
750{
751 Draw(b ? b->GetDrawOption() : "");
752 gPad->Update();
753}
754
755////////////////////////////////////////////////////////////////////////////////
756/// Creates histogram basic data structure.
757
759{
760 fDirectory = nullptr;
761 fPainter = nullptr;
762 fIntegral = nullptr;
763 fEntries = 0;
764 fNormFactor = 0;
766 fMaximum = -1111;
767 fMinimum = -1111;
768 fBufferSize = 0;
769 fBuffer = nullptr;
772 fXaxis.SetName("xaxis");
773 fYaxis.SetName("yaxis");
774 fZaxis.SetName("zaxis");
775 fYaxis.Set(1,0.,1.);
776 fZaxis.Set(1,0.,1.);
777 fXaxis.SetParent(this);
778 fYaxis.SetParent(this);
779 fZaxis.SetParent(this);
780
782
783 fFunctions = new TList;
784
786
789 if (fDirectory) {
791 fDirectory->Append(this,kTRUE);
792 }
793 }
794}
795
796////////////////////////////////////////////////////////////////////////////////
797/// Performs the operation: `this = this + c1*f1`
798/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
799///
800/// By default, the function is computed at the centre of the bin.
801/// if option "I" is specified (1-d histogram only), the integral of the
802/// function in each bin is used instead of the value of the function at
803/// the centre of the bin.
804///
805/// Only bins inside the function range are recomputed.
806///
807/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
808/// you should call Sumw2 before making this operation.
809/// This is particularly important if you fit the histogram after TH1::Add
810///
811/// The function return kFALSE if the Add operation failed
812
814{
815 if (!f1) {
816 Error("Add","Attempt to add a non-existing function");
817 return kFALSE;
818 }
819
820 TString opt = option;
821 opt.ToLower();
822 Bool_t integral = kFALSE;
823 if (opt.Contains("i") && fDimension == 1) integral = kTRUE;
824
825 Int_t ncellsx = GetNbinsX() + 2; // cells = normal bins + underflow bin + overflow bin
826 Int_t ncellsy = GetNbinsY() + 2;
827 Int_t ncellsz = GetNbinsZ() + 2;
828 if (fDimension < 2) ncellsy = 1;
829 if (fDimension < 3) ncellsz = 1;
830
831 // delete buffer if it is there since it will become invalid
832 if (fBuffer) BufferEmpty(1);
833
834 // - Add statistics
835 Double_t s1[10];
836 for (Int_t i = 0; i < 10; ++i) s1[i] = 0;
837 PutStats(s1);
838 SetMinimum();
839 SetMaximum();
840
841 // - Loop on bins (including underflows/overflows)
842 Int_t bin, binx, biny, binz;
843 Double_t cu=0;
844 Double_t xx[3];
845 Double_t *params = nullptr;
846 f1->InitArgs(xx,params);
847 for (binz = 0; binz < ncellsz; ++binz) {
849 for (biny = 0; biny < ncellsy; ++biny) {
851 for (binx = 0; binx < ncellsx; ++binx) {
853 if (!f1->IsInside(xx)) continue;
855 bin = binx + ncellsx * (biny + ncellsy * binz);
856 if (integral) {
858 } else {
859 cu = c1*f1->EvalPar(xx);
860 }
861 if (TF1::RejectedPoint()) continue;
862 AddBinContent(bin,cu);
863 }
864 }
865 }
866
867 return kTRUE;
868}
869
870int TH1::LoggedInconsistency(const char *name, const TH1 *h1, const TH1 *h2, bool useMerge) const
871{
872 const auto inconsistency = CheckConsistency(h1, h2);
873
875 if (useMerge)
876 Info(name, "Histograms have different dimensions - trying to use TH1::Merge");
877 else {
878 Error(name, "Histograms have different dimensions");
879 }
881 if (useMerge)
882 Info(name, "Histograms have different number of bins - trying to use TH1::Merge");
883 else {
884 Error(name, "Histograms have different number of bins");
885 }
886 } else if (inconsistency & kDifferentAxisLimits) {
887 if (useMerge)
888 Info(name, "Histograms have different axis limits - trying to use TH1::Merge");
889 else
890 Warning(name, "Histograms have different axis limits");
891 } else if (inconsistency & kDifferentBinLimits) {
892 if (useMerge)
893 Info(name, "Histograms have different bin limits - trying to use TH1::Merge");
894 else
895 Warning(name, "Histograms have different bin limits");
896 } else if (inconsistency & kDifferentLabels) {
897 // in case of different labels -
898 if (useMerge)
899 Info(name, "Histograms have different labels - trying to use TH1::Merge");
900 else
901 Info(name, "Histograms have different labels");
902 }
903
904 return inconsistency;
905}
906
907////////////////////////////////////////////////////////////////////////////////
908/// Performs the operation: `this = this + c1*h1`
909/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
910///
911/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
912/// if not already set.
913///
914/// Note also that adding histogram with labels is not supported, histogram will be
915/// added merging them by bin number independently of the labels.
916/// For adding histogram with labels one should use TH1::Merge
917///
918/// SPECIAL CASE (Average/Efficiency histograms)
919/// For histograms representing averages or efficiencies, one should compute the average
920/// of the two histograms and not the sum. One can mark a histogram to be an average
921/// histogram by setting its bit kIsAverage with
922/// myhist.SetBit(TH1::kIsAverage);
923/// Note that the two histograms must have their kIsAverage bit set
924///
925/// IMPORTANT NOTE1: If you intend to use the errors of this histogram later
926/// you should call Sumw2 before making this operation.
927/// This is particularly important if you fit the histogram after TH1::Add
928///
929/// IMPORTANT NOTE2: if h1 has a normalisation factor, the normalisation factor
930/// is used , ie this = this + c1*factor*h1
931/// Use the other TH1::Add function if you do not want this feature
932///
933/// IMPORTANT NOTE3: You should be careful about the statistics of the
934/// returned histogram, whose statistics may be binned or unbinned,
935/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
936/// and whether TH1::ResetStats has been called on either this or h1.
937/// See TH1::GetStats.
938///
939/// The function return kFALSE if the Add operation failed
940
942{
943 if (!h1) {
944 Error("Add","Attempt to add a non-existing histogram");
945 return kFALSE;
946 }
947
948 // delete buffer if it is there since it will become invalid
949 if (fBuffer) BufferEmpty(1);
950
951 bool useMerge = false;
952 const bool considerMerge = (c1 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
953 const auto inconsistency = LoggedInconsistency("Add", this, h1, considerMerge);
954 // If there is a bad inconsistency and we can't even consider merging, just give up
956 return false;
957 }
958 // If there is an inconsistency, we try to use merging
961 }
962
963 if (useMerge) {
964 TList l;
965 l.Add(const_cast<TH1*>(h1));
966 auto iret = Merge(&l);
967 return (iret >= 0);
968 }
969
970 // Create Sumw2 if h1 has Sumw2 set
971 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
972
973 // - Add statistics
974 Double_t entries = TMath::Abs( GetEntries() + c1 * h1->GetEntries() );
975
976 // statistics can be preserved only in case of positive coefficients
977 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
978 Bool_t resetStats = (c1 < 0);
979 Double_t s1[kNstat] = {0};
980 Double_t s2[kNstat] = {0};
981 if (!resetStats) {
982 // need to initialize to zero s1 and s2 since
983 // GetStats fills only used elements depending on dimension and type
984 GetStats(s1);
985 h1->GetStats(s2);
986 }
987
988 SetMinimum();
989 SetMaximum();
990
991 // - Loop on bins (including underflows/overflows)
992 Double_t factor = 1;
993 if (h1->GetNormFactor() != 0) factor = h1->GetNormFactor()/h1->GetSumOfWeights();
994 Double_t c1sq = c1 * c1;
995 Double_t factsq = factor * factor;
996
997 for (Int_t bin = 0; bin < fNcells; ++bin) {
998 //special case where histograms have the kIsAverage bit set
999 if (this->TestBit(kIsAverage) && h1->TestBit(kIsAverage)) {
1001 Double_t y2 = this->RetrieveBinContent(bin);
1004 Double_t w1 = 1., w2 = 1.;
1005
1006 // consider all special cases when bin errors are zero
1007 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1008 if (e1sq) w1 = 1. / e1sq;
1009 else if (h1->fSumw2.fN) {
1010 w1 = 1.E200; // use an arbitrary huge value
1011 if (y1 == 0) {
1012 // use an estimated error from the global histogram scale
1013 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1014 w1 = 1./(sf*sf);
1015 }
1016 }
1017 if (e2sq) w2 = 1. / e2sq;
1018 else if (fSumw2.fN) {
1019 w2 = 1.E200; // use an arbitrary huge value
1020 if (y2 == 0) {
1021 // use an estimated error from the global histogram scale
1022 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1023 w2 = 1./(sf*sf);
1024 }
1025 }
1026
1027 double y = (w1*y1 + w2*y2)/(w1 + w2);
1028 UpdateBinContent(bin, y);
1029 if (fSumw2.fN) {
1030 double err2 = 1./(w1 + w2);
1031 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1032 fSumw2.fArray[bin] = err2;
1033 }
1034 } else { // normal case of addition between histograms
1035 AddBinContent(bin, c1 * factor * h1->RetrieveBinContent(bin));
1036 if (fSumw2.fN) fSumw2.fArray[bin] += c1sq * factsq * h1->GetBinErrorSqUnchecked(bin);
1037 }
1038 }
1039
1040 // update statistics (do here to avoid changes by SetBinContent)
1041 if (resetStats) {
1042 // statistics need to be reset in case coefficient are negative
1043 ResetStats();
1044 }
1045 else {
1046 for (Int_t i=0;i<kNstat;i++) {
1047 if (i == 1) s1[i] += c1*c1*s2[i];
1048 else s1[i] += c1*s2[i];
1049 }
1050 PutStats(s1);
1051 SetEntries(entries);
1052 }
1053 return kTRUE;
1054}
1055
1056////////////////////////////////////////////////////////////////////////////////
1057/// Replace contents of this histogram by the addition of h1 and h2.
1058///
1059/// `this = c1*h1 + c2*h2`
1060/// if errors are defined (see TH1::Sumw2), errors are also recalculated
1061///
1062/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
1063/// if not already set.
1064///
1065/// Note also that adding histogram with labels is not supported, histogram will be
1066/// added merging them by bin number independently of the labels.
1067/// For adding histogram ith labels one should use TH1::Merge
1068///
1069/// SPECIAL CASE (Average/Efficiency histograms)
1070/// For histograms representing averages or efficiencies, one should compute the average
1071/// of the two histograms and not the sum. One can mark a histogram to be an average
1072/// histogram by setting its bit kIsAverage with
1073/// myhist.SetBit(TH1::kIsAverage);
1074/// Note that the two histograms must have their kIsAverage bit set
1075///
1076/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
1077/// you should call Sumw2 before making this operation.
1078/// This is particularly important if you fit the histogram after TH1::Add
1079///
1080/// IMPORTANT NOTE2: You should be careful about the statistics of the
1081/// returned histogram, whose statistics may be binned or unbinned,
1082/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
1083/// and whether TH1::ResetStats has been called on either this or h1.
1084/// See TH1::GetStats.
1085///
1086/// ANOTHER SPECIAL CASE : h1 = h2 and c2 < 0
1087/// do a scaling this = c1 * h1 / (bin Volume)
1088///
1089/// The function returns kFALSE if the Add operation failed
1090
1092{
1093
1094 if (!h1 || !h2) {
1095 Error("Add","Attempt to add a non-existing histogram");
1096 return kFALSE;
1097 }
1098
1099 // delete buffer if it is there since it will become invalid
1100 if (fBuffer) BufferEmpty(1);
1101
1103 if (h1 == h2 && c2 < 0) {c2 = 0; normWidth = kTRUE;}
1104
1105 if (h1 != h2) {
1106 bool useMerge = false;
1107 const bool considerMerge = (c1 == 1. && c2 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
1108
1109 // We can combine inconsistencies like this, since they are ordered and a
1110 // higher inconsistency is worse
1111 auto const inconsistency = std::max(LoggedInconsistency("Add", this, h1, considerMerge),
1112 LoggedInconsistency("Add", h1, h2, considerMerge));
1113
1114 // If there is a bad inconsistency and we can't even consider merging, just give up
1116 return false;
1117 }
1118 // If there is an inconsistency, we try to use merging
1121 }
1122
1123 if (useMerge) {
1124 TList l;
1125 // why TList takes non-const pointers ????
1126 l.Add(const_cast<TH1*>(h1));
1127 l.Add(const_cast<TH1*>(h2));
1128 Reset("ICE");
1129 auto iret = Merge(&l);
1130 return (iret >= 0);
1131 }
1132 }
1133
1134 // Create Sumw2 if h1 or h2 have Sumw2 set
1135 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
1136
1137 // - Add statistics
1138 Double_t nEntries = TMath::Abs( c1*h1->GetEntries() + c2*h2->GetEntries() );
1139
1140 // TODO remove
1141 // statistics can be preserved only in case of positive coefficients
1142 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
1143 // also in case of scaling with the width we cannot preserve the statistics
1144 Double_t s1[kNstat] = {0};
1145 Double_t s2[kNstat] = {0};
1147
1148
1149 Bool_t resetStats = (c1*c2 < 0) || normWidth;
1150 if (!resetStats) {
1151 // need to initialize to zero s1 and s2 since
1152 // GetStats fills only used elements depending on dimension and type
1153 h1->GetStats(s1);
1154 h2->GetStats(s2);
1155 for (Int_t i=0;i<kNstat;i++) {
1156 if (i == 1) s3[i] = c1*c1*s1[i] + c2*c2*s2[i];
1157 //else s3[i] = TMath::Abs(c1)*s1[i] + TMath::Abs(c2)*s2[i];
1158 else s3[i] = c1*s1[i] + c2*s2[i];
1159 }
1160 }
1161
1162 SetMinimum();
1163 SetMaximum();
1164
1165 if (normWidth) { // DEPRECATED CASE: belongs to fitting / drawing modules
1166
1167 Int_t nbinsx = GetNbinsX() + 2; // normal bins + underflow, overflow
1168 Int_t nbinsy = GetNbinsY() + 2;
1169 Int_t nbinsz = GetNbinsZ() + 2;
1170
1171 if (fDimension < 2) nbinsy = 1;
1172 if (fDimension < 3) nbinsz = 1;
1173
1174 Int_t bin, binx, biny, binz;
1175 for (binz = 0; binz < nbinsz; ++binz) {
1177 for (biny = 0; biny < nbinsy; ++biny) {
1179 for (binx = 0; binx < nbinsx; ++binx) {
1181 bin = GetBin(binx, biny, binz);
1182 Double_t w = wx*wy*wz;
1183 UpdateBinContent(bin, c1 * h1->RetrieveBinContent(bin) / w);
1184 if (fSumw2.fN) {
1185 Double_t e1 = h1->GetBinError(bin)/w;
1186 fSumw2.fArray[bin] = c1*c1*e1*e1;
1187 }
1188 }
1189 }
1190 }
1191 } else if (h1->TestBit(kIsAverage) && h2->TestBit(kIsAverage)) {
1192 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
1193 // special case where histograms have the kIsAverage bit set
1195 Double_t y2 = h2->RetrieveBinContent(i);
1197 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
1198 Double_t w1 = 1., w2 = 1.;
1199
1200 // consider all special cases when bin errors are zero
1201 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1202 if (e1sq) w1 = 1./ e1sq;
1203 else if (h1->fSumw2.fN) {
1204 w1 = 1.E200; // use an arbitrary huge value
1205 if (y1 == 0 ) { // use an estimated error from the global histogram scale
1206 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1207 w1 = 1./(sf*sf);
1208 }
1209 }
1210 if (e2sq) w2 = 1./ e2sq;
1211 else if (h2->fSumw2.fN) {
1212 w2 = 1.E200; // use an arbitrary huge value
1213 if (y2 == 0) { // use an estimated error from the global histogram scale
1214 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1215 w2 = 1./(sf*sf);
1216 }
1217 }
1218
1219 double y = (w1*y1 + w2*y2)/(w1 + w2);
1220 UpdateBinContent(i, y);
1221 if (fSumw2.fN) {
1222 double err2 = 1./(w1 + w2);
1223 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1224 fSumw2.fArray[i] = err2;
1225 }
1226 }
1227 } else { // case of simple histogram addition
1228 Double_t c1sq = c1 * c1;
1229 Double_t c2sq = c2 * c2;
1230 for (Int_t i = 0; i < fNcells; ++i) { // Loop on cells (bins including underflows/overflows)
1231 UpdateBinContent(i, c1 * h1->RetrieveBinContent(i) + c2 * h2->RetrieveBinContent(i));
1232 if (fSumw2.fN) {
1233 fSumw2.fArray[i] = c1sq * h1->GetBinErrorSqUnchecked(i) + c2sq * h2->GetBinErrorSqUnchecked(i);
1234 }
1235 }
1236 }
1237
1238 if (resetStats) {
1239 // statistics need to be reset in case coefficient are negative
1240 ResetStats();
1241 }
1242 else {
1243 // update statistics (do here to avoid changes by SetBinContent) FIXME remove???
1244 PutStats(s3);
1246 }
1247
1248 return kTRUE;
1249}
1250
1251////////////////////////////////////////////////////////////////////////////////
1252/// Sets the flag controlling the automatic add of histograms in memory
1253///
1254/// By default (fAddDirectory = kTRUE), histograms are automatically added
1255/// to the list of objects in memory.
1256/// Note that one histogram can be removed from its support directory
1257/// by calling h->SetDirectory(nullptr) or h->SetDirectory(dir) to add it
1258/// to the list of objects in the directory dir.
1259///
1260/// NOTE that this is a static function. To call it, use;
1261/// TH1::AddDirectory
1262
1264{
1265 fgAddDirectory = add;
1266}
1267
1268////////////////////////////////////////////////////////////////////////////////
1269/// Auxiliary function to get the power of 2 next (larger) or previous (smaller)
1270/// a given x
1271///
1272/// next = kTRUE : next larger
1273/// next = kFALSE : previous smaller
1274///
1275/// Used by the autobin power of 2 algorithm
1276
1278{
1279 Int_t nn;
1280 Double_t f2 = std::frexp(x, &nn);
1281 return ((next && x > 0.) || (!next && x <= 0.)) ? std::ldexp(std::copysign(1., f2), nn)
1282 : std::ldexp(std::copysign(1., f2), --nn);
1283}
1284
1285////////////////////////////////////////////////////////////////////////////////
1286/// Auxiliary function to get the next power of 2 integer value larger then n
1287///
1288/// Used by the autobin power of 2 algorithm
1289
1291{
1292 Int_t nn;
1293 Double_t f2 = std::frexp(n, &nn);
1294 if (TMath::Abs(f2 - .5) > 0.001)
1295 return (Int_t)std::ldexp(1., nn);
1296 return n;
1297}
1298
1299////////////////////////////////////////////////////////////////////////////////
1300/// Buffer-based estimate of the histogram range using the power of 2 algorithm.
1301///
1302/// Used by the autobin power of 2 algorithm.
1303///
1304/// Works on arguments (min and max from fBuffer) and internal inputs: fXmin,
1305/// fXmax, NBinsX (from fXaxis), ...
1306/// Result save internally in fXaxis.
1307///
1308/// Overloaded by TH2 and TH3.
1309///
1310/// Return -1 if internal inputs are inconsistent, 0 otherwise.
1311
1313{
1314 // We need meaningful raw limits
1315 if (xmi >= xma)
1316 return -1;
1317
1318 THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this, xmi, xma);
1321
1322 // Now adjust
1323 if (TMath::Abs(xhma) > TMath::Abs(xhmi)) {
1324 // Start from the upper limit
1327 } else {
1328 // Start from the lower limit
1331 }
1332
1333 // Round the bins to the next power of 2; take into account the possible inflation
1334 // of the range
1335 Double_t rr = (xhma - xhmi) / (xma - xmi);
1337
1338 // Adjust using the same bin width and offsets
1339 Double_t bw = (xhma - xhmi) / nb;
1340 // Bins to left free on each side
1341 Double_t autoside = gEnv->GetValue("Hist.Binning.Auto.Side", 0.05);
1342 Int_t nbside = (Int_t)(nb * autoside);
1343
1344 // Side up
1345 Int_t nbup = (xhma - xma) / bw;
1346 if (nbup % 2 != 0)
1347 nbup++; // Must be even
1348 if (nbup != nbside) {
1349 // Accounts also for both case: larger or smaller
1350 xhma -= bw * (nbup - nbside);
1351 nb -= (nbup - nbside);
1352 }
1353
1354 // Side low
1355 Int_t nblw = (xmi - xhmi) / bw;
1356 if (nblw % 2 != 0)
1357 nblw++; // Must be even
1358 if (nblw != nbside) {
1359 // Accounts also for both case: larger or smaller
1360 xhmi += bw * (nblw - nbside);
1361 nb -= (nblw - nbside);
1362 }
1363
1364 // Set everything and project
1365 SetBins(nb, xhmi, xhma);
1366
1367 // Done
1368 return 0;
1369}
1370
1371/// Fill histogram with all entries in the buffer.
1372///
1373/// - action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
1374/// - action = 0 histogram is reset and filled from the buffer. When the histogram is filled from the
1375/// buffer the value fBuffer[0] is set to a negative number (= - number of entries)
1376/// When calling with action == 0 the histogram is NOT refilled when fBuffer[0] is < 0
1377/// While when calling with action = -1 the histogram is reset and ALWAYS refilled independently if
1378/// the histogram was filled before. This is needed when drawing the histogram
1379/// - action = 1 histogram is filled and buffer is deleted
1380/// The buffer is automatically deleted when filling the histogram and the entries is
1381/// larger than the buffer size
1382
1384{
1385 // do we need to compute the bin size?
1386 if (!fBuffer) return 0;
1388
1389 // nbentries correspond to the number of entries of histogram
1390
1391 if (nbentries == 0) {
1392 // if action is 1 we delete the buffer
1393 // this will avoid infinite recursion
1394 if (action > 0) {
1395 delete [] fBuffer;
1396 fBuffer = nullptr;
1397 fBufferSize = 0;
1398 }
1399 return 0;
1400 }
1401 if (nbentries < 0 && action == 0) return 0; // case histogram has been already filled from the buffer
1402
1403 Double_t *buffer = fBuffer;
1404 if (nbentries < 0) {
1406 // a reset might call BufferEmpty() giving an infinite recursion
1407 // Protect it by setting fBuffer = nullptr
1408 fBuffer = nullptr;
1409 //do not reset the list of functions
1410 Reset("ICES");
1411 fBuffer = buffer;
1412 }
1413 if (CanExtendAllAxes() || (fXaxis.GetXmax() <= fXaxis.GetXmin())) {
1414 //find min, max of entries in buffer
1417 for (Int_t i=0;i<nbentries;i++) {
1418 Double_t x = fBuffer[2*i+2];
1419 // skip infinity or NaN values
1420 if (!std::isfinite(x)) continue;
1421 if (x < xmin) xmin = x;
1422 if (x > xmax) xmax = x;
1423 }
1424 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
1425 Int_t rc = -1;
1427 if ((rc = AutoP2FindLimits(xmin, xmax)) < 0)
1428 Warning("BufferEmpty",
1429 "inconsistency found by power-of-2 autobin algorithm: fallback to standard method");
1430 }
1431 if (rc < 0)
1432 THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this, xmin, xmax);
1433 } else {
1434 fBuffer = nullptr;
1437 if (xmax >= fXaxis.GetXmax()) ExtendAxis(xmax, &fXaxis);
1438 fBuffer = buffer;
1439 fBufferSize = keep;
1440 }
1441 }
1442
1443 // call DoFillN which will not put entries in the buffer as FillN does
1444 // set fBuffer to zero to avoid re-emptying the buffer from functions called
1445 // by DoFillN (e.g Sumw2)
1446 buffer = fBuffer; fBuffer = nullptr;
1447 DoFillN(nbentries,&buffer[2],&buffer[1],2);
1448 fBuffer = buffer;
1449
1450 // if action == 1 - delete the buffer
1451 if (action > 0) {
1452 delete [] fBuffer;
1453 fBuffer = nullptr;
1454 fBufferSize = 0;
1455 } else {
1456 // if number of entries is consistent with buffer - set it negative to avoid
1457 // refilling the histogram every time BufferEmpty(0) is called
1458 // In case it is not consistent, by setting fBuffer[0]=0 is like resetting the buffer
1459 // (it will not be used anymore the next time BufferEmpty is called)
1460 if (nbentries == (Int_t)fEntries)
1461 fBuffer[0] = -nbentries;
1462 else
1463 fBuffer[0] = 0;
1464 }
1465 return nbentries;
1466}
1467
1468////////////////////////////////////////////////////////////////////////////////
1469/// accumulate arguments in buffer. When buffer is full, empty the buffer
1470///
1471/// - `fBuffer[0]` = number of entries in buffer
1472/// - `fBuffer[1]` = w of first entry
1473/// - `fBuffer[2]` = x of first entry
1474
1476{
1477 if (!fBuffer) return -2;
1479
1480
1481 if (nbentries < 0) {
1482 // reset nbentries to a positive value so next time BufferEmpty() is called
1483 // the histogram will be refilled
1485 fBuffer[0] = nbentries;
1486 if (fEntries > 0) {
1487 // set fBuffer to zero to avoid calling BufferEmpty in Reset
1488 Double_t *buffer = fBuffer; fBuffer=nullptr;
1489 Reset("ICES"); // do not reset list of functions
1490 fBuffer = buffer;
1491 }
1492 }
1493 if (2*nbentries+2 >= fBufferSize) {
1494 BufferEmpty(1);
1495 if (!fBuffer)
1496 // to avoid infinite recursion Fill->BufferFill->Fill
1497 return Fill(x,w);
1498 // this cannot happen
1499 R__ASSERT(0);
1500 }
1501 fBuffer[2*nbentries+1] = w;
1502 fBuffer[2*nbentries+2] = x;
1503 fBuffer[0] += 1;
1504 return -2;
1505}
1506
1507////////////////////////////////////////////////////////////////////////////////
1508/// Check bin limits.
1509
1510bool TH1::CheckBinLimits(const TAxis* a1, const TAxis * a2)
1511{
1512 const TArrayD * h1Array = a1->GetXbins();
1513 const TArrayD * h2Array = a2->GetXbins();
1514 Int_t fN = h1Array->fN;
1515 if ( fN != 0 ) {
1516 if ( h2Array->fN != fN ) {
1517 return false;
1518 }
1519 else {
1520 for ( int i = 0; i < fN; ++i ) {
1521 // for i==fN (nbin+1) a->GetBinWidth() returns last bin width
1522 // we do not need to exclude that case
1523 double binWidth = a1->GetBinWidth(i);
1524 if ( ! TMath::AreEqualAbs( h1Array->GetAt(i), h2Array->GetAt(i), binWidth*1E-10 ) ) {
1525 return false;
1526 }
1527 }
1528 }
1529 }
1530
1531 return true;
1532}
1533
1534////////////////////////////////////////////////////////////////////////////////
1535/// Check that axis have same labels.
1536
1537bool TH1::CheckBinLabels(const TAxis* a1, const TAxis * a2)
1538{
1539 THashList *l1 = a1->GetLabels();
1540 THashList *l2 = a2->GetLabels();
1541
1542 if (!l1 && !l2 )
1543 return true;
1544 if (!l1 || !l2 ) {
1545 return false;
1546 }
1547 // check now labels sizes are the same
1548 if (l1->GetSize() != l2->GetSize() ) {
1549 return false;
1550 }
1551 for (int i = 1; i <= a1->GetNbins(); ++i) {
1552 TString label1 = a1->GetBinLabel(i);
1553 TString label2 = a2->GetBinLabel(i);
1554 if (label1 != label2) {
1555 return false;
1556 }
1557 }
1558
1559 return true;
1560}
1561
1562////////////////////////////////////////////////////////////////////////////////
1563/// Check that the axis limits of the histograms are the same.
1564/// If a first and last bin is passed the axis is compared between the given range
1565
1566bool TH1::CheckAxisLimits(const TAxis *a1, const TAxis *a2 )
1567{
1568 double firstBin = a1->GetBinWidth(1);
1569 double lastBin = a1->GetBinWidth( a1->GetNbins() );
1570 if ( ! TMath::AreEqualAbs(a1->GetXmin(), a2->GetXmin(), firstBin* 1.E-10) ||
1571 ! TMath::AreEqualAbs(a1->GetXmax(), a2->GetXmax(), lastBin*1.E-10) ) {
1572 return false;
1573 }
1574 return true;
1575}
1576
1577////////////////////////////////////////////////////////////////////////////////
1578/// Check that the axis are the same
1579
1580bool TH1::CheckEqualAxes(const TAxis *a1, const TAxis *a2 )
1581{
1582 if (a1->GetNbins() != a2->GetNbins() ) {
1583 ::Info("CheckEqualAxes","Axes have different number of bins : nbin1 = %d nbin2 = %d",a1->GetNbins(),a2->GetNbins() );
1584 return false;
1585 }
1586 if(!CheckAxisLimits(a1,a2)) {
1587 ::Info("CheckEqualAxes","Axes have different limits");
1588 return false;
1589 }
1590 if(!CheckBinLimits(a1,a2)) {
1591 ::Info("CheckEqualAxes","Axes have different bin limits");
1592 return false;
1593 }
1594
1595 // check labels
1596 if(!CheckBinLabels(a1,a2)) {
1597 ::Info("CheckEqualAxes","Axes have different labels");
1598 return false;
1599 }
1600
1601 return true;
1602}
1603
1604////////////////////////////////////////////////////////////////////////////////
1605/// Check that two sub axis are the same.
1606/// The limits are defined by first bin and last bin
1607/// N.B. no check is done in this case for variable bins
1608
1610{
1611 // By default is assumed that no bins are given for the second axis
1613 Double_t xmin1 = a1->GetBinLowEdge(firstBin1);
1614 Double_t xmax1 = a1->GetBinUpEdge(lastBin1);
1615
1616 Int_t nbins2 = a2->GetNbins();
1617 Double_t xmin2 = a2->GetXmin();
1618 Double_t xmax2 = a2->GetXmax();
1619
1620 if (firstBin2 < lastBin2) {
1621 // in this case assume no bins are given for the second axis
1623 xmin2 = a1->GetBinLowEdge(firstBin1);
1624 xmax2 = a1->GetBinUpEdge(lastBin1);
1625 }
1626
1627 if (nbins1 != nbins2 ) {
1628 ::Info("CheckConsistentSubAxes","Axes have different number of bins");
1629 return false;
1630 }
1631
1632 Double_t firstBin = a1->GetBinWidth(firstBin1);
1633 Double_t lastBin = a1->GetBinWidth(lastBin1);
1634 if ( ! TMath::AreEqualAbs(xmin1,xmin2,1.E-10 * firstBin) ||
1635 ! TMath::AreEqualAbs(xmax1,xmax2,1.E-10 * lastBin) ) {
1636 ::Info("CheckConsistentSubAxes","Axes have different limits");
1637 return false;
1638 }
1639
1640 return true;
1641}
1642
1643////////////////////////////////////////////////////////////////////////////////
1644/// Check histogram compatibility.
1645/// The returned integer is part of EInconsistencyBits
1646/// The value 0 means that the histograms are compatible
1647
1649{
1650 if (h1 == h2) return kFullyConsistent;
1651
1652 if (h1->GetDimension() != h2->GetDimension() ) {
1653 return kDifferentDimensions;
1654 }
1655 Int_t dim = h1->GetDimension();
1656
1657 // returns kTRUE if number of bins and bin limits are identical
1658 Int_t nbinsx = h1->GetNbinsX();
1659 Int_t nbinsy = h1->GetNbinsY();
1660 Int_t nbinsz = h1->GetNbinsZ();
1661
1662 // Check whether the histograms have the same number of bins.
1663 if (nbinsx != h2->GetNbinsX() ||
1664 (dim > 1 && nbinsy != h2->GetNbinsY()) ||
1665 (dim > 2 && nbinsz != h2->GetNbinsZ()) ) {
1667 }
1668
1669 bool ret = true;
1670
1671 // check axis limits
1672 ret &= CheckAxisLimits(h1->GetXaxis(), h2->GetXaxis());
1673 if (dim > 1) ret &= CheckAxisLimits(h1->GetYaxis(), h2->GetYaxis());
1674 if (dim > 2) ret &= CheckAxisLimits(h1->GetZaxis(), h2->GetZaxis());
1675 if (!ret) return kDifferentAxisLimits;
1676
1677 // check bin limits
1678 ret &= CheckBinLimits(h1->GetXaxis(), h2->GetXaxis());
1679 if (dim > 1) ret &= CheckBinLimits(h1->GetYaxis(), h2->GetYaxis());
1680 if (dim > 2) ret &= CheckBinLimits(h1->GetZaxis(), h2->GetZaxis());
1681 if (!ret) return kDifferentBinLimits;
1682
1683 // check labels if histograms are both not empty
1684 if ( !h1->IsEmpty() && !h2->IsEmpty() ) {
1685 ret &= CheckBinLabels(h1->GetXaxis(), h2->GetXaxis());
1686 if (dim > 1) ret &= CheckBinLabels(h1->GetYaxis(), h2->GetYaxis());
1687 if (dim > 2) ret &= CheckBinLabels(h1->GetZaxis(), h2->GetZaxis());
1688 if (!ret) return kDifferentLabels;
1689 }
1690
1691 return kFullyConsistent;
1692}
1693
1694////////////////////////////////////////////////////////////////////////////////
1695/// \f$ \chi^{2} \f$ test for comparing weighted and unweighted histograms.
1696///
1697/// Compares the histograms' adjusted (normalized) residuals.
1698/// Function: Returns p-value. Other return values are specified by the 3rd parameter
1699///
1700/// \param[in] h2 the second histogram
1701/// \param[in] option
1702/// - "UU" = experiment experiment comparison (unweighted-unweighted)
1703/// - "UW" = experiment MC comparison (unweighted-weighted). Note that
1704/// the first histogram should be unweighted
1705/// - "WW" = MC MC comparison (weighted-weighted)
1706/// - "NORM" = to be used when one or both of the histograms is scaled
1707/// but the histogram originally was unweighted
1708/// - by default underflows and overflows are not included:
1709/// * "OF" = overflows included
1710/// * "UF" = underflows included
1711/// - "P" = print chi2, ndf, p_value, igood
1712/// - "CHI2" = returns chi2 instead of p-value
1713/// - "CHI2/NDF" = returns \f$ \chi^{2} \f$/ndf
1714/// \param[in] res not empty - computes normalized residuals and returns them in this array
1715///
1716/// The current implementation is based on the papers \f$ \chi^{2} \f$ test for comparison
1717/// of weighted and unweighted histograms" in Proceedings of PHYSTAT05 and
1718/// "Comparison weighted and unweighted histograms", arXiv:physics/0605123
1719/// by N.Gagunashvili. This function has been implemented by Daniel Haertl in August 2006.
1720///
1721/// #### Introduction:
1722///
1723/// A frequently used technique in data analysis is the comparison of
1724/// histograms. First suggested by Pearson [1] the \f$ \chi^{2} \f$ test of
1725/// homogeneity is used widely for comparing usual (unweighted) histograms.
1726/// This paper describes the implementation modified \f$ \chi^{2} \f$ tests
1727/// for comparison of weighted and unweighted histograms and two weighted
1728/// histograms [2] as well as usual Pearson's \f$ \chi^{2} \f$ test for
1729/// comparison two usual (unweighted) histograms.
1730///
1731/// #### Overview:
1732///
1733/// Comparison of two histograms expect hypotheses that two histograms
1734/// represent identical distributions. To make a decision p-value should
1735/// be calculated. The hypotheses of identity is rejected if the p-value is
1736/// lower then some significance level. Traditionally significance levels
1737/// 0.1, 0.05 and 0.01 are used. The comparison procedure should include an
1738/// analysis of the residuals which is often helpful in identifying the
1739/// bins of histograms responsible for a significant overall \f$ \chi^{2} \f$ value.
1740/// Residuals are the difference between bin contents and expected bin
1741/// contents. Most convenient for analysis are the normalized residuals. If
1742/// hypotheses of identity are valid then normalized residuals are
1743/// approximately independent and identically distributed random variables
1744/// having N(0,1) distribution. Analysis of residuals expect test of above
1745/// mentioned properties of residuals. Notice that indirectly the analysis
1746/// of residuals increase the power of \f$ \chi^{2} \f$ test.
1747///
1748/// #### Methods of comparison:
1749///
1750/// \f$ \chi^{2} \f$ test for comparison two (unweighted) histograms:
1751/// Let us consider two histograms with the same binning and the number
1752/// of bins equal to r. Let us denote the number of events in the ith bin
1753/// in the first histogram as ni and as mi in the second one. The total
1754/// number of events in the first histogram is equal to:
1755/// \f[
1756/// N = \sum_{i=1}^{r} n_{i}
1757/// \f]
1758/// and
1759/// \f[
1760/// M = \sum_{i=1}^{r} m_{i}
1761/// \f]
1762/// in the second histogram. The hypothesis of identity (homogeneity) [3]
1763/// is that the two histograms represent random values with identical
1764/// distributions. It is equivalent that there exist r constants p1,...,pr,
1765/// such that
1766/// \f[
1767///\sum_{i=1}^{r} p_{i}=1
1768/// \f]
1769/// and the probability of belonging to the ith bin for some measured value
1770/// in both experiments is equal to pi. The number of events in the ith
1771/// bin is a random variable with a distribution approximated by a Poisson
1772/// probability distribution
1773/// \f[
1774///\frac{e^{-Np_{i}}(Np_{i})^{n_{i}}}{n_{i}!}
1775/// \f]
1776///for the first histogram and with distribution
1777/// \f[
1778///\frac{e^{-Mp_{i}}(Mp_{i})^{m_{i}}}{m_{i}!}
1779/// \f]
1780/// for the second histogram. If the hypothesis of homogeneity is valid,
1781/// then the maximum likelihood estimator of pi, i=1,...,r, is
1782/// \f[
1783///\hat{p}_{i}= \frac{n_{i}+m_{i}}{N+M}
1784/// \f]
1785/// and then
1786/// \f[
1787/// X^{2} = \sum_{i=1}^{r}\frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r}\frac{(m_{i}-M\hat{p}_{i})^{2}}{M\hat{p}_{i}} =\frac{1}{MN} \sum_{i=1}^{r}\frac{(Mn_{i}-Nm_{i})^{2}}{n_{i}+m_{i}}
1788/// \f]
1789/// has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [3].
1790/// The comparison procedure can include an analysis of the residuals which
1791/// is often helpful in identifying the bins of histograms responsible for
1792/// a significant overall \f$ \chi^{2} \f$ value. Most convenient for
1793/// analysis are the adjusted (normalized) residuals [4]
1794/// \f[
1795/// r_{i} = \frac{n_{i}-N\hat{p}_{i}}{\sqrt{N\hat{p}_{i}}\sqrt{(1-N/(N+M))(1-(n_{i}+m_{i})/(N+M))}}
1796/// \f]
1797/// If hypotheses of homogeneity are valid then residuals ri are
1798/// approximately independent and identically distributed random variables
1799/// having N(0,1) distribution. The application of the \f$ \chi^{2} \f$ test has
1800/// restrictions related to the value of the expected frequencies Npi,
1801/// Mpi, i=1,...,r. A conservative rule formulated in [5] is that all the
1802/// expectations must be 1 or greater for both histograms. In practical
1803/// cases when expected frequencies are not known the estimated expected
1804/// frequencies \f$ M\hat{p}_{i}, N\hat{p}_{i}, i=1,...,r \f$ can be used.
1805///
1806/// #### Unweighted and weighted histograms comparison:
1807///
1808/// A simple modification of the ideas described above can be used for the
1809/// comparison of the usual (unweighted) and weighted histograms. Let us
1810/// denote the number of events in the ith bin in the unweighted
1811/// histogram as ni and the common weight of events in the ith bin of the
1812/// weighted histogram as wi. The total number of events in the
1813/// unweighted histogram is equal to
1814///\f[
1815/// N = \sum_{i=1}^{r} n_{i}
1816///\f]
1817/// and the total weight of events in the weighted histogram is equal to
1818///\f[
1819/// W = \sum_{i=1}^{r} w_{i}
1820///\f]
1821/// Let us formulate the hypothesis of identity of an unweighted histogram
1822/// to a weighted histogram so that there exist r constants p1,...,pr, such
1823/// that
1824///\f[
1825/// \sum_{i=1}^{r} p_{i} = 1
1826///\f]
1827/// for the unweighted histogram. The weight wi is a random variable with a
1828/// distribution approximated by the normal probability distribution
1829/// \f$ N(Wp_{i},\sigma_{i}^{2}) \f$ where \f$ \sigma_{i}^{2} \f$ is the variance of the weight wi.
1830/// If we replace the variance \f$ \sigma_{i}^{2} \f$
1831/// with estimate \f$ s_{i}^{2} \f$ (sum of squares of weights of
1832/// events in the ith bin) and the hypothesis of identity is valid, then the
1833/// maximum likelihood estimator of pi,i=1,...,r, is
1834///\f[
1835/// \hat{p}_{i} = \frac{Ww_{i}-Ns_{i}^{2}+\sqrt{(Ww_{i}-Ns_{i}^{2})^{2}+4W^{2}s_{i}^{2}n_{i}}}{2W^{2}}
1836///\f]
1837/// We may then use the test statistic
1838///\f[
1839/// X^{2} = \sum_{i=1}^{r} \frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r} \frac{(w_{i}-W\hat{p}_{i})^{2}}{s_{i}^{2}}
1840///\f]
1841/// and it has approximately a \f$ \sigma^{2}_{(r-1)} \f$ distribution [2]. This test, as well
1842/// as the original one [3], has a restriction on the expected frequencies. The
1843/// expected frequencies recommended for the weighted histogram is more than 25.
1844/// The value of the minimal expected frequency can be decreased down to 10 for
1845/// the case when the weights of the events are close to constant. In the case
1846/// of a weighted histogram if the number of events is unknown, then we can
1847/// apply this recommendation for the equivalent number of events as
1848///\f[
1849/// n_{i}^{equiv} = \frac{ w_{i}^{2} }{ s_{i}^{2} }
1850///\f]
1851/// The minimal expected frequency for an unweighted histogram must be 1. Notice
1852/// that any usual (unweighted) histogram can be considered as a weighted
1853/// histogram with events that have constant weights equal to 1.
1854/// The variance \f$ z_{i}^{2} \f$ of the difference between the weight wi
1855/// and the estimated expectation value of the weight is approximately equal to:
1856///\f[
1857/// z_{i}^{2} = Var(w_{i}-W\hat{p}_{i}) = N\hat{p}_{i}(1-N\hat{p}_{i})\left(\frac{Ws_{i}^{2}}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}+\frac{s_{i}^{2}}{4}\left(1+\frac{Ns_{i}^{2}-w_{i}W}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}
1858///\f]
1859/// The residuals
1860///\f[
1861/// r_{i} = \frac{w_{i}-W\hat{p}_{i}}{z_{i}}
1862///\f]
1863/// have approximately a normal distribution with mean equal to 0 and standard
1864/// deviation equal to 1.
1865///
1866/// #### Two weighted histograms comparison:
1867///
1868/// Let us denote the common weight of events of the ith bin in the first
1869/// histogram as w1i and as w2i in the second one. The total weight of events
1870/// in the first histogram is equal to
1871///\f[
1872/// W_{1} = \sum_{i=1}^{r} w_{1i}
1873///\f]
1874/// and
1875///\f[
1876/// W_{2} = \sum_{i=1}^{r} w_{2i}
1877///\f]
1878/// in the second histogram. Let us formulate the hypothesis of identity of
1879/// weighted histograms so that there exist r constants p1,...,pr, such that
1880///\f[
1881/// \sum_{i=1}^{r} p_{i} = 1
1882///\f]
1883/// and also expectation value of weight w1i equal to W1pi and expectation value
1884/// of weight w2i equal to W2pi. Weights in both the histograms are random
1885/// variables with distributions which can be approximated by a normal
1886/// probability distribution \f$ N(W_{1}p_{i},\sigma_{1i}^{2}) \f$ for the first histogram
1887/// and by a distribution \f$ N(W_{2}p_{i},\sigma_{2i}^{2}) \f$ for the second.
1888/// Here \f$ \sigma_{1i}^{2} \f$ and \f$ \sigma_{2i}^{2} \f$ are the variances
1889/// of w1i and w2i with estimators \f$ s_{1i}^{2} \f$ and \f$ s_{2i}^{2} \f$ respectively.
1890/// If the hypothesis of identity is valid, then the maximum likelihood and
1891/// Least Square Method estimator of pi,i=1,...,r, is
1892///\f[
1893/// \hat{p}_{i} = \frac{w_{1i}W_{1}/s_{1i}^{2}+w_{2i}W_{2} /s_{2i}^{2}}{W_{1}^{2}/s_{1i}^{2}+W_{2}^{2}/s_{2i}^{2}}
1894///\f]
1895/// We may then use the test statistic
1896///\f[
1897/// X^{2} = \sum_{i=1}^{r} \frac{(w_{1i}-W_{1}\hat{p}_{i})^{2}}{s_{1i}^{2}} + \sum_{i=1}^{r} \frac{(w_{2i}-W_{2}\hat{p}_{i})^{2}}{s_{2i}^{2}} = \sum_{i=1}^{r} \frac{(W_{1}w_{2i}-W_{2}w_{1i})^{2}}{W_{1}^{2}s_{2i}^{2}+W_{2}^{2}s_{1i}^{2}}
1898///\f]
1899/// and it has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [2].
1900/// The normalized or studentised residuals [6]
1901///\f[
1902/// r_{i} = \frac{w_{1i}-W_{1}\hat{p}_{i}}{s_{1i}\sqrt{1 - \frac{1}{(1+W_{2}^{2}s_{1i}^{2}/W_{1}^{2}s_{2i}^{2})}}}
1903///\f]
1904/// have approximately a normal distribution with mean equal to 0 and standard
1905/// deviation 1. A recommended minimal expected frequency is equal to 10 for
1906/// the proposed test.
1907///
1908/// #### Numerical examples:
1909///
1910/// The method described herein is now illustrated with an example.
1911/// We take a distribution
1912///\f[
1913/// \phi(x) = \frac{2}{(x-10)^{2}+1} + \frac{1}{(x-14)^{2}+1} (1)
1914///\f]
1915/// defined on the interval [4,16]. Events distributed according to the formula
1916/// (1) are simulated to create the unweighted histogram. Uniformly distributed
1917/// events are simulated for the weighted histogram with weights calculated by
1918/// formula (1). Each histogram has the same number of bins: 20. Fig.1 shows
1919/// the result of comparison of the unweighted histogram with 200 events
1920/// (minimal expected frequency equal to one) and the weighted histogram with
1921/// 500 events (minimal expected frequency equal to 25)
1922/// Begin_Macro
1923/// ../../../tutorials/math/chi2test.C
1924/// End_Macro
1925/// Fig 1. An example of comparison of the unweighted histogram with 200 events
1926/// and the weighted histogram with 500 events:
1927/// 1. unweighted histogram;
1928/// 2. weighted histogram;
1929/// 3. normalized residuals plot;
1930/// 4. normal Q-Q plot of residuals.
1931///
1932/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1933/// 21.09 with p-value equal to 0.33, therefore the hypothesis of identity of
1934/// the two histograms can be accepted for 0.05 significant level. The behavior
1935/// of the normalized residuals plot (see Fig. 1c) and the normal Q-Q plot
1936/// (see Fig. 1d) of residuals are regular and we cannot identify the outliers
1937/// or bins with a big influence on \f$ \chi^{2} \f$.
1938///
1939/// The second example presents the same two histograms but 17 events was added
1940/// to content of bin number 15 in unweighted histogram. Fig.2 shows the result
1941/// of comparison of the unweighted histogram with 217 events (minimal expected
1942/// frequency equal to one) and the weighted histogram with 500 events (minimal
1943/// expected frequency equal to 25)
1944/// Begin_Macro
1945/// ../../../tutorials/math/chi2test.C(17)
1946/// End_Macro
1947/// Fig 2. An example of comparison of the unweighted histogram with 217 events
1948/// and the weighted histogram with 500 events:
1949/// 1. unweighted histogram;
1950/// 2. weighted histogram;
1951/// 3. normalized residuals plot;
1952/// 4. normal Q-Q plot of residuals.
1953///
1954/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1955/// 32.33 with p-value equal to 0.029, therefore the hypothesis of identity of
1956/// the two histograms is rejected for 0.05 significant level. The behavior of
1957/// the normalized residuals plot (see Fig. 2c) and the normal Q-Q plot (see
1958/// Fig. 2d) of residuals are not regular and we can identify the outlier or
1959/// bin with a big influence on \f$ \chi^{2} \f$.
1960///
1961/// #### References:
1962///
1963/// - [1] Pearson, K., 1904. On the Theory of Contingency and Its Relation to
1964/// Association and Normal Correlation. Drapers' Co. Memoirs, Biometric
1965/// Series No. 1, London.
1966/// - [2] Gagunashvili, N., 2006. \f$ \sigma^{2} \f$ test for comparison
1967/// of weighted and unweighted histograms. Statistical Problems in Particle
1968/// Physics, Astrophysics and Cosmology, Proceedings of PHYSTAT05,
1969/// Oxford, UK, 12-15 September 2005, Imperial College Press, London, 43-44.
1970/// Gagunashvili,N., Comparison of weighted and unweighted histograms,
1971/// arXiv:physics/0605123, 2006.
1972/// - [3] Cramer, H., 1946. Mathematical methods of statistics.
1973/// Princeton University Press, Princeton.
1974/// - [4] Haberman, S.J., 1973. The analysis of residuals in cross-classified tables.
1975/// Biometrics 29, 205-220.
1976/// - [5] Lewontin, R.C. and Felsenstein, J., 1965. The robustness of homogeneity
1977/// test in 2xN tables. Biometrics 21, 19-33.
1978/// - [6] Seber, G.A.F., Lee, A.J., 2003, Linear Regression Analysis.
1979/// John Wiley & Sons Inc., New York.
1980
1981Double_t TH1::Chi2Test(const TH1* h2, Option_t *option, Double_t *res) const
1982{
1983 Double_t chi2 = 0;
1984 Int_t ndf = 0, igood = 0;
1985
1986 TString opt = option;
1987 opt.ToUpper();
1988
1990
1991 if(opt.Contains("P")) {
1992 printf("Chi2 = %f, Prob = %g, NDF = %d, igood = %d\n", chi2,prob,ndf,igood);
1993 }
1994 if(opt.Contains("CHI2/NDF")) {
1995 if (ndf == 0) return 0;
1996 return chi2/ndf;
1997 }
1998 if(opt.Contains("CHI2")) {
1999 return chi2;
2000 }
2001
2002 return prob;
2003}
2004
2005////////////////////////////////////////////////////////////////////////////////
2006/// The computation routine of the Chisquare test. For the method description,
2007/// see Chi2Test() function.
2008///
2009/// \return p-value
2010/// \param[in] h2 the second histogram
2011/// \param[in] option
2012/// - "UU" = experiment experiment comparison (unweighted-unweighted)
2013/// - "UW" = experiment MC comparison (unweighted-weighted). Note that the first
2014/// histogram should be unweighted
2015/// - "WW" = MC MC comparison (weighted-weighted)
2016/// - "NORM" = if one or both histograms is scaled
2017/// - "OF" = overflows included
2018/// - "UF" = underflows included
2019/// by default underflows and overflows are not included
2020/// \param[out] igood test output
2021/// - igood=0 - no problems
2022/// - For unweighted unweighted comparison
2023/// - igood=1'There is a bin in the 1st histogram with less than 1 event'
2024/// - igood=2'There is a bin in the 2nd histogram with less than 1 event'
2025/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2026/// - For unweighted weighted comparison
2027/// - igood=1'There is a bin in the 1st histogram with less then 1 event'
2028/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective number of events'
2029/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2030/// - For weighted weighted comparison
2031/// - igood=1'There is a bin in the 1st histogram with less then 10 effective
2032/// number of events'
2033/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective
2034/// number of events'
2035/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2036/// \param[out] chi2 chisquare of the test
2037/// \param[out] ndf number of degrees of freedom (important, when both histograms have the same empty bins)
2038/// \param[out] res normalized residuals for further analysis
2039
2041{
2042
2046
2047 Double_t sum1 = 0.0, sumw1 = 0.0;
2048 Double_t sum2 = 0.0, sumw2 = 0.0;
2049
2050 chi2 = 0.0;
2051 ndf = 0;
2052
2053 TString opt = option;
2054 opt.ToUpper();
2055
2056 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
2057
2058 const TAxis *xaxis1 = GetXaxis();
2059 const TAxis *xaxis2 = h2->GetXaxis();
2060 const TAxis *yaxis1 = GetYaxis();
2061 const TAxis *yaxis2 = h2->GetYaxis();
2062 const TAxis *zaxis1 = GetZaxis();
2063 const TAxis *zaxis2 = h2->GetZaxis();
2064
2065 Int_t nbinx1 = xaxis1->GetNbins();
2066 Int_t nbinx2 = xaxis2->GetNbins();
2067 Int_t nbiny1 = yaxis1->GetNbins();
2068 Int_t nbiny2 = yaxis2->GetNbins();
2069 Int_t nbinz1 = zaxis1->GetNbins();
2070 Int_t nbinz2 = zaxis2->GetNbins();
2071
2072 //check dimensions
2073 if (this->GetDimension() != h2->GetDimension() ){
2074 Error("Chi2TestX","Histograms have different dimensions.");
2075 return 0.0;
2076 }
2077
2078 //check number of channels
2079 if (nbinx1 != nbinx2) {
2080 Error("Chi2TestX","different number of x channels");
2081 }
2082 if (nbiny1 != nbiny2) {
2083 Error("Chi2TestX","different number of y channels");
2084 }
2085 if (nbinz1 != nbinz2) {
2086 Error("Chi2TestX","different number of z channels");
2087 }
2088
2089 //check for ranges
2090 i_start = j_start = k_start = 1;
2091 i_end = nbinx1;
2092 j_end = nbiny1;
2093 k_end = nbinz1;
2094
2095 if (xaxis1->TestBit(TAxis::kAxisRange)) {
2096 i_start = xaxis1->GetFirst();
2097 i_end = xaxis1->GetLast();
2098 }
2099 if (yaxis1->TestBit(TAxis::kAxisRange)) {
2100 j_start = yaxis1->GetFirst();
2101 j_end = yaxis1->GetLast();
2102 }
2103 if (zaxis1->TestBit(TAxis::kAxisRange)) {
2104 k_start = zaxis1->GetFirst();
2105 k_end = zaxis1->GetLast();
2106 }
2107
2108
2109 if (opt.Contains("OF")) {
2110 if (GetDimension() == 3) k_end = ++nbinz1;
2111 if (GetDimension() >= 2) j_end = ++nbiny1;
2112 if (GetDimension() >= 1) i_end = ++nbinx1;
2113 }
2114
2115 if (opt.Contains("UF")) {
2116 if (GetDimension() == 3) k_start = 0;
2117 if (GetDimension() >= 2) j_start = 0;
2118 if (GetDimension() >= 1) i_start = 0;
2119 }
2120
2121 ndf = (i_end - i_start + 1) * (j_end - j_start + 1) * (k_end - k_start + 1) - 1;
2122
2123 Bool_t comparisonUU = opt.Contains("UU");
2124 Bool_t comparisonUW = opt.Contains("UW");
2125 Bool_t comparisonWW = opt.Contains("WW");
2126 Bool_t scaledHistogram = opt.Contains("NORM");
2127
2128 if (scaledHistogram && !comparisonUU) {
2129 Info("Chi2TestX", "NORM option should be used together with UU option. It is ignored");
2130 }
2131
2132 // look at histo global bin content and effective entries
2133 Stat_t s[kNstat];
2134 GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2135 Double_t sumBinContent1 = s[0];
2136 Double_t effEntries1 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2137
2138 h2->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2139 Double_t sumBinContent2 = s[0];
2140 Double_t effEntries2 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2141
2142 if (!comparisonUU && !comparisonUW && !comparisonWW ) {
2143 // deduce automatically from type of histogram
2146 else comparisonUW = true;
2147 }
2148 else comparisonWW = true;
2149 }
2150 // check unweighted histogram
2151 if (comparisonUW) {
2153 Warning("Chi2TestX","First histogram is not unweighted and option UW has been requested");
2154 }
2155 }
2156 if ( (!scaledHistogram && comparisonUU) ) {
2158 Warning("Chi2TestX","Both histograms are not unweighted and option UU has been requested");
2159 }
2160 }
2161
2162
2163 //get number of events in histogram
2165 for (Int_t i = i_start; i <= i_end; ++i) {
2166 for (Int_t j = j_start; j <= j_end; ++j) {
2167 for (Int_t k = k_start; k <= k_end; ++k) {
2168
2169 Int_t bin = GetBin(i, j, k);
2170
2172 Double_t cnt2 = h2->RetrieveBinContent(bin);
2174 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2175
2176 if (e1sq > 0.0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2177 else cnt1 = 0.0;
2178
2179 if (e2sq > 0.0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2180 else cnt2 = 0.0;
2181
2182 // sum contents
2183 sum1 += cnt1;
2184 sum2 += cnt2;
2185 sumw1 += e1sq;
2186 sumw2 += e2sq;
2187 }
2188 }
2189 }
2190 if (sumw1 <= 0.0 || sumw2 <= 0.0) {
2191 Error("Chi2TestX", "Cannot use option NORM when one histogram has all zero errors");
2192 return 0.0;
2193 }
2194
2195 } else {
2196 for (Int_t i = i_start; i <= i_end; ++i) {
2197 for (Int_t j = j_start; j <= j_end; ++j) {
2198 for (Int_t k = k_start; k <= k_end; ++k) {
2199
2200 Int_t bin = GetBin(i, j, k);
2201
2202 sum1 += RetrieveBinContent(bin);
2203 sum2 += h2->RetrieveBinContent(bin);
2204
2206 if ( comparisonUW || comparisonWW ) sumw2 += h2->GetBinErrorSqUnchecked(bin);
2207 }
2208 }
2209 }
2210 }
2211 //checks that the histograms are not empty
2212 if (sum1 == 0.0 || sum2 == 0.0) {
2213 Error("Chi2TestX","one histogram is empty");
2214 return 0.0;
2215 }
2216
2217 if ( comparisonWW && ( sumw1 <= 0.0 && sumw2 <= 0.0 ) ){
2218 Error("Chi2TestX","Hist1 and Hist2 have both all zero errors\n");
2219 return 0.0;
2220 }
2221
2222 //THE TEST
2223 Int_t m = 0, n = 0;
2224
2225 //Experiment - experiment comparison
2226 if (comparisonUU) {
2227 Double_t sum = sum1 + sum2;
2228 for (Int_t i = i_start; i <= i_end; ++i) {
2229 for (Int_t j = j_start; j <= j_end; ++j) {
2230 for (Int_t k = k_start; k <= k_end; ++k) {
2231
2232 Int_t bin = GetBin(i, j, k);
2233
2235 Double_t cnt2 = h2->RetrieveBinContent(bin);
2236
2237 if (scaledHistogram) {
2238 // scale bin value to effective bin entries
2240 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2241
2242 if (e1sq > 0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2243 else cnt1 = 0;
2244
2245 if (e2sq > 0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2246 else cnt2 = 0;
2247 }
2248
2249 if (Int_t(cnt1) == 0 && Int_t(cnt2) == 0) --ndf; // no data means one degree of freedom less
2250 else {
2251
2254 //Double_t nexp2 = binsum*sum2/sum;
2255
2256 if (res) res[i - i_start] = (cnt1 - nexp1) / TMath::Sqrt(nexp1);
2257
2258 if (cnt1 < 1) ++m;
2259 if (cnt2 < 1) ++n;
2260
2261 //Habermann correction for residuals
2262 Double_t correc = (1. - sum1 / sum) * (1. - cntsum / sum);
2263 if (res) res[i - i_start] /= TMath::Sqrt(correc);
2264
2265 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2266 chi2 += delta * delta / cntsum;
2267 }
2268 }
2269 }
2270 }
2271 chi2 /= sum1 * sum2;
2272
2273 // flag error only when of the two histogram is zero
2274 if (m) {
2275 igood += 1;
2276 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2277 }
2278 if (n) {
2279 igood += 2;
2280 Info("Chi2TestX","There is a bin in h2 with less than 1 event.\n");
2281 }
2282
2284 return prob;
2285
2286 }
2287
2288 // unweighted - weighted comparison
2289 // case of error = 0 and content not zero is treated without problems by excluding second chi2 sum
2290 // and can be considered as a data-theory comparison
2291 if ( comparisonUW ) {
2292 for (Int_t i = i_start; i <= i_end; ++i) {
2293 for (Int_t j = j_start; j <= j_end; ++j) {
2294 for (Int_t k = k_start; k <= k_end; ++k) {
2295
2296 Int_t bin = GetBin(i, j, k);
2297
2299 Double_t cnt2 = h2->RetrieveBinContent(bin);
2300 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2301
2302 // case both histogram have zero bin contents
2303 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2304 --ndf; //no data means one degree of freedom less
2305 continue;
2306 }
2307
2308 // case weighted histogram has zero bin content and error
2309 if (cnt2 * cnt2 == 0 && e2sq == 0) {
2310 if (sumw2 > 0) {
2311 // use as approximated error as 1 scaled by a scaling ratio
2312 // estimated from the total sum weight and sum weight squared
2313 e2sq = sumw2 / sum2;
2314 }
2315 else {
2316 // return error because infinite discrepancy here:
2317 // bin1 != 0 and bin2 =0 in a histogram with all errors zero
2318 Error("Chi2TestX","Hist2 has in bin (%d,%d,%d) zero content and zero errors\n", i, j, k);
2319 chi2 = 0; return 0;
2320 }
2321 }
2322
2323 if (cnt1 < 1) m++;
2324 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2325
2326 Double_t var1 = sum2 * cnt2 - sum1 * e2sq;
2327 Double_t var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2328
2329 // if cnt1 is zero and cnt2 = 1 and sum1 = sum2 var1 = 0 && var2 == 0
2330 // approximate by incrementing cnt1
2331 // LM (this need to be fixed for numerical errors)
2332 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2333 sum1++;
2334 cnt1++;
2335 var1 = sum2 * cnt2 - sum1 * e2sq;
2336 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2337 }
2339
2340 while (var1 + var2 == 0) {
2341 sum1++;
2342 cnt1++;
2343 var1 = sum2 * cnt2 - sum1 * e2sq;
2344 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2345 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2346 sum1++;
2347 cnt1++;
2348 var1 = sum2 * cnt2 - sum1 * e2sq;
2349 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2350 }
2352 }
2353
2354 Double_t probb = (var1 + var2) / (2. * sum2 * sum2);
2355
2358
2361
2362 chi2 += delta1 * delta1 / nexp1;
2363
2364 if (e2sq > 0) {
2365 chi2 += delta2 * delta2 / e2sq;
2366 }
2367
2368 if (res) {
2369 if (e2sq > 0) {
2370 Double_t temp1 = sum2 * e2sq / var2;
2371 Double_t temp2 = 1.0 + (sum1 * e2sq - sum2 * cnt2) / var2;
2372 temp2 = temp1 * temp1 * sum1 * probb * (1.0 - probb) + temp2 * temp2 * e2sq / 4.0;
2373 // invert sign here
2374 res[i - i_start] = - delta2 / TMath::Sqrt(temp2);
2375 }
2376 else
2377 res[i - i_start] = delta1 / TMath::Sqrt(nexp1);
2378 }
2379 }
2380 }
2381 }
2382
2383 if (m) {
2384 igood += 1;
2385 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2386 }
2387 if (n) {
2388 igood += 2;
2389 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2390 }
2391
2393
2394 return prob;
2395 }
2396
2397 // weighted - weighted comparison
2398 if (comparisonWW) {
2399 for (Int_t i = i_start; i <= i_end; ++i) {
2400 for (Int_t j = j_start; j <= j_end; ++j) {
2401 for (Int_t k = k_start; k <= k_end; ++k) {
2402
2403 Int_t bin = GetBin(i, j, k);
2405 Double_t cnt2 = h2->RetrieveBinContent(bin);
2407 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2408
2409 // case both histogram have zero bin contents
2410 // (use square of content to avoid numerical errors)
2411 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2412 --ndf; //no data means one degree of freedom less
2413 continue;
2414 }
2415
2416 if (e1sq == 0 && e2sq == 0) {
2417 // cannot treat case of booth histogram have zero zero errors
2418 Error("Chi2TestX","h1 and h2 both have bin %d,%d,%d with all zero errors\n", i,j,k);
2419 chi2 = 0; return 0;
2420 }
2421
2422 Double_t sigma = sum1 * sum1 * e2sq + sum2 * sum2 * e1sq;
2423 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2424 chi2 += delta * delta / sigma;
2425
2426 if (res) {
2427 Double_t temp = cnt1 * sum1 * e2sq + cnt2 * sum2 * e1sq;
2428 Double_t probb = temp / sigma;
2429 Double_t z = 0;
2430 if (e1sq > e2sq) {
2431 Double_t d1 = cnt1 - sum1 * probb;
2432 Double_t s1 = e1sq * ( 1. - e2sq * sum1 * sum1 / sigma );
2433 z = d1 / TMath::Sqrt(s1);
2434 }
2435 else {
2436 Double_t d2 = cnt2 - sum2 * probb;
2437 Double_t s2 = e2sq * ( 1. - e1sq * sum2 * sum2 / sigma );
2438 z = -d2 / TMath::Sqrt(s2);
2439 }
2440 res[i - i_start] = z;
2441 }
2442
2443 if (e1sq > 0 && cnt1 * cnt1 / e1sq < 10) m++;
2444 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2445 }
2446 }
2447 }
2448 if (m) {
2449 igood += 1;
2450 Info("Chi2TestX","There is a bin in h1 with less than 10 effective events.\n");
2451 }
2452 if (n) {
2453 igood += 2;
2454 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2455 }
2457 return prob;
2458 }
2459 return 0;
2460}
2461////////////////////////////////////////////////////////////////////////////////
2462/// Compute and return the chisquare of this histogram with respect to a function
2463/// The chisquare is computed by weighting each histogram point by the bin error
2464/// By default the full range of the histogram is used, unless TAxis::SetRange or TAxis::SetRangeUser was called before.
2465/// Use option "R" for restricting the chisquare calculation to the given range of the function
2466/// Use option "L" for using the chisquare based on the poisson likelihood (Baker-Cousins Chisquare)
2467/// Use option "P" for using the Pearson chisquare based on the expected bin errors
2468
2470{
2471 if (!func) {
2472 Error("Chisquare","Function pointer is Null - return -1");
2473 return -1;
2474 }
2475
2476 TString opt(option); opt.ToUpper();
2477 bool useRange = opt.Contains("R");
2478 ROOT::Fit::EChisquareType type = ROOT::Fit::EChisquareType::kNeyman; // default chi2 with observed error
2481
2482 return ROOT::Fit::Chisquare(*this, *func, useRange, type);
2483}
2484
2485////////////////////////////////////////////////////////////////////////////////
2486/// Remove all the content from the underflow and overflow bins, without changing the number of entries
2487/// After calling this method, every undeflow and overflow bins will have content 0.0
2488/// The Sumw2 is also cleared, since there is no more content in the bins
2489
2491{
2492 for (Int_t bin = 0; bin < fNcells; ++bin)
2493 if (IsBinUnderflow(bin) || IsBinOverflow(bin)) {
2494 UpdateBinContent(bin, 0.0);
2495 if (fSumw2.fN) fSumw2.fArray[bin] = 0.0;
2496 }
2497}
2498
2499////////////////////////////////////////////////////////////////////////////////
2500/// Compute integral (normalized cumulative sum of bins) w/o under/overflows
2501/// The result is stored in fIntegral and used by the GetRandom functions.
2502/// This function is automatically called by GetRandom when the fIntegral
2503/// array does not exist or when the number of entries in the histogram
2504/// has changed since the previous call to GetRandom.
2505/// The resulting integral is normalized to 1.
2506/// If the routine is called with the onlyPositive flag set an error will
2507/// be produced in case of negative bin content and a NaN value returned
2508/// \return 1 if success, 0 if integral is zero, NAN if onlyPositive-test fails
2509
2511{
2512 if (fBuffer) BufferEmpty();
2513
2514 // delete previously computed integral (if any)
2515 if (fIntegral) delete [] fIntegral;
2516
2517 // - Allocate space to store the integral and compute integral
2521 Int_t nbins = nbinsx * nbinsy * nbinsz;
2522
2523 fIntegral = new Double_t[nbins + 2];
2524 Int_t ibin = 0; fIntegral[ibin] = 0;
2525
2526 for (Int_t binz=1; binz <= nbinsz; ++binz) {
2527 for (Int_t biny=1; biny <= nbinsy; ++biny) {
2528 for (Int_t binx=1; binx <= nbinsx; ++binx) {
2529 ++ibin;
2531 if (onlyPositive && y < 0) {
2532 Error("ComputeIntegral","Bin content is negative - return a NaN value");
2533 fIntegral[nbins] = TMath::QuietNaN();
2534 break;
2535 }
2536 fIntegral[ibin] = fIntegral[ibin - 1] + y;
2537 }
2538 }
2539 }
2540
2541 // - Normalize integral to 1
2542 if (fIntegral[nbins] == 0 ) {
2543 Error("ComputeIntegral", "Integral = 0, no hits in histogram bins (excluding over/underflow).");
2544 return 0;
2545 }
2546 for (Int_t bin=1; bin <= nbins; ++bin) fIntegral[bin] /= fIntegral[nbins];
2547 fIntegral[nbins+1] = fEntries;
2548 return fIntegral[nbins];
2549}
2550
2551////////////////////////////////////////////////////////////////////////////////
2552/// Return a pointer to the array of bins integral.
2553/// if the pointer fIntegral is null, TH1::ComputeIntegral is called
2554/// The array dimension is the number of bins in the histograms
2555/// including underflow and overflow (fNCells)
2556/// the last value integral[fNCells] is set to the number of entries of
2557/// the histogram
2558
2560{
2561 if (!fIntegral) ComputeIntegral();
2562 return fIntegral;
2563}
2564
2565////////////////////////////////////////////////////////////////////////////////
2566/// Return a pointer to a histogram containing the cumulative content.
2567/// The cumulative can be computed both in the forward (default) or backward
2568/// direction; the name of the new histogram is constructed from
2569/// the name of this histogram with the suffix "suffix" appended provided
2570/// by the user. If not provided a default suffix="_cumulative" is used.
2571///
2572/// The cumulative distribution is formed by filling each bin of the
2573/// resulting histogram with the sum of that bin and all previous
2574/// (forward == kTRUE) or following (forward = kFALSE) bins.
2575///
2576/// Note: while cumulative distributions make sense in one dimension, you
2577/// may not be getting what you expect in more than 1D because the concept
2578/// of a cumulative distribution is much trickier to define; make sure you
2579/// understand the order of summation before you use this method with
2580/// histograms of dimension >= 2.
2581///
2582/// Note 2: By default the cumulative is computed from bin 1 to Nbins
2583/// If an axis range is set, values between the minimum and maximum of the range
2584/// are set.
2585/// Setting an axis range can also be used for including underflow and overflow in
2586/// the cumulative (e.g. by setting h->GetXaxis()->SetRange(0, h->GetNbinsX()+1); )
2588
2589TH1 *TH1::GetCumulative(Bool_t forward, const char* suffix) const
2590{
2591 const Int_t firstX = fXaxis.GetFirst();
2592 const Int_t lastX = fXaxis.GetLast();
2593 const Int_t firstY = (fDimension > 1) ? fYaxis.GetFirst() : 1;
2594 const Int_t lastY = (fDimension > 1) ? fYaxis.GetLast() : 1;
2595 const Int_t firstZ = (fDimension > 1) ? fZaxis.GetFirst() : 1;
2596 const Int_t lastZ = (fDimension > 1) ? fZaxis.GetLast() : 1;
2597
2599 hintegrated->Reset();
2600 Double_t sum = 0.;
2601 Double_t esum = 0;
2602 if (forward) { // Forward computation
2603 for (Int_t binz = firstZ; binz <= lastZ; ++binz) {
2604 for (Int_t biny = firstY; biny <= lastY; ++biny) {
2605 for (Int_t binx = firstX; binx <= lastX; ++binx) {
2606 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2607 sum += RetrieveBinContent(bin);
2608 hintegrated->AddBinContent(bin, sum);
2609 if (fSumw2.fN) {
2611 hintegrated->fSumw2.fArray[bin] = esum;
2612 }
2613 }
2614 }
2615 }
2616 } else { // Backward computation
2617 for (Int_t binz = lastZ; binz >= firstZ; --binz) {
2618 for (Int_t biny = lastY; biny >= firstY; --biny) {
2619 for (Int_t binx = lastX; binx >= firstX; --binx) {
2620 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2621 sum += RetrieveBinContent(bin);
2622 hintegrated->AddBinContent(bin, sum);
2623 if (fSumw2.fN) {
2625 hintegrated->fSumw2.fArray[bin] = esum;
2626 }
2627 }
2628 }
2629 }
2630 }
2631 return hintegrated;
2632}
2633
2634////////////////////////////////////////////////////////////////////////////////
2635/// Copy this histogram structure to newth1.
2636///
2637/// Note that this function does not copy the list of associated functions.
2638/// Use TObject::Clone to make a full copy of a histogram.
2639///
2640/// Note also that the histogram it will be created in gDirectory (if AddDirectoryStatus()=true)
2641/// or will not be added to any directory if AddDirectoryStatus()=false
2642/// independently of the current directory stored in the original histogram
2643
2644void TH1::Copy(TObject &obj) const
2645{
2646 if (((TH1&)obj).fDirectory) {
2647 // We are likely to change the hash value of this object
2648 // with TNamed::Copy, to keep things correct, we need to
2649 // clean up its existing entries.
2650 ((TH1&)obj).fDirectory->Remove(&obj);
2651 ((TH1&)obj).fDirectory = nullptr;
2652 }
2653 TNamed::Copy(obj);
2654 ((TH1&)obj).fDimension = fDimension;
2655 ((TH1&)obj).fNormFactor= fNormFactor;
2656 ((TH1&)obj).fNcells = fNcells;
2657 ((TH1&)obj).fBarOffset = fBarOffset;
2658 ((TH1&)obj).fBarWidth = fBarWidth;
2659 ((TH1&)obj).fOption = fOption;
2660 ((TH1&)obj).fBinStatErrOpt = fBinStatErrOpt;
2661 ((TH1&)obj).fBufferSize= fBufferSize;
2662 // copy the Buffer
2663 // delete first a previously existing buffer
2664 if (((TH1&)obj).fBuffer != nullptr) {
2665 delete [] ((TH1&)obj).fBuffer;
2666 ((TH1&)obj).fBuffer = nullptr;
2667 }
2668 if (fBuffer) {
2669 Double_t *buf = new Double_t[fBufferSize];
2670 for (Int_t i=0;i<fBufferSize;i++) buf[i] = fBuffer[i];
2671 // obj.fBuffer has been deleted before
2672 ((TH1&)obj).fBuffer = buf;
2673 }
2674
2675 // copy bin contents (this should be done by the derived classes, since TH1 does not store the bin content)
2676 // Do this in case derived from TArray
2677 TArray* a = dynamic_cast<TArray*>(&obj);
2678 if (a) {
2679 a->Set(fNcells);
2680 for (Int_t i = 0; i < fNcells; i++)
2682 }
2683
2684 ((TH1&)obj).fEntries = fEntries;
2685
2686 // which will call BufferEmpty(0) and set fBuffer[0] to a Maybe one should call
2687 // assignment operator on the TArrayD
2688
2689 ((TH1&)obj).fTsumw = fTsumw;
2690 ((TH1&)obj).fTsumw2 = fTsumw2;
2691 ((TH1&)obj).fTsumwx = fTsumwx;
2692 ((TH1&)obj).fTsumwx2 = fTsumwx2;
2693 ((TH1&)obj).fMaximum = fMaximum;
2694 ((TH1&)obj).fMinimum = fMinimum;
2695
2696 TAttLine::Copy(((TH1&)obj));
2697 TAttFill::Copy(((TH1&)obj));
2698 TAttMarker::Copy(((TH1&)obj));
2699 fXaxis.Copy(((TH1&)obj).fXaxis);
2700 fYaxis.Copy(((TH1&)obj).fYaxis);
2701 fZaxis.Copy(((TH1&)obj).fZaxis);
2702 ((TH1&)obj).fXaxis.SetParent(&obj);
2703 ((TH1&)obj).fYaxis.SetParent(&obj);
2704 ((TH1&)obj).fZaxis.SetParent(&obj);
2705 fContour.Copy(((TH1&)obj).fContour);
2706 fSumw2.Copy(((TH1&)obj).fSumw2);
2707 // fFunctions->Copy(((TH1&)obj).fFunctions);
2708 // when copying an histogram if the AddDirectoryStatus() is true it
2709 // will be added to gDirectory independently of the fDirectory stored.
2710 // and if the AddDirectoryStatus() is false it will not be added to
2711 // any directory (fDirectory = nullptr)
2712 if (fgAddDirectory && gDirectory) {
2713 gDirectory->Append(&obj);
2714 ((TH1&)obj).fFunctions->UseRWLock();
2715 ((TH1&)obj).fDirectory = gDirectory;
2716 } else
2717 ((TH1&)obj).fDirectory = nullptr;
2718
2719}
2720
2721////////////////////////////////////////////////////////////////////////////////
2722/// Make a complete copy of the underlying object. If 'newname' is set,
2723/// the copy's name will be set to that name.
2724
2725TObject* TH1::Clone(const char* newname) const
2726{
2727 TH1* obj = (TH1*)IsA()->GetNew()(nullptr);
2728 Copy(*obj);
2729
2730 // Now handle the parts that Copy doesn't do
2731 if(fFunctions) {
2732 // The Copy above might have published 'obj' to the ListOfCleanups.
2733 // Clone can call RecursiveRemove, for example via TCheckHashRecursiveRemoveConsistency
2734 // when dictionary information is initialized, so we need to
2735 // keep obj->fFunction valid during its execution and
2736 // protect the update with the write lock.
2737
2738 // Reset stats parent - else cloning the stats will clone this histogram, too.
2739 auto oldstats = dynamic_cast<TVirtualPaveStats*>(fFunctions->FindObject("stats"));
2740 TObject *oldparent = nullptr;
2741 if (oldstats) {
2742 oldparent = oldstats->GetParent();
2743 oldstats->SetParent(nullptr);
2744 }
2745
2746 auto newlist = (TList*)fFunctions->Clone();
2747
2748 if (oldstats)
2749 oldstats->SetParent(oldparent);
2750 auto newstats = dynamic_cast<TVirtualPaveStats*>(obj->fFunctions->FindObject("stats"));
2751 if (newstats)
2752 newstats->SetParent(obj);
2753
2754 auto oldlist = obj->fFunctions;
2755 {
2757 obj->fFunctions = newlist;
2758 }
2759 delete oldlist;
2760 }
2761 if(newname && strlen(newname) ) {
2762 obj->SetName(newname);
2763 }
2764 return obj;
2765}
2766
2767////////////////////////////////////////////////////////////////////////////////
2768/// Perform the automatic addition of the histogram to the given directory
2769///
2770/// Note this function is called in place when the semantic requires
2771/// this object to be added to a directory (I.e. when being read from
2772/// a TKey or being Cloned)
2773
2775{
2777 if (addStatus) {
2778 SetDirectory(dir);
2779 if (dir) {
2781 }
2782 }
2783}
2784
2785////////////////////////////////////////////////////////////////////////////////
2786/// Compute distance from point px,py to a line.
2787///
2788/// Compute the closest distance of approach from point px,py to elements
2789/// of a histogram.
2790/// The distance is computed in pixels units.
2791///
2792/// #### Algorithm:
2793/// Currently, this simple model computes the distance from the mouse
2794/// to the histogram contour only.
2795
2797{
2798 if (!fPainter) return 9999;
2799 return fPainter->DistancetoPrimitive(px,py);
2800}
2801
2802////////////////////////////////////////////////////////////////////////////////
2803/// Performs the operation: `this = this/(c1*f1)`
2804/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2805///
2806/// Only bins inside the function range are recomputed.
2807/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2808/// you should call Sumw2 before making this operation.
2809/// This is particularly important if you fit the histogram after TH1::Divide
2810///
2811/// The function return kFALSE if the divide operation failed
2812
2814{
2815 if (!f1) {
2816 Error("Divide","Attempt to divide by a non-existing function");
2817 return kFALSE;
2818 }
2819
2820 // delete buffer if it is there since it will become invalid
2821 if (fBuffer) BufferEmpty(1);
2822
2823 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of
2824 Int_t ny = GetNbinsY() + 2;
2825 Int_t nz = GetNbinsZ() + 2;
2826 if (fDimension < 2) ny = 1;
2827 if (fDimension < 3) nz = 1;
2828
2829
2830 SetMinimum();
2831 SetMaximum();
2832
2833 // - Loop on bins (including underflows/overflows)
2834 Int_t bin, binx, biny, binz;
2835 Double_t cu, w;
2836 Double_t xx[3];
2837 Double_t *params = nullptr;
2838 f1->InitArgs(xx,params);
2839 for (binz = 0; binz < nz; ++binz) {
2840 xx[2] = fZaxis.GetBinCenter(binz);
2841 for (biny = 0; biny < ny; ++biny) {
2842 xx[1] = fYaxis.GetBinCenter(biny);
2843 for (binx = 0; binx < nx; ++binx) {
2844 xx[0] = fXaxis.GetBinCenter(binx);
2845 if (!f1->IsInside(xx)) continue;
2847 bin = binx + nx * (biny + ny * binz);
2848 cu = c1 * f1->EvalPar(xx);
2849 if (TF1::RejectedPoint()) continue;
2850 if (cu) w = RetrieveBinContent(bin) / cu;
2851 else w = 0;
2852 UpdateBinContent(bin, w);
2853 if (fSumw2.fN) {
2854 if (cu != 0) fSumw2.fArray[bin] = GetBinErrorSqUnchecked(bin) / (cu * cu);
2855 else fSumw2.fArray[bin] = 0;
2856 }
2857 }
2858 }
2859 }
2860 ResetStats();
2861 return kTRUE;
2862}
2863
2864////////////////////////////////////////////////////////////////////////////////
2865/// Divide this histogram by h1.
2866///
2867/// `this = this/h1`
2868/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2869/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
2870/// if not already set.
2871/// The resulting errors are calculated assuming uncorrelated histograms.
2872/// See the other TH1::Divide that gives the possibility to optionally
2873/// compute binomial errors.
2874///
2875/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2876/// you should call Sumw2 before making this operation.
2877/// This is particularly important if you fit the histogram after TH1::Scale
2878///
2879/// The function return kFALSE if the divide operation failed
2880
2881Bool_t TH1::Divide(const TH1 *h1)
2882{
2883 if (!h1) {
2884 Error("Divide", "Input histogram passed does not exist (NULL).");
2885 return kFALSE;
2886 }
2887
2888 // delete buffer if it is there since it will become invalid
2889 if (fBuffer) BufferEmpty(1);
2890
2891 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins) {
2892 return false;
2893 }
2894
2895 // Create Sumw2 if h1 has Sumw2 set
2896 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
2897
2898 // - Loop on bins (including underflows/overflows)
2899 for (Int_t i = 0; i < fNcells; ++i) {
2902 if (c1) UpdateBinContent(i, c0 / c1);
2903 else UpdateBinContent(i, 0);
2904
2905 if(fSumw2.fN) {
2906 if (c1 == 0) { fSumw2.fArray[i] = 0; continue; }
2907 Double_t c1sq = c1 * c1;
2908 fSumw2.fArray[i] = (GetBinErrorSqUnchecked(i) * c1sq + h1->GetBinErrorSqUnchecked(i) * c0 * c0) / (c1sq * c1sq);
2909 }
2910 }
2911 ResetStats();
2912 return kTRUE;
2913}
2914
2915////////////////////////////////////////////////////////////////////////////////
2916/// Replace contents of this histogram by the division of h1 by h2.
2917///
2918/// `this = c1*h1/(c2*h2)`
2919///
2920/// If errors are defined (see TH1::Sumw2), errors are also recalculated
2921/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
2922/// if not already set.
2923/// The resulting errors are calculated assuming uncorrelated histograms.
2924/// However, if option ="B" is specified, Binomial errors are computed.
2925/// In this case c1 and c2 do not make real sense and they are ignored.
2926///
2927/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2928/// you should call Sumw2 before making this operation.
2929/// This is particularly important if you fit the histogram after TH1::Divide
2930///
2931/// Please note also that in the binomial case errors are calculated using standard
2932/// binomial statistics, which means when b1 = b2, the error is zero.
2933/// If you prefer to have efficiency errors not going to zero when the efficiency is 1, you must
2934/// use the function TGraphAsymmErrors::BayesDivide, which will return an asymmetric and non-zero lower
2935/// error for the case b1=b2.
2936///
2937/// The function return kFALSE if the divide operation failed
2938
2940{
2941
2942 TString opt = option;
2943 opt.ToLower();
2944 Bool_t binomial = kFALSE;
2945 if (opt.Contains("b")) binomial = kTRUE;
2946 if (!h1 || !h2) {
2947 Error("Divide", "At least one of the input histograms passed does not exist (NULL).");
2948 return kFALSE;
2949 }
2950
2951 // delete buffer if it is there since it will become invalid
2952 if (fBuffer) BufferEmpty(1);
2953
2954 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins ||
2955 LoggedInconsistency("Divide", h1, h2) >= kDifferentNumberOfBins) {
2956 return false;
2957 }
2958
2959 if (!c2) {
2960 Error("Divide","Coefficient of dividing histogram cannot be zero");
2961 return kFALSE;
2962 }
2963
2964 // Create Sumw2 if h1 or h2 have Sumw2 set, or if binomial errors are explicitly requested
2965 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0 || binomial)) Sumw2();
2966
2967 SetMinimum();
2968 SetMaximum();
2969
2970 // - Loop on bins (including underflows/overflows)
2971 for (Int_t i = 0; i < fNcells; ++i) {
2973 Double_t b2 = h2->RetrieveBinContent(i);
2974 if (b2) UpdateBinContent(i, c1 * b1 / (c2 * b2));
2975 else UpdateBinContent(i, 0);
2976
2977 if (fSumw2.fN) {
2978 if (b2 == 0) { fSumw2.fArray[i] = 0; continue; }
2979 Double_t b1sq = b1 * b1; Double_t b2sq = b2 * b2;
2980 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
2982 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
2983 if (binomial) {
2984 if (b1 != b2) {
2985 // in the case of binomial statistics c1 and c2 must be 1 otherwise it does not make sense
2986 // c1 and c2 are ignored
2987 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/(c2*b2));//this is the formula in Hbook/Hoper1
2988 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/b2); // old formula from G. Flucke
2989 // formula which works also for weighted histogram (see http://root-forum.cern.ch/viewtopic.php?t=3753 )
2990 fSumw2.fArray[i] = TMath::Abs( ( (1. - 2.* b1 / b2) * e1sq + b1sq * e2sq / b2sq ) / b2sq );
2991 } else {
2992 //in case b1=b2 error is zero
2993 //use TGraphAsymmErrors::BayesDivide for getting the asymmetric error not equal to zero
2994 fSumw2.fArray[i] = 0;
2995 }
2996 } else {
2997 fSumw2.fArray[i] = c1sq * c2sq * (e1sq * b2sq + e2sq * b1sq) / (c2sq * c2sq * b2sq * b2sq);
2998 }
2999 }
3000 }
3001 ResetStats();
3002 if (binomial)
3003 // in case of binomial division use denominator for number of entries
3004 SetEntries ( h2->GetEntries() );
3005
3006 return kTRUE;
3007}
3008
3009////////////////////////////////////////////////////////////////////////////////
3010/// Draw this histogram with options.
3011///
3012/// Histograms are drawn via the THistPainter class. Each histogram has
3013/// a pointer to its own painter (to be usable in a multithreaded program).
3014/// The same histogram can be drawn with different options in different pads.
3015/// When a histogram drawn in a pad is deleted, the histogram is
3016/// automatically removed from the pad or pads where it was drawn.
3017/// If a histogram is drawn in a pad, then filled again, the new status
3018/// of the histogram will be automatically shown in the pad next time
3019/// the pad is updated. One does not need to redraw the histogram.
3020/// To draw the current version of a histogram in a pad, one can use
3021/// `h->DrawCopy();`
3022/// This makes a clone of the histogram. Once the clone is drawn, the original
3023/// histogram may be modified or deleted without affecting the aspect of the
3024/// clone.
3025/// By default, TH1::Draw clears the current pad.
3026///
3027/// One can use TH1::SetMaximum and TH1::SetMinimum to force a particular
3028/// value for the maximum or the minimum scale on the plot.
3029///
3030/// TH1::UseCurrentStyle can be used to change all histogram graphics
3031/// attributes to correspond to the current selected style.
3032/// This function must be called for each histogram.
3033/// In case one reads and draws many histograms from a file, one can force
3034/// the histograms to inherit automatically the current graphics style
3035/// by calling before gROOT->ForceStyle();
3036///
3037/// See the THistPainter class for a description of all the drawing options.
3038
3040{
3041 TString opt1 = option; opt1.ToLower();
3043 Int_t index = opt1.Index("same");
3044
3045 // Check if the string "same" is part of a TCutg name.
3046 if (index>=0) {
3047 Int_t indb = opt1.Index("[");
3048 if (indb>=0) {
3049 Int_t indk = opt1.Index("]");
3050 if (index>indb && index<indk) index = -1;
3051 }
3052 }
3053
3054 // If there is no pad or an empty pad the "same" option is ignored.
3055 if (gPad) {
3056 if (!gPad->IsEditable()) gROOT->MakeDefCanvas();
3057 if (index>=0) {
3058 if (gPad->GetX1() == 0 && gPad->GetX2() == 1 &&
3059 gPad->GetY1() == 0 && gPad->GetY2() == 1 &&
3060 gPad->GetListOfPrimitives()->GetSize()==0) opt2.Remove(index,4);
3061 } else {
3062 //the following statement is necessary in case one attempts to draw
3063 //a temporary histogram already in the current pad
3064 if (TestBit(kCanDelete)) gPad->Remove(this);
3065 gPad->Clear();
3066 }
3067 gPad->IncrementPaletteColor(1, opt1);
3068 } else {
3069 if (index>=0) opt2.Remove(index,4);
3070 }
3071
3072 AppendPad(opt2.Data());
3073}
3074
3075////////////////////////////////////////////////////////////////////////////////
3076/// Copy this histogram and Draw in the current pad.
3077///
3078/// Once the histogram is drawn into the pad, any further modification
3079/// using graphics input will be made on the copy of the histogram,
3080/// and not to the original object.
3081/// By default a postfix "_copy" is added to the histogram name. Pass an empty postfix in case
3082/// you want to draw a histogram with the same name
3083///
3084/// See Draw for the list of options
3085
3086TH1 *TH1::DrawCopy(Option_t *option, const char * name_postfix) const
3087{
3088 TString opt = option;
3089 opt.ToLower();
3090 if (gPad && !opt.Contains("same")) gPad->Clear();
3092 if (name_postfix) newName.Form("%s%s", GetName(), name_postfix);
3093 TH1 *newth1 = (TH1 *)Clone(newName.Data());
3094 newth1->SetDirectory(nullptr);
3095 newth1->SetBit(kCanDelete);
3096 if (gPad) gPad->IncrementPaletteColor(1, opt);
3097
3098 newth1->AppendPad(option);
3099 return newth1;
3100}
3101
3102////////////////////////////////////////////////////////////////////////////////
3103/// Draw a normalized copy of this histogram.
3104///
3105/// A clone of this histogram is normalized to norm and drawn with option.
3106/// A pointer to the normalized histogram is returned.
3107/// The contents of the histogram copy are scaled such that the new
3108/// sum of weights (excluding under and overflow) is equal to norm.
3109/// Note that the returned normalized histogram is not added to the list
3110/// of histograms in the current directory in memory.
3111/// It is the user's responsibility to delete this histogram.
3112/// The kCanDelete bit is set for the returned object. If a pad containing
3113/// this copy is cleared, the histogram will be automatically deleted.
3114///
3115/// See Draw for the list of options
3116
3118{
3120 if (sum == 0) {
3121 Error("DrawNormalized","Sum of weights is null. Cannot normalize histogram: %s",GetName());
3122 return nullptr;
3123 }
3126 TH1 *h = (TH1*)Clone();
3128 // in case of drawing with error options - scale correctly the error
3129 TString opt(option); opt.ToUpper();
3130 if (fSumw2.fN == 0) {
3131 h->Sumw2();
3132 // do not use in this case the "Error option " for drawing which is enabled by default since the normalized histogram has now errors
3133 if (opt.IsNull() || opt == "SAME") opt += "HIST";
3134 }
3135 h->Scale(norm/sum);
3136 if (TMath::Abs(fMaximum+1111) > 1e-3) h->SetMaximum(fMaximum*norm/sum);
3137 if (TMath::Abs(fMinimum+1111) > 1e-3) h->SetMinimum(fMinimum*norm/sum);
3138 h->Draw(opt);
3140 return h;
3141}
3142
3143////////////////////////////////////////////////////////////////////////////////
3144/// Display a panel with all histogram drawing options.
3145///
3146/// See class TDrawPanelHist for example
3147
3148void TH1::DrawPanel()
3149{
3150 if (!fPainter) {Draw(); if (gPad) gPad->Update();}
3151 if (fPainter) fPainter->DrawPanel();
3152}
3153
3154////////////////////////////////////////////////////////////////////////////////
3155/// Evaluate function f1 at the center of bins of this histogram.
3156///
3157/// - If option "R" is specified, the function is evaluated only
3158/// for the bins included in the function range.
3159/// - If option "A" is specified, the value of the function is added to the
3160/// existing bin contents
3161/// - If option "S" is specified, the value of the function is used to
3162/// generate a value, distributed according to the Poisson
3163/// distribution, with f1 as the mean.
3164
3166{
3167 Double_t x[3];
3168 Int_t range, stat, add;
3169 if (!f1) return;
3170
3171 TString opt = option;
3172 opt.ToLower();
3173 if (opt.Contains("a")) add = 1;
3174 else add = 0;
3175 if (opt.Contains("s")) stat = 1;
3176 else stat = 0;
3177 if (opt.Contains("r")) range = 1;
3178 else range = 0;
3179
3180 // delete buffer if it is there since it will become invalid
3181 if (fBuffer) BufferEmpty(1);
3182
3186 if (!add) Reset();
3187
3188 for (Int_t binz = 1; binz <= nbinsz; ++binz) {
3189 x[2] = fZaxis.GetBinCenter(binz);
3190 for (Int_t biny = 1; biny <= nbinsy; ++biny) {
3191 x[1] = fYaxis.GetBinCenter(biny);
3192 for (Int_t binx = 1; binx <= nbinsx; ++binx) {
3193 Int_t bin = GetBin(binx,biny,binz);
3194 x[0] = fXaxis.GetBinCenter(binx);
3195 if (range && !f1->IsInside(x)) continue;
3196 Double_t fu = f1->Eval(x[0], x[1], x[2]);
3197 if (stat) fu = gRandom->PoissonD(fu);
3198 AddBinContent(bin, fu);
3199 if (fSumw2.fN) fSumw2.fArray[bin] += TMath::Abs(fu);
3200 }
3201 }
3202 }
3203}
3204
3205////////////////////////////////////////////////////////////////////////////////
3206/// Execute action corresponding to one event.
3207///
3208/// This member function is called when a histogram is clicked with the locator
3209///
3210/// If Left button clicked on the bin top value, then the content of this bin
3211/// is modified according to the new position of the mouse when it is released.
3212
3213void TH1::ExecuteEvent(Int_t event, Int_t px, Int_t py)
3214{
3215 if (fPainter) fPainter->ExecuteEvent(event, px, py);
3216}
3217
3218////////////////////////////////////////////////////////////////////////////////
3219/// This function allows to do discrete Fourier transforms of TH1 and TH2.
3220/// Available transform types and flags are described below.
3221///
3222/// To extract more information about the transform, use the function
3223/// TVirtualFFT::GetCurrentTransform() to get a pointer to the current
3224/// transform object.
3225///
3226/// \param[out] h_output histogram for the output. If a null pointer is passed, a new histogram is created
3227/// and returned, otherwise, the provided histogram is used and should be big enough
3228/// \param[in] option option parameters consists of 3 parts:
3229/// - option on what to return
3230/// - "RE" - returns a histogram of the real part of the output
3231/// - "IM" - returns a histogram of the imaginary part of the output
3232/// - "MAG"- returns a histogram of the magnitude of the output
3233/// - "PH" - returns a histogram of the phase of the output
3234/// - option of transform type
3235/// - "R2C" - real to complex transforms - default
3236/// - "R2HC" - real to halfcomplex (special format of storing output data,
3237/// results the same as for R2C)
3238/// - "DHT" - discrete Hartley transform
3239/// real to real transforms (sine and cosine):
3240/// - "R2R_0", "R2R_1", "R2R_2", "R2R_3" - discrete cosine transforms of types I-IV
3241/// - "R2R_4", "R2R_5", "R2R_6", "R2R_7" - discrete sine transforms of types I-IV
3242/// To specify the type of each dimension of a 2-dimensional real to real
3243/// transform, use options of form "R2R_XX", for example, "R2R_02" for a transform,
3244/// which is of type "R2R_0" in 1st dimension and "R2R_2" in the 2nd.
3245/// - option of transform flag
3246/// - "ES" (from "estimate") - no time in preparing the transform, but probably sub-optimal
3247/// performance
3248/// - "M" (from "measure") - some time spend in finding the optimal way to do the transform
3249/// - "P" (from "patient") - more time spend in finding the optimal way to do the transform
3250/// - "EX" (from "exhaustive") - the most optimal way is found
3251/// This option should be chosen depending on how many transforms of the same size and
3252/// type are going to be done. Planning is only done once, for the first transform of this
3253/// size and type. Default is "ES".
3254///
3255/// Examples of valid options: "Mag R2C M" "Re R2R_11" "Im R2C ES" "PH R2HC EX"
3256
3258{
3259
3260 Int_t ndim[3];
3261 ndim[0] = this->GetNbinsX();
3262 ndim[1] = this->GetNbinsY();
3263 ndim[2] = this->GetNbinsZ();
3264
3266 TString opt = option;
3267 opt.ToUpper();
3268 if (!opt.Contains("2R")){
3269 if (!opt.Contains("2C") && !opt.Contains("2HC") && !opt.Contains("DHT")) {
3270 //no type specified, "R2C" by default
3271 opt.Append("R2C");
3272 }
3273 fft = TVirtualFFT::FFT(this->GetDimension(), ndim, opt.Data());
3274 }
3275 else {
3276 //find the kind of transform
3277 Int_t ind = opt.Index("R2R", 3);
3278 Int_t *kind = new Int_t[2];
3279 char t;
3280 t = opt[ind+4];
3281 kind[0] = atoi(&t);
3282 if (h_output->GetDimension()>1) {
3283 t = opt[ind+5];
3284 kind[1] = atoi(&t);
3285 }
3286 fft = TVirtualFFT::SineCosine(this->GetDimension(), ndim, kind, option);
3287 delete [] kind;
3288 }
3289
3290 if (!fft) return nullptr;
3291 Int_t in=0;
3292 for (Int_t binx = 1; binx<=ndim[0]; binx++) {
3293 for (Int_t biny=1; biny<=ndim[1]; biny++) {
3294 for (Int_t binz=1; binz<=ndim[2]; binz++) {
3295 fft->SetPoint(in, this->GetBinContent(binx, biny, binz));
3296 in++;
3297 }
3298 }
3299 }
3300 fft->Transform();
3302 return h_output;
3303}
3304
3305////////////////////////////////////////////////////////////////////////////////
3306/// Increment bin with abscissa X by 1.
3307///
3308/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3309/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3310///
3311/// If the storage of the sum of squares of weights has been triggered,
3312/// via the function Sumw2, then the sum of the squares of weights is incremented
3313/// by 1 in the bin corresponding to x.
3314///
3315/// The function returns the corresponding bin number which has its content incremented by 1
3316
3318{
3319 if (fBuffer) return BufferFill(x,1);
3320
3321 Int_t bin;
3322 fEntries++;
3323 bin =fXaxis.FindBin(x);
3324 if (bin <0) return -1;
3325 AddBinContent(bin);
3326 if (fSumw2.fN) ++fSumw2.fArray[bin];
3327 if (bin == 0 || bin > fXaxis.GetNbins()) {
3328 if (!GetStatOverflowsBehaviour()) return -1;
3329 }
3330 ++fTsumw;
3331 ++fTsumw2;
3332 fTsumwx += x;
3333 fTsumwx2 += x*x;
3334 return bin;
3335}
3336
3337////////////////////////////////////////////////////////////////////////////////
3338/// Increment bin with abscissa X with a weight w.
3339///
3340/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3341/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3342///
3343/// If the weight is not equal to 1, the storage of the sum of squares of
3344/// weights is automatically triggered and the sum of the squares of weights is incremented
3345/// by \f$ w^2 \f$ in the bin corresponding to x.
3346///
3347/// The function returns the corresponding bin number which has its content incremented by w
3348
3350{
3351
3352 if (fBuffer) return BufferFill(x,w);
3353
3354 Int_t bin;
3355 fEntries++;
3356 bin =fXaxis.FindBin(x);
3357 if (bin <0) return -1;
3358 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW) ) Sumw2(); // must be called before AddBinContent
3359 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3360 AddBinContent(bin, w);
3361 if (bin == 0 || bin > fXaxis.GetNbins()) {
3362 if (!GetStatOverflowsBehaviour()) return -1;
3363 }
3364 Double_t z= w;
3365 fTsumw += z;
3366 fTsumw2 += z*z;
3367 fTsumwx += z*x;
3368 fTsumwx2 += z*x*x;
3369 return bin;
3370}
3371
3372////////////////////////////////////////////////////////////////////////////////
3373/// Increment bin with namex with a weight w
3374///
3375/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3376/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3377///
3378/// If the weight is not equal to 1, the storage of the sum of squares of
3379/// weights is automatically triggered and the sum of the squares of weights is incremented
3380/// by \f$ w^2 \f$ in the bin corresponding to x.
3381///
3382/// The function returns the corresponding bin number which has its content
3383/// incremented by w.
3384
3385Int_t TH1::Fill(const char *namex, Double_t w)
3386{
3387 Int_t bin;
3388 fEntries++;
3389 bin =fXaxis.FindBin(namex);
3390 if (bin <0) return -1;
3391 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3392 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3393 AddBinContent(bin, w);
3394 if (bin == 0 || bin > fXaxis.GetNbins()) return -1;
3395 Double_t z= w;
3396 fTsumw += z;
3397 fTsumw2 += z*z;
3398 // this make sense if the histogram is not expanding (the x axis cannot be extended)
3399 if (!fXaxis.CanExtend() || !fXaxis.IsAlphanumeric()) {
3401 fTsumwx += z*x;
3402 fTsumwx2 += z*x*x;
3403 }
3404 return bin;
3405}
3406
3407////////////////////////////////////////////////////////////////////////////////
3408/// Fill this histogram with an array x and weights w.
3409///
3410/// \param[in] ntimes number of entries in arrays x and w (array size must be ntimes*stride)
3411/// \param[in] x array of values to be histogrammed
3412/// \param[in] w array of weighs
3413/// \param[in] stride step size through arrays x and w
3414///
3415/// If the weight is not equal to 1, the storage of the sum of squares of
3416/// weights is automatically triggered and the sum of the squares of weights is incremented
3417/// by \f$ w^2 \f$ in the bin corresponding to x.
3418/// if w is NULL each entry is assumed a weight=1
3419
3420void TH1::FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3421{
3422 //If a buffer is activated, fill buffer
3423 if (fBuffer) {
3424 ntimes *= stride;
3425 Int_t i = 0;
3426 for (i=0;i<ntimes;i+=stride) {
3427 if (!fBuffer) break; // buffer can be deleted in BufferFill when is empty
3428 if (w) BufferFill(x[i],w[i]);
3429 else BufferFill(x[i], 1.);
3430 }
3431 // fill the remaining entries if the buffer has been deleted
3432 if (i < ntimes && !fBuffer) {
3433 auto weights = w ? &w[i] : nullptr;
3434 DoFillN((ntimes-i)/stride,&x[i],weights,stride);
3435 }
3436 return;
3437 }
3438 // call internal method
3439 DoFillN(ntimes, x, w, stride);
3440}
3441
3442////////////////////////////////////////////////////////////////////////////////
3443/// Internal method to fill histogram content from a vector
3444/// called directly by TH1::BufferEmpty
3445
3446void TH1::DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3447{
3448 Int_t bin,i;
3449
3450 fEntries += ntimes;
3451 Double_t ww = 1;
3452 Int_t nbins = fXaxis.GetNbins();
3453 ntimes *= stride;
3454 for (i=0;i<ntimes;i+=stride) {
3455 bin =fXaxis.FindBin(x[i]);
3456 if (bin <0) continue;
3457 if (w) ww = w[i];
3458 if (!fSumw2.fN && ww != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3459 if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
3460 AddBinContent(bin, ww);
3461 if (bin == 0 || bin > nbins) {
3462 if (!GetStatOverflowsBehaviour()) continue;
3463 }
3464 Double_t z= ww;
3465 fTsumw += z;
3466 fTsumw2 += z*z;
3467 fTsumwx += z*x[i];
3468 fTsumwx2 += z*x[i]*x[i];
3469 }
3470}
3471
3472////////////////////////////////////////////////////////////////////////////////
3473/// Fill histogram following distribution in function fname.
3474///
3475/// @param fname : Function name used for filling the histogram
3476/// @param ntimes : number of times the histogram is filled
3477/// @param rng : (optional) Random number generator used to sample
3478///
3479///
3480/// The distribution contained in the function fname (TF1) is integrated
3481/// over the channel contents for the bin range of this histogram.
3482/// It is normalized to 1.
3483///
3484/// Getting one random number implies:
3485/// - Generating a random number between 0 and 1 (say r1)
3486/// - Look in which bin in the normalized integral r1 corresponds to
3487/// - Fill histogram channel
3488/// ntimes random numbers are generated
3489///
3490/// One can also call TF1::GetRandom to get a random variate from a function.
3491
3492void TH1::FillRandom(const char *fname, Int_t ntimes, TRandom * rng)
3493{
3494 // - Search for fname in the list of ROOT defined functions
3495 TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
3496 if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }
3497
3500
3502{
3503 Int_t bin, binx, ibin, loop;
3504 Double_t r1, x;
3505
3506 // - Allocate temporary space to store the integral and compute integral
3507
3508 TAxis * xAxis = &fXaxis;
3509
3510 // in case axis of histogram is not defined use the function axis
3511 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
3513 f1->GetRange(xmin,xmax);
3514 Info("FillRandom","Using function axis and range [%g,%g]",xmin, xmax);
3515 xAxis = f1->GetHistogram()->GetXaxis();
3516 }
3517
3518 Int_t first = xAxis->GetFirst();
3519 Int_t last = xAxis->GetLast();
3520 Int_t nbinsx = last-first+1;
3521
3522 Double_t *integral = new Double_t[nbinsx+1];
3523 integral[0] = 0;
3524 for (binx=1;binx<=nbinsx;binx++) {
3525 Double_t fint = f1->Integral(xAxis->GetBinLowEdge(binx+first-1),xAxis->GetBinUpEdge(binx+first-1), 0.);
3526 integral[binx] = integral[binx-1] + fint;
3527 }
3528
3529 // - Normalize integral to 1
3530 if (integral[nbinsx] == 0 ) {
3531 delete [] integral;
3532 Error("FillRandom", "Integral = zero"); return;
3533 }
3534 for (bin=1;bin<=nbinsx;bin++) integral[bin] /= integral[nbinsx];
3535
3536 // --------------Start main loop ntimes
3537 for (loop=0;loop<ntimes;loop++) {
3538 r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
3539 ibin = TMath::BinarySearch(nbinsx,&integral[0],r1);
3540 //binx = 1 + ibin;
3541 //x = xAxis->GetBinCenter(binx); //this is not OK when SetBuffer is used
3542 x = xAxis->GetBinLowEdge(ibin+first)
3543 +xAxis->GetBinWidth(ibin+first)*(r1-integral[ibin])/(integral[ibin+1] - integral[ibin]);
3544 Fill(x);
3545 }
3546 delete [] integral;
3547}
3548
3549////////////////////////////////////////////////////////////////////////////////
3550/// Fill histogram following distribution in histogram h.
3551///
3552/// @param h : Histogram pointer used for sampling random number
3553/// @param ntimes : number of times the histogram is filled
3554/// @param rng : (optional) Random number generator used for sampling
3555///
3556/// The distribution contained in the histogram h (TH1) is integrated
3557/// over the channel contents for the bin range of this histogram.
3558/// It is normalized to 1.
3559///
3560/// Getting one random number implies:
3561/// - Generating a random number between 0 and 1 (say r1)
3562/// - Look in which bin in the normalized integral r1 corresponds to
3563/// - Fill histogram channel ntimes random numbers are generated
3564///
3565/// SPECIAL CASE when the target histogram has the same binning as the source.
3566/// in this case we simply use a poisson distribution where
3567/// the mean value per bin = bincontent/integral.
3568
3570{
3571 if (!h) { Error("FillRandom", "Null histogram"); return; }
3572 if (fDimension != h->GetDimension()) {
3573 Error("FillRandom", "Histograms with different dimensions"); return;
3574 }
3575 if (std::isnan(h->ComputeIntegral(true))) {
3576 Error("FillRandom", "Histograms contains negative bins, does not represent probabilities");
3577 return;
3578 }
3579
3580 //in case the target histogram has the same binning and ntimes much greater
3581 //than the number of bins we can use a fast method
3582 Int_t first = fXaxis.GetFirst();
3583 Int_t last = fXaxis.GetLast();
3584 Int_t nbins = last-first+1;
3585 if (ntimes > 10*nbins) {
3586 auto inconsistency = CheckConsistency(this,h);
3587 if (inconsistency != kFullyConsistent) return; // do nothing
3588 Double_t sumw = h->Integral(first,last);
3589 if (sumw == 0) return;
3590 Double_t sumgen = 0;
3591 for (Int_t bin=first;bin<=last;bin++) {
3592 Double_t mean = h->RetrieveBinContent(bin)*ntimes/sumw;
3593 Double_t cont = (rng) ? rng->Poisson(mean) : gRandom->Poisson(mean);
3594 sumgen += cont;
3595 AddBinContent(bin,cont);
3596 if (fSumw2.fN) fSumw2.fArray[bin] += cont;
3597 }
3598
3599 // fix for the fluctuations in the total number n
3600 // since we use Poisson instead of multinomial
3601 // add a correction to have ntimes as generated entries
3602 Int_t i;
3603 if (sumgen < ntimes) {
3604 // add missing entries
3605 for (i = Int_t(sumgen+0.5); i < ntimes; ++i)
3606 {
3607 Double_t x = h->GetRandom();
3608 Fill(x);
3609 }
3610 }
3611 else if (sumgen > ntimes) {
3612 // remove extra entries
3613 i = Int_t(sumgen+0.5);
3614 while( i > ntimes) {
3615 Double_t x = h->GetRandom(rng);
3618 // skip in case bin is empty
3619 if (y > 0) {
3620 SetBinContent(ibin, y-1.);
3621 i--;
3622 }
3623 }
3624 }
3625
3626 ResetStats();
3627 return;
3628 }
3629 // case of different axis and not too large ntimes
3630
3631 if (h->ComputeIntegral() ==0) return;
3632 Int_t loop;
3633 Double_t x;
3634 for (loop=0;loop<ntimes;loop++) {
3635 x = h->GetRandom();
3636 Fill(x);
3637 }
3638}
3639
3640////////////////////////////////////////////////////////////////////////////////
3641/// Return Global bin number corresponding to x,y,z
3642///
3643/// 2-D and 3-D histograms are represented with a one dimensional
3644/// structure. This has the advantage that all existing functions, such as
3645/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3646/// This function tries to extend the axis if the given point belongs to an
3647/// under-/overflow bin AND if CanExtendAllAxes() is true.
3648///
3649/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3650
3652{
3653 if (GetDimension() < 2) {
3654 return fXaxis.FindBin(x);
3655 }
3656 if (GetDimension() < 3) {
3657 Int_t nx = fXaxis.GetNbins()+2;
3660 return binx + nx*biny;
3661 }
3662 if (GetDimension() < 4) {
3663 Int_t nx = fXaxis.GetNbins()+2;
3664 Int_t ny = fYaxis.GetNbins()+2;
3667 Int_t binz = fZaxis.FindBin(z);
3668 return binx + nx*(biny +ny*binz);
3669 }
3670 return -1;
3671}
3672
3673////////////////////////////////////////////////////////////////////////////////
3674/// Return Global bin number corresponding to x,y,z.
3675///
3676/// 2-D and 3-D histograms are represented with a one dimensional
3677/// structure. This has the advantage that all existing functions, such as
3678/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3679/// This function DOES NOT try to extend the axis if the given point belongs
3680/// to an under-/overflow bin.
3681///
3682/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3683
3685{
3686 if (GetDimension() < 2) {
3687 return fXaxis.FindFixBin(x);
3688 }
3689 if (GetDimension() < 3) {
3690 Int_t nx = fXaxis.GetNbins()+2;
3693 return binx + nx*biny;
3694 }
3695 if (GetDimension() < 4) {
3696 Int_t nx = fXaxis.GetNbins()+2;
3697 Int_t ny = fYaxis.GetNbins()+2;
3701 return binx + nx*(biny +ny*binz);
3702 }
3703 return -1;
3704}
3705
3706////////////////////////////////////////////////////////////////////////////////
3707/// Find first bin with content > threshold for axis (1=x, 2=y, 3=z)
3708/// if no bins with content > threshold is found the function returns -1.
3709/// The search will occur between the specified first and last bin. Specifying
3710/// the value of the last bin to search to less than zero will search until the
3711/// last defined bin.
3712
3714{
3715 if (fBuffer) ((TH1*)this)->BufferEmpty();
3716
3717 if (axis < 1 || (axis > 1 && GetDimension() == 1 ) ||
3718 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3 ) ) {
3719 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3720 axis = 1;
3721 }
3722 if (firstBin < 1) {
3723 firstBin = 1;
3724 }
3726 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3727 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3728
3729 if (axis == 1) {
3732 }
3733 for (Int_t binx = firstBin; binx <= lastBin; binx++) {
3734 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3735 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3737 }
3738 }
3739 }
3740 }
3741 else if (axis == 2) {
3744 }
3745 for (Int_t biny = firstBin; biny <= lastBin; biny++) {
3746 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3747 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3749 }
3750 }
3751 }
3752 }
3753 else if (axis == 3) {
3756 }
3757 for (Int_t binz = firstBin; binz <= lastBin; binz++) {
3758 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3759 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3761 }
3762 }
3763 }
3764 }
3765
3766 return -1;
3767}
3768
3769////////////////////////////////////////////////////////////////////////////////
3770/// Find last bin with content > threshold for axis (1=x, 2=y, 3=z)
3771/// if no bins with content > threshold is found the function returns -1.
3772/// The search will occur between the specified first and last bin. Specifying
3773/// the value of the last bin to search to less than zero will search until the
3774/// last defined bin.
3775
3777{
3778 if (fBuffer) ((TH1*)this)->BufferEmpty();
3779
3780
3781 if (axis < 1 || ( axis > 1 && GetDimension() == 1 ) ||
3782 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3) ) {
3783 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3784 axis = 1;
3785 }
3786 if (firstBin < 1) {
3787 firstBin = 1;
3788 }
3790 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3791 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3792
3793 if (axis == 1) {
3796 }
3797 for (Int_t binx = lastBin; binx >= firstBin; binx--) {
3798 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3799 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3801 }
3802 }
3803 }
3804 }
3805 else if (axis == 2) {
3808 }
3809 for (Int_t biny = lastBin; biny >= firstBin; biny--) {
3810 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3811 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3813 }
3814 }
3815 }
3816 }
3817 else if (axis == 3) {
3820 }
3821 for (Int_t binz = lastBin; binz >= firstBin; binz--) {
3822 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3823 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3825 }
3826 }
3827 }
3828 }
3829
3830 return -1;
3831}
3832
3833////////////////////////////////////////////////////////////////////////////////
3834/// Search object named name in the list of functions.
3835
3836TObject *TH1::FindObject(const char *name) const
3837{
3838 if (fFunctions) return fFunctions->FindObject(name);
3839 return nullptr;
3840}
3841
3842////////////////////////////////////////////////////////////////////////////////
3843/// Search object obj in the list of functions.
3844
3845TObject *TH1::FindObject(const TObject *obj) const
3846{
3847 if (fFunctions) return fFunctions->FindObject(obj);
3848 return nullptr;
3849}
3850
3851////////////////////////////////////////////////////////////////////////////////
3852/// Fit histogram with function fname.
3853///
3854///
3855/// fname is the name of a function available in the global ROOT list of functions
3856/// `gROOT->GetListOfFunctions`
3857/// The list include any TF1 object created by the user plus some pre-defined functions
3858/// which are automatically created by ROOT the first time a pre-defined function is requested from `gROOT`
3859/// (i.e. when calling `gROOT->GetFunction(const char *name)`).
3860/// These pre-defined functions are:
3861/// - `gaus, gausn` where gausn is the normalized Gaussian
3862/// - `landau, landaun`
3863/// - `expo`
3864/// - `pol1,...9, chebyshev1,...9`.
3865///
3866/// For printing the list of all available functions do:
3867///
3868/// TF1::InitStandardFunctions(); // not needed if `gROOT->GetFunction` is called before
3869/// gROOT->GetListOfFunctions()->ls()
3870///
3871/// `fname` can also be a formula that is accepted by the linear fitter containing the special operator `++`,
3872/// representing linear components separated by `++` sign, for example `x++sin(x)` for fitting `[0]*x+[1]*sin(x)`
3873///
3874/// This function finds a pointer to the TF1 object with name `fname` and calls TH1::Fit(TF1 *, Option_t *, Option_t *,
3875/// Double_t, Double_t). See there for the fitting options and the details about fitting histograms
3876
3878{
3879 char *linear;
3880 linear= (char*)strstr(fname, "++");
3881 Int_t ndim=GetDimension();
3882 if (linear){
3883 if (ndim<2){
3885 return Fit(&f1,option,goption,xxmin,xxmax);
3886 }
3887 else if (ndim<3){
3888 TF2 f2(fname, fname);
3889 return Fit(&f2,option,goption,xxmin,xxmax);
3890 }
3891 else{
3892 TF3 f3(fname, fname);
3893 return Fit(&f3,option,goption,xxmin,xxmax);
3894 }
3895 }
3896 else{
3897 TF1 * f1 = (TF1*)gROOT->GetFunction(fname);
3898 if (!f1) { Printf("Unknown function: %s",fname); return -1; }
3899 return Fit(f1,option,goption,xxmin,xxmax);
3900 }
3901}
3902
3903////////////////////////////////////////////////////////////////////////////////
3904/// Fit histogram with the function pointer f1.
3905///
3906/// \param[in] f1 pointer to the function object
3907/// \param[in] option string defining the fit options (see table below).
3908/// \param[in] goption specify a list of graphics options. See TH1::Draw for a complete list of these options.
3909/// \param[in] xxmin lower fitting range
3910/// \param[in] xxmax upper fitting range
3911/// \return A smart pointer to the TFitResult class
3912///
3913/// \anchor HFitOpt
3914/// ### Histogram Fitting Options
3915///
3916/// Here is the full list of fit options that can be given in the parameter `option`.
3917/// Several options can be used together by concatanating the strings without the need of any delimiters.
3918///
3919/// option | description
3920/// -------|------------
3921/// "L" | Uses a log likelihood method (default is chi-square method). To be used when the histogram represents counts.
3922/// "WL" | Weighted log likelihood method. To be used when the histogram has been filled with weights different than 1. This is needed for getting correct parameter uncertainties for weighted fits.
3923/// "P" | Uses Pearson chi-square method. Uses expected errors instead of the observed one (default case). The expected error is instead estimated from the square-root of the bin function value.
3924/// "MULTI" | Uses Loglikelihood method based on multi-nomial distribution. In this case the function must be normalized and one fits only the function shape.
3925/// "W" | Fit using the chi-square method and ignoring the bin uncertainties and skip empty bins.
3926/// "WW" | Fit using the chi-square method and ignoring the bin uncertainties and include the empty bins.
3927/// "I" | Uses the integral of function in the bin instead of the default bin center value.
3928/// "F" | Uses the default minimizer (e.g. Minuit) when fitting a linear function (e.g. polN) instead of the linear fitter.
3929/// "U" | Uses a user specified objective function (e.g. user providedlikelihood function) defined using `TVirtualFitter::SetFCN`
3930/// "E" | Performs a better parameter errors estimation using the Minos technique for all fit parameters.
3931/// "M" | Uses the IMPROVE algorithm (available only in TMinuit). This algorithm attempts improve the found local minimum by searching for a better one.
3932/// "S" | The full result of the fit is returned in the `TFitResultPtr`. This is needed to get the covariance matrix of the fit. See `TFitResult` and the base class `ROOT::Math::FitResult`.
3933/// "Q" | Quiet mode (minimum printing)
3934/// "V" | Verbose mode (default is between Q and V)
3935/// "+" | Adds this new fitted function to the list of fitted functions. By default, the previous function is deleted and only the last one is kept.
3936/// "N" | Does not store the graphics function, does not draw the histogram with the function after fitting.
3937/// "0" | Does not draw the histogram and the fitted function after fitting, but in contrast to option "N", it stores the fitted function in the histogram list of functions.
3938/// "R" | Fit using a fitting range specified in the function range with `TF1::SetRange`.
3939/// "B" | Use this option when you want to fix or set limits on one or more parameters and the fitting function is a predefined one (e.g gaus, expo,..), otherwise in case of pre-defined functions, some default initial values and limits will be used.
3940/// "C" | In case of linear fitting, do no calculate the chisquare (saves CPU time).
3941/// "G" | Uses the gradient implemented in `TF1::GradientPar` for the minimization. This allows to use Automatic Differentiation when it is supported by the provided TF1 function.
3942/// "WIDTH" | Scales the histogran bin content by the bin width (useful for variable bins histograms)
3943/// "SERIAL" | Runs in serial mode. By defult if ROOT is built with MT support and MT is enables, the fit is perfomed in multi-thread - "E" Perform better Errors estimation using Minos technique
3944/// "MULTITHREAD" | Forces usage of multi-thread execution whenever possible
3945///
3946/// The default fitting of an histogram (when no option is given) is perfomed as following:
3947/// - a chi-square fit (see below Chi-square Fits) computed using the bin histogram errors and excluding bins with zero errors (empty bins);
3948/// - the full range of the histogram is used, unless TAxis::SetRange or TAxis::SetRangeUser was called before;
3949/// - the default Minimizer with its default configuration is used (see below Minimizer Configuration) except for linear function;
3950/// - for linear functions (`polN`, `chenbyshev` or formula expressions combined using operator `++`) a linear minimization is used.
3951/// - only the status of the fit is returned;
3952/// - the fit is performed in Multithread whenever is enabled in ROOT;
3953/// - only the last fitted function is saved in the histogram;
3954/// - the histogram is drawn after fitting overalyed with the resulting fitting function
3955///
3956/// \anchor HFitMinimizer
3957/// ### Minimizer Configuration
3958///
3959/// The Fit is perfomed using the default Minimizer, defined in the `ROOT::Math::MinimizerOptions` class.
3960/// It is possible to change the default minimizer and its configuration parameters by calling these static functions before fitting (before calling `TH1::Fit`):
3961/// - `ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerName, minimizerAgorithm)` for changing the minmizer and/or the corresponding algorithm.
3962/// For example `ROOT::Math::MinimizerOptions::SetDefaultMinimizer("GSLMultiMin","BFGS");` will set the usage of the BFGS algorithm of the GSL multi-dimensional minimization
3963/// The current defaults are ("Minuit","Migrad").
3964/// See the documentation of the `ROOT::Math::MinimizerOptions` for the available minimizers in ROOT and their corresponding algorithms.
3965/// - `ROOT::Math::MinimizerOptions::SetDefaultTolerance` for setting a different tolerance value for the minimization.
3966/// - `ROOT::Math::MinimizerOptions::SetDefaultMaxFunctionCalls` for setting the maximum number of function calls.
3967/// - `ROOT::Math::MinimizerOptions::SetDefaultPrintLevel` for changing the minimizer print level from level=0 (minimal printing) to level=3 maximum printing
3968///
3969/// Other options are possible depending on the Minimizer used, see the corresponding documentation.
3970/// The default minimizer can be also set in the resource file in etc/system.rootrc. For example
3971///
3972/// ~~~ {.cpp}
3973/// Root.Fitter: Minuit2
3974/// ~~~
3975///
3976/// \anchor HFitChi2
3977/// ### Chi-square Fits
3978///
3979/// By default a chi-square (least-square) fit is performed on the histogram. The so-called modified least-square method
3980/// is used where the residual for each bin is computed using as error the observed value (the bin error) returned by `TH1::GetBinError`
3981///
3982/// \f[
3983/// Chi2 = \sum_{i}{ \left(\frac{y(i) - f(x(i) | p )}{e(i)} \right)^2 }
3984/// \f]
3985///
3986/// where `y(i)` is the bin content for each bin `i`, `x(i)` is the bin center and `e(i)` is the bin error (`sqrt(y(i)` for
3987/// an un-weighted histogram). Bins with zero errors are excluded from the fit. See also later the note on the treatment
3988/// of empty bins. When using option "I" the residual is computed not using the function value at the bin center, `f(x(i)|p)`,
3989/// but the integral of the function in the bin, Integral{ f(x|p)dx }, divided by the bin volume.
3990/// When using option `P` (Pearson chi2), the expected error computed as `e(i) = sqrt(f(x(i)|p))` is used.
3991/// In this case empty bins are considered in the fit.
3992/// Both chi-square methods should not be used when the bin content represent counts, especially in case of low bin statistics,
3993/// because they could return a biased result.
3994///
3995/// \anchor HFitNLL
3996/// ### Likelihood Fits
3997///
3998/// When using option "L" a likelihood fit is used instead of the default chi-square fit.
3999/// The likelihood is built assuming a Poisson probability density function for each bin.
4000/// The negative log-likelihood to be minimized is
4001///
4002/// \f[
4003/// NLL = - \sum_{i}{ \log {\mathrm P} ( y(i) | f(x(i) | p ) ) }
4004/// \f]
4005/// where `P(y|f)` is the Poisson distribution of observing a count `y(i)` in the bin when the expected count is `f(x(i)|p)`.
4006/// The exact likelihood used is the Poisson likelihood described in this paper:
4007/// S. Baker and R. D. Cousins, “Clarification of the use of chi-square and likelihood functions in fits to histograms,”
4008/// Nucl. Instrum. Meth. 221 (1984) 437.
4009///
4010/// \f[
4011/// NLL = \sum_{i}{( f(x(i) | p ) + y(i)\log(y(i)/ f(x(i) | p )) - y(i)) }
4012/// \f]
4013/// By using this formulation, `2*NLL` can be interpreted as the chi-square resulting from the fit.
4014///
4015/// This method should be always used when the bin content represents counts (i.e. errors are sqrt(N) ).
4016/// The likelihood method has the advantage of treating correctly bins with low statistics. In case of high
4017/// statistics/bin the distribution of the bin content becomes a normal distribution and the likelihood and the chi2 fit
4018/// give the same result.
4019///
4020/// The likelihood method, although a bit slower, it is therefore the recommended method,
4021/// when the histogram represent counts (Poisson statistics), where the chi-square methods may
4022/// give incorrect results, especially in case of low statistics.
4023/// In case of a weighted histogram, it is possible to perform also a likelihood fit by using the
4024/// option "WL". Note a weighted histogram is a histogram which has been filled with weights and it
4025/// has the information on the sum of the weight square for each bin ( TH1::Sumw2() has been called).
4026/// The bin error for a weighted histogram is the square root of the sum of the weight square.
4027///
4028/// \anchor HFitRes
4029/// ### Fit Result
4030///
4031/// The function returns a TFitResultPtr which can hold a pointer to a TFitResult object.
4032/// By default the TFitResultPtr contains only the status of the fit which is return by an
4033/// automatic conversion of the TFitResultPtr to an integer. One can write in this case directly:
4034///
4035/// ~~~ {.cpp}
4036/// Int_t fitStatus = h->Fit(myFunc);
4037/// ~~~
4038///
4039/// If the option "S" is instead used, TFitResultPtr behaves as a smart
4040/// pointer to the TFitResult object. This is useful for retrieving the full result information from the fit, such as the covariance matrix,
4041/// as shown in this example code:
4042///
4043/// ~~~ {.cpp}
4044/// TFitResultPtr r = h->Fit(myFunc,"S");
4045/// TMatrixDSym cov = r->GetCovarianceMatrix(); // to access the covariance matrix
4046/// Double_t chi2 = r->Chi2(); // to retrieve the fit chi2
4047/// Double_t par0 = r->Parameter(0); // retrieve the value for the parameter 0
4048/// Double_t err0 = r->ParError(0); // retrieve the error for the parameter 0
4049/// r->Print("V"); // print full information of fit including covariance matrix
4050/// r->Write(); // store the result in a file
4051/// ~~~
4052///
4053/// The fit parameters, error and chi-square (but not covariance matrix) can be retrieved also
4054/// directly from the fitted function that is passed to this call.
4055/// Given a pointer to an associated fitted function `myfunc`, one can retrieve the function/fit
4056/// parameters with calls such as:
4057///
4058/// ~~~ {.cpp}
4059/// Double_t chi2 = myfunc->GetChisquare();
4060/// Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
4061/// Double_t err0 = myfunc->GetParError(0); //error on first parameter
4062/// ~~~
4063///
4064/// ##### Associated functions
4065///
4066/// One or more object ( can be added to the list
4067/// of functions (fFunctions) associated to each histogram.
4068/// When TH1::Fit is invoked, the fitted function is added to the histogram list of functions (fFunctions).
4069/// If the histogram is made persistent, the list of associated functions is also persistent.
4070/// Given a histogram h, one can retrieve an associated function with:
4071///
4072/// ~~~ {.cpp}
4073/// TF1 *myfunc = h->GetFunction("myfunc");
4074/// ~~~
4075/// or by quering directly the list obtained by calling `TH1::GetListOfFunctions`.
4076///
4077/// \anchor HFitStatus
4078/// ### Fit status
4079///
4080/// The status of the fit is obtained converting the TFitResultPtr to an integer
4081/// independently if the fit option "S" is used or not:
4082///
4083/// ~~~ {.cpp}
4084/// TFitResultPtr r = h->Fit(myFunc,opt);
4085/// Int_t fitStatus = r;
4086/// ~~~
4087///
4088/// - `status = 0` : the fit has been performed successfully (i.e no error occurred).
4089/// - `status < 0` : there is an error not connected with the minimization procedure, for example when a wrong function is used.
4090/// - `status > 0` : return status from Minimizer, depends on used Minimizer. For example for TMinuit and Minuit2 we have:
4091/// - `status = migradStatus + 10*minosStatus + 100*hesseStatus + 1000*improveStatus`.
4092/// TMinuit returns 0 (for migrad, minos, hesse or improve) in case of success and 4 in case of error (see the documentation of TMinuit::mnexcm). For example, for an error
4093/// only in Minos but not in Migrad a fitStatus of 40 will be returned.
4094/// Minuit2 returns 0 in case of success and different values in migrad,minos or
4095/// hesse depending on the error. See in this case the documentation of
4096/// Minuit2Minimizer::Minimize for the migrad return status, Minuit2Minimizer::GetMinosError for the
4097/// minos return status and Minuit2Minimizer::Hesse for the hesse return status.
4098/// If other minimizers are used see their specific documentation for the status code returned.
4099/// For example in the case of Fumili, see TFumili::Minimize.
4100///
4101/// \anchor HFitRange
4102/// ### Fitting in a range
4103///
4104/// In order to fit in a sub-range of the histogram you have two options:
4105/// - pass to this function the lower (`xxmin`) and upper (`xxmax`) values for the fitting range;
4106/// - define a specific range in the fitted function and use the fitting option "R".
4107/// For example, if your histogram has a defined range between -4 and 4 and you want to fit a gaussian
4108/// only in the interval 1 to 3, you can do:
4109///
4110/// ~~~ {.cpp}
4111/// TF1 *f1 = new TF1("f1", "gaus", 1, 3);
4112/// histo->Fit("f1", "R");
4113/// ~~~
4114///
4115/// The fitting range is also limited by the histogram range defined using TAxis::SetRange
4116/// or TAxis::SetRangeUser. Therefore the fitting range is the smallest range between the
4117/// histogram one and the one defined by one of the two previous options described above.
4118///
4119/// \anchor HFitInitial
4120/// ### Setting initial conditions
4121///
4122/// Parameters must be initialized before invoking the Fit function.
4123/// The setting of the parameter initial values is automatic for the
4124/// predefined functions such as poln, expo, gaus, landau. One can however disable
4125/// this automatic computation by using the option "B".
4126/// Note that if a predefined function is defined with an argument,
4127/// eg, gaus(0), expo(1), you must specify the initial values for
4128/// the parameters.
4129/// You can specify boundary limits for some or all parameters via
4130///
4131/// ~~~ {.cpp}
4132/// f1->SetParLimits(p_number, parmin, parmax);
4133/// ~~~
4134///
4135/// if `parmin >= parmax`, the parameter is fixed
4136/// Note that you are not forced to fix the limits for all parameters.
4137/// For example, if you fit a function with 6 parameters, you can do:
4138///
4139/// ~~~ {.cpp}
4140/// func->SetParameters(0, 3.1, 1.e-6, -8, 0, 100);
4141/// func->SetParLimits(3, -10, -4);
4142/// func->FixParameter(4, 0);
4143/// func->SetParLimits(5, 1, 1);
4144/// ~~~
4145///
4146/// With this setup, parameters 0->2 can vary freely
4147/// Parameter 3 has boundaries [-10,-4] with initial value -8
4148/// Parameter 4 is fixed to 0
4149/// Parameter 5 is fixed to 100.
4150/// When the lower limit and upper limit are equal, the parameter is fixed.
4151/// However to fix a parameter to 0, one must call the FixParameter function.
4152///
4153/// \anchor HFitStatBox
4154/// ### Fit Statistics Box
4155///
4156/// The statistics box can display the result of the fit.
4157/// You can change the statistics box to display the fit parameters with
4158/// the TStyle::SetOptFit(mode) method. This mode has four digits.
4159/// mode = pcev (default = 0111)
4160///
4161/// v = 1; print name/values of parameters
4162/// e = 1; print errors (if e=1, v must be 1)
4163/// c = 1; print Chisquare/Number of degrees of freedom
4164/// p = 1; print Probability
4165///
4166/// For example: gStyle->SetOptFit(1011);
4167/// prints the fit probability, parameter names/values, and errors.
4168/// You can change the position of the statistics box with these lines
4169/// (where g is a pointer to the TGraph):
4170///
4171/// TPaveStats *st = (TPaveStats*)g->GetListOfFunctions()->FindObject("stats");
4172/// st->SetX1NDC(newx1); //new x start position
4173/// st->SetX2NDC(newx2); //new x end position
4174///
4175/// \anchor HFitExtra
4176/// ### Additional Notes on Fitting
4177///
4178/// #### Fitting a histogram of dimension N with a function of dimension N-1
4179///
4180/// It is possible to fit a TH2 with a TF1 or a TH3 with a TF2.
4181/// In this case the chi-square is computed from the squared error distance between the function values and the bin centers weighted by the bin content.
4182/// For correct error scaling, the obtained parameter error are corrected as in the case when the
4183/// option "W" is used.
4184///
4185/// #### User defined objective functions
4186///
4187/// By default when fitting a chi square function is used for fitting. When option "L" is used
4188/// a Poisson likelihood function is used. Using option "MULTI" a multinomial likelihood fit is used.
4189/// Thes functions are defined in the header Fit/Chi2Func.h or Fit/PoissonLikelihoodFCN and they
4190/// are implemented using the routines FitUtil::EvaluateChi2 or FitUtil::EvaluatePoissonLogL in
4191/// the file math/mathcore/src/FitUtil.cxx.
4192/// It is possible to specify a user defined fitting function, using option "U" and
4193/// calling the following functions:
4194///
4195/// ~~~ {.cpp}
4196/// TVirtualFitter::Fitter(myhist)->SetFCN(MyFittingFunction);
4197/// ~~~
4198///
4199/// where MyFittingFunction is of type:
4200///
4201/// ~~~ {.cpp}
4202/// extern void MyFittingFunction(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
4203/// ~~~
4204///
4205/// #### Note on treatment of empty bins
4206///
4207/// Empty bins, which have the content equal to zero AND error equal to zero,
4208/// are excluded by default from the chi-square fit, but they are considered in the likelihood fit.
4209/// since they affect the likelihood if the function value in these bins is not negligible.
4210/// Note that if the histogram is having bins with zero content and non zero-errors they are considered as
4211/// any other bins in the fit. Instead bins with zero error and non-zero content are by default excluded in the chi-squared fit.
4212/// In general, one should not fit a histogram with non-empty bins and zero errors.
4213///
4214/// If the bin errors are not known, one should use the fit option "W", which gives a weight=1 for each bin (it is an unweighted least-square
4215/// fit). When using option "WW" the empty bins will be also considered in the chi-square fit with an error of 1.
4216/// Note that in this fitting case (option "W" or "WW") the resulting fitted parameter errors
4217/// are corrected by the obtained chi2 value using this scaling expression:
4218/// `errorp *= sqrt(chisquare/(ndf-1))` as it is done when fitting a TGraph with
4219/// no point errors.
4220///
4221/// #### Excluding points
4222///
4223/// You can use TF1::RejectPoint inside your fitting function to exclude some points
4224/// within a certain range from the fit. See the tutorial `fit/fitExclude.C`.
4225///
4226///
4227/// #### Warning when using the option "0"
4228///
4229/// When selecting the option "0", the fitted function is added to
4230/// the list of functions of the histogram, but it is not drawn when the histogram is drawn.
4231/// You can undo this behaviour resetting its corresponding bit in the TF1 object as following:
4232///
4233/// ~~~ {.cpp}
4234/// h.Fit("myFunction", "0"); // fit, store function but do not draw
4235/// h.Draw(); // function is not drawn
4236/// h.GetFunction("myFunction")->ResetBit(TF1::kNotDraw);
4237/// h.Draw(); // function is visible again
4238/// ~~~
4240
4242{
4243 // implementation of Fit method is in file hist/src/HFitImpl.cxx
4246
4247 // create range and minimizer options with default values
4250
4251 // need to empty the buffer before
4252 // (t.b.d. do a ML unbinned fit with buffer data)
4253 if (fBuffer) BufferEmpty();
4254
4256}
4257
4258////////////////////////////////////////////////////////////////////////////////
4259/// Display a panel with all histogram fit options.
4260///
4261/// See class TFitPanel for example
4262
4263void TH1::FitPanel()
4264{
4265 if (!gPad)
4266 gROOT->MakeDefCanvas();
4267
4268 if (!gPad) {
4269 Error("FitPanel", "Unable to create a default canvas");
4270 return;
4271 }
4272
4273
4274 // use plugin manager to create instance of TFitEditor
4275 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TFitEditor");
4276 if (handler && handler->LoadPlugin() != -1) {
4277 if (handler->ExecPlugin(2, gPad, this) == 0)
4278 Error("FitPanel", "Unable to create the FitPanel");
4279 }
4280 else
4281 Error("FitPanel", "Unable to find the FitPanel plug-in");
4282}
4283
4284////////////////////////////////////////////////////////////////////////////////
4285/// Return a histogram containing the asymmetry of this histogram with h2,
4286/// where the asymmetry is defined as:
4287///
4288/// ~~~ {.cpp}
4289/// Asymmetry = (h1 - h2)/(h1 + h2) where h1 = this
4290/// ~~~
4291///
4292/// works for 1D, 2D, etc. histograms
4293/// c2 is an optional argument that gives a relative weight between the two
4294/// histograms, and dc2 is the error on this weight. This is useful, for example,
4295/// when forming an asymmetry between two histograms from 2 different data sets that
4296/// need to be normalized to each other in some way. The function calculates
4297/// the errors assuming Poisson statistics on h1 and h2 (that is, dh = sqrt(h)).
4298///
4299/// example: assuming 'h1' and 'h2' are already filled
4300///
4301/// ~~~ {.cpp}
4302/// h3 = h1->GetAsymmetry(h2)
4303/// ~~~
4304///
4305/// then 'h3' is created and filled with the asymmetry between 'h1' and 'h2';
4306/// h1 and h2 are left intact.
4307///
4308/// Note that it is the user's responsibility to manage the created histogram.
4309/// The name of the returned histogram will be `Asymmetry_nameOfh1-nameOfh2`
4310///
4311/// code proposed by Jason Seely (seely@mit.edu) and adapted by R.Brun
4312///
4313/// clone the histograms so top and bottom will have the
4314/// correct dimensions:
4315/// Sumw2 just makes sure the errors will be computed properly
4316/// when we form sums and ratios below.
4317
4319{
4320 TH1 *h1 = this;
4321 TString name = TString::Format("Asymmetry_%s-%s",h1->GetName(),h2->GetName() );
4322 TH1 *asym = (TH1*)Clone(name);
4323
4324 // set also the title
4325 TString title = TString::Format("(%s - %s)/(%s+%s)",h1->GetName(),h2->GetName(),h1->GetName(),h2->GetName() );
4326 asym->SetTitle(title);
4327
4328 asym->Sumw2();
4331 TH1 *top = (TH1*)asym->Clone();
4332 TH1 *bottom = (TH1*)asym->Clone();
4334
4335 // form the top and bottom of the asymmetry, and then divide:
4336 top->Add(h1,h2,1,-c2);
4337 bottom->Add(h1,h2,1,c2);
4338 asym->Divide(top,bottom);
4339
4340 Int_t xmax = asym->GetNbinsX();
4341 Int_t ymax = asym->GetNbinsY();
4342 Int_t zmax = asym->GetNbinsZ();
4343
4344 if (h1->fBuffer) h1->BufferEmpty(1);
4345 if (h2->fBuffer) h2->BufferEmpty(1);
4346 if (bottom->fBuffer) bottom->BufferEmpty(1);
4347
4348 // now loop over bins to calculate the correct errors
4349 // the reason this error calculation looks complex is because of c2
4350 for(Int_t i=1; i<= xmax; i++){
4351 for(Int_t j=1; j<= ymax; j++){
4352 for(Int_t k=1; k<= zmax; k++){
4353 Int_t bin = GetBin(i, j, k);
4354 // here some bin contents are written into variables to make the error
4355 // calculation a little more legible:
4357 Double_t b = h2->RetrieveBinContent(bin);
4358 Double_t bot = bottom->RetrieveBinContent(bin);
4359
4360 // make sure there are some events, if not, then the errors are set = 0
4361 // automatically.
4362 //if(bot < 1){} was changed to the next line from recommendation of Jason Seely (28 Nov 2005)
4363 if(bot < 1e-6){}
4364 else{
4365 // computation of errors by Christos Leonidopoulos
4367 Double_t dbsq = h2->GetBinErrorSqUnchecked(bin);
4368 Double_t error = 2*TMath::Sqrt(a*a*c2*c2*dbsq + c2*c2*b*b*dasq+a*a*b*b*dc2*dc2)/(bot*bot);
4369 asym->SetBinError(i,j,k,error);
4370 }
4371 }
4372 }
4373 }
4374 delete top;
4375 delete bottom;
4376
4377 return asym;
4378}
4379
4380////////////////////////////////////////////////////////////////////////////////
4381/// Static function
4382/// return the default buffer size for automatic histograms
4383/// the parameter fgBufferSize may be changed via SetDefaultBufferSize
4384
4386{
4387 return fgBufferSize;
4388}
4389
4390////////////////////////////////////////////////////////////////////////////////
4391/// Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
4392/// see TH1::SetDefaultSumw2.
4393
4395{
4396 return fgDefaultSumw2;
4397}
4398
4399////////////////////////////////////////////////////////////////////////////////
4400/// Return the current number of entries.
4401
4403{
4404 if (fBuffer) {
4405 Int_t nentries = (Int_t) fBuffer[0];
4406 if (nentries > 0) return nentries;
4407 }
4408
4409 return fEntries;
4410}
4411
4412////////////////////////////////////////////////////////////////////////////////
4413/// Number of effective entries of the histogram.
4414///
4415/// \f[
4416/// neff = \frac{(\sum Weights )^2}{(\sum Weight^2 )}
4417/// \f]
4418///
4419/// In case of an unweighted histogram this number is equivalent to the
4420/// number of entries of the histogram.
4421/// For a weighted histogram, this number corresponds to the hypothetical number of unweighted entries
4422/// a histogram would need to have the same statistical power as this weighted histogram.
4423/// Note: The underflow/overflow are included if one has set the TH1::StatOverFlows flag
4424/// and if the statistics has been computed at filling time.
4425/// If a range is set in the histogram the number is computed from the given range.
4426
4428{
4429 Stat_t s[kNstat];
4430 this->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
4431 return (s[1] ? s[0]*s[0]/s[1] : TMath::Abs(s[0]) );
4432}
4433
4434////////////////////////////////////////////////////////////////////////////////
4435/// Shortcut to set the three histogram colors with a single call.
4436///
4437/// By default: linecolor = markercolor = fillcolor = -1
4438/// If a color is < 0 this method does not change the corresponding color if positive or null it set the color.
4439///
4440/// For instance:
4441/// ~~~ {.cpp}
4442/// h->SetColors(kRed, kRed);
4443/// ~~~
4444/// will set the line color and the marker color to red.
4445
4447{
4448 if (linecolor >= 0)
4450 if (markercolor >= 0)
4452 if (fillcolor >= 0)
4454}
4455
4456
4457////////////////////////////////////////////////////////////////////////////////
4458/// Set highlight (enable/disable) mode for the histogram
4459/// by default highlight mode is disable
4460
4461void TH1::SetHighlight(Bool_t set)
4462{
4463 if (IsHighlight() == set)
4464 return;
4465 if (fDimension > 2) {
4466 Info("SetHighlight", "Supported only 1-D or 2-D histograms");
4467 return;
4468 }
4469
4470 SetBit(kIsHighlight, set);
4471
4472 if (fPainter)
4474}
4475
4476////////////////////////////////////////////////////////////////////////////////
4477/// Redefines TObject::GetObjectInfo.
4478/// Displays the histogram info (bin number, contents, integral up to bin
4479/// corresponding to cursor position px,py
4480
4481char *TH1::GetObjectInfo(Int_t px, Int_t py) const
4482{
4483 return ((TH1*)this)->GetPainter()->GetObjectInfo(px,py);
4484}
4485
4486////////////////////////////////////////////////////////////////////////////////
4487/// Return pointer to painter.
4488/// If painter does not exist, it is created
4489
4491{
4492 if (!fPainter) {
4493 TString opt = option;
4494 opt.ToLower();
4495 if (opt.Contains("gl") || gStyle->GetCanvasPreferGL()) {
4496 //try to create TGLHistPainter
4497 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TGLHistPainter");
4498
4499 if (handler && handler->LoadPlugin() != -1)
4500 fPainter = reinterpret_cast<TVirtualHistPainter *>(handler->ExecPlugin(1, this));
4501 }
4502 }
4503
4505
4506 return fPainter;
4507}
4508
4509////////////////////////////////////////////////////////////////////////////////
4510/// Compute Quantiles for this histogram
4511/// Quantile x_p := Q(p) is defined as the value x_p such that the cumulative
4512/// probability distribution Function F of variable X yields:
4513///
4514/// ~~~ {.cpp}
4515/// F(x_p) = Pr(X <= x_p) = p with 0 <= p <= 1.
4516/// x_p = Q(p) = F_inv(p)
4517/// ~~~
4518///
4519/// For instance the median x_0.5 of a distribution is defined as that value
4520/// of the random variable X for which the distribution function equals 0.5:
4521///
4522/// ~~~ {.cpp}
4523/// F(x_0.5) = Probability(X < x_0.5) = 0.5
4524/// x_0.5 = Q(0.5)
4525/// ~~~
4526///
4527/// \author Eddy Offermann
4528/// code from Eddy Offermann, Renaissance
4529///
4530/// \param[in] n maximum size of array xp and size of array p (if given)
4531/// \param[out] xp array to be filled with nq quantiles evaluated at (p). Memory has to be preallocated by caller.
4532/// If p is null (default value), then xp is actually set to the (first n) histogram bin edges
4533/// \param[in] p array of cumulative probabilities where quantiles should be evaluated.
4534/// - if p is null, the CDF of the histogram will be used instead as array, and will
4535/// have a size = number of bins + 1 in h. It will correspond to the
4536/// quantiles calculated at the lowest edge of the histogram (quantile=0) and
4537/// all the upper edges of the bins. (nbins might be > n).
4538/// - if p is not null, it is assumed to contain at least n values.
4539/// \return value nq (<=n) with the number of quantiles computed
4540///
4541/// Note that the Integral of the histogram is automatically recomputed
4542/// if the number of entries is different of the number of entries when
4543/// the integral was computed last time. In case you do not use the Fill
4544/// functions to fill your histogram, but SetBinContent, you must call
4545/// TH1::ComputeIntegral before calling this function.
4546///
4547/// Getting quantiles xp from two histograms and storing results in a TGraph,
4548/// a so-called QQ-plot
4549///
4550/// ~~~ {.cpp}
4551/// TGraph *gr = new TGraph(nprob);
4552/// h1->GetQuantiles(nprob,gr->GetX());
4553/// h2->GetQuantiles(nprob,gr->GetY());
4554/// gr->Draw("alp");
4555/// ~~~
4556///
4557/// Example:
4558///
4559/// ~~~ {.cpp}
4560/// void quantiles() {
4561/// // demo for quantiles
4562/// const Int_t nq = 20;
4563/// TH1F *h = new TH1F("h","demo quantiles",100,-3,3);
4564/// h->FillRandom("gaus",5000);
4565/// h->GetXaxis()->SetTitle("x");
4566/// h->GetYaxis()->SetTitle("Counts");
4567///
4568/// Double_t p[nq]; // probabilities where to evaluate the quantiles in [0,1]
4569/// Double_t xp[nq]; // array of positions X to store the resulting quantiles
4570/// for (Int_t i=0;i<nq;i++) p[i] = Float_t(i+1)/nq;
4571/// h->GetQuantiles(nq,xp,p);
4572///
4573/// //show the original histogram in the top pad
4574/// TCanvas *c1 = new TCanvas("c1","demo quantiles",10,10,700,900);
4575/// c1->Divide(1,2);
4576/// c1->cd(1);
4577/// h->Draw();
4578///
4579/// // show the quantiles in the bottom pad
4580/// c1->cd(2);
4581/// gPad->SetGrid();
4582/// TGraph *gr = new TGraph(nq,p,xp);
4583/// gr->SetMarkerStyle(21);
4584/// gr->GetXaxis()->SetTitle("p");
4585/// gr->GetYaxis()->SetTitle("x");
4586/// gr->Draw("alp");
4587/// }
4588/// ~~~
4589
4591{
4592 if (GetDimension() > 1) {
4593 Error("GetQuantiles","Only available for 1-d histograms");
4594 return 0;
4595 }
4596
4597 const Int_t nbins = GetXaxis()->GetNbins();
4598 if (!fIntegral) ComputeIntegral();
4599 if (fIntegral[nbins+1] != fEntries) ComputeIntegral();
4600
4601 Int_t i, ibin;
4602 Double_t *prob = (Double_t*)p;
4603 Int_t nq = n;
4604 if (p == nullptr) {
4605 nq = nbins+1;
4606 prob = new Double_t[nq];
4607 prob[0] = 0;
4608 for (i=1;i<nq;i++) {
4609 prob[i] = fIntegral[i]/fIntegral[nbins];
4610 }
4611 }
4612
4613 for (i = 0; i < nq; i++) {
4615 if (fIntegral[ibin] == prob[i]) {
4616 if (prob[i] == 0.) {
4617 for (; ibin+1 <= nbins && fIntegral[ibin+1] == 0.; ++ibin) {
4618
4619 }
4620 xp[i] = fXaxis.GetBinUpEdge(ibin);
4621 }
4622 else if (prob[i] == 1.) {
4623 xp[i] = fXaxis.GetBinUpEdge(ibin);
4624 }
4625 else {
4626 // Find equal integral in later bins (ie their entries are zero)
4627 Double_t width = 0;
4628 for (Int_t j = ibin+1; j <= nbins; ++j) {
4629 if (prob[i] == fIntegral[j]) {
4631 }
4632 else
4633 break;
4634 }
4636 }
4637 }
4638 else {
4639 xp[i] = GetBinLowEdge(ibin+1);
4641 if (dint > 0) xp[i] += GetBinWidth(ibin+1)*(prob[i]-fIntegral[ibin])/dint;
4642 }
4643 }
4644
4645 if (!p) delete [] prob;
4646 return nq;
4647}
4648
4649////////////////////////////////////////////////////////////////////////////////
4655 return 1;
4656}
4657
4658////////////////////////////////////////////////////////////////////////////////
4659/// Compute Initial values of parameters for a gaussian.
4660
4661void H1InitGaus()
4662{
4663 Double_t allcha, sumx, sumx2, x, val, stddev, mean;
4664 Int_t bin;
4665 const Double_t sqrtpi = 2.506628;
4666
4667 // - Compute mean value and StdDev of the histogram in the given range
4669 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4670 Int_t hxfirst = hFitter->GetXfirst();
4671 Int_t hxlast = hFitter->GetXlast();
4672 Double_t valmax = curHist->GetBinContent(hxfirst);
4673 Double_t binwidx = curHist->GetBinWidth(hxfirst);
4674 allcha = sumx = sumx2 = 0;
4675 for (bin=hxfirst;bin<=hxlast;bin++) {
4676 x = curHist->GetBinCenter(bin);
4677 val = TMath::Abs(curHist->GetBinContent(bin));
4678 if (val > valmax) valmax = val;
4679 sumx += val*x;
4680 sumx2 += val*x*x;
4681 allcha += val;
4682 }
4683 if (allcha == 0) return;
4684 mean = sumx/allcha;
4685 stddev = sumx2/allcha - mean*mean;
4686 if (stddev > 0) stddev = TMath::Sqrt(stddev);
4687 else stddev = 0;
4688 if (stddev == 0) stddev = binwidx*(hxlast-hxfirst+1)/4;
4689 //if the distribution is really gaussian, the best approximation
4690 //is binwidx*allcha/(sqrtpi*stddev)
4691 //However, in case of non-gaussian tails, this underestimates
4692 //the normalisation constant. In this case the maximum value
4693 //is a better approximation.
4694 //We take the average of both quantities
4696
4697 //In case the mean value is outside the histo limits and
4698 //the StdDev is bigger than the range, we take
4699 // mean = center of bins
4700 // stddev = half range
4701 Double_t xmin = curHist->GetXaxis()->GetXmin();
4702 Double_t xmax = curHist->GetXaxis()->GetXmax();
4703 if ((mean < xmin || mean > xmax) && stddev > (xmax-xmin)) {
4704 mean = 0.5*(xmax+xmin);
4705 stddev = 0.5*(xmax-xmin);
4706 }
4707 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4709 f1->SetParameter(1,mean);
4711 f1->SetParLimits(2,0,10*stddev);
4712}
4713
4714////////////////////////////////////////////////////////////////////////////////
4715/// Compute Initial values of parameters for an exponential.
4716
4717void H1InitExpo()
4718{
4720 Int_t ifail;
4722 Int_t hxfirst = hFitter->GetXfirst();
4723 Int_t hxlast = hFitter->GetXlast();
4724 Int_t nchanx = hxlast - hxfirst + 1;
4725
4727
4728 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4730 f1->SetParameter(1,slope);
4731
4732}
4733
4734////////////////////////////////////////////////////////////////////////////////
4735/// Compute Initial values of parameters for a polynom.
4736
4737void H1InitPolynom()
4738{
4739 Double_t fitpar[25];
4740
4742 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4743 Int_t hxfirst = hFitter->GetXfirst();
4744 Int_t hxlast = hFitter->GetXlast();
4745 Int_t nchanx = hxlast - hxfirst + 1;
4746 Int_t npar = f1->GetNpar();
4747
4748 if (nchanx <=1 || npar == 1) {
4749 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4750 fitpar[0] = curHist->GetSumOfWeights()/Double_t(nchanx);
4751 } else {
4753 }
4754 for (Int_t i=0;i<npar;i++) f1->SetParameter(i, fitpar[i]);
4755}
4756
4757////////////////////////////////////////////////////////////////////////////////
4758/// Least squares lpolynomial fitting without weights.
4759///
4760/// \param[in] n number of points to fit
4761/// \param[in] m number of parameters
4762/// \param[in] a array of parameters
4763///
4764/// based on CERNLIB routine LSQ: Translated to C++ by Rene Brun
4765/// (E.Keil. revised by B.Schorr, 23.10.1981.)
4766
4768{
4769 const Double_t zero = 0.;
4770 const Double_t one = 1.;
4771 const Int_t idim = 20;
4772
4773 Double_t b[400] /* was [20][20] */;
4774 Int_t i, k, l, ifail;
4776 Double_t da[20], xk, yk;
4777
4778 if (m <= 2) {
4779 H1LeastSquareLinearFit(n, a[0], a[1], ifail);
4780 return;
4781 }
4782 if (m > idim || m > n) return;
4783 b[0] = Double_t(n);
4784 da[0] = zero;
4785 for (l = 2; l <= m; ++l) {
4786 b[l-1] = zero;
4787 b[m + l*20 - 21] = zero;
4788 da[l-1] = zero;
4789 }
4791 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4792 Int_t hxfirst = hFitter->GetXfirst();
4793 Int_t hxlast = hFitter->GetXlast();
4794 for (k = hxfirst; k <= hxlast; ++k) {
4795 xk = curHist->GetBinCenter(k);
4796 yk = curHist->GetBinContent(k);
4797 power = one;
4798 da[0] += yk;
4799 for (l = 2; l <= m; ++l) {
4800 power *= xk;
4801 b[l-1] += power;
4802 da[l-1] += power*yk;
4803 }
4804 for (l = 2; l <= m; ++l) {
4805 power *= xk;
4806 b[m + l*20 - 21] += power;
4807 }
4808 }
4809 for (i = 3; i <= m; ++i) {
4810 for (k = i; k <= m; ++k) {
4811 b[k - 1 + (i-1)*20 - 21] = b[k + (i-2)*20 - 21];
4812 }
4813 }
4815
4816 for (i=0; i<m; ++i) a[i] = da[i];
4817
4818}
4819
4820////////////////////////////////////////////////////////////////////////////////
4821/// Least square linear fit without weights.
4822///
4823/// extracted from CERNLIB LLSQ: Translated to C++ by Rene Brun
4824/// (added to LSQ by B. Schorr, 15.02.1982.)
4825
4827{
4829 Int_t i, n;
4831 Double_t fn, xk, yk;
4832 Double_t det;
4833
4834 n = TMath::Abs(ndata);
4835 ifail = -2;
4836 xbar = ybar = x2bar = xybar = 0;
4838 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4839 Int_t hxfirst = hFitter->GetXfirst();
4840 Int_t hxlast = hFitter->GetXlast();
4841 for (i = hxfirst; i <= hxlast; ++i) {
4842 xk = curHist->GetBinCenter(i);
4843 yk = curHist->GetBinContent(i);
4844 if (ndata < 0) {
4845 if (yk <= 0) yk = 1e-9;
4846 yk = TMath::Log(yk);
4847 }
4848 xbar += xk;
4849 ybar += yk;
4850 x2bar += xk*xk;
4851 xybar += xk*yk;
4852 }
4853 fn = Double_t(n);
4854 det = fn*x2bar - xbar*xbar;
4855 ifail = -1;
4856 if (det <= 0) {
4857 a0 = ybar/fn;
4858 a1 = 0;
4859 return;
4860 }
4861 ifail = 0;
4862 a0 = (x2bar*ybar - xbar*xybar) / det;
4863 a1 = (fn*xybar - xbar*ybar) / det;
4864
4865}
4866
4867////////////////////////////////////////////////////////////////////////////////
4868/// Extracted from CERN Program library routine DSEQN.
4869///
4870/// Translated to C++ by Rene Brun
4871
4873{
4875 Int_t nmjp1, i, j, l;
4876 Int_t im1, jp1, nm1, nmi;
4877 Double_t s1, s21, s22;
4878 const Double_t one = 1.;
4879
4880 /* Parameter adjustments */
4881 b_dim1 = idim;
4882 b_offset = b_dim1 + 1;
4883 b -= b_offset;
4884 a_dim1 = idim;
4885 a_offset = a_dim1 + 1;
4886 a -= a_offset;
4887
4888 if (idim < n) return;
4889
4890 ifail = 0;
4891 for (j = 1; j <= n; ++j) {
4892 if (a[j + j*a_dim1] <= 0) { ifail = -1; return; }
4893 a[j + j*a_dim1] = one / a[j + j*a_dim1];
4894 if (j == n) continue;
4895 jp1 = j + 1;
4896 for (l = jp1; l <= n; ++l) {
4897 a[j + l*a_dim1] = a[j + j*a_dim1] * a[l + j*a_dim1];
4898 s1 = -a[l + (j+1)*a_dim1];
4899 for (i = 1; i <= j; ++i) { s1 = a[l + i*a_dim1] * a[i + (j+1)*a_dim1] + s1; }
4900 a[l + (j+1)*a_dim1] = -s1;
4901 }
4902 }
4903 if (k <= 0) return;
4904
4905 for (l = 1; l <= k; ++l) {
4906 b[l*b_dim1 + 1] = a[a_dim1 + 1]*b[l*b_dim1 + 1];
4907 }
4908 if (n == 1) return;
4909 for (l = 1; l <= k; ++l) {
4910 for (i = 2; i <= n; ++i) {
4911 im1 = i - 1;
4912 s21 = -b[i + l*b_dim1];
4913 for (j = 1; j <= im1; ++j) {
4914 s21 = a[i + j*a_dim1]*b[j + l*b_dim1] + s21;
4915 }
4916 b[i + l*b_dim1] = -a[i + i*a_dim1]*s21;
4917 }
4918 nm1 = n - 1;
4919 for (i = 1; i <= nm1; ++i) {
4920 nmi = n - i;
4921 s22 = -b[nmi + l*b_dim1];
4922 for (j = 1; j <= i; ++j) {
4923 nmjp1 = n - j + 1;
4924 s22 = a[nmi + nmjp1*a_dim1]*b[nmjp1 + l*b_dim1] + s22;
4925 }
4926 b[nmi + l*b_dim1] = -s22;
4927 }
4928 }
4929}
4930
4931////////////////////////////////////////////////////////////////////////////////
4932/// Return Global bin number corresponding to binx,y,z.
4933///
4934/// 2-D and 3-D histograms are represented with a one dimensional
4935/// structure.
4936/// This has the advantage that all existing functions, such as
4937/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
4938///
4939/// In case of a TH1x, returns binx directly.
4940/// see TH1::GetBinXYZ for the inverse transformation.
4941///
4942/// Convention for numbering bins
4943///
4944/// For all histogram types: nbins, xlow, xup
4945///
4946/// - bin = 0; underflow bin
4947/// - bin = 1; first bin with low-edge xlow INCLUDED
4948/// - bin = nbins; last bin with upper-edge xup EXCLUDED
4949/// - bin = nbins+1; overflow bin
4950///
4951/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
4952/// For example, assuming a 3-D histogram with binx,biny,binz, the function
4953///
4954/// ~~~ {.cpp}
4955/// Int_t bin = h->GetBin(binx,biny,binz);
4956/// ~~~
4957///
4958/// returns a global/linearized bin number. This global bin is useful
4959/// to access the bin information independently of the dimension.
4960
4962{
4963 Int_t ofx = fXaxis.GetNbins() + 1; // overflow bin
4964 if (binx < 0) binx = 0;
4965 if (binx > ofx) binx = ofx;
4966
4967 return binx;
4968}
4969
4970////////////////////////////////////////////////////////////////////////////////
4971/// Return binx, biny, binz corresponding to the global bin number globalbin
4972/// see TH1::GetBin function above
4973
4975{
4976 Int_t nx = fXaxis.GetNbins()+2;
4977 Int_t ny = fYaxis.GetNbins()+2;
4978
4979 if (GetDimension() == 1) {
4980 binx = binglobal%nx;
4981 biny = 0;
4982 binz = 0;
4983 return;
4984 }
4985 if (GetDimension() == 2) {
4986 binx = binglobal%nx;
4987 biny = ((binglobal-binx)/nx)%ny;
4988 binz = 0;
4989 return;
4990 }
4991 if (GetDimension() == 3) {
4992 binx = binglobal%nx;
4993 biny = ((binglobal-binx)/nx)%ny;
4994 binz = ((binglobal-binx)/nx -biny)/ny;
4995 }
4996}
4997
4998////////////////////////////////////////////////////////////////////////////////
4999/// Return a random number distributed according the histogram bin contents.
5000/// This function checks if the bins integral exists. If not, the integral
5001/// is evaluated, normalized to one.
5002///
5003/// @param rng (optional) Random number generator pointer used (default is gRandom)
5004///
5005/// The integral is automatically recomputed if the number of entries
5006/// is not the same then when the integral was computed.
5007/// NB Only valid for 1-d histograms. Use GetRandom2 or 3 otherwise.
5008/// If the histogram has a bin with negative content a NaN is returned
5009
5011{
5012 if (fDimension > 1) {
5013 Error("GetRandom","Function only valid for 1-d histograms");
5014 return 0;
5015 }
5017 Double_t integral = 0;
5018 // compute integral checking that all bins have positive content (see ROOT-5894)
5019 if (fIntegral) {
5020 if (fIntegral[nbinsx+1] != fEntries) integral = ((TH1*)this)->ComputeIntegral(true);
5021 else integral = fIntegral[nbinsx];
5022 } else {
5023 integral = ((TH1*)this)->ComputeIntegral(true);
5024 }
5025 if (integral == 0) return 0;
5026 // return a NaN in case some bins have negative content
5027 if (integral == TMath::QuietNaN() ) return TMath::QuietNaN();
5028
5029 Double_t r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
5032 if (r1 > fIntegral[ibin]) x +=
5034 return x;
5035}
5036
5037////////////////////////////////////////////////////////////////////////////////
5038/// Return content of bin number bin.
5039///
5040/// Implemented in TH1C,S,F,D
5041///
5042/// Convention for numbering bins
5043///
5044/// For all histogram types: nbins, xlow, xup
5045///
5046/// - bin = 0; underflow bin
5047/// - bin = 1; first bin with low-edge xlow INCLUDED
5048/// - bin = nbins; last bin with upper-edge xup EXCLUDED
5049/// - bin = nbins+1; overflow bin
5050///
5051/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
5052/// For example, assuming a 3-D histogram with binx,biny,binz, the function
5053///
5054/// ~~~ {.cpp}
5055/// Int_t bin = h->GetBin(binx,biny,binz);
5056/// ~~~
5057///
5058/// returns a global/linearized bin number. This global bin is useful
5059/// to access the bin information independently of the dimension.
5060
5062{
5063 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
5064 if (bin < 0) bin = 0;
5065 if (bin >= fNcells) bin = fNcells-1;
5066
5067 return RetrieveBinContent(bin);
5068}
5069
5070////////////////////////////////////////////////////////////////////////////////
5071/// Compute first binx in the range [firstx,lastx] for which
5072/// diff = abs(bin_content-c) <= maxdiff
5073///
5074/// In case several bins in the specified range with diff=0 are found
5075/// the first bin found is returned in binx.
5076/// In case several bins in the specified range satisfy diff <=maxdiff
5077/// the bin with the smallest difference is returned in binx.
5078/// In all cases the function returns the smallest difference.
5079///
5080/// NOTE1: if firstx <= 0, firstx is set to bin 1
5081/// if (lastx < firstx then firstx is set to the number of bins
5082/// ie if firstx=0 and lastx=0 (default) the search is on all bins.
5083///
5084/// NOTE2: if maxdiff=0 (default), the first bin with content=c is returned.
5085
5087{
5088 if (fDimension > 1) {
5089 binx = 0;
5090 Error("GetBinWithContent","function is only valid for 1-D histograms");
5091 return 0;
5092 }
5093
5094 if (fBuffer) ((TH1*)this)->BufferEmpty();
5095
5096 if (firstx <= 0) firstx = 1;
5097 if (lastx < firstx) lastx = fXaxis.GetNbins();
5098 Int_t binminx = 0;
5099 Double_t diff, curmax = 1.e240;
5100 for (Int_t i=firstx;i<=lastx;i++) {
5102 if (diff <= 0) {binx = i; return diff;}
5103 if (diff < curmax && diff <= maxdiff) {curmax = diff, binminx=i;}
5104 }
5105 binx = binminx;
5106 return curmax;
5107}
5108
5109////////////////////////////////////////////////////////////////////////////////
5110/// Given a point x, approximates the value via linear interpolation
5111/// based on the two nearest bin centers
5112///
5113/// Andy Mastbaum 10/21/08
5114
5116{
5117 if (fBuffer) ((TH1*)this)->BufferEmpty();
5118
5120 Double_t x0,x1,y0,y1;
5121
5122 if(x<=GetBinCenter(1)) {
5123 return RetrieveBinContent(1);
5124 } else if(x>=GetBinCenter(GetNbinsX())) {
5125 return RetrieveBinContent(GetNbinsX());
5126 } else {
5127 if(x<=GetBinCenter(xbin)) {
5129 x0 = GetBinCenter(xbin-1);
5131 x1 = GetBinCenter(xbin);
5132 } else {
5134 x0 = GetBinCenter(xbin);
5136 x1 = GetBinCenter(xbin+1);
5137 }
5138 return y0 + (x-x0)*((y1-y0)/(x1-x0));
5139 }
5140}
5141
5142////////////////////////////////////////////////////////////////////////////////
5143/// 2d Interpolation. Not yet implemented.
5144
5146{
5147 Error("Interpolate","This function must be called with 1 argument for a TH1");
5148 return 0;
5149}
5150
5151////////////////////////////////////////////////////////////////////////////////
5152/// 3d Interpolation. Not yet implemented.
5153
5155{
5156 Error("Interpolate","This function must be called with 1 argument for a TH1");
5157 return 0;
5158}
5159
5160///////////////////////////////////////////////////////////////////////////////
5161/// Check if a histogram is empty
5162/// (this is a protected method used mainly by TH1Merger )
5163
5164Bool_t TH1::IsEmpty() const
5165{
5166 // if fTsumw or fentries are not zero histogram is not empty
5167 // need to use GetEntries() instead of fEntries in case of bugger histograms
5168 // so we will flash the buffer
5169 if (fTsumw != 0) return kFALSE;
5170 if (GetEntries() != 0) return kFALSE;
5171 // case fTSumw == 0 amd entries are also zero
5172 // this should not really happening, but if one sets content by hand
5173 // it can happen. a call to ResetStats() should be done in such cases
5174 double sumw = 0;
5175 for (int i = 0; i< GetNcells(); ++i) sumw += RetrieveBinContent(i);
5176 return (sumw != 0) ? kFALSE : kTRUE;
5177}
5178
5179////////////////////////////////////////////////////////////////////////////////
5180/// Return true if the bin is overflow.
5181
5183{
5184 Int_t binx, biny, binz;
5185 GetBinXYZ(bin, binx, biny, binz);
5186
5187 if (iaxis == 0) {
5188 if ( fDimension == 1 )
5189 return binx >= GetNbinsX() + 1;
5190 if ( fDimension == 2 )
5191 return (binx >= GetNbinsX() + 1) ||
5192 (biny >= GetNbinsY() + 1);
5193 if ( fDimension == 3 )
5194 return (binx >= GetNbinsX() + 1) ||
5195 (biny >= GetNbinsY() + 1) ||
5196 (binz >= GetNbinsZ() + 1);
5197 return kFALSE;
5198 }
5199 if (iaxis == 1)
5200 return binx >= GetNbinsX() + 1;
5201 if (iaxis == 2)
5202 return biny >= GetNbinsY() + 1;
5203 if (iaxis == 3)
5204 return binz >= GetNbinsZ() + 1;
5205
5206 Error("IsBinOverflow","Invalid axis value");
5207 return kFALSE;
5208}
5209
5210////////////////////////////////////////////////////////////////////////////////
5211/// Return true if the bin is underflow.
5212/// If iaxis = 0 make OR with all axes otherwise check only for the given axis
5213
5215{
5216 Int_t binx, biny, binz;
5217 GetBinXYZ(bin, binx, biny, binz);
5218
5219 if (iaxis == 0) {
5220 if ( fDimension == 1 )
5221 return (binx <= 0);
5222 else if ( fDimension == 2 )
5223 return (binx <= 0 || biny <= 0);
5224 else if ( fDimension == 3 )
5225 return (binx <= 0 || biny <= 0 || binz <= 0);
5226 else
5227 return kFALSE;
5228 }
5229 if (iaxis == 1)
5230 return (binx <= 0);
5231 if (iaxis == 2)
5232 return (biny <= 0);
5233 if (iaxis == 3)
5234 return (binz <= 0);
5235
5236 Error("IsBinUnderflow","Invalid axis value");
5237 return kFALSE;
5238}
5239
5240////////////////////////////////////////////////////////////////////////////////
5241/// Reduce the number of bins for the axis passed in the option to the number of bins having a label.
5242/// The method will remove only the extra bins existing after the last "labeled" bin.
5243/// Note that if there are "un-labeled" bins present between "labeled" bins they will not be removed
5244
5246{
5248 TAxis *axis = nullptr;
5249 if (iaxis == 1) axis = GetXaxis();
5250 if (iaxis == 2) axis = GetYaxis();
5251 if (iaxis == 3) axis = GetZaxis();
5252 if (!axis) {
5253 Error("LabelsDeflate","Invalid axis option %s",ax);
5254 return;
5255 }
5256 if (!axis->GetLabels()) return;
5257
5258 // find bin with last labels
5259 // bin number is object ID in list of labels
5260 // therefore max bin number is number of bins of the deflated histograms
5261 TIter next(axis->GetLabels());
5262 TObject *obj;
5263 Int_t nbins = 0;
5264 while ((obj = next())) {
5265 Int_t ibin = obj->GetUniqueID();
5266 if (ibin > nbins) nbins = ibin;
5267 }
5268 if (nbins < 1) nbins = 1;
5269
5270 // Do nothing in case it was the last bin
5271 if (nbins==axis->GetNbins()) return;
5272
5273 TH1 *hold = (TH1*)IsA()->New();
5274 R__ASSERT(hold);
5275 hold->SetDirectory(nullptr);
5276 Copy(*hold);
5277
5278 Bool_t timedisp = axis->GetTimeDisplay();
5279 Double_t xmin = axis->GetXmin();
5280 Double_t xmax = axis->GetBinUpEdge(nbins);
5281 if (xmax <= xmin) xmax = xmin +nbins;
5282 axis->SetRange(0,0);
5283 axis->Set(nbins,xmin,xmax);
5284 SetBinsLength(-1); // reset the number of cells
5286 if (errors) fSumw2.Set(fNcells);
5287 axis->SetTimeDisplay(timedisp);
5288 // reset histogram content
5289 Reset("ICE");
5290
5291 //now loop on all bins and refill
5292 // NOTE that if the bins without labels have content
5293 // it will be put in the underflow/overflow.
5294 // For this reason we use AddBinContent method
5296 Int_t bin,binx,biny,binz;
5297 for (bin=0; bin < hold->fNcells; ++bin) {
5298 hold->GetBinXYZ(bin,binx,biny,binz);
5300 Double_t cu = hold->RetrieveBinContent(bin);
5302 if (errors) {
5303 fSumw2.fArray[ibin] += hold->fSumw2.fArray[bin];
5304 }
5305 }
5307 delete hold;
5308}
5309
5310////////////////////////////////////////////////////////////////////////////////
5311/// Double the number of bins for axis.
5312/// Refill histogram.
5313/// This function is called by TAxis::FindBin(const char *label)
5314
5316{
5318 TAxis *axis = nullptr;
5319 if (iaxis == 1) axis = GetXaxis();
5320 if (iaxis == 2) axis = GetYaxis();
5321 if (iaxis == 3) axis = GetZaxis();
5322 if (!axis) return;
5323
5324 TH1 *hold = (TH1*)IsA()->New();
5325 hold->SetDirectory(nullptr);
5326 Copy(*hold);
5327 hold->ResetBit(kMustCleanup);
5328
5329 Bool_t timedisp = axis->GetTimeDisplay();
5330 Int_t nbins = axis->GetNbins();
5331 Double_t xmin = axis->GetXmin();
5332 Double_t xmax = axis->GetXmax();
5333 xmax = xmin + 2*(xmax-xmin);
5334 axis->SetRange(0,0);
5335 // double the bins and recompute ncells
5336 axis->Set(2*nbins,xmin,xmax);
5337 SetBinsLength(-1);
5339 if (errors) fSumw2.Set(fNcells);
5340 axis->SetTimeDisplay(timedisp);
5341
5342 Reset("ICE"); // reset content and error
5343
5344 //now loop on all bins and refill
5346 Int_t bin,ibin,binx,biny,binz;
5347 for (ibin =0; ibin < hold->fNcells; ibin++) {
5348 // get the binx,y,z values . The x-y-z (axis) bin values will stay the same between new-old after the expanding
5349 hold->GetBinXYZ(ibin,binx,biny,binz);
5350 bin = GetBin(binx,biny,binz);
5351
5352 // underflow and overflow will be cleaned up because their meaning has been altered
5353 if (hold->IsBinUnderflow(ibin,iaxis) || hold->IsBinOverflow(ibin,iaxis)) {
5354 continue;
5355 }
5356 else {
5357 AddBinContent(bin, hold->RetrieveBinContent(ibin));
5358 if (errors) fSumw2.fArray[bin] += hold->fSumw2.fArray[ibin];
5359 }
5360 }
5362 delete hold;
5363}
5364
5365////////////////////////////////////////////////////////////////////////////////
5366/// Sort bins with labels or set option(s) to draw axis with labels
5367/// \param[in] option
5368/// - "a" sort by alphabetic order
5369/// - ">" sort by decreasing values
5370/// - "<" sort by increasing values
5371/// - "h" draw labels horizontal
5372/// - "v" draw labels vertical
5373/// - "u" draw labels up (end of label right adjusted)
5374/// - "d" draw labels down (start of label left adjusted)
5375///
5376/// In case not all bins have labels sorting will work only in the case
5377/// the first `n` consecutive bins have all labels and sorting will be performed on
5378/// those label bins.
5379///
5380/// \param[in] ax axis
5381
5383{
5385 TAxis *axis = nullptr;
5386 if (iaxis == 1)
5387 axis = GetXaxis();
5388 if (iaxis == 2)
5389 axis = GetYaxis();
5390 if (iaxis == 3)
5391 axis = GetZaxis();
5392 if (!axis)
5393 return;
5394 THashList *labels = axis->GetLabels();
5395 if (!labels) {
5396 Warning("LabelsOption", "Axis %s has no labels!",axis->GetName());
5397 return;
5398 }
5399 TString opt = option;
5400 opt.ToLower();
5401 Int_t iopt = -1;
5402 if (opt.Contains("h")) {
5407 iopt = 0;
5408 }
5409 if (opt.Contains("v")) {
5414 iopt = 1;
5415 }
5416 if (opt.Contains("u")) {
5417 axis->SetBit(TAxis::kLabelsUp);
5421 iopt = 2;
5422 }
5423 if (opt.Contains("d")) {
5428 iopt = 3;
5429 }
5430 Int_t sort = -1;
5431 if (opt.Contains("a"))
5432 sort = 0;
5433 if (opt.Contains(">"))
5434 sort = 1;
5435 if (opt.Contains("<"))
5436 sort = 2;
5437 if (sort < 0) {
5438 if (iopt < 0)
5439 Error("LabelsOption", "%s is an invalid label placement option!",opt.Data());
5440 return;
5441 }
5442
5443 // Code works only if first n bins have labels if we uncomment following line
5444 // but we don't want to support this special case
5445 // Int_t n = TMath::Min(axis->GetNbins(), labels->GetSize());
5446
5447 // support only cases where each bin has a labels (should be when axis is alphanumeric)
5448 Int_t n = labels->GetSize();
5449 if (n != axis->GetNbins()) {
5450 // check if labels are all consecutive and starts from the first bin
5451 // in that case the current code will work fine
5452 Int_t firstLabelBin = axis->GetNbins()+1;
5453 Int_t lastLabelBin = -1;
5454 for (Int_t i = 0; i < n; ++i) {
5455 Int_t bin = labels->At(i)->GetUniqueID();
5456 if (bin < firstLabelBin) firstLabelBin = bin;
5457 if (bin > lastLabelBin) lastLabelBin = bin;
5458 }
5459 if (firstLabelBin != 1 || lastLabelBin-firstLabelBin +1 != n) {
5460 Error("LabelsOption", "%s of Histogram %s contains bins without labels. Sorting will not work correctly - return",
5461 axis->GetName(), GetName());
5462 return;
5463 }
5464 // case where label bins are consecutive starting from first bin will work
5465 // calling before a TH1::LabelsDeflate() will avoid this error message
5466 Warning("LabelsOption", "axis %s of Histogram %s has extra following bins without labels. Sorting will work only for first label bins",
5467 axis->GetName(), GetName());
5468 }
5469 std::vector<Int_t> a(n);
5470 std::vector<Int_t> b(n);
5471
5472
5473 Int_t i, j, k;
5474 std::vector<Double_t> cont;
5475 std::vector<Double_t> errors2;
5476 THashList *labold = new THashList(labels->GetSize(), 1);
5477 TIter nextold(labels);
5478 TObject *obj = nullptr;
5479 labold->AddAll(labels);
5480 labels->Clear();
5481
5482 // delete buffer if it is there since bins will be reordered.
5483 if (fBuffer)
5484 BufferEmpty(1);
5485
5486 if (sort > 0) {
5487 //---sort by values of bins
5488 if (GetDimension() == 1) {
5489 cont.resize(n);
5490 if (fSumw2.fN)
5491 errors2.resize(n);
5492 for (i = 0; i < n; i++) {
5493 cont[i] = RetrieveBinContent(i + 1);
5494 if (!errors2.empty())
5495 errors2[i] = GetBinErrorSqUnchecked(i + 1);
5496 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5497 a[i] = i;
5498 }
5499 if (sort == 1)
5500 TMath::Sort(n, cont.data(), a.data(), kTRUE); // sort by decreasing values
5501 else
5502 TMath::Sort(n, cont.data(), a.data(), kFALSE); // sort by increasing values
5503 for (i = 0; i < n; i++) {
5504 // use UpdateBinCOntent to not screw up histogram entries
5505 UpdateBinContent(i + 1, cont[b[a[i]] - 1]); // b[a[i]] returns bin number. .we need to subtract 1
5506 if (gDebug)
5507 Info("LabelsOption","setting bin %d value %f from bin %d label %s at pos %d ",
5508 i+1,cont[b[a[i]] - 1],b[a[i]],labold->At(a[i])->GetName(),a[i]);
5509 if (!errors2.empty())
5510 fSumw2.fArray[i + 1] = errors2[b[a[i]] - 1];
5511 }
5512 for (i = 0; i < n; i++) {
5513 obj = labold->At(a[i]);
5514 labels->Add(obj);
5515 obj->SetUniqueID(i + 1);
5516 }
5517 } else if (GetDimension() == 2) {
5518 std::vector<Double_t> pcont(n + 2);
5519 Int_t nx = fXaxis.GetNbins() + 2;
5520 Int_t ny = fYaxis.GetNbins() + 2;
5521 cont.resize((nx + 2) * (ny + 2));
5522 if (fSumw2.fN)
5523 errors2.resize((nx + 2) * (ny + 2));
5524 for (i = 0; i < nx; i++) {
5525 for (j = 0; j < ny; j++) {
5526 Int_t bin = GetBin(i,j);
5527 cont[i + nx * j] = RetrieveBinContent(bin);
5528 if (!errors2.empty())
5529 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5530 if (axis == GetXaxis())
5531 k = i - 1;
5532 else
5533 k = j - 1;
5534 if (k >= 0 && k < n) { // we consider underflow/overflows in y for ordering the bins
5535 pcont[k] += cont[i + nx * j];
5536 a[k] = k;
5537 }
5538 }
5539 }
5540 if (sort == 1)
5541 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5542 else
5543 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5544 for (i = 0; i < n; i++) {
5545 // iterate on old label list to find corresponding bin match
5546 TIter next(labold);
5547 UInt_t bin = a[i] + 1;
5548 while ((obj = next())) {
5549 if (obj->GetUniqueID() == (UInt_t)bin)
5550 break;
5551 else
5552 obj = nullptr;
5553 }
5554 if (!obj) {
5555 // this should not really happen
5556 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5557 return;
5558 }
5559
5560 labels->Add(obj);
5561 if (gDebug)
5562 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from order " << a[i] << " bin "
5563 << b[a[i]] << "content " << pcont[a[i]] << std::endl;
5564 }
5565 // need to set here new ordered labels - otherwise loop before does not work since labold and labels list
5566 // contain same objects
5567 for (i = 0; i < n; i++) {
5568 labels->At(i)->SetUniqueID(i + 1);
5569 }
5570 // set now the bin contents
5571 if (axis == GetXaxis()) {
5572 for (i = 0; i < n; i++) {
5573 Int_t ix = a[i] + 1;
5574 for (j = 0; j < ny; j++) {
5575 Int_t bin = GetBin(i + 1, j);
5576 UpdateBinContent(bin, cont[ix + nx * j]);
5577 if (!errors2.empty())
5578 fSumw2.fArray[bin] = errors2[ix + nx * j];
5579 }
5580 }
5581 } else {
5582 // using y axis
5583 for (i = 0; i < nx; i++) {
5584 for (j = 0; j < n; j++) {
5585 Int_t iy = a[j] + 1;
5586 Int_t bin = GetBin(i, j + 1);
5587 UpdateBinContent(bin, cont[i + nx * iy]);
5588 if (!errors2.empty())
5589 fSumw2.fArray[bin] = errors2[i + nx * iy];
5590 }
5591 }
5592 }
5593 } else {
5594 // sorting histograms: 3D case
5595 std::vector<Double_t> pcont(n + 2);
5596 Int_t nx = fXaxis.GetNbins() + 2;
5597 Int_t ny = fYaxis.GetNbins() + 2;
5598 Int_t nz = fZaxis.GetNbins() + 2;
5599 Int_t l = 0;
5600 cont.resize((nx + 2) * (ny + 2) * (nz + 2));
5601 if (fSumw2.fN)
5602 errors2.resize((nx + 2) * (ny + 2) * (nz + 2));
5603 for (i = 0; i < nx; i++) {
5604 for (j = 0; j < ny; j++) {
5605 for (k = 0; k < nz; k++) {
5606 Int_t bin = GetBin(i,j,k);
5608 if (axis == GetXaxis())
5609 l = i - 1;
5610 else if (axis == GetYaxis())
5611 l = j - 1;
5612 else
5613 l = k - 1;
5614 if (l >= 0 && l < n) { // we consider underflow/overflows in y for ordering the bins
5615 pcont[l] += c;
5616 a[l] = l;
5617 }
5618 cont[i + nx * (j + ny * k)] = c;
5619 if (!errors2.empty())
5620 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5621 }
5622 }
5623 }
5624 if (sort == 1)
5625 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5626 else
5627 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5628 for (i = 0; i < n; i++) {
5629 // iterate on the old label list to find corresponding bin match
5630 TIter next(labold);
5631 UInt_t bin = a[i] + 1;
5632 obj = nullptr;
5633 while ((obj = next())) {
5634 if (obj->GetUniqueID() == (UInt_t)bin) {
5635 break;
5636 }
5637 else
5638 obj = nullptr;
5639 }
5640 if (!obj) {
5641 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5642 return;
5643 }
5644 labels->Add(obj);
5645 if (gDebug)
5646 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from bin " << a[i] << "content "
5647 << pcont[a[i]] << std::endl;
5648 }
5649
5650 // need to set here new ordered labels - otherwise loop before does not work since labold and llabels list
5651 // contain same objects
5652 for (i = 0; i < n; i++) {
5653 labels->At(i)->SetUniqueID(i + 1);
5654 }
5655 // set now the bin contents
5656 if (axis == GetXaxis()) {
5657 for (i = 0; i < n; i++) {
5658 Int_t ix = a[i] + 1;
5659 for (j = 0; j < ny; j++) {
5660 for (k = 0; k < nz; k++) {
5661 Int_t bin = GetBin(i + 1, j, k);
5662 UpdateBinContent(bin, cont[ix + nx * (j + ny * k)]);
5663 if (!errors2.empty())
5664 fSumw2.fArray[bin] = errors2[ix + nx * (j + ny * k)];
5665 }
5666 }
5667 }
5668 } else if (axis == GetYaxis()) {
5669 // using y axis
5670 for (i = 0; i < nx; i++) {
5671 for (j = 0; j < n; j++) {
5672 Int_t iy = a[j] + 1;
5673 for (k = 0; k < nz; k++) {
5674 Int_t bin = GetBin(i, j + 1, k);
5675 UpdateBinContent(bin, cont[i + nx * (iy + ny * k)]);
5676 if (!errors2.empty())
5677 fSumw2.fArray[bin] = errors2[i + nx * (iy + ny * k)];
5678 }
5679 }
5680 }
5681 } else {
5682 // using z axis
5683 for (i = 0; i < nx; i++) {
5684 for (j = 0; j < ny; j++) {
5685 for (k = 0; k < n; k++) {
5686 Int_t iz = a[k] + 1;
5687 Int_t bin = GetBin(i, j , k +1);
5688 UpdateBinContent(bin, cont[i + nx * (j + ny * iz)]);
5689 if (!errors2.empty())
5690 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * iz)];
5691 }
5692 }
5693 }
5694 }
5695 }
5696 } else {
5697 //---alphabetic sort
5698 // sort labels using vector of strings and TMath::Sort
5699 // I need to array because labels order in list is not necessary that of the bins
5700 std::vector<std::string> vecLabels(n);
5701 for (i = 0; i < n; i++) {
5702 vecLabels[i] = labold->At(i)->GetName();
5703 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5704 a[i] = i;
5705 }
5706 // sort in ascending order for strings
5707 TMath::Sort(n, vecLabels.data(), a.data(), kFALSE);
5708 // set the new labels
5709 for (i = 0; i < n; i++) {
5710 TObject *labelObj = labold->At(a[i]);
5711 labels->Add(labold->At(a[i]));
5712 // set the corresponding bin. NB bin starts from 1
5713 labelObj->SetUniqueID(i + 1);
5714 if (gDebug)
5715 std::cout << "bin " << i + 1 << " setting new labels for axis " << labold->At(a[i])->GetName() << " from "
5716 << b[a[i]] << std::endl;
5717 }
5718
5719 if (GetDimension() == 1) {
5720 cont.resize(n + 2);
5721 if (fSumw2.fN)
5722 errors2.resize(n + 2);
5723 for (i = 0; i < n; i++) {
5724 cont[i] = RetrieveBinContent(b[a[i]]);
5725 if (!errors2.empty())
5727 }
5728 for (i = 0; i < n; i++) {
5729 UpdateBinContent(i + 1, cont[i]);
5730 if (!errors2.empty())
5731 fSumw2.fArray[i+1] = errors2[i];
5732 }
5733 } else if (GetDimension() == 2) {
5734 Int_t nx = fXaxis.GetNbins() + 2;
5735 Int_t ny = fYaxis.GetNbins() + 2;
5736 cont.resize(nx * ny);
5737 if (fSumw2.fN)
5738 errors2.resize(nx * ny);
5739 // copy old bin contents and then set to new ordered bins
5740 // N.B. bin in histograms starts from 1, but in y we consider under/overflows
5741 for (i = 0; i < nx; i++) {
5742 for (j = 0; j < ny; j++) { // ny is nbins+2
5743 Int_t bin = GetBin(i, j);
5744 cont[i + nx * j] = RetrieveBinContent(bin);
5745 if (!errors2.empty())
5746 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5747 }
5748 }
5749 if (axis == GetXaxis()) {
5750 for (i = 0; i < n; i++) {
5751 for (j = 0; j < ny; j++) {
5752 Int_t bin = GetBin(i + 1 , j);
5753 UpdateBinContent(bin, cont[b[a[i]] + nx * j]);
5754 if (!errors2.empty())
5755 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * j];
5756 }
5757 }
5758 } else {
5759 for (i = 0; i < nx; i++) {
5760 for (j = 0; j < n; j++) {
5761 Int_t bin = GetBin(i, j + 1);
5762 UpdateBinContent(bin, cont[i + nx * b[a[j]]]);
5763 if (!errors2.empty())
5764 fSumw2.fArray[bin] = errors2[i + nx * b[a[j]]];
5765 }
5766 }
5767 }
5768 } else {
5769 // case of 3D (needs to be tested)
5770 Int_t nx = fXaxis.GetNbins() + 2;
5771 Int_t ny = fYaxis.GetNbins() + 2;
5772 Int_t nz = fZaxis.GetNbins() + 2;
5773 cont.resize(nx * ny * nz);
5774 if (fSumw2.fN)
5775 errors2.resize(nx * ny * nz);
5776 for (i = 0; i < nx; i++) {
5777 for (j = 0; j < ny; j++) {
5778 for (k = 0; k < nz; k++) {
5779 Int_t bin = GetBin(i, j, k);
5780 cont[i + nx * (j + ny * k)] = RetrieveBinContent(bin);
5781 if (!errors2.empty())
5782 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5783 }
5784 }
5785 }
5786 if (axis == GetXaxis()) {
5787 // labels on x axis
5788 for (i = 0; i < n; i++) { // for x we loop only on bins with the labels
5789 for (j = 0; j < ny; j++) {
5790 for (k = 0; k < nz; k++) {
5791 Int_t bin = GetBin(i + 1, j, k);
5792 UpdateBinContent(bin, cont[b[a[i]] + nx * (j + ny * k)]);
5793 if (!errors2.empty())
5794 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * (j + ny * k)];
5795 }
5796 }
5797 }
5798 } else if (axis == GetYaxis()) {
5799 // labels on y axis
5800 for (i = 0; i < nx; i++) {
5801 for (j = 0; j < n; j++) {
5802 for (k = 0; k < nz; k++) {
5803 Int_t bin = GetBin(i, j+1, k);
5804 UpdateBinContent(bin, cont[i + nx * (b[a[j]] + ny * k)]);
5805 if (!errors2.empty())
5806 fSumw2.fArray[bin] = errors2[i + nx * (b[a[j]] + ny * k)];
5807 }
5808 }
5809 }
5810 } else {
5811 // labels on z axis
5812 for (i = 0; i < nx; i++) {
5813 for (j = 0; j < ny; j++) {
5814 for (k = 0; k < n; k++) {
5815 Int_t bin = GetBin(i, j, k+1);
5816 UpdateBinContent(bin, cont[i + nx * (j + ny * b[a[k]])]);
5817 if (!errors2.empty())
5818 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * b[a[k]])];
5819 }
5820 }
5821 }
5822 }
5823 }
5824 }
5825 // need to set to zero the statistics if axis has been sorted
5826 // see for example TH3::PutStats for definition of s vector
5827 bool labelsAreSorted = kFALSE;
5828 for (i = 0; i < n; ++i) {
5829 if (a[i] != i) {
5831 break;
5832 }
5833 }
5834 if (labelsAreSorted) {
5835 double s[TH1::kNstat];
5836 GetStats(s);
5837 if (iaxis == 1) {
5838 s[2] = 0; // fTsumwx
5839 s[3] = 0; // fTsumwx2
5840 s[6] = 0; // fTsumwxy
5841 s[9] = 0; // fTsumwxz
5842 } else if (iaxis == 2) {
5843 s[4] = 0; // fTsumwy
5844 s[5] = 0; // fTsumwy2
5845 s[6] = 0; // fTsumwxy
5846 s[10] = 0; // fTsumwyz
5847 } else if (iaxis == 3) {
5848 s[7] = 0; // fTsumwz
5849 s[8] = 0; // fTsumwz2
5850 s[9] = 0; // fTsumwxz
5851 s[10] = 0; // fTsumwyz
5852 }
5853 PutStats(s);
5854 }
5855 delete labold;
5856}
5857
5858////////////////////////////////////////////////////////////////////////////////
5859/// Test if two double are almost equal.
5860
5861static inline Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon = 0.00000001)
5862{
5863 return TMath::Abs(a - b) < epsilon;
5864}
5865
5866////////////////////////////////////////////////////////////////////////////////
5867/// Test if a double is almost an integer.
5868
5869static inline Bool_t AlmostInteger(Double_t a, Double_t epsilon = 0.00000001)
5870{
5871 return AlmostEqual(a - TMath::Floor(a), 0, epsilon) ||
5872 AlmostEqual(a - TMath::Floor(a), 1, epsilon);
5873}
5874
5875////////////////////////////////////////////////////////////////////////////////
5876/// Test if the binning is equidistant.
5877
5878static inline bool IsEquidistantBinning(const TAxis& axis)
5879{
5880 // check if axis bin are equals
5881 if (!axis.GetXbins()->fN) return true; //
5882 // not able to check if there is only one axis entry
5883 bool isEquidistant = true;
5884 const Double_t firstBinWidth = axis.GetBinWidth(1);
5885 for (int i = 1; i < axis.GetNbins(); ++i) {
5886 const Double_t binWidth = axis.GetBinWidth(i);
5887 const bool match = TMath::AreEqualRel(firstBinWidth, binWidth, 1.E-10);
5888 isEquidistant &= match;
5889 if (!match)
5890 break;
5891 }
5892 return isEquidistant;
5893}
5894
5895////////////////////////////////////////////////////////////////////////////////
5896/// Same limits and bins.
5897
5899 return axis1.GetNbins() == axis2.GetNbins() &&
5900 TMath::AreEqualAbs(axis1.GetXmin(), axis2.GetXmin(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10) &&
5901 TMath::AreEqualAbs(axis1.GetXmax(), axis2.GetXmax(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10);
5902}
5903
5904////////////////////////////////////////////////////////////////////////////////
5905/// Finds new limits for the axis for the Merge function.
5906/// returns false if the limits are incompatible
5907
5909{
5911 return kTRUE;
5912
5914 return kFALSE; // not equidistant user binning not supported
5915
5916 Double_t width1 = destAxis.GetBinWidth(0);
5917 Double_t width2 = anAxis.GetBinWidth(0);
5918 if (width1 == 0 || width2 == 0)
5919 return kFALSE; // no binning not supported
5920
5921 Double_t xmin = TMath::Min(destAxis.GetXmin(), anAxis.GetXmin());
5922 Double_t xmax = TMath::Max(destAxis.GetXmax(), anAxis.GetXmax());
5924
5925 // check the bin size
5927 return kFALSE;
5928
5929 // std::cout << "Find new limit using given axis " << anAxis.GetXmin() << " , " << anAxis.GetXmax() << " bin width " << width2 << std::endl;
5930 // std::cout << " and destination axis " << destAxis.GetXmin() << " , " << destAxis.GetXmax() << " bin width " << width1 << std::endl;
5931
5932
5933 // check the limits
5934 Double_t delta;
5935 delta = (destAxis.GetXmin() - xmin)/width1;
5936 if (!AlmostInteger(delta))
5937 xmin -= (TMath::Ceil(delta) - delta)*width1;
5938
5939 delta = (anAxis.GetXmin() - xmin)/width2;
5940 if (!AlmostInteger(delta))
5941 xmin -= (TMath::Ceil(delta) - delta)*width2;
5942
5943
5944 delta = (destAxis.GetXmin() - xmin)/width1;
5945 if (!AlmostInteger(delta))
5946 return kFALSE;
5947
5948
5949 delta = (xmax - destAxis.GetXmax())/width1;
5950 if (!AlmostInteger(delta))
5951 xmax += (TMath::Ceil(delta) - delta)*width1;
5952
5953
5954 delta = (xmax - anAxis.GetXmax())/width2;
5955 if (!AlmostInteger(delta))
5956 xmax += (TMath::Ceil(delta) - delta)*width2;
5957
5958
5959 delta = (xmax - destAxis.GetXmax())/width1;
5960 if (!AlmostInteger(delta))
5961 return kFALSE;
5962#ifdef DEBUG
5963 if (!AlmostInteger((xmax - xmin) / width)) { // unnecessary check
5964 printf("TH1::RecomputeAxisLimits - Impossible\n");
5965 return kFALSE;
5966 }
5967#endif
5968
5969
5971
5972 //std::cout << "New re-computed axis : [ " << xmin << " , " << xmax << " ] width = " << width << " nbins " << destAxis.GetNbins() << std::endl;
5973
5974 return kTRUE;
5975}
5976
5977////////////////////////////////////////////////////////////////////////////////
5978/// Add all histograms in the collection to this histogram.
5979/// This function computes the min/max for the x axis,
5980/// compute a new number of bins, if necessary,
5981/// add bin contents, errors and statistics.
5982/// If all histograms have bin labels, bins with identical labels
5983/// will be merged, no matter what their order is.
5984/// If overflows are present and limits are different the function will fail.
5985/// The function returns the total number of entries in the result histogram
5986/// if the merge is successful, -1 otherwise.
5987///
5988/// Possible option:
5989/// -NOL : the merger will ignore the labels and merge the histograms bin by bin using bin center values to match bins
5990/// -NOCHECK: the histogram will not perform a check for duplicate labels in case of axes with labels. The check
5991/// (enabled by default) slows down the merging
5992///
5993/// IMPORTANT remark. The axis x may have different number
5994/// of bins and different limits, BUT the largest bin width must be
5995/// a multiple of the smallest bin width and the upper limit must also
5996/// be a multiple of the bin width.
5997/// Example:
5998///
5999/// ~~~ {.cpp}
6000/// void atest() {
6001/// TH1F *h1 = new TH1F("h1","h1",110,-110,0);
6002/// TH1F *h2 = new TH1F("h2","h2",220,0,110);
6003/// TH1F *h3 = new TH1F("h3","h3",330,-55,55);
6004/// TRandom r;
6005/// for (Int_t i=0;i<10000;i++) {
6006/// h1->Fill(r.Gaus(-55,10));
6007/// h2->Fill(r.Gaus(55,10));
6008/// h3->Fill(r.Gaus(0,10));
6009/// }
6010///
6011/// TList *list = new TList;
6012/// list->Add(h1);
6013/// list->Add(h2);
6014/// list->Add(h3);
6015/// TH1F *h = (TH1F*)h1->Clone("h");
6016/// h->Reset();
6017/// h->Merge(list);
6018/// h->Draw();
6019/// }
6020/// ~~~
6021
6023{
6024 if (!li) return 0;
6025 if (li->IsEmpty()) return (Long64_t) GetEntries();
6026
6027 // use TH1Merger class
6028 TH1Merger merger(*this,*li,opt);
6029 Bool_t ret = merger();
6030
6031 return (ret) ? GetEntries() : -1;
6032}
6033
6034
6035////////////////////////////////////////////////////////////////////////////////
6036/// Performs the operation:
6037///
6038/// `this = this*c1*f1`
6039///
6040/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
6041///
6042/// Only bins inside the function range are recomputed.
6043/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6044/// you should call Sumw2 before making this operation.
6045/// This is particularly important if you fit the histogram after TH1::Multiply
6046///
6047/// The function return kFALSE if the Multiply operation failed
6048
6050{
6051 if (!f1) {
6052 Error("Multiply","Attempt to multiply by a non-existing function");
6053 return kFALSE;
6054 }
6055
6056 // delete buffer if it is there since it will become invalid
6057 if (fBuffer) BufferEmpty(1);
6058
6059 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of (cells)
6060 Int_t ny = GetNbinsY() + 2;
6061 Int_t nz = GetNbinsZ() + 2;
6062 if (fDimension < 2) ny = 1;
6063 if (fDimension < 3) nz = 1;
6064
6065 // reset min-maximum
6066 SetMinimum();
6067 SetMaximum();
6068
6069 // - Loop on bins (including underflows/overflows)
6070 Double_t xx[3];
6071 Double_t *params = nullptr;
6072 f1->InitArgs(xx,params);
6073
6074 for (Int_t binz = 0; binz < nz; ++binz) {
6075 xx[2] = fZaxis.GetBinCenter(binz);
6076 for (Int_t biny = 0; biny < ny; ++biny) {
6077 xx[1] = fYaxis.GetBinCenter(biny);
6078 for (Int_t binx = 0; binx < nx; ++binx) {
6079 xx[0] = fXaxis.GetBinCenter(binx);
6080 if (!f1->IsInside(xx)) continue;
6082 Int_t bin = binx + nx * (biny + ny *binz);
6083 Double_t cu = c1*f1->EvalPar(xx);
6084 if (TF1::RejectedPoint()) continue;
6086 if (fSumw2.fN) {
6087 fSumw2.fArray[bin] = cu * cu * GetBinErrorSqUnchecked(bin);
6088 }
6089 }
6090 }
6091 }
6092 ResetStats();
6093 return kTRUE;
6094}
6095
6096////////////////////////////////////////////////////////////////////////////////
6097/// Multiply this histogram by h1.
6098///
6099/// `this = this*h1`
6100///
6101/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6102/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
6103/// if not already set.
6104///
6105/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6106/// you should call Sumw2 before making this operation.
6107/// This is particularly important if you fit the histogram after TH1::Multiply
6108///
6109/// The function return kFALSE if the Multiply operation failed
6110
6111Bool_t TH1::Multiply(const TH1 *h1)
6112{
6113 if (!h1) {
6114 Error("Multiply","Attempt to multiply by a non-existing histogram");
6115 return kFALSE;
6116 }
6117
6118 // delete buffer if it is there since it will become invalid
6119 if (fBuffer) BufferEmpty(1);
6120
6121 if (LoggedInconsistency("Multiply", this, h1) >= kDifferentNumberOfBins) {
6122 return false;
6123 }
6124
6125 // Create Sumw2 if h1 has Sumw2 set
6126 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
6127
6128 // - Reset min- maximum
6129 SetMinimum();
6130 SetMaximum();
6131
6132 // - Loop on bins (including underflows/overflows)
6133 for (Int_t i = 0; i < fNcells; ++i) {
6136 UpdateBinContent(i, c0 * c1);
6137 if (fSumw2.fN) {
6139 }
6140 }
6141 ResetStats();
6142 return kTRUE;
6143}
6144
6145////////////////////////////////////////////////////////////////////////////////
6146/// Replace contents of this histogram by multiplication of h1 by h2.
6147///
6148/// `this = (c1*h1)*(c2*h2)`
6149///
6150/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6151/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
6152/// if not already set.
6153///
6154/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6155/// you should call Sumw2 before making this operation.
6156/// This is particularly important if you fit the histogram after TH1::Multiply
6157///
6158/// The function return kFALSE if the Multiply operation failed
6159
6161{
6162 TString opt = option;
6163 opt.ToLower();
6164 // Bool_t binomial = kFALSE;
6165 // if (opt.Contains("b")) binomial = kTRUE;
6166 if (!h1 || !h2) {
6167 Error("Multiply","Attempt to multiply by a non-existing histogram");
6168 return kFALSE;
6169 }
6170
6171 // delete buffer if it is there since it will become invalid
6172 if (fBuffer) BufferEmpty(1);
6173
6174 if (LoggedInconsistency("Multiply", this, h1) >= kDifferentNumberOfBins ||
6175 LoggedInconsistency("Multiply", h1, h2) >= kDifferentNumberOfBins) {
6176 return false;
6177 }
6178
6179 // Create Sumw2 if h1 or h2 have Sumw2 set
6180 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
6181
6182 // - Reset min - maximum
6183 SetMinimum();
6184 SetMaximum();
6185
6186 // - Loop on bins (including underflows/overflows)
6187 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
6188 for (Int_t i = 0; i < fNcells; ++i) {
6190 Double_t b2 = h2->RetrieveBinContent(i);
6191 UpdateBinContent(i, c1 * b1 * c2 * b2);
6192 if (fSumw2.fN) {
6193 fSumw2.fArray[i] = c1sq * c2sq * (h1->GetBinErrorSqUnchecked(i) * b2 * b2 + h2->GetBinErrorSqUnchecked(i) * b1 * b1);
6194 }
6195 }
6196 ResetStats();
6197 return kTRUE;
6198}
6199
6200////////////////////////////////////////////////////////////////////////////////
6201/// Control routine to paint any kind of histograms.
6202///
6203/// This function is automatically called by TCanvas::Update.
6204/// (see TH1::Draw for the list of options)
6205
6207{
6209
6210 if (fPainter) {
6211 if (option && strlen(option) > 0)
6213 else
6215 }
6216}
6217
6218////////////////////////////////////////////////////////////////////////////////
6219/// Rebin this histogram
6220///
6221/// #### case 1 xbins=0
6222///
6223/// If newname is blank (default), the current histogram is modified and
6224/// a pointer to it is returned.
6225///
6226/// If newname is not blank, the current histogram is not modified, and a
6227/// new histogram is returned which is a Clone of the current histogram
6228/// with its name set to newname.
6229///
6230/// The parameter ngroup indicates how many bins of this have to be merged
6231/// into one bin of the result.
6232///
6233/// If the original histogram has errors stored (via Sumw2), the resulting
6234/// histograms has new errors correctly calculated.
6235///
6236/// examples: if h1 is an existing TH1F histogram with 100 bins
6237///
6238/// ~~~ {.cpp}
6239/// h1->Rebin(); //merges two bins in one in h1: previous contents of h1 are lost
6240/// h1->Rebin(5); //merges five bins in one in h1
6241/// TH1F *hnew = dynamic_cast<TH1F*>(h1->Rebin(5,"hnew")); // creates a new histogram hnew
6242/// // merging 5 bins of h1 in one bin
6243/// ~~~
6244///
6245/// NOTE: If ngroup is not an exact divider of the number of bins,
6246/// the top limit of the rebinned histogram is reduced
6247/// to the upper edge of the last bin that can make a complete
6248/// group. The remaining bins are added to the overflow bin.
6249/// Statistics will be recomputed from the new bin contents.
6250///
6251/// #### case 2 xbins!=0
6252///
6253/// A new histogram is created (you should specify newname).
6254/// The parameter ngroup is the number of variable size bins in the created histogram.
6255/// The array xbins must contain ngroup+1 elements that represent the low-edges
6256/// of the bins.
6257/// If the original histogram has errors stored (via Sumw2), the resulting
6258/// histograms has new errors correctly calculated.
6259///
6260/// NOTE: The bin edges specified in xbins should correspond to bin edges
6261/// in the original histogram. If a bin edge in the new histogram is
6262/// in the middle of a bin in the original histogram, all entries in
6263/// the split bin in the original histogram will be transfered to the
6264/// lower of the two possible bins in the new histogram. This is
6265/// probably not what you want. A warning message is emitted in this
6266/// case
6267///
6268/// examples: if h1 is an existing TH1F histogram with 100 bins
6269///
6270/// ~~~ {.cpp}
6271/// Double_t xbins[25] = {...} array of low-edges (xbins[25] is the upper edge of last bin
6272/// h1->Rebin(24,"hnew",xbins); //creates a new variable bin size histogram hnew
6273/// ~~~
6274
6275TH1 *TH1::Rebin(Int_t ngroup, const char*newname, const Double_t *xbins)
6276{
6277 Int_t nbins = fXaxis.GetNbins();
6280 if ((ngroup <= 0) || (ngroup > nbins)) {
6281 Error("Rebin", "Illegal value of ngroup=%d",ngroup);
6282 return nullptr;
6283 }
6284
6285 if (fDimension > 1 || InheritsFrom(TProfile::Class())) {
6286 Error("Rebin", "Operation valid on 1-D histograms only");
6287 return nullptr;
6288 }
6289 if (!newname && xbins) {
6290 Error("Rebin","if xbins is specified, newname must be given");
6291 return nullptr;
6292 }
6293
6294 Int_t newbins = nbins/ngroup;
6295 if (!xbins) {
6296 Int_t nbg = nbins/ngroup;
6297 if (nbg*ngroup != nbins) {
6298 Warning("Rebin", "ngroup=%d is not an exact divider of nbins=%d.",ngroup,nbins);
6299 }
6300 }
6301 else {
6302 // in the case that xbins is given (rebinning in variable bins), ngroup is
6303 // the new number of bins and number of grouped bins is not constant.
6304 // when looping for setting the contents for the new histogram we
6305 // need to loop on all bins of original histogram. Then set ngroup=nbins
6306 newbins = ngroup;
6307 ngroup = nbins;
6308 }
6309
6310 // Save old bin contents into a new array
6311 Double_t entries = fEntries;
6312 Double_t *oldBins = new Double_t[nbins+2];
6313 Int_t bin, i;
6314 for (bin=0;bin<nbins+2;bin++) oldBins[bin] = RetrieveBinContent(bin);
6315 Double_t *oldErrors = nullptr;
6316 if (fSumw2.fN != 0) {
6317 oldErrors = new Double_t[nbins+2];
6318 for (bin=0;bin<nbins+2;bin++) oldErrors[bin] = GetBinError(bin);
6319 }
6320 // rebin will not include underflow/overflow if new axis range is larger than old axis range
6321 if (xbins) {
6322 if (xbins[0] < fXaxis.GetXmin() && oldBins[0] != 0 )
6323 Warning("Rebin","underflow entries will not be used when rebinning");
6324 if (xbins[newbins] > fXaxis.GetXmax() && oldBins[nbins+1] != 0 )
6325 Warning("Rebin","overflow entries will not be used when rebinning");
6326 }
6327
6328
6329 // create a clone of the old histogram if newname is specified
6330 TH1 *hnew = this;
6331 if ((newname && strlen(newname) > 0) || xbins) {
6332 hnew = (TH1*)Clone(newname);
6333 }
6334
6335 //reset can extend bit to avoid an axis extension in SetBinContent
6336 UInt_t oldExtendBitMask = hnew->SetCanExtend(kNoAxis);
6337
6338 // save original statistics
6339 Double_t stat[kNstat];
6340 GetStats(stat);
6341 bool resetStat = false;
6342 // change axis specs and rebuild bin contents array::RebinAx
6343 if(!xbins && (newbins*ngroup != nbins)) {
6345 resetStat = true; //stats must be reset because top bins will be moved to overflow bin
6346 }
6347 // save the TAttAxis members (reset by SetBins)
6359
6360 if(!xbins && (fXaxis.GetXbins()->GetSize() > 0)){ // variable bin sizes
6361 Double_t *bins = new Double_t[newbins+1];
6362 for(i = 0; i <= newbins; ++i) bins[i] = fXaxis.GetBinLowEdge(1+i*ngroup);
6363 hnew->SetBins(newbins,bins); //this also changes errors array (if any)
6364 delete [] bins;
6365 } else if (xbins) {
6366 hnew->SetBins(newbins,xbins);
6367 } else {
6368 hnew->SetBins(newbins,xmin,xmax);
6369 }
6370
6371 // Restore axis attributes
6383
6384 // copy merged bin contents (ignore under/overflows)
6385 // Start merging only once the new lowest edge is reached
6386 Int_t startbin = 1;
6387 const Double_t newxmin = hnew->GetXaxis()->GetBinLowEdge(1);
6388 while( fXaxis.GetBinCenter(startbin) < newxmin && startbin <= nbins ) {
6389 startbin++;
6390 }
6393 for (bin = 1;bin<=newbins;bin++) {
6394 binContent = 0;
6395 binError = 0;
6396 Int_t imax = ngroup;
6397 Double_t xbinmax = hnew->GetXaxis()->GetBinUpEdge(bin);
6398 // check bin edges for the cases when we provide an array of bins
6399 // be careful in case bins can have zero width
6401 hnew->GetXaxis()->GetBinLowEdge(bin),
6402 TMath::Max(1.E-8 * fXaxis.GetBinWidth(oldbin), 1.E-16 )) )
6403 {
6404 Warning("Rebin","Bin edge %d of rebinned histogram does not match any bin edges of the old histogram. Result can be inconsistent",bin);
6405 }
6406 for (i=0;i<ngroup;i++) {
6407 if( (oldbin+i > nbins) ||
6408 ( hnew != this && (fXaxis.GetBinCenter(oldbin+i) > xbinmax)) ) {
6409 imax = i;
6410 break;
6411 }
6414 }
6415 hnew->SetBinContent(bin,binContent);
6416 if (oldErrors) hnew->SetBinError(bin,TMath::Sqrt(binError));
6417 oldbin += imax;
6418 }
6419
6420 // sum underflow and overflow contents until startbin
6421 binContent = 0;
6422 binError = 0;
6423 for (i = 0; i < startbin; ++i) {
6424 binContent += oldBins[i];
6425 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6426 }
6427 hnew->SetBinContent(0,binContent);
6428 if (oldErrors) hnew->SetBinError(0,TMath::Sqrt(binError));
6429 // sum overflow
6430 binContent = 0;
6431 binError = 0;
6432 for (i = oldbin; i <= nbins+1; ++i) {
6433 binContent += oldBins[i];
6434 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6435 }
6436 hnew->SetBinContent(newbins+1,binContent);
6437 if (oldErrors) hnew->SetBinError(newbins+1,TMath::Sqrt(binError));
6438
6439 hnew->SetCanExtend(oldExtendBitMask); // restore previous state
6440
6441 // restore statistics and entries modified by SetBinContent
6442 hnew->SetEntries(entries);
6443 if (!resetStat) hnew->PutStats(stat);
6444 delete [] oldBins;
6445 if (oldErrors) delete [] oldErrors;
6446 return hnew;
6447}
6448
6449////////////////////////////////////////////////////////////////////////////////
6450/// finds new limits for the axis so that *point* is within the range and
6451/// the limits are compatible with the previous ones (see TH1::Merge).
6452/// new limits are put into *newMin* and *newMax* variables.
6453/// axis - axis whose limits are to be recomputed
6454/// point - point that should fit within the new axis limits
6455/// newMin - new minimum will be stored here
6456/// newMax - new maximum will be stored here.
6457/// false if failed (e.g. if the initial axis limits are wrong
6458/// or the new range is more than \f$ 2^{64} \f$ times the old one).
6459
6461{
6462 Double_t xmin = axis->GetXmin();
6463 Double_t xmax = axis->GetXmax();
6464 if (xmin >= xmax) return kFALSE;
6466
6467 //recompute new axis limits by doubling the current range
6468 Int_t ntimes = 0;
6469 while (point < xmin) {
6470 if (ntimes++ > 64)
6471 return kFALSE;
6472 xmin = xmin - range;
6473 range *= 2;
6474 }
6475 while (point >= xmax) {
6476 if (ntimes++ > 64)
6477 return kFALSE;
6478 xmax = xmax + range;
6479 range *= 2;
6480 }
6481 newMin = xmin;
6482 newMax = xmax;
6483 // Info("FindNewAxisLimits", "OldAxis: (%lf, %lf), new: (%lf, %lf), point: %lf",
6484 // axis->GetXmin(), axis->GetXmax(), xmin, xmax, point);
6485
6486 return kTRUE;
6487}
6488
6489////////////////////////////////////////////////////////////////////////////////
6490/// Histogram is resized along axis such that x is in the axis range.
6491/// The new axis limits are recomputed by doubling iteratively
6492/// the current axis range until the specified value x is within the limits.
6493/// The algorithm makes a copy of the histogram, then loops on all bins
6494/// of the old histogram to fill the extended histogram.
6495/// Takes into account errors (Sumw2) if any.
6496/// The algorithm works for 1-d, 2-D and 3-D histograms.
6497/// The axis must be extendable before invoking this function.
6498/// Ex:
6499///
6500/// ~~~ {.cpp}
6501/// h->GetXaxis()->SetCanExtend(kTRUE);
6502/// ~~~
6503
6504void TH1::ExtendAxis(Double_t x, TAxis *axis)
6505{
6506 if (!axis->CanExtend()) return;
6507 if (TMath::IsNaN(x)) { // x may be a NaN
6509 return;
6510 }
6511
6512 if (axis->GetXmin() >= axis->GetXmax()) return;
6513 if (axis->GetNbins() <= 0) return;
6514
6516 if (!FindNewAxisLimits(axis, x, xmin, xmax))
6517 return;
6518
6519 //save a copy of this histogram
6520 TH1 *hold = (TH1*)IsA()->New();
6521 hold->SetDirectory(nullptr);
6522 Copy(*hold);
6523 //set new axis limits
6524 axis->SetLimits(xmin,xmax);
6525
6526
6527 //now loop on all bins and refill
6529
6530 Reset("ICE"); //reset only Integral, contents and Errors
6531
6532 int iaxis = 0;
6533 if (axis == &fXaxis) iaxis = 1;
6534 if (axis == &fYaxis) iaxis = 2;
6535 if (axis == &fZaxis) iaxis = 3;
6536 bool firstw = kTRUE;
6537 Int_t binx,biny, binz = 0;
6538 Int_t ix = 0,iy = 0,iz = 0;
6539 Double_t bx,by,bz;
6540 Int_t ncells = hold->GetNcells();
6541 for (Int_t bin = 0; bin < ncells; ++bin) {
6542 hold->GetBinXYZ(bin,binx,biny,binz);
6543 bx = hold->GetXaxis()->GetBinCenter(binx);
6544 ix = fXaxis.FindFixBin(bx);
6545 if (fDimension > 1) {
6546 by = hold->GetYaxis()->GetBinCenter(biny);
6547 iy = fYaxis.FindFixBin(by);
6548 if (fDimension > 2) {
6549 bz = hold->GetZaxis()->GetBinCenter(binz);
6550 iz = fZaxis.FindFixBin(bz);
6551 }
6552 }
6553 // exclude underflow/overflow
6554 double content = hold->RetrieveBinContent(bin);
6555 if (content == 0) continue;
6556 if (IsBinUnderflow(bin,iaxis) || IsBinOverflow(bin,iaxis) ) {
6557 if (firstw) {
6558 Warning("ExtendAxis","Histogram %s has underflow or overflow in the axis that is extendable"
6559 " their content will be lost",GetName() );
6560 firstw= kFALSE;
6561 }
6562 continue;
6563 }
6564 Int_t ibin= GetBin(ix,iy,iz);
6566 if (errors) {
6567 fSumw2.fArray[ibin] += hold->GetBinErrorSqUnchecked(bin);
6568 }
6569 }
6570 delete hold;
6571}
6572
6573////////////////////////////////////////////////////////////////////////////////
6574/// Recursively remove object from the list of functions
6575
6577{
6578 // Rely on TROOT::RecursiveRemove to take the readlock.
6579
6580 if (fFunctions) {
6582 }
6583}
6584
6585////////////////////////////////////////////////////////////////////////////////
6586/// Multiply this histogram by a constant c1.
6587///
6588/// `this = c1*this`
6589///
6590/// Note that both contents and errors (if any) are scaled.
6591/// This function uses the services of TH1::Add
6592///
6593/// IMPORTANT NOTE: Sumw2() is called automatically when scaling.
6594/// If you are not interested in the histogram statistics you can call
6595/// Sumw2(kFALSE) or use the option "nosw2"
6596///
6597/// One can scale a histogram such that the bins integral is equal to
6598/// the normalization parameter via TH1::Scale(Double_t norm), where norm
6599/// is the desired normalization divided by the integral of the histogram.
6600///
6601/// If option contains "width" the bin contents and errors are divided
6602/// by the bin width.
6603
6605{
6606
6607 TString opt = option; opt.ToLower();
6608 // store bin errors when scaling since cannot anymore be computed as sqrt(N)
6609 if (!opt.Contains("nosw2") && GetSumw2N() == 0) Sumw2();
6610 if (opt.Contains("width")) Add(this, this, c1, -1);
6611 else {
6612 if (fBuffer) BufferEmpty(1);
6613 for(Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, c1 * RetrieveBinContent(i));
6614 if (fSumw2.fN) for(Int_t i = 0; i < fNcells; ++i) fSumw2.fArray[i] *= (c1 * c1); // update errors
6615 // update global histograms statistics
6616 Double_t s[kNstat] = {0};
6617 GetStats(s);
6618 for (Int_t i=0 ; i < kNstat; i++) {
6619 if (i == 1) s[i] = c1*c1*s[i];
6620 else s[i] = c1*s[i];
6621 }
6622 PutStats(s);
6623 SetMinimum(); SetMaximum(); // minimum and maximum value will be recalculated the next time
6624 }
6625
6626 // if contours set, must also scale contours
6628 if (ncontours == 0) return;
6630 for (Int_t i = 0; i < ncontours; ++i) levels[i] *= c1;
6631}
6632
6633////////////////////////////////////////////////////////////////////////////////
6634/// Returns true if all axes are extendable.
6635
6637{
6639 if (GetDimension() > 1) canExtend &= fYaxis.CanExtend();
6640 if (GetDimension() > 2) canExtend &= fZaxis.CanExtend();
6641
6642 return canExtend;
6643}
6644
6645////////////////////////////////////////////////////////////////////////////////
6646/// Make the histogram axes extendable / not extendable according to the bit mask
6647/// returns the previous bit mask specifying which axes are extendable
6648
6650{
6652
6656
6657 if (GetDimension() > 1) {
6661 }
6662
6663 if (GetDimension() > 2) {
6667 }
6668
6669 return oldExtendBitMask;
6670}
6671
6672///////////////////////////////////////////////////////////////////////////////
6673/// Internal function used in TH1::Fill to see which axis is full alphanumeric,
6674/// i.e. can be extended and is alphanumeric
6676{
6680 bitMask |= kYaxis;
6682 bitMask |= kZaxis;
6683
6684 return bitMask;
6685}
6686
6687////////////////////////////////////////////////////////////////////////////////
6688/// Static function to set the default buffer size for automatic histograms.
6689/// When a histogram is created with one of its axis lower limit greater
6690/// or equal to its upper limit, the function SetBuffer is automatically
6691/// called with the default buffer size.
6692
6694{
6696}
6697
6698////////////////////////////////////////////////////////////////////////////////
6699/// When this static function is called with `sumw2=kTRUE`, all new
6700/// histograms will automatically activate the storage
6701/// of the sum of squares of errors, ie TH1::Sumw2 is automatically called.
6702
6704{
6706}
6707
6708////////////////////////////////////////////////////////////////////////////////
6709/// Change/set the title.
6710///
6711/// If title is in the form `stringt;stringx;stringy;stringz`
6712/// the histogram title is set to `stringt`, the x axis title to `stringx`,
6713/// the y axis title to `stringy`, and the z axis title to `stringz`.
6714///
6715/// To insert the character `;` in one of the titles, one should use `#;`
6716/// or `#semicolon`.
6717
6718void TH1::SetTitle(const char *title)
6719{
6720 fTitle = title;
6721 fTitle.ReplaceAll("#;",2,"#semicolon",10);
6722
6723 // Decode fTitle. It may contain X, Y and Z titles
6725 Int_t isc = str1.Index(";");
6726 Int_t lns = str1.Length();
6727
6728 if (isc >=0 ) {
6729 fTitle = str1(0,isc);
6730 str1 = str1(isc+1, lns);
6731 isc = str1.Index(";");
6732 if (isc >=0 ) {
6733 str2 = str1(0,isc);
6734 str2.ReplaceAll("#semicolon",10,";",1);
6735 fXaxis.SetTitle(str2.Data());
6736 lns = str1.Length();
6737 str1 = str1(isc+1, lns);
6738 isc = str1.Index(";");
6739 if (isc >=0 ) {
6740 str2 = str1(0,isc);
6741 str2.ReplaceAll("#semicolon",10,";",1);
6742 fYaxis.SetTitle(str2.Data());
6743 lns = str1.Length();
6744 str1 = str1(isc+1, lns);
6745 str1.ReplaceAll("#semicolon",10,";",1);
6746 fZaxis.SetTitle(str1.Data());
6747 } else {
6748 str1.ReplaceAll("#semicolon",10,";",1);
6749 fYaxis.SetTitle(str1.Data());
6750 }
6751 } else {
6752 str1.ReplaceAll("#semicolon",10,";",1);
6753 fXaxis.SetTitle(str1.Data());
6754 }
6755 }
6756
6757 fTitle.ReplaceAll("#semicolon",10,";",1);
6758
6759 if (gPad && TestBit(kMustCleanup)) gPad->Modified();
6760}
6761
6762////////////////////////////////////////////////////////////////////////////////
6763/// Smooth array xx, translation of Hbook routine `hsmoof.F`.
6764/// Based on algorithm 353QH twice presented by J. Friedman
6765/// in [Proc. of the 1974 CERN School of Computing, Norway, 11-24 August, 1974](https://cds.cern.ch/record/186223).
6766/// See also Section 4.2 in [J. Friedman, Data Analysis Techniques for High Energy Physics](https://www.slac.stanford.edu/pubs/slacreports/reports16/slac-r-176.pdf).
6767
6769{
6770 if (nn < 3 ) {
6771 ::Error("SmoothArray","Need at least 3 points for smoothing: n = %d",nn);
6772 return;
6773 }
6774
6775 Int_t ii;
6776 std::array<double, 3> hh{};
6777
6778 std::vector<double> yy(nn);
6779 std::vector<double> zz(nn);
6780 std::vector<double> rr(nn);
6781
6782 for (Int_t pass=0;pass<ntimes;pass++) {
6783 // first copy original data into temp array
6784 std::copy(xx, xx+nn, zz.begin() );
6785
6786 for (int noent = 0; noent < 2; ++noent) { // run algorithm two times
6787
6788 // do 353 i.e. running median 3, 5, and 3 in a single loop
6789 for (int kk = 0; kk < 3; kk++) {
6790 std::copy(zz.begin(), zz.end(), yy.begin());
6791 int medianType = (kk != 1) ? 3 : 5;
6792 int ifirst = (kk != 1 ) ? 1 : 2;
6793 int ilast = (kk != 1 ) ? nn-1 : nn -2;
6794 //nn2 = nn - ik - 1;
6795 // do all elements beside the first and last point for median 3
6796 // and first two and last 2 for median 5
6797 for ( ii = ifirst; ii < ilast; ii++) {
6798 zz[ii] = TMath::Median(medianType, yy.data() + ii - ifirst);
6799 }
6800
6801 if (kk == 0) { // first median 3
6802 // first point
6803 hh[0] = zz[1];
6804 hh[1] = zz[0];
6805 hh[2] = 3*zz[1] - 2*zz[2];
6806 zz[0] = TMath::Median(3, hh.data());
6807 // last point
6808 hh[0] = zz[nn - 2];
6809 hh[1] = zz[nn - 1];
6810 hh[2] = 3*zz[nn - 2] - 2*zz[nn - 3];
6811 zz[nn - 1] = TMath::Median(3, hh.data());
6812 }
6813
6814 if (kk == 1) { // median 5
6815 // second point with window length 3
6816 zz[1] = TMath::Median(3, yy.data());
6817 // second-to-last point with window length 3
6818 zz[nn - 2] = TMath::Median(3, yy.data() + nn - 3);
6819 }
6820
6821 // In the third iteration (kk == 2), the first and last point stay
6822 // the same (see paper linked in the documentation).
6823 }
6824
6825 std::copy ( zz.begin(), zz.end(), yy.begin() );
6826
6827 // quadratic interpolation for flat segments
6828 for (ii = 2; ii < (nn - 2); ii++) {
6829 if (zz[ii - 1] != zz[ii]) continue;
6830 if (zz[ii] != zz[ii + 1]) continue;
6831 const double tmp0 = zz[ii - 2] - zz[ii];
6832 const double tmp1 = zz[ii + 2] - zz[ii];
6833 if (tmp0 * tmp1 <= 0) continue;
6834 int jk = 1;
6835 if ( std::abs(tmp0) > std::abs(tmp0) ) jk = -1;
6836 yy[ii] = -0.5*zz[ii - 2*jk] + zz[ii]/0.75 + zz[ii + 2*jk] /6.;
6837 yy[ii + jk] = 0.5*(zz[ii + 2*jk] - zz[ii - 2*jk]) + zz[ii];
6838 }
6839
6840 // running means
6841 //std::copy(zz.begin(), zz.end(), yy.begin());
6842 for (ii = 1; ii < nn - 1; ii++) {
6843 zz[ii] = 0.25*yy[ii - 1] + 0.5*yy[ii] + 0.25*yy[ii + 1];
6844 }
6845 zz[0] = yy[0];
6846 zz[nn - 1] = yy[nn - 1];
6847
6848 if (noent == 0) {
6849
6850 // save computed values
6851 std::copy(zz.begin(), zz.end(), rr.begin());
6852
6853 // COMPUTE residuals
6854 for (ii = 0; ii < nn; ii++) {
6855 zz[ii] = xx[ii] - zz[ii];
6856 }
6857 }
6858
6859 } // end loop on noent
6860
6861
6862 double xmin = TMath::MinElement(nn,xx);
6863 for (ii = 0; ii < nn; ii++) {
6864 if (xmin < 0) xx[ii] = rr[ii] + zz[ii];
6865 // make smoothing defined positive - not better using 0 ?
6866 else xx[ii] = std::max((rr[ii] + zz[ii]),0.0 );
6867 }
6868 }
6869}
6870
6871////////////////////////////////////////////////////////////////////////////////
6872/// Smooth bin contents of this histogram.
6873/// if option contains "R" smoothing is applied only to the bins
6874/// defined in the X axis range (default is to smooth all bins)
6875/// Bin contents are replaced by their smooth values.
6876/// Errors (if any) are not modified.
6877/// the smoothing procedure is repeated ntimes (default=1)
6878
6880{
6881 if (fDimension != 1) {
6882 Error("Smooth","Smooth only supported for 1-d histograms");
6883 return;
6884 }
6885 Int_t nbins = fXaxis.GetNbins();
6886 if (nbins < 3) {
6887 Error("Smooth","Smooth only supported for histograms with >= 3 bins. Nbins = %d",nbins);
6888 return;
6889 }
6890
6891 // delete buffer if it is there since it will become invalid
6892 if (fBuffer) BufferEmpty(1);
6893
6894 Int_t firstbin = 1, lastbin = nbins;
6895 TString opt = option;
6896 opt.ToLower();
6897 if (opt.Contains("r")) {
6900 }
6901 nbins = lastbin - firstbin + 1;
6902 Double_t *xx = new Double_t[nbins];
6904 Int_t i;
6905 for (i=0;i<nbins;i++) {
6907 }
6908
6909 TH1::SmoothArray(nbins,xx,ntimes);
6910
6911 for (i=0;i<nbins;i++) {
6913 }
6914 fEntries = nent;
6915 delete [] xx;
6916
6917 if (gPad) gPad->Modified();
6918}
6919
6920////////////////////////////////////////////////////////////////////////////////
6921/// if flag=kTRUE, underflows and overflows are used by the Fill functions
6922/// in the computation of statistics (mean value, StdDev).
6923/// By default, underflows or overflows are not used.
6924
6926{
6928}
6929
6930////////////////////////////////////////////////////////////////////////////////
6931/// Stream a class object.
6932
6933void TH1::Streamer(TBuffer &b)
6934{
6935 if (b.IsReading()) {
6936 UInt_t R__s, R__c;
6937 Version_t R__v = b.ReadVersion(&R__s, &R__c);
6938 if (fDirectory) fDirectory->Remove(this);
6939 fDirectory = nullptr;
6940 if (R__v > 2) {
6941 b.ReadClassBuffer(TH1::Class(), this, R__v, R__s, R__c);
6942
6944 fXaxis.SetParent(this);
6945 fYaxis.SetParent(this);
6946 fZaxis.SetParent(this);
6947 TIter next(fFunctions);
6948 TObject *obj;
6949 while ((obj=next())) {
6950 if (obj->InheritsFrom(TF1::Class())) ((TF1*)obj)->SetParent(this);
6951 }
6952 return;
6953 }
6954 //process old versions before automatic schema evolution
6959 b >> fNcells;
6960 fXaxis.Streamer(b);
6961 fYaxis.Streamer(b);
6962 fZaxis.Streamer(b);
6963 fXaxis.SetParent(this);
6964 fYaxis.SetParent(this);
6965 fZaxis.SetParent(this);
6966 b >> fBarOffset;
6967 b >> fBarWidth;
6968 b >> fEntries;
6969 b >> fTsumw;
6970 b >> fTsumw2;
6971 b >> fTsumwx;
6972 b >> fTsumwx2;
6973 if (R__v < 2) {
6975 Float_t *contour=nullptr;
6976 b >> maximum; fMaximum = maximum;
6977 b >> minimum; fMinimum = minimum;
6978 b >> norm; fNormFactor = norm;
6979 Int_t n = b.ReadArray(contour);
6980 fContour.Set(n);
6981 for (Int_t i=0;i<n;i++) fContour.fArray[i] = contour[i];
6982 delete [] contour;
6983 } else {
6984 b >> fMaximum;
6985 b >> fMinimum;
6986 b >> fNormFactor;
6988 }
6989 fSumw2.Streamer(b);
6991 fFunctions->Delete();
6993 b.CheckByteCount(R__s, R__c, TH1::IsA());
6994
6995 } else {
6996 b.WriteClassBuffer(TH1::Class(),this);
6997 }
6998}
6999
7000////////////////////////////////////////////////////////////////////////////////
7001/// Print some global quantities for this histogram.
7002/// \param[in] option
7003/// - "base" is given, number of bins and ranges are also printed
7004/// - "range" is given, bin contents and errors are also printed
7005/// for all bins in the current range (default 1-->nbins)
7006/// - "all" is given, bin contents and errors are also printed
7007/// for all bins including under and overflows.
7008
7009void TH1::Print(Option_t *option) const
7010{
7011 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7012 printf( "TH1.Print Name = %s, Entries= %d, Total sum= %g\n",GetName(),Int_t(fEntries),GetSumOfWeights());
7013 TString opt = option;
7014 opt.ToLower();
7015 Int_t all;
7016 if (opt.Contains("all")) all = 0;
7017 else if (opt.Contains("range")) all = 1;
7018 else if (opt.Contains("base")) all = 2;
7019 else return;
7020
7021 Int_t bin, binx, biny, binz;
7023 if (all == 0) {
7024 lastx = fXaxis.GetNbins()+1;
7025 if (fDimension > 1) lasty = fYaxis.GetNbins()+1;
7026 if (fDimension > 2) lastz = fZaxis.GetNbins()+1;
7027 } else {
7029 if (fDimension > 1) {firsty = fYaxis.GetFirst(); lasty = fYaxis.GetLast();}
7030 if (fDimension > 2) {firstz = fZaxis.GetFirst(); lastz = fZaxis.GetLast();}
7031 }
7032
7033 if (all== 2) {
7034 printf(" Title = %s\n", GetTitle());
7035 printf(" NbinsX= %d, xmin= %g, xmax=%g", fXaxis.GetNbins(), fXaxis.GetXmin(), fXaxis.GetXmax());
7036 if( fDimension > 1) printf(", NbinsY= %d, ymin= %g, ymax=%g", fYaxis.GetNbins(), fYaxis.GetXmin(), fYaxis.GetXmax());
7037 if( fDimension > 2) printf(", NbinsZ= %d, zmin= %g, zmax=%g", fZaxis.GetNbins(), fZaxis.GetXmin(), fZaxis.GetXmax());
7038 printf("\n");
7039 return;
7040 }
7041
7042 Double_t w,e;
7043 Double_t x,y,z;
7044 if (fDimension == 1) {
7045 for (binx=firstx;binx<=lastx;binx++) {
7048 e = GetBinError(binx);
7049 if(fSumw2.fN) printf(" fSumw[%d]=%g, x=%g, error=%g\n",binx,w,x,e);
7050 else printf(" fSumw[%d]=%g, x=%g\n",binx,w,x);
7051 }
7052 }
7053 if (fDimension == 2) {
7054 for (biny=firsty;biny<=lasty;biny++) {
7056 for (binx=firstx;binx<=lastx;binx++) {
7057 bin = GetBin(binx,biny);
7059 w = RetrieveBinContent(bin);
7060 e = GetBinError(bin);
7061 if(fSumw2.fN) printf(" fSumw[%d][%d]=%g, x=%g, y=%g, error=%g\n",binx,biny,w,x,y,e);
7062 else printf(" fSumw[%d][%d]=%g, x=%g, y=%g\n",binx,biny,w,x,y);
7063 }
7064 }
7065 }
7066 if (fDimension == 3) {
7067 for (binz=firstz;binz<=lastz;binz++) {
7069 for (biny=firsty;biny<=lasty;biny++) {
7071 for (binx=firstx;binx<=lastx;binx++) {
7072 bin = GetBin(binx,biny,binz);
7074 w = RetrieveBinContent(bin);
7075 e = GetBinError(bin);
7076 if(fSumw2.fN) printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g, error=%g\n",binx,biny,binz,w,x,y,z,e);
7077 else printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g\n",binx,biny,binz,w,x,y,z);
7078 }
7079 }
7080 }
7081 }
7082}
7083
7084////////////////////////////////////////////////////////////////////////////////
7085/// Using the current bin info, recompute the arrays for contents and errors
7086
7087void TH1::Rebuild(Option_t *)
7088{
7089 SetBinsLength();
7090 if (fSumw2.fN) {
7092 }
7093}
7094
7095////////////////////////////////////////////////////////////////////////////////
7096/// Reset this histogram: contents, errors, etc.
7097/// \param[in] option
7098/// - if "ICE" is specified, resets only Integral, Contents and Errors.
7099/// - if "ICES" is specified, resets only Integral, Contents, Errors and Statistics
7100/// This option is used
7101/// - if "M" is specified, resets also Minimum and Maximum
7102
7104{
7105 // The option "ICE" is used when extending the histogram (in ExtendAxis, LabelInflate, etc..)
7106 // The option "ICES is used in combination with the buffer (see BufferEmpty and BufferFill)
7107
7108 TString opt = option;
7109 opt.ToUpper();
7110 fSumw2.Reset();
7111 if (fIntegral) {
7112 delete [] fIntegral;
7113 fIntegral = nullptr;
7114 }
7115
7116 if (opt.Contains("M")) {
7117 SetMinimum();
7118 SetMaximum();
7119 }
7120
7121 if (opt.Contains("ICE") && !opt.Contains("S")) return;
7122
7123 // Setting fBuffer[0] = 0 is like resetting the buffer but not deleting it
7124 // But what is the sense of calling BufferEmpty() ? For making the axes ?
7125 // BufferEmpty will update contents that later will be
7126 // reset in calling TH1D::Reset. For this we need to reset the stats afterwards
7127 // It may be needed for computing the axis limits....
7128 if (fBuffer) {BufferEmpty(); fBuffer[0] = 0;}
7129
7130 // need to reset also the statistics
7131 // (needs to be done after calling BufferEmpty() )
7132 fTsumw = 0;
7133 fTsumw2 = 0;
7134 fTsumwx = 0;
7135 fTsumwx2 = 0;
7136 fEntries = 0;
7137
7138 if (opt == "ICES") return;
7139
7140
7141 TObject *stats = fFunctions->FindObject("stats");
7143 //special logic to support the case where the same object is
7144 //added multiple times in fFunctions.
7145 //This case happens when the same object is added with different
7146 //drawing modes
7147 TObject *obj;
7148 while ((obj = fFunctions->First())) {
7149 while(fFunctions->Remove(obj)) { }
7150 delete obj;
7151 }
7152 if(stats) fFunctions->Add(stats);
7153 fContour.Set(0);
7154}
7155
7156////////////////////////////////////////////////////////////////////////////////
7157/// Save the histogram as .csv, .tsv or .txt. In case of any other extension, fall
7158/// back to TObject::SaveAs, which saves as a .C macro (but with the file name
7159/// extension specified by the user)
7160///
7161/// The Under/Overflow bins are also exported (as first and last lines)
7162/// The fist 2 columns are the lower and upper edges of the bins
7163/// Column 3 contains the bin contents
7164/// The last column contains the error in y. If errors are not present, the column
7165/// is left empty
7166///
7167/// The result can be immediately imported into Excel, gnuplot, Python or whatever,
7168/// without the needing to install pyroot, etc.
7169///
7170/// \param filename the name of the file where to store the histogram
7171/// \param option some tuning options
7172///
7173/// The file extension defines the delimiter used:
7174/// - `.csv` : comma
7175/// - `.tsv` : tab
7176/// - `.txt` : space
7177///
7178/// If option = "title" a title line is generated. If the y-axis has a title,
7179/// this title is displayed as column 3 name, otherwise, it shows "BinContent"
7180
7181void TH1::SaveAs(const char *filename, Option_t *option) const
7182{
7183 char del = '\0';
7184 TString ext = "";
7186 TString opt = option;
7187
7188 if (filename) {
7189 if (fname.EndsWith(".csv")) {
7190 del = ',';
7191 ext = "csv";
7192 } else if (fname.EndsWith(".tsv")) {
7193 del = '\t';
7194 ext = "tsv";
7195 } else if (fname.EndsWith(".txt")) {
7196 del = ' ';
7197 ext = "txt";
7198 }
7199 }
7200 if (!del) {
7202 return;
7203 }
7204 std::ofstream out;
7205 out.open(filename, std::ios::out);
7206 if (!out.good()) {
7207 Error("SaveAs", "cannot open file: %s", filename);
7208 return;
7209 }
7210 if (opt.Contains("title")) {
7211 if (std::strcmp(GetYaxis()->GetTitle(), "") == 0) {
7212 out << "# " << "BinLowEdge" << del << "BinUpEdge" << del
7213 << "BinContent"
7214 << del << "ey" << std::endl;
7215 } else {
7216 out << "# " << "BinLowEdge" << del << "BinUpEdge" << del << GetYaxis()->GetTitle() << del << "ey" << std::endl;
7217 }
7218 }
7219 if (fSumw2.fN) {
7220 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
7221 out << GetXaxis()->GetBinLowEdge(i) << del << GetXaxis()->GetBinUpEdge(i) << del << GetBinContent(i) << del
7222 << GetBinError(i) << std::endl;
7223 }
7224 } else {
7225 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
7226 out << GetXaxis()->GetBinLowEdge(i) << del << GetXaxis()->GetBinUpEdge(i) << del << GetBinContent(i) << del
7227 << std::endl;
7228 }
7229 }
7230 out.close();
7231 Info("SaveAs", "%s file: %s has been generated", ext.Data(), filename);
7232}
7233
7234////////////////////////////////////////////////////////////////////////////////
7235/// Save primitive as a C++ statement(s) on output stream out
7236
7237void TH1::SavePrimitive(std::ostream &out, Option_t *option /*= ""*/)
7238{
7239 // empty the buffer before if it exists
7240 if (fBuffer) BufferEmpty();
7241
7245 Int_t i;
7246 static Int_t nxaxis = 0;
7247 static Int_t nyaxis = 0;
7248 static Int_t nzaxis = 0;
7249 TString sxaxis="xAxis",syaxis="yAxis",szaxis="zAxis";
7250
7251 const auto old_precision{out.precision()};
7252 constexpr auto max_precision{std::numeric_limits<double>::digits10 + 1};
7253 out << std::setprecision(max_precision);
7254 // Check if the histogram has equidistant X bins or not. If not, we
7255 // create an array holding the bins.
7256 if (GetXaxis()->GetXbins()->fN && GetXaxis()->GetXbins()->fArray) {
7257 nonEqiX = kTRUE;
7258 nxaxis++;
7259 sxaxis += nxaxis;
7260 out << " Double_t "<<sxaxis<<"[" << GetXaxis()->GetXbins()->fN
7261 << "] = {";
7262 for (i = 0; i < GetXaxis()->GetXbins()->fN; i++) {
7263 if (i != 0) out << ", ";
7264 out << GetXaxis()->GetXbins()->fArray[i];
7265 }
7266 out << "}; " << std::endl;
7267 }
7268 // If the histogram is 2 or 3 dimensional, check if the histogram
7269 // has equidistant Y bins or not. If not, we create an array
7270 // holding the bins.
7271 if (fDimension > 1 && GetYaxis()->GetXbins()->fN &&
7272 GetYaxis()->GetXbins()->fArray) {
7273 nonEqiY = kTRUE;
7274 nyaxis++;
7275 syaxis += nyaxis;
7276 out << " Double_t "<<syaxis<<"[" << GetYaxis()->GetXbins()->fN
7277 << "] = {";
7278 for (i = 0; i < GetYaxis()->GetXbins()->fN; i++) {
7279 if (i != 0) out << ", ";
7280 out << GetYaxis()->GetXbins()->fArray[i];
7281 }
7282 out << "}; " << std::endl;
7283 }
7284 // IF the histogram is 3 dimensional, check if the histogram
7285 // has equidistant Z bins or not. If not, we create an array
7286 // holding the bins.
7287 if (fDimension > 2 && GetZaxis()->GetXbins()->fN &&
7288 GetZaxis()->GetXbins()->fArray) {
7289 nonEqiZ = kTRUE;
7290 nzaxis++;
7291 szaxis += nzaxis;
7292 out << " Double_t "<<szaxis<<"[" << GetZaxis()->GetXbins()->fN
7293 << "] = {";
7294 for (i = 0; i < GetZaxis()->GetXbins()->fN; i++) {
7295 if (i != 0) out << ", ";
7296 out << GetZaxis()->GetXbins()->fArray[i];
7297 }
7298 out << "}; " << std::endl;
7299 }
7300
7301 char quote = '"';
7302 out <<" "<<std::endl;
7303 out <<" "<< ClassName() <<" *";
7304
7305 // Histogram pointer has by default the histogram name with an incremental suffix.
7306 // If the histogram belongs to a graph or a stack the suffix is not added because
7307 // the graph and stack objects are not aware of this new name. Same thing if
7308 // the histogram is drawn with the option COLZ because the TPaletteAxis drawn
7309 // when this option is selected, does not know this new name either.
7310 TString opt = option;
7311 opt.ToLower();
7312 static Int_t hcounter = 0;
7313 TString histName = GetName();
7314 if ( !histName.Contains("Graph")
7315 && !histName.Contains("_stack_")
7316 && !opt.Contains("colz")) {
7317 hcounter++;
7318 histName += "__";
7319 histName += hcounter;
7320 }
7321 histName = gInterpreter-> MapCppName(histName);
7322 const char *hname = histName.Data();
7323 if (!strlen(hname)) hname = "unnamed";
7325 this->SetName(hname);
7326 TString t(GetTitle());
7327 t.ReplaceAll("\\","\\\\");
7328 t.ReplaceAll("\"","\\\"");
7329 out << hname << " = new " << ClassName() << "(" << quote
7330 << hname << quote << "," << quote<< t.Data() << quote
7331 << "," << GetXaxis()->GetNbins();
7332 if (nonEqiX)
7333 out << ", "<<sxaxis;
7334 else
7335 out << "," << GetXaxis()->GetXmin()
7336 << "," << GetXaxis()->GetXmax();
7337 if (fDimension > 1) {
7338 out << "," << GetYaxis()->GetNbins();
7339 if (nonEqiY)
7340 out << ", "<<syaxis;
7341 else
7342 out << "," << GetYaxis()->GetXmin()
7343 << "," << GetYaxis()->GetXmax();
7344 }
7345 if (fDimension > 2) {
7346 out << "," << GetZaxis()->GetNbins();
7347 if (nonEqiZ)
7348 out << ", "<<szaxis;
7349 else
7350 out << "," << GetZaxis()->GetXmin()
7351 << "," << GetZaxis()->GetXmax();
7352 }
7353 out << ");" << std::endl;
7354
7355 // save bin contents
7356 Int_t bin;
7357 for (bin=0;bin<fNcells;bin++) {
7359 if (bc) {
7360 out<<" "<<hname<<"->SetBinContent("<<bin<<","<<bc<<");"<<std::endl;
7361 }
7362 }
7363
7364 // save bin errors
7365 if (fSumw2.fN) {
7366 for (bin=0;bin<fNcells;bin++) {
7367 Double_t be = GetBinError(bin);
7368 if (be) {
7369 out<<" "<<hname<<"->SetBinError("<<bin<<","<<be<<");"<<std::endl;
7370 }
7371 }
7372 }
7373
7375 out << std::setprecision(old_precision);
7376 this->SetName(savedName.Data());
7377}
7378
7379////////////////////////////////////////////////////////////////////////////////
7380/// Helper function for the SavePrimitive functions from TH1
7381/// or classes derived from TH1, eg TProfile, TProfile2D.
7382
7383void TH1::SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option /*= ""*/)
7384{
7385 char quote = '"';
7386 if (TMath::Abs(GetBarOffset()) > 1e-5) {
7387 out<<" "<<hname<<"->SetBarOffset("<<GetBarOffset()<<");"<<std::endl;
7388 }
7389 if (TMath::Abs(GetBarWidth()-1) > 1e-5) {
7390 out<<" "<<hname<<"->SetBarWidth("<<GetBarWidth()<<");"<<std::endl;
7391 }
7392 if (fMinimum != -1111) {
7393 out<<" "<<hname<<"->SetMinimum("<<fMinimum<<");"<<std::endl;
7394 }
7395 if (fMaximum != -1111) {
7396 out<<" "<<hname<<"->SetMaximum("<<fMaximum<<");"<<std::endl;
7397 }
7398 if (fNormFactor != 0) {
7399 out<<" "<<hname<<"->SetNormFactor("<<fNormFactor<<");"<<std::endl;
7400 }
7401 if (fEntries != 0) {
7402 out<<" "<<hname<<"->SetEntries("<<fEntries<<");"<<std::endl;
7403 }
7404 if (!fDirectory) {
7405 out<<" "<<hname<<"->SetDirectory(nullptr);"<<std::endl;
7406 }
7407 if (TestBit(kNoStats)) {
7408 out<<" "<<hname<<"->SetStats(0);"<<std::endl;
7409 }
7410 if (fOption.Length() != 0) {
7411 out<<" "<<hname<<"->SetOption("<<quote<<fOption.Data()<<quote<<");"<<std::endl;
7412 }
7413
7414 // save contour levels
7416 if (ncontours > 0) {
7417 out<<" "<<hname<<"->SetContour("<<ncontours<<");"<<std::endl;
7419 for (Int_t bin=0;bin<ncontours;bin++) {
7420 if (gPad->GetLogz()) {
7422 } else {
7423 zlevel = GetContourLevel(bin);
7424 }
7425 out<<" "<<hname<<"->SetContourLevel("<<bin<<","<<zlevel<<");"<<std::endl;
7426 }
7427 }
7428
7429 // save list of functions
7430 auto lnk = fFunctions->FirstLink();
7431 static Int_t funcNumber = 0;
7432 while (lnk) {
7433 auto obj = lnk->GetObject();
7434 obj->SavePrimitive(out, TString::Format("nodraw #%d\n",++funcNumber).Data());
7435 if (obj->InheritsFrom(TF1::Class())) {
7436 TString fname;
7437 fname.Form("%s%d",obj->GetName(),funcNumber);
7438 out << " " << fname << "->SetParent(" << hname << ");\n";
7439 out<<" "<<hname<<"->GetListOfFunctions()->Add("
7440 << fname <<");"<<std::endl;
7441 } else if (obj->InheritsFrom("TPaveStats")) {
7442 out<<" "<<hname<<"->GetListOfFunctions()->Add(ptstats);"<<std::endl;
7443 out<<" ptstats->SetParent("<<hname<<");"<<std::endl;
7444 } else if (obj->InheritsFrom("TPolyMarker")) {
7445 out<<" "<<hname<<"->GetListOfFunctions()->Add("
7446 <<"pmarker ,"<<quote<<lnk->GetOption()<<quote<<");"<<std::endl;
7447 } else {
7448 out<<" "<<hname<<"->GetListOfFunctions()->Add("
7449 <<obj->GetName()
7450 <<","<<quote<<lnk->GetOption()<<quote<<");"<<std::endl;
7451 }
7452 lnk = lnk->Next();
7453 }
7454
7455 // save attributes
7456 SaveFillAttributes(out,hname,0,1001);
7457 SaveLineAttributes(out,hname,1,1,1);
7458 SaveMarkerAttributes(out,hname,1,1,1);
7459 fXaxis.SaveAttributes(out,hname,"->GetXaxis()");
7460 fYaxis.SaveAttributes(out,hname,"->GetYaxis()");
7461 fZaxis.SaveAttributes(out,hname,"->GetZaxis()");
7462 TString opt = option;
7463 opt.ToLower();
7464 if (!opt.Contains("nodraw")) {
7465 out<<" "<<hname<<"->Draw("
7466 <<quote<<option<<quote<<");"<<std::endl;
7467 }
7468}
7469
7470////////////////////////////////////////////////////////////////////////////////
7511 }
7512}
7513
7514////////////////////////////////////////////////////////////////////////////////
7515/// For axis = 1,2 or 3 returns the mean value of the histogram along
7516/// X,Y or Z axis.
7517///
7518/// For axis = 11, 12, 13 returns the standard error of the mean value
7519/// of the histogram along X, Y or Z axis
7520///
7521/// Note that the mean value/StdDev is computed using the bins in the currently
7522/// defined range (see TAxis::SetRange). By default the range includes
7523/// all bins from 1 to nbins included, excluding underflows and overflows.
7524/// To force the underflows and overflows in the computation, one must
7525/// call the static function TH1::StatOverflows(kTRUE) before filling
7526/// the histogram.
7527///
7528/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7529/// are calculated. By default, if no range has been set, the returned mean is
7530/// the (unbinned) one calculated at fill time. If a range has been set, however,
7531/// the mean is calculated using the bins in range, as described above; THIS
7532/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7533/// the range. To ensure that the returned mean (and all other statistics) is
7534/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7535/// See TH1::GetStats.
7536///
7537/// Return mean value of this histogram along the X axis.
7538
7539Double_t TH1::GetMean(Int_t axis) const
7540{
7541 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7543 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7544 GetStats(stats);
7545 if (stats[0] == 0) return 0;
7546 if (axis<4){
7547 Int_t ax[3] = {2,4,7};
7548 return stats[ax[axis-1]]/stats[0];
7549 } else {
7550 // mean error = StdDev / sqrt( Neff )
7551 Double_t stddev = GetStdDev(axis-10);
7553 return ( neff > 0 ? stddev/TMath::Sqrt(neff) : 0. );
7554 }
7555}
7556
7557////////////////////////////////////////////////////////////////////////////////
7558/// Return standard error of mean of this histogram along the X axis.
7559///
7560/// Note that the mean value/StdDev is computed using the bins in the currently
7561/// defined range (see TAxis::SetRange). By default the range includes
7562/// all bins from 1 to nbins included, excluding underflows and overflows.
7563/// To force the underflows and overflows in the computation, one must
7564/// call the static function TH1::StatOverflows(kTRUE) before filling
7565/// the histogram.
7566///
7567/// Also note, that although the definition of standard error doesn't include the
7568/// assumption of normality, many uses of this feature implicitly assume it.
7569///
7570/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7571/// are calculated. By default, if no range has been set, the returned value is
7572/// the (unbinned) one calculated at fill time. If a range has been set, however,
7573/// the value is calculated using the bins in range, as described above; THIS
7574/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7575/// the range. To ensure that the returned value (and all other statistics) is
7576/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7577/// See TH1::GetStats.
7578
7580{
7581 return GetMean(axis+10);
7582}
7583
7584////////////////////////////////////////////////////////////////////////////////
7585/// Returns the Standard Deviation (Sigma).
7586/// The Sigma estimate is computed as
7587/// \f[
7588/// \sqrt{\frac{1}{N}(\sum(x_i-x_{mean})^2)}
7589/// \f]
7590/// For axis = 1,2 or 3 returns the Sigma value of the histogram along
7591/// X, Y or Z axis
7592/// For axis = 11, 12 or 13 returns the error of StdDev estimation along
7593/// X, Y or Z axis for Normal distribution
7594///
7595/// Note that the mean value/sigma is computed using the bins in the currently
7596/// defined range (see TAxis::SetRange). By default the range includes
7597/// all bins from 1 to nbins included, excluding underflows and overflows.
7598/// To force the underflows and overflows in the computation, one must
7599/// call the static function TH1::StatOverflows(kTRUE) before filling
7600/// the histogram.
7601///
7602/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7603/// are calculated. By default, if no range has been set, the returned standard
7604/// deviation is the (unbinned) one calculated at fill time. If a range has been
7605/// set, however, the standard deviation is calculated using the bins in range,
7606/// as described above; THIS IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use
7607/// TAxis::SetRange(0, 0) to unset the range. To ensure that the returned standard
7608/// deviation (and all other statistics) is always that of the binned data stored
7609/// in the histogram, call TH1::ResetStats. See TH1::GetStats.
7610
7611Double_t TH1::GetStdDev(Int_t axis) const
7612{
7613 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7614
7616 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7617 GetStats(stats);
7618 if (stats[0] == 0) return 0;
7619 Int_t ax[3] = {2,4,7};
7620 Int_t axm = ax[axis%10 - 1];
7621 x = stats[axm]/stats[0];
7622 // for negative stddev (e.g. when having negative weights) - return stdev=0
7623 stddev2 = TMath::Max( stats[axm+1]/stats[0] -x*x, 0.0 );
7624 if (axis<10)
7625 return TMath::Sqrt(stddev2);
7626 else {
7627 // The right formula for StdDev error depends on 4th momentum (see Kendall-Stuart Vol 1 pag 243)
7628 // formula valid for only gaussian distribution ( 4-th momentum = 3 * sigma^4 )
7630 return ( neff > 0 ? TMath::Sqrt(stddev2/(2*neff) ) : 0. );
7631 }
7632}
7633
7634////////////////////////////////////////////////////////////////////////////////
7635/// Return error of standard deviation estimation for Normal distribution
7636///
7637/// Note that the mean value/StdDev is computed using the bins in the currently
7638/// defined range (see TAxis::SetRange). By default the range includes
7639/// all bins from 1 to nbins included, excluding underflows and overflows.
7640/// To force the underflows and overflows in the computation, one must
7641/// call the static function TH1::StatOverflows(kTRUE) before filling
7642/// the histogram.
7643///
7644/// Value returned is standard deviation of sample standard deviation.
7645/// Note that it is an approximated value which is valid only in the case that the
7646/// original data distribution is Normal. The correct one would require
7647/// the 4-th momentum value, which cannot be accurately estimated from a histogram since
7648/// the x-information for all entries is not kept.
7649///
7650/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7651/// are calculated. By default, if no range has been set, the returned value is
7652/// the (unbinned) one calculated at fill time. If a range has been set, however,
7653/// the value is calculated using the bins in range, as described above; THIS
7654/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7655/// the range. To ensure that the returned value (and all other statistics) is
7656/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7657/// See TH1::GetStats.
7658
7660{
7661 return GetStdDev(axis+10);
7662}
7663
7664////////////////////////////////////////////////////////////////////////////////
7665/// - For axis = 1, 2 or 3 returns skewness of the histogram along x, y or z axis.
7666/// - For axis = 11, 12 or 13 returns the approximate standard error of skewness
7667/// of the histogram along x, y or z axis
7668///
7669///Note, that since third and fourth moment are not calculated
7670///at the fill time, skewness and its standard error are computed bin by bin
7671///
7672/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7673/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7674
7676{
7677
7678 if (axis > 0 && axis <= 3){
7679
7680 Double_t mean = GetMean(axis);
7681 Double_t stddev = GetStdDev(axis);
7683
7690 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7693 if (firstBinX == 1) firstBinX = 0;
7694 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7695 }
7697 if (firstBinY == 1) firstBinY = 0;
7698 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7699 }
7701 if (firstBinZ == 1) firstBinZ = 0;
7702 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7703 }
7704 }
7705
7706 Double_t x = 0;
7707 Double_t sum=0;
7708 Double_t np=0;
7709 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7710 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7711 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7712 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7713 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7714 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7716 np+=w;
7717 sum+=w*(x-mean)*(x-mean)*(x-mean);
7718 }
7719 }
7720 }
7721 sum/=np*stddev3;
7722 return sum;
7723 }
7724 else if (axis > 10 && axis <= 13) {
7725 //compute standard error of skewness
7726 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7728 return ( neff > 0 ? TMath::Sqrt(6./neff ) : 0. );
7729 }
7730 else {
7731 Error("GetSkewness", "illegal value of parameter");
7732 return 0;
7733 }
7734}
7735
7736////////////////////////////////////////////////////////////////////////////////
7737/// - For axis =1, 2 or 3 returns kurtosis of the histogram along x, y or z axis.
7738/// Kurtosis(gaussian(0, 1)) = 0.
7739/// - For axis =11, 12 or 13 returns the approximate standard error of kurtosis
7740/// of the histogram along x, y or z axis
7741////
7742/// Note, that since third and fourth moment are not calculated
7743/// at the fill time, kurtosis and its standard error are computed bin by bin
7744///
7745/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7746/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7747
7749{
7750 if (axis > 0 && axis <= 3){
7751
7752 Double_t mean = GetMean(axis);
7753 Double_t stddev = GetStdDev(axis);
7755
7762 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7765 if (firstBinX == 1) firstBinX = 0;
7766 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7767 }
7769 if (firstBinY == 1) firstBinY = 0;
7770 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7771 }
7773 if (firstBinZ == 1) firstBinZ = 0;
7774 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7775 }
7776 }
7777
7778 Double_t x = 0;
7779 Double_t sum=0;
7780 Double_t np=0;
7781 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7782 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7783 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7784 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7785 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7786 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7788 np+=w;
7789 sum+=w*(x-mean)*(x-mean)*(x-mean)*(x-mean);
7790 }
7791 }
7792 }
7793 sum/=(np*stddev4);
7794 return sum-3;
7795
7796 } else if (axis > 10 && axis <= 13) {
7797 //compute standard error of skewness
7798 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7800 return ( neff > 0 ? TMath::Sqrt(24./neff ) : 0. );
7801 }
7802 else {
7803 Error("GetKurtosis", "illegal value of parameter");
7804 return 0;
7805 }
7806}
7807
7808////////////////////////////////////////////////////////////////////////////////
7809/// fill the array stats from the contents of this histogram
7810/// The array stats must be correctly dimensioned in the calling program.
7811///
7812/// ~~~ {.cpp}
7813/// stats[0] = sumw
7814/// stats[1] = sumw2
7815/// stats[2] = sumwx
7816/// stats[3] = sumwx2
7817/// ~~~
7818///
7819/// If no axis-subrange is specified (via TAxis::SetRange), the array stats
7820/// is simply a copy of the statistics quantities computed at filling time.
7821/// If a sub-range is specified, the function recomputes these quantities
7822/// from the bin contents in the current axis range.
7823///
7824/// IMPORTANT NOTE: This means that the returned statistics are context-dependent.
7825/// If TAxis::kAxisRange, the returned statistics are dependent on the binning;
7826/// otherwise, they are a copy of the histogram statistics computed at fill time,
7827/// which are unbinned by default (calling TH1::ResetStats forces them to use
7828/// binned statistics). You can reset TAxis::kAxisRange using TAxis::SetRange(0, 0).
7829///
7830/// Note that the mean value/StdDev is computed using the bins in the currently
7831/// defined range (see TAxis::SetRange). By default the range includes
7832/// all bins from 1 to nbins included, excluding underflows and overflows.
7833/// To force the underflows and overflows in the computation, one must
7834/// call the static function TH1::StatOverflows(kTRUE) before filling
7835/// the histogram.
7836
7837void TH1::GetStats(Double_t *stats) const
7838{
7839 if (fBuffer) ((TH1*)this)->BufferEmpty();
7840
7841 // Loop on bins (possibly including underflows/overflows)
7842 Int_t bin, binx;
7843 Double_t w,err;
7844 Double_t x;
7845 // identify the case of labels with extension of axis range
7846 // in this case the statistics in x does not make any sense
7847 Bool_t labelHist = ((const_cast<TAxis&>(fXaxis)).GetLabels() && fXaxis.CanExtend() );
7848 // fTsumw == 0 && fEntries > 0 is a special case when uses SetBinContent or calls ResetStats before
7849 if ( (fTsumw == 0 && fEntries > 0) || fXaxis.TestBit(TAxis::kAxisRange) ) {
7850 for (bin=0;bin<4;bin++) stats[bin] = 0;
7851
7854 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7856 if (firstBinX == 1) firstBinX = 0;
7857 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7858 }
7859 for (binx = firstBinX; binx <= lastBinX; binx++) {
7861 //w = TMath::Abs(RetrieveBinContent(binx));
7862 // not sure what to do here if w < 0
7864 err = TMath::Abs(GetBinError(binx));
7865 stats[0] += w;
7866 stats[1] += err*err;
7867 // statistics in x makes sense only for not labels histograms
7868 if (!labelHist) {
7869 stats[2] += w*x;
7870 stats[3] += w*x*x;
7871 }
7872 }
7873 // if (stats[0] < 0) {
7874 // // in case total is negative do something ??
7875 // stats[0] = 0;
7876 // }
7877 } else {
7878 stats[0] = fTsumw;
7879 stats[1] = fTsumw2;
7880 stats[2] = fTsumwx;
7881 stats[3] = fTsumwx2;
7882 }
7883}
7884
7885////////////////////////////////////////////////////////////////////////////////
7886/// Replace current statistics with the values in array stats
7887
7889{
7890 fTsumw = stats[0];
7891 fTsumw2 = stats[1];
7892 fTsumwx = stats[2];
7893 fTsumwx2 = stats[3];
7894}
7895
7896////////////////////////////////////////////////////////////////////////////////
7897/// Reset the statistics including the number of entries
7898/// and replace with values calculated from bin content
7899///
7900/// The number of entries is set to the total bin content or (in case of weighted histogram)
7901/// to number of effective entries
7902///
7903/// Note that, by default, before calling this function, statistics are those
7904/// computed at fill time, which are unbinned. See TH1::GetStats.
7905
7906void TH1::ResetStats()
7907{
7908 Double_t stats[kNstat] = {0};
7909 fTsumw = 0;
7910 fEntries = 1; // to force re-calculation of the statistics in TH1::GetStats
7911 GetStats(stats);
7912 PutStats(stats);
7914 // use effective entries for weighted histograms: (sum_w) ^2 / sum_w2
7915 if (fSumw2.fN > 0 && fTsumw > 0 && stats[1] > 0 ) fEntries = stats[0]*stats[0]/ stats[1];
7916}
7917
7918////////////////////////////////////////////////////////////////////////////////
7919/// Return the sum of weights excluding under/overflows.
7920
7922{
7923 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7924
7925 Int_t bin,binx,biny,binz;
7926 Double_t sum =0;
7927 for(binz=1; binz<=fZaxis.GetNbins(); binz++) {
7928 for(biny=1; biny<=fYaxis.GetNbins(); biny++) {
7929 for(binx=1; binx<=fXaxis.GetNbins(); binx++) {
7930 bin = GetBin(binx,biny,binz);
7931 sum += RetrieveBinContent(bin);
7932 }
7933 }
7934 }
7935 return sum;
7936}
7937
7938////////////////////////////////////////////////////////////////////////////////
7939///Return integral of bin contents. Only bins in the bins range are considered.
7940///
7941/// By default the integral is computed as the sum of bin contents in the range.
7942/// if option "width" is specified, the integral is the sum of
7943/// the bin contents multiplied by the bin width in x.
7944
7946{
7948}
7949
7950////////////////////////////////////////////////////////////////////////////////
7951/// Return integral of bin contents in range [binx1,binx2].
7952///
7953/// By default the integral is computed as the sum of bin contents in the range.
7954/// if option "width" is specified, the integral is the sum of
7955/// the bin contents multiplied by the bin width in x.
7956
7958{
7959 double err = 0;
7960 return DoIntegral(binx1,binx2,0,-1,0,-1,err,option);
7961}
7962
7963////////////////////////////////////////////////////////////////////////////////
7964/// Return integral of bin contents in range [binx1,binx2] and its error.
7965///
7966/// By default the integral is computed as the sum of bin contents in the range.
7967/// if option "width" is specified, the integral is the sum of
7968/// the bin contents multiplied by the bin width in x.
7969/// the error is computed using error propagation from the bin errors assuming that
7970/// all the bins are uncorrelated
7971
7973{
7974 return DoIntegral(binx1,binx2,0,-1,0,-1,error,option,kTRUE);
7975}
7976
7977////////////////////////////////////////////////////////////////////////////////
7978/// Internal function compute integral and optionally the error between the limits
7979/// specified by the bin number values working for all histograms (1D, 2D and 3D)
7980
7982 Option_t *option, Bool_t doError) const
7983{
7984 if (fBuffer) ((TH1*)this)->BufferEmpty();
7985
7986 Int_t nx = GetNbinsX() + 2;
7987 if (binx1 < 0) binx1 = 0;
7988 if (binx2 >= nx || binx2 < binx1) binx2 = nx - 1;
7989
7990 if (GetDimension() > 1) {
7991 Int_t ny = GetNbinsY() + 2;
7992 if (biny1 < 0) biny1 = 0;
7993 if (biny2 >= ny || biny2 < biny1) biny2 = ny - 1;
7994 } else {
7995 biny1 = 0; biny2 = 0;
7996 }
7997
7998 if (GetDimension() > 2) {
7999 Int_t nz = GetNbinsZ() + 2;
8000 if (binz1 < 0) binz1 = 0;
8001 if (binz2 >= nz || binz2 < binz1) binz2 = nz - 1;
8002 } else {
8003 binz1 = 0; binz2 = 0;
8004 }
8005
8006 // - Loop on bins in specified range
8007 TString opt = option;
8008 opt.ToLower();
8010 if (opt.Contains("width")) width = kTRUE;
8011
8012
8013 Double_t dx = 1., dy = .1, dz =.1;
8014 Double_t integral = 0;
8015 Double_t igerr2 = 0;
8016 for (Int_t binx = binx1; binx <= binx2; ++binx) {
8017 if (width) dx = fXaxis.GetBinWidth(binx);
8018 for (Int_t biny = biny1; biny <= biny2; ++biny) {
8019 if (width) dy = fYaxis.GetBinWidth(biny);
8020 for (Int_t binz = binz1; binz <= binz2; ++binz) {
8021 Int_t bin = GetBin(binx, biny, binz);
8022 Double_t dv = 0.0;
8023 if (width) {
8025 dv = dx * dy * dz;
8026 integral += RetrieveBinContent(bin) * dv;
8027 } else {
8028 integral += RetrieveBinContent(bin);
8029 }
8030 if (doError) {
8031 if (width) igerr2 += GetBinErrorSqUnchecked(bin) * dv * dv;
8032 else igerr2 += GetBinErrorSqUnchecked(bin);
8033 }
8034 }
8035 }
8036 }
8037
8038 if (doError) error = TMath::Sqrt(igerr2);
8039 return integral;
8040}
8041
8042////////////////////////////////////////////////////////////////////////////////
8043/// Statistical test of compatibility in shape between
8044/// this histogram and h2, using the Anderson-Darling 2 sample test.
8045///
8046/// The AD 2 sample test formula are derived from the paper
8047/// F.W Scholz, M.A. Stephens "k-Sample Anderson-Darling Test".
8048///
8049/// The test is implemented in root in the ROOT::Math::GoFTest class
8050/// It is the same formula ( (6) in the paper), and also shown in
8051/// [this preprint](http://arxiv.org/pdf/0804.0380v1.pdf)
8052///
8053/// Binned data are considered as un-binned data
8054/// with identical observation happening in the bin center.
8055///
8056/// \param[in] h2 Pointer to 1D histogram
8057/// \param[in] option is a character string to specify options
8058/// - "D" Put out a line of "Debug" printout
8059/// - "T" Return the normalized A-D test statistic
8060///
8061/// - Note1: Underflow and overflow are not considered in the test
8062/// - Note2: The test works only for un-weighted histogram (i.e. representing counts)
8063/// - Note3: The histograms are not required to have the same X axis
8064/// - Note4: The test works only for 1-dimensional histograms
8065
8067{
8068 Double_t advalue = 0;
8070
8071 TString opt = option;
8072 opt.ToUpper();
8073 if (opt.Contains("D") ) {
8074 printf(" AndersonDarlingTest Prob = %g, AD TestStatistic = %g\n",pvalue,advalue);
8075 }
8076 if (opt.Contains("T") ) return advalue;
8077
8078 return pvalue;
8079}
8080
8081////////////////////////////////////////////////////////////////////////////////
8082/// Same function as above but returning also the test statistic value
8083
8085{
8086 if (GetDimension() != 1 || h2->GetDimension() != 1) {
8087 Error("AndersonDarlingTest","Histograms must be 1-D");
8088 return -1;
8089 }
8090
8091 // empty the buffer. Probably we could add as an unbinned test
8092 if (fBuffer) ((TH1*)this)->BufferEmpty();
8093
8094 // use the BinData class
8097
8098 ROOT::Fit::FillData(data1, this, nullptr);
8099 ROOT::Fit::FillData(data2, h2, nullptr);
8100
8101 double pvalue;
8103
8104 return pvalue;
8105}
8106
8107////////////////////////////////////////////////////////////////////////////////
8108/// Statistical test of compatibility in shape between
8109/// this histogram and h2, using Kolmogorov test.
8110/// Note that the KolmogorovTest (KS) test should in theory be used only for unbinned data
8111/// and not for binned data as in the case of the histogram (see NOTE 3 below).
8112/// So, before using this method blindly, read the NOTE 3.
8113///
8114/// Default: Ignore under- and overflow bins in comparison
8115///
8116/// \param[in] h2 histogram
8117/// \param[in] option is a character string to specify options
8118/// - "U" include Underflows in test (also for 2-dim)
8119/// - "O" include Overflows (also valid for 2-dim)
8120/// - "N" include comparison of normalizations
8121/// - "D" Put out a line of "Debug" printout
8122/// - "M" Return the Maximum Kolmogorov distance instead of prob
8123/// - "X" Run the pseudo experiments post-processor with the following procedure:
8124/// make pseudoexperiments based on random values from the parent distribution,
8125/// compare the KS distance of the pseudoexperiment to the parent
8126/// distribution, and count all the KS values above the value
8127/// obtained from the original data to Monte Carlo distribution.
8128/// The number of pseudo-experiments nEXPT is by default 1000, and
8129/// it can be changed by specifying the option as "X=number",
8130/// for example "X=10000" for 10000 toys.
8131/// The function returns the probability.
8132/// (thanks to Ben Kilminster to submit this procedure). Note that
8133/// this option "X" is much slower.
8134///
8135/// The returned function value is the probability of test
8136/// (much less than one means NOT compatible)
8137///
8138/// Code adapted by Rene Brun from original HBOOK routine HDIFF
8139///
8140/// NOTE1
8141/// A good description of the Kolmogorov test can be seen at:
8142/// http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
8143///
8144/// NOTE2
8145/// see also alternative function TH1::Chi2Test
8146/// The Kolmogorov test is assumed to give better results than Chi2Test
8147/// in case of histograms with low statistics.
8148///
8149/// NOTE3 (Jan Conrad, Fred James)
8150/// "The returned value PROB is calculated such that it will be
8151/// uniformly distributed between zero and one for compatible histograms,
8152/// provided the data are not binned (or the number of bins is very large
8153/// compared with the number of events). Users who have access to unbinned
8154/// data and wish exact confidence levels should therefore not put their data
8155/// into histograms, but should call directly TMath::KolmogorovTest. On
8156/// the other hand, since TH1 is a convenient way of collecting data and
8157/// saving space, this function has been provided. However, the values of
8158/// PROB for binned data will be shifted slightly higher than expected,
8159/// depending on the effects of the binning. For example, when comparing two
8160/// uniform distributions of 500 events in 100 bins, the values of PROB,
8161/// instead of being exactly uniformly distributed between zero and one, have
8162/// a mean value of about 0.56. We can apply a useful
8163/// rule: As long as the bin width is small compared with any significant
8164/// physical effect (for example the experimental resolution) then the binning
8165/// cannot have an important effect. Therefore, we believe that for all
8166/// practical purposes, the probability value PROB is calculated correctly
8167/// provided the user is aware that:
8168///
8169/// 1. The value of PROB should not be expected to have exactly the correct
8170/// distribution for binned data.
8171/// 2. The user is responsible for seeing to it that the bin widths are
8172/// small compared with any physical phenomena of interest.
8173/// 3. The effect of binning (if any) is always to make the value of PROB
8174/// slightly too big. That is, setting an acceptance criterion of (PROB>0.05
8175/// will assure that at most 5% of truly compatible histograms are rejected,
8176/// and usually somewhat less."
8177///
8178/// Note also that for GoF test of unbinned data ROOT provides also the class
8179/// ROOT::Math::GoFTest. The class has also method for doing one sample tests
8180/// (i.e. comparing the data with a given distribution).
8181
8183{
8184 TString opt = option;
8185 opt.ToUpper();
8186
8187 Double_t prob = 0;
8188 TH1 *h1 = (TH1*)this;
8189 if (h2 == nullptr) return 0;
8190 const TAxis *axis1 = h1->GetXaxis();
8191 const TAxis *axis2 = h2->GetXaxis();
8192 Int_t ncx1 = axis1->GetNbins();
8193 Int_t ncx2 = axis2->GetNbins();
8194
8195 // Check consistency of dimensions
8196 if (h1->GetDimension() != 1 || h2->GetDimension() != 1) {
8197 Error("KolmogorovTest","Histograms must be 1-D\n");
8198 return 0;
8199 }
8200
8201 // Check consistency in number of channels
8202 if (ncx1 != ncx2) {
8203 Error("KolmogorovTest","Histograms have different number of bins, %d and %d\n",ncx1,ncx2);
8204 return 0;
8205 }
8206
8207 // empty the buffer. Probably we could add as an unbinned test
8208 if (fBuffer) ((TH1*)this)->BufferEmpty();
8209
8210 // Check consistency in bin edges
8211 for(Int_t i = 1; i <= axis1->GetNbins() + 1; ++i) {
8212 if(!TMath::AreEqualRel(axis1->GetBinLowEdge(i), axis2->GetBinLowEdge(i), 1.E-15)) {
8213 Error("KolmogorovTest","Histograms are not consistent: they have different bin edges");
8214 return 0;
8215 }
8216 }
8217
8220 Double_t sum1 = 0, sum2 = 0;
8221 Double_t ew1, ew2, w1 = 0, w2 = 0;
8222 Int_t bin;
8223 Int_t ifirst = 1;
8224 Int_t ilast = ncx1;
8225 // integral of all bins (use underflow/overflow if option)
8226 if (opt.Contains("U")) ifirst = 0;
8227 if (opt.Contains("O")) ilast = ncx1 +1;
8228 for (bin = ifirst; bin <= ilast; bin++) {
8229 sum1 += h1->RetrieveBinContent(bin);
8230 sum2 += h2->RetrieveBinContent(bin);
8231 ew1 = h1->GetBinError(bin);
8232 ew2 = h2->GetBinError(bin);
8233 w1 += ew1*ew1;
8234 w2 += ew2*ew2;
8235 }
8236 if (sum1 == 0) {
8237 Error("KolmogorovTest","Histogram1 %s integral is zero\n",h1->GetName());
8238 return 0;
8239 }
8240 if (sum2 == 0) {
8241 Error("KolmogorovTest","Histogram2 %s integral is zero\n",h2->GetName());
8242 return 0;
8243 }
8244
8245 // calculate the effective entries.
8246 // the case when errors are zero (w1 == 0 or w2 ==0) are equivalent to
8247 // compare to a function. In that case the rescaling is done only on sqrt(esum2) or sqrt(esum1)
8248 Double_t esum1 = 0, esum2 = 0;
8249 if (w1 > 0)
8250 esum1 = sum1 * sum1 / w1;
8251 else
8252 afunc1 = kTRUE; // use later for calculating z
8253
8254 if (w2 > 0)
8255 esum2 = sum2 * sum2 / w2;
8256 else
8257 afunc2 = kTRUE; // use later for calculating z
8258
8259 if (afunc2 && afunc1) {
8260 Error("KolmogorovTest","Errors are zero for both histograms\n");
8261 return 0;
8262 }
8263
8264
8265 Double_t s1 = 1/sum1;
8266 Double_t s2 = 1/sum2;
8267
8268 // Find largest difference for Kolmogorov Test
8269 Double_t dfmax =0, rsum1 = 0, rsum2 = 0;
8270
8271 for (bin=ifirst;bin<=ilast;bin++) {
8272 rsum1 += s1*h1->RetrieveBinContent(bin);
8273 rsum2 += s2*h2->RetrieveBinContent(bin);
8275 }
8276
8277 // Get Kolmogorov probability
8278 Double_t z, prb1=0, prb2=0, prb3=0;
8279
8280 // case h1 is exact (has zero errors)
8281 if (afunc1)
8282 z = dfmax*TMath::Sqrt(esum2);
8283 // case h2 has zero errors
8284 else if (afunc2)
8285 z = dfmax*TMath::Sqrt(esum1);
8286 else
8287 // for comparison between two data sets
8289
8291
8292 // option N to combine normalization makes sense if both afunc1 and afunc2 are false
8293 if (opt.Contains("N") && !(afunc1 || afunc2 ) ) {
8294 // Combine probabilities for shape and normalization,
8295 prb1 = prob;
8298 prb2 = TMath::Prob(chi2,1);
8299 // see Eadie et al., section 11.6.2
8300 if (prob > 0 && prb2 > 0) prob *= prb2*(1-TMath::Log(prob*prb2));
8301 else prob = 0;
8302 }
8303 // X option. Run Pseudo-experiments to determine NULL distribution of the
8304 // KS distance. We can find the probability from the number of pseudo-experiment that have a
8305 // KS distance larger than the one opbserved in the data.
8306 // We use the histogram with the largest statistics as a parent distribution for the NULL.
8307 // Note if one histogram has zero errors is considered as a function. In that case we use it
8308 // as parent distribution for the toys.
8309 //
8310 Int_t nEXPT = 1000;
8311 if (opt.Contains("X")) {
8312 // get number of pseudo-experiment of specified
8313 if (opt.Contains("X=")) {
8314 int numpos = opt.Index("X=") + 2; // 2 is length of X=
8315 int numlen = 0;
8316 int len = opt.Length();
8317 while( (numpos+numlen<len) && isdigit(opt[numpos+numlen]) )
8318 numlen++;
8319 TString snum = opt(numpos,numlen);
8320 int num = atoi(snum.Data());
8321 if (num <= 0)
8322 Warning("KolmogorovTest","invalid number of toys given: %d - use 1000",num);
8323 else
8324 nEXPT = num;
8325 }
8326
8328 TH1D hparent;
8329 // we cannot have afunc1 and func2 both True
8330 if (afunc1 || esum1 > esum2 ) h1->Copy(hparent);
8331 else h2->Copy(hparent);
8332
8333 // copy h1Expt from h1 and h2. It is just needed to get the correct binning
8334
8335
8336 if (hparent.GetMinimum() < 0.0) {
8337 // we need to create a new histogram
8338 // With negative bins we can't draw random samples in a meaningful way.
8339 Warning("KolmogorovTest", "Detected bins with negative weights, these have been ignored and output might be "
8340 "skewed. Reduce number of bins for histogram?");
8341 while (hparent.GetMinimum() < 0.0) {
8342 Int_t idx = hparent.GetMinimumBin();
8343 hparent.SetBinContent(idx, 0.0);
8344 }
8345 }
8346
8347 // make nEXPT experiments (this should be a parameter)
8348 prb3 = 0;
8349 TH1D h1Expt;
8350 h1->Copy(h1Expt);
8351 TH1D h2Expt;
8352 h1->Copy(h2Expt);
8353 // loop on pseudoexperients and generate the two histograms h1Expt and h2Expt according to the
8354 // parent distribution. In case the parent distribution is not an histogram but a function randomize only one
8355 // histogram
8356 for (Int_t i=0; i < nEXPT; i++) {
8357 if (!afunc1) {
8358 h1Expt.Reset();
8359 h1Expt.FillRandom(&hparent, (Int_t)esum1);
8360 }
8361 if (!afunc2) {
8362 h2Expt.Reset();
8363 h2Expt.FillRandom(&hparent, (Int_t)esum2);
8364 }
8365 // note we cannot have both afunc1 and afunc2 to be true
8366 if (afunc1)
8367 dSEXPT = hparent.KolmogorovTest(&h2Expt,"M");
8368 else if (afunc2)
8369 dSEXPT = hparent.KolmogorovTest(&h1Expt,"M");
8370 else
8371 dSEXPT = h1Expt.KolmogorovTest(&h2Expt,"M");
8372 // count number of cases toy KS distance (TS) is larger than oberved one
8373 if (dSEXPT>dfmax) prb3 += 1.0;
8374 }
8375 // compute p-value
8376 prb3 /= (Double_t)nEXPT;
8377 }
8378
8379
8380 // debug printout
8381 if (opt.Contains("D")) {
8382 printf(" Kolmo Prob h1 = %s, sum bin content =%g effective entries =%g\n",h1->GetName(),sum1,esum1);
8383 printf(" Kolmo Prob h2 = %s, sum bin content =%g effective entries =%g\n",h2->GetName(),sum2,esum2);
8384 printf(" Kolmo Prob = %g, Max Dist = %g\n",prob,dfmax);
8385 if (opt.Contains("N"))
8386 printf(" Kolmo Prob = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
8387 if (opt.Contains("X"))
8388 printf(" Kolmo Prob = %f with %d pseudo-experiments\n",prb3,nEXPT);
8389 }
8390 // This numerical error condition should never occur:
8391 if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%s\n",h1->GetName());
8392 if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%s\n",h2->GetName());
8393
8394 if(opt.Contains("M")) return dfmax;
8395 else if(opt.Contains("X")) return prb3;
8396 else return prob;
8397}
8398
8399////////////////////////////////////////////////////////////////////////////////
8400/// Replace bin contents by the contents of array content
8401
8402void TH1::SetContent(const Double_t *content)
8403{
8404 fEntries = fNcells;
8405 fTsumw = 0;
8406 for (Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, content[i]);
8407}
8408
8409////////////////////////////////////////////////////////////////////////////////
8410/// Return contour values into array levels if pointer levels is non zero.
8411///
8412/// The function returns the number of contour levels.
8413/// see GetContourLevel to return one contour only
8414
8416{
8418 if (levels) {
8419 if (nlevels == 0) {
8420 nlevels = 20;
8422 } else {
8424 }
8425 for (Int_t level=0; level<nlevels; level++) levels[level] = fContour.fArray[level];
8426 }
8427 return nlevels;
8428}
8429
8430////////////////////////////////////////////////////////////////////////////////
8431/// Return value of contour number level.
8432/// Use GetContour to return the array of all contour levels
8433
8435{
8436 return (level >= 0 && level < fContour.fN) ? fContour.fArray[level] : 0.0;
8437}
8438
8439////////////////////////////////////////////////////////////////////////////////
8440/// Return the value of contour number "level" in Pad coordinates.
8441/// ie: if the Pad is in log scale along Z it returns le log of the contour level
8442/// value. See GetContour to return the array of all contour levels
8443
8445{
8446 if (level <0 || level >= fContour.fN) return 0;
8447 Double_t zlevel = fContour.fArray[level];
8448
8449 // In case of user defined contours and Pad in log scale along Z,
8450 // fContour.fArray doesn't contain the log of the contour whereas it does
8451 // in case of equidistant contours.
8452 if (gPad && gPad->GetLogz() && TestBit(kUserContour)) {
8453 if (zlevel <= 0) return 0;
8455 }
8456 return zlevel;
8457}
8458
8459////////////////////////////////////////////////////////////////////////////////
8460/// Set the maximum number of entries to be kept in the buffer.
8461
8462void TH1::SetBuffer(Int_t buffersize, Option_t * /*option*/)
8463{
8464 if (fBuffer) {
8465 BufferEmpty();
8466 delete [] fBuffer;
8467 fBuffer = nullptr;
8468 }
8469 if (buffersize <= 0) {
8470 fBufferSize = 0;
8471 return;
8472 }
8473 if (buffersize < 100) buffersize = 100;
8476 memset(fBuffer, 0, sizeof(Double_t)*fBufferSize);
8477}
8478
8479////////////////////////////////////////////////////////////////////////////////
8480/// Set the number and values of contour levels.
8481///
8482/// By default the number of contour levels is set to 20. The contours values
8483/// in the array "levels" should be specified in increasing order.
8484///
8485/// if argument levels = 0 or missing, equidistant contours are computed
8486
8488{
8489 Int_t level;
8491 if (nlevels <=0 ) {
8492 fContour.Set(0);
8493 return;
8494 }
8496
8497 // - Contour levels are specified
8498 if (levels) {
8500 for (level=0; level<nlevels; level++) fContour.fArray[level] = levels[level];
8501 } else {
8502 // - contour levels are computed automatically as equidistant contours
8503 Double_t zmin = GetMinimum();
8504 Double_t zmax = GetMaximum();
8505 if ((zmin == zmax) && (zmin != 0)) {
8506 zmax += 0.01*TMath::Abs(zmax);
8507 zmin -= 0.01*TMath::Abs(zmin);
8508 }
8509 Double_t dz = (zmax-zmin)/Double_t(nlevels);
8510 if (gPad && gPad->GetLogz()) {
8511 if (zmax <= 0) return;
8512 if (zmin <= 0) zmin = 0.001*zmax;
8513 zmin = TMath::Log10(zmin);
8514 zmax = TMath::Log10(zmax);
8515 dz = (zmax-zmin)/Double_t(nlevels);
8516 }
8517 for (level=0; level<nlevels; level++) {
8518 fContour.fArray[level] = zmin + dz*Double_t(level);
8519 }
8520 }
8521}
8522
8523////////////////////////////////////////////////////////////////////////////////
8524/// Set value for one contour level.
8525
8527{
8528 if (level < 0 || level >= fContour.fN) return;
8530 fContour.fArray[level] = value;
8531}
8532
8533////////////////////////////////////////////////////////////////////////////////
8534/// Return maximum value smaller than maxval of bins in the range,
8535/// unless the value has been overridden by TH1::SetMaximum,
8536/// in which case it returns that value. This happens, for example,
8537/// when the histogram is drawn and the y or z axis limits are changed
8538///
8539/// To get the maximum value of bins in the histogram regardless of
8540/// whether the value has been overridden (using TH1::SetMaximum), use
8541///
8542/// ~~~ {.cpp}
8543/// h->GetBinContent(h->GetMaximumBin())
8544/// ~~~
8545///
8546/// TH1::GetMaximumBin can be used to get the location of the maximum
8547/// value.
8548
8550{
8551 if (fMaximum != -1111) return fMaximum;
8552
8553 // empty the buffer
8554 if (fBuffer) ((TH1*)this)->BufferEmpty();
8555
8556 Int_t bin, binx, biny, binz;
8557 Int_t xfirst = fXaxis.GetFirst();
8558 Int_t xlast = fXaxis.GetLast();
8559 Int_t yfirst = fYaxis.GetFirst();
8560 Int_t ylast = fYaxis.GetLast();
8561 Int_t zfirst = fZaxis.GetFirst();
8562 Int_t zlast = fZaxis.GetLast();
8564 for (binz=zfirst;binz<=zlast;binz++) {
8565 for (biny=yfirst;biny<=ylast;biny++) {
8566 for (binx=xfirst;binx<=xlast;binx++) {
8567 bin = GetBin(binx,biny,binz);
8569 if (value > maximum && value < maxval) maximum = value;
8570 }
8571 }
8572 }
8573 return maximum;
8574}
8575
8576////////////////////////////////////////////////////////////////////////////////
8577/// Return location of bin with maximum value in the range.
8578///
8579/// TH1::GetMaximum can be used to get the maximum value.
8580
8582{
8585}
8586
8587////////////////////////////////////////////////////////////////////////////////
8588/// Return location of bin with maximum value in the range.
8589
8591{
8592 // empty the buffer
8593 if (fBuffer) ((TH1*)this)->BufferEmpty();
8594
8595 Int_t bin, binx, biny, binz;
8596 Int_t locm;
8597 Int_t xfirst = fXaxis.GetFirst();
8598 Int_t xlast = fXaxis.GetLast();
8599 Int_t yfirst = fYaxis.GetFirst();
8600 Int_t ylast = fYaxis.GetLast();
8601 Int_t zfirst = fZaxis.GetFirst();
8602 Int_t zlast = fZaxis.GetLast();
8604 locm = locmax = locmay = locmaz = 0;
8605 for (binz=zfirst;binz<=zlast;binz++) {
8606 for (biny=yfirst;biny<=ylast;biny++) {
8607 for (binx=xfirst;binx<=xlast;binx++) {
8608 bin = GetBin(binx,biny,binz);
8610 if (value > maximum) {
8611 maximum = value;
8612 locm = bin;
8613 locmax = binx;
8614 locmay = biny;
8615 locmaz = binz;
8616 }
8617 }
8618 }
8619 }
8620 return locm;
8621}
8622
8623////////////////////////////////////////////////////////////////////////////////
8624/// Return minimum value larger than minval of bins in the range,
8625/// unless the value has been overridden by TH1::SetMinimum,
8626/// in which case it returns that value. This happens, for example,
8627/// when the histogram is drawn and the y or z axis limits are changed
8628///
8629/// To get the minimum value of bins in the histogram regardless of
8630/// whether the value has been overridden (using TH1::SetMinimum), use
8631///
8632/// ~~~ {.cpp}
8633/// h->GetBinContent(h->GetMinimumBin())
8634/// ~~~
8635///
8636/// TH1::GetMinimumBin can be used to get the location of the
8637/// minimum value.
8638
8640{
8641 if (fMinimum != -1111) return fMinimum;
8642
8643 // empty the buffer
8644 if (fBuffer) ((TH1*)this)->BufferEmpty();
8645
8646 Int_t bin, binx, biny, binz;
8647 Int_t xfirst = fXaxis.GetFirst();
8648 Int_t xlast = fXaxis.GetLast();
8649 Int_t yfirst = fYaxis.GetFirst();
8650 Int_t ylast = fYaxis.GetLast();
8651 Int_t zfirst = fZaxis.GetFirst();
8652 Int_t zlast = fZaxis.GetLast();
8654 for (binz=zfirst;binz<=zlast;binz++) {
8655 for (biny=yfirst;biny<=ylast;biny++) {
8656 for (binx=xfirst;binx<=xlast;binx++) {
8657 bin = GetBin(binx,biny,binz);
8660 }
8661 }
8662 }
8663 return minimum;
8664}
8665
8666////////////////////////////////////////////////////////////////////////////////
8667/// Return location of bin with minimum value in the range.
8668
8670{
8673}
8674
8675////////////////////////////////////////////////////////////////////////////////
8676/// Return location of bin with minimum value in the range.
8677
8679{
8680 // empty the buffer
8681 if (fBuffer) ((TH1*)this)->BufferEmpty();
8682
8683 Int_t bin, binx, biny, binz;
8684 Int_t locm;
8685 Int_t xfirst = fXaxis.GetFirst();
8686 Int_t xlast = fXaxis.GetLast();
8687 Int_t yfirst = fYaxis.GetFirst();
8688 Int_t ylast = fYaxis.GetLast();
8689 Int_t zfirst = fZaxis.GetFirst();
8690 Int_t zlast = fZaxis.GetLast();
8692 locm = locmix = locmiy = locmiz = 0;
8693 for (binz=zfirst;binz<=zlast;binz++) {
8694 for (biny=yfirst;biny<=ylast;biny++) {
8695 for (binx=xfirst;binx<=xlast;binx++) {
8696 bin = GetBin(binx,biny,binz);
8698 if (value < minimum) {
8699 minimum = value;
8700 locm = bin;
8701 locmix = binx;
8702 locmiy = biny;
8703 locmiz = binz;
8704 }
8705 }
8706 }
8707 }
8708 return locm;
8709}
8710
8711///////////////////////////////////////////////////////////////////////////////
8712/// Retrieve the minimum and maximum values in the histogram
8713///
8714/// This will not return a cached value and will always search the
8715/// histogram for the min and max values. The user can condition whether
8716/// or not to call this with the GetMinimumStored() and GetMaximumStored()
8717/// methods. If the cache is empty, then the value will be -1111. Users
8718/// can then use the SetMinimum() or SetMaximum() methods to cache the results.
8719/// For example, the following recipe will make efficient use of this method
8720/// and the cached minimum and maximum values.
8721//
8722/// \code{.cpp}
8723/// Double_t currentMin = pHist->GetMinimumStored();
8724/// Double_t currentMax = pHist->GetMaximumStored();
8725/// if ((currentMin == -1111) || (currentMax == -1111)) {
8726/// pHist->GetMinimumAndMaximum(currentMin, currentMax);
8727/// pHist->SetMinimum(currentMin);
8728/// pHist->SetMaximum(currentMax);
8729/// }
8730/// \endcode
8731///
8732/// \param min reference to variable that will hold found minimum value
8733/// \param max reference to variable that will hold found maximum value
8734
8735void TH1::GetMinimumAndMaximum(Double_t& min, Double_t& max) const
8736{
8737 // empty the buffer
8738 if (fBuffer) ((TH1*)this)->BufferEmpty();
8739
8740 Int_t bin, binx, biny, binz;
8741 Int_t xfirst = fXaxis.GetFirst();
8742 Int_t xlast = fXaxis.GetLast();
8743 Int_t yfirst = fYaxis.GetFirst();
8744 Int_t ylast = fYaxis.GetLast();
8745 Int_t zfirst = fZaxis.GetFirst();
8746 Int_t zlast = fZaxis.GetLast();
8747 min=TMath::Infinity();
8748 max=-TMath::Infinity();
8750 for (binz=zfirst;binz<=zlast;binz++) {
8751 for (biny=yfirst;biny<=ylast;biny++) {
8752 for (binx=xfirst;binx<=xlast;binx++) {
8753 bin = GetBin(binx,biny,binz);
8755 if (value < min) min = value;
8756 if (value > max) max = value;
8757 }
8758 }
8759 }
8760}
8761
8762////////////////////////////////////////////////////////////////////////////////
8763/// Redefine x axis parameters.
8764///
8765/// The X axis parameters are modified.
8766/// The bins content array is resized
8767/// if errors (Sumw2) the errors array is resized
8768/// The previous bin contents are lost
8769/// To change only the axis limits, see TAxis::SetRange
8770
8772{
8773 if (GetDimension() != 1) {
8774 Error("SetBins","Operation only valid for 1-d histograms");
8775 return;
8776 }
8777 fXaxis.SetRange(0,0);
8779 fYaxis.Set(1,0,1);
8780 fZaxis.Set(1,0,1);
8781 fNcells = nx+2;
8783 if (fSumw2.fN) {
8785 }
8786}
8787
8788////////////////////////////////////////////////////////////////////////////////
8789/// Redefine x axis parameters with variable bin sizes.
8790///
8791/// The X axis parameters are modified.
8792/// The bins content array is resized
8793/// if errors (Sumw2) the errors array is resized
8794/// The previous bin contents are lost
8795/// To change only the axis limits, see TAxis::SetRange
8796/// xBins is supposed to be of length nx+1
8797
8798void TH1::SetBins(Int_t nx, const Double_t *xBins)
8799{
8800 if (GetDimension() != 1) {
8801 Error("SetBins","Operation only valid for 1-d histograms");
8802 return;
8803 }
8804 fXaxis.SetRange(0,0);
8805 fXaxis.Set(nx,xBins);
8806 fYaxis.Set(1,0,1);
8807 fZaxis.Set(1,0,1);
8808 fNcells = nx+2;
8810 if (fSumw2.fN) {
8812 }
8813}
8814
8815////////////////////////////////////////////////////////////////////////////////
8816/// Redefine x and y axis parameters.
8817///
8818/// The X and Y axis parameters are modified.
8819/// The bins content array is resized
8820/// if errors (Sumw2) the errors array is resized
8821/// The previous bin contents are lost
8822/// To change only the axis limits, see TAxis::SetRange
8823
8825{
8826 if (GetDimension() != 2) {
8827 Error("SetBins","Operation only valid for 2-D histograms");
8828 return;
8829 }
8830 fXaxis.SetRange(0,0);
8831 fYaxis.SetRange(0,0);
8834 fZaxis.Set(1,0,1);
8835 fNcells = (nx+2)*(ny+2);
8837 if (fSumw2.fN) {
8839 }
8840}
8841
8842////////////////////////////////////////////////////////////////////////////////
8843/// Redefine x and y axis parameters with variable bin sizes.
8844///
8845/// The X and Y axis parameters are modified.
8846/// The bins content array is resized
8847/// if errors (Sumw2) the errors array is resized
8848/// The previous bin contents are lost
8849/// To change only the axis limits, see TAxis::SetRange
8850/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1
8851
8852void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins)
8853{
8854 if (GetDimension() != 2) {
8855 Error("SetBins","Operation only valid for 2-D histograms");
8856 return;
8857 }
8858 fXaxis.SetRange(0,0);
8859 fYaxis.SetRange(0,0);
8860 fXaxis.Set(nx,xBins);
8861 fYaxis.Set(ny,yBins);
8862 fZaxis.Set(1,0,1);
8863 fNcells = (nx+2)*(ny+2);
8865 if (fSumw2.fN) {
8867 }
8868}
8869
8870////////////////////////////////////////////////////////////////////////////////
8871/// Redefine x, y and z axis parameters.
8872///
8873/// The X, Y and Z axis parameters are modified.
8874/// The bins content array is resized
8875/// if errors (Sumw2) the errors array is resized
8876/// The previous bin contents are lost
8877/// To change only the axis limits, see TAxis::SetRange
8878
8880{
8881 if (GetDimension() != 3) {
8882 Error("SetBins","Operation only valid for 3-D histograms");
8883 return;
8884 }
8885 fXaxis.SetRange(0,0);
8886 fYaxis.SetRange(0,0);
8887 fZaxis.SetRange(0,0);
8890 fZaxis.Set(nz,zmin,zmax);
8891 fNcells = (nx+2)*(ny+2)*(nz+2);
8893 if (fSumw2.fN) {
8895 }
8896}
8897
8898////////////////////////////////////////////////////////////////////////////////
8899/// Redefine x, y and z axis parameters with variable bin sizes.
8900///
8901/// The X, Y and Z axis parameters are modified.
8902/// The bins content array is resized
8903/// if errors (Sumw2) the errors array is resized
8904/// The previous bin contents are lost
8905/// To change only the axis limits, see TAxis::SetRange
8906/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1,
8907/// zBins is supposed to be of length nz+1
8908
8909void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins, Int_t nz, const Double_t *zBins)
8910{
8911 if (GetDimension() != 3) {
8912 Error("SetBins","Operation only valid for 3-D histograms");
8913 return;
8914 }
8915 fXaxis.SetRange(0,0);
8916 fYaxis.SetRange(0,0);
8917 fZaxis.SetRange(0,0);
8918 fXaxis.Set(nx,xBins);
8919 fYaxis.Set(ny,yBins);
8920 fZaxis.Set(nz,zBins);
8921 fNcells = (nx+2)*(ny+2)*(nz+2);
8923 if (fSumw2.fN) {
8925 }
8926}
8927
8928////////////////////////////////////////////////////////////////////////////////
8929/// By default, when a histogram is created, it is added to the list
8930/// of histogram objects in the current directory in memory.
8931/// Remove reference to this histogram from current directory and add
8932/// reference to new directory dir. dir can be 0 in which case the
8933/// histogram does not belong to any directory.
8934///
8935/// Note that the directory is not a real property of the histogram and
8936/// it will not be copied when the histogram is copied or cloned.
8937/// If the user wants to have the copied (cloned) histogram in the same
8938/// directory, he needs to set again the directory using SetDirectory to the
8939/// copied histograms
8940
8942{
8943 if (fDirectory == dir) return;
8944 if (fDirectory) fDirectory->Remove(this);
8945 fDirectory = dir;
8946 if (fDirectory) {
8948 fDirectory->Append(this);
8949 }
8950}
8951
8952////////////////////////////////////////////////////////////////////////////////
8953/// Replace bin errors by values in array error.
8954
8955void TH1::SetError(const Double_t *error)
8956{
8957 for (Int_t i = 0; i < fNcells; ++i) SetBinError(i, error[i]);
8958}
8959
8960////////////////////////////////////////////////////////////////////////////////
8961/// Change the name of this histogram
8963
8964void TH1::SetName(const char *name)
8965{
8966 // Histograms are named objects in a THashList.
8967 // We must update the hashlist if we change the name
8968 // We protect this operation
8970 if (fDirectory) fDirectory->Remove(this);
8971 fName = name;
8972 if (fDirectory) fDirectory->Append(this);
8973}
8974
8975////////////////////////////////////////////////////////////////////////////////
8976/// Change the name and title of this histogram
8977
8978void TH1::SetNameTitle(const char *name, const char *title)
8979{
8980 // Histograms are named objects in a THashList.
8981 // We must update the hashlist if we change the name
8982 SetName(name);
8983 SetTitle(title);
8984}
8985
8986////////////////////////////////////////////////////////////////////////////////
8987/// Set statistics option on/off.
8988///
8989/// By default, the statistics box is drawn.
8990/// The paint options can be selected via gStyle->SetOptStat.
8991/// This function sets/resets the kNoStats bit in the histogram object.
8992/// It has priority over the Style option.
8993
8995{
8997 if (!stats) {
8999 //remove the "stats" object from the list of functions
9000 if (fFunctions) {
9001 TObject *obj = fFunctions->FindObject("stats");
9002 if (obj) {
9003 fFunctions->Remove(obj);
9004 delete obj;
9005 }
9006 }
9007 }
9008}
9009
9010////////////////////////////////////////////////////////////////////////////////
9011/// Create structure to store sum of squares of weights.
9012///
9013/// if histogram is already filled, the sum of squares of weights
9014/// is filled with the existing bin contents
9015///
9016/// The error per bin will be computed as sqrt(sum of squares of weight)
9017/// for each bin.
9018///
9019/// This function is automatically called when the histogram is created
9020/// if the static function TH1::SetDefaultSumw2 has been called before.
9021/// If flag = false the structure containing the sum of the square of weights
9022/// is rest and it will be empty, but it is not deleted (i.e. GetSumw2()->fN = 0)
9023
9025{
9026 if (!flag) {
9027 // clear the array if existing - do nothing otherwise
9028 if (fSumw2.fN > 0 ) fSumw2.Set(0);
9029 return;
9030 }
9031
9032 if (fSumw2.fN == fNcells) {
9033 if (!fgDefaultSumw2 )
9034 Warning("Sumw2","Sum of squares of weights structure already created");
9035 return;
9036 }
9037
9039
9040 // empty the buffer
9041 if (fBuffer) BufferEmpty();
9042
9043 if (fEntries > 0)
9044 for (Int_t i = 0; i < fNcells; ++i)
9046}
9047
9048////////////////////////////////////////////////////////////////////////////////
9049/// Return pointer to function with name.
9050///
9051///
9052/// Functions such as TH1::Fit store the fitted function in the list of
9053/// functions of this histogram.
9054
9055TF1 *TH1::GetFunction(const char *name) const
9056{
9057 return (TF1*)fFunctions->FindObject(name);
9058}
9059
9060////////////////////////////////////////////////////////////////////////////////
9061/// Return value of error associated to bin number bin.
9062///
9063/// if the sum of squares of weights has been defined (via Sumw2),
9064/// this function returns the sqrt(sum of w2).
9065/// otherwise it returns the sqrt(contents) for this bin.
9066
9068{
9069 if (bin < 0) bin = 0;
9070 if (bin >= fNcells) bin = fNcells-1;
9071 if (fBuffer) ((TH1*)this)->BufferEmpty();
9072 if (fSumw2.fN) return TMath::Sqrt(fSumw2.fArray[bin]);
9073
9075}
9076
9077////////////////////////////////////////////////////////////////////////////////
9078/// Return lower error associated to bin number bin.
9079///
9080/// The error will depend on the statistic option used will return
9081/// the binContent - lower interval value
9082
9084{
9085 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
9086 // in case of weighted histogram check if it is really weighted
9087 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
9088
9089 if (bin < 0) bin = 0;
9090 if (bin >= fNcells) bin = fNcells-1;
9091 if (fBuffer) ((TH1*)this)->BufferEmpty();
9092
9093 Double_t alpha = 1.- 0.682689492;
9094 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
9095
9097 Int_t n = int(c);
9098 if (n < 0) {
9099 Warning("GetBinErrorLow","Histogram has negative bin content-force usage to normal errors");
9100 ((TH1*)this)->fBinStatErrOpt = kNormal;
9101 return GetBinError(bin);
9102 }
9103
9104 if (n == 0) return 0;
9105 return c - ROOT::Math::gamma_quantile( alpha/2, n, 1.);
9106}
9107
9108////////////////////////////////////////////////////////////////////////////////
9109/// Return upper error associated to bin number bin.
9110///
9111/// The error will depend on the statistic option used will return
9112/// the binContent - upper interval value
9113
9115{
9116 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
9117 // in case of weighted histogram check if it is really weighted
9118 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
9119 if (bin < 0) bin = 0;
9120 if (bin >= fNcells) bin = fNcells-1;
9121 if (fBuffer) ((TH1*)this)->BufferEmpty();
9122
9123 Double_t alpha = 1.- 0.682689492;
9124 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
9125
9127 Int_t n = int(c);
9128 if (n < 0) {
9129 Warning("GetBinErrorUp","Histogram has negative bin content-force usage to normal errors");
9130 ((TH1*)this)->fBinStatErrOpt = kNormal;
9131 return GetBinError(bin);
9132 }
9133
9134 // for N==0 return an upper limit at 0.68 or (1-alpha)/2 ?
9135 // decide to return always (1-alpha)/2 upper interval
9136 //if (n == 0) return ROOT::Math::gamma_quantile_c(alpha,n+1,1);
9137 return ROOT::Math::gamma_quantile_c( alpha/2, n+1, 1) - c;
9138}
9139
9140//L.M. These following getters are useless and should be probably deprecated
9141////////////////////////////////////////////////////////////////////////////////
9142/// Return bin center for 1D histogram.
9143/// Better to use h1.GetXaxis()->GetBinCenter(bin)
9144
9146{
9147 if (fDimension == 1) return fXaxis.GetBinCenter(bin);
9148 Error("GetBinCenter","Invalid method for a %d-d histogram - return a NaN",fDimension);
9149 return TMath::QuietNaN();
9150}
9151
9152////////////////////////////////////////////////////////////////////////////////
9153/// Return bin lower edge for 1D histogram.
9154/// Better to use h1.GetXaxis()->GetBinLowEdge(bin)
9155
9157{
9158 if (fDimension == 1) return fXaxis.GetBinLowEdge(bin);
9159 Error("GetBinLowEdge","Invalid method for a %d-d histogram - return a NaN",fDimension);
9160 return TMath::QuietNaN();
9161}
9162
9163////////////////////////////////////////////////////////////////////////////////
9164/// Return bin width for 1D histogram.
9165/// Better to use h1.GetXaxis()->GetBinWidth(bin)
9166
9168{
9169 if (fDimension == 1) return fXaxis.GetBinWidth(bin);
9170 Error("GetBinWidth","Invalid method for a %d-d histogram - return a NaN",fDimension);
9171 return TMath::QuietNaN();
9172}
9173
9174////////////////////////////////////////////////////////////////////////////////
9175/// Fill array with center of bins for 1D histogram
9176/// Better to use h1.GetXaxis()->GetCenter(center)
9177
9178void TH1::GetCenter(Double_t *center) const
9179{
9180 if (fDimension == 1) {
9181 fXaxis.GetCenter(center);
9182 return;
9183 }
9184 Error("GetCenter","Invalid method for a %d-d histogram ",fDimension);
9185}
9186
9187////////////////////////////////////////////////////////////////////////////////
9188/// Fill array with low edge of bins for 1D histogram
9189/// Better to use h1.GetXaxis()->GetLowEdge(edge)
9190
9191void TH1::GetLowEdge(Double_t *edge) const
9192{
9193 if (fDimension == 1) {
9195 return;
9196 }
9197 Error("GetLowEdge","Invalid method for a %d-d histogram ",fDimension);
9198}
9199
9200////////////////////////////////////////////////////////////////////////////////
9201/// Set the bin Error
9202/// Note that this resets the bin eror option to be of Normal Type and for the
9203/// non-empty bin the bin error is set by default to the square root of their content.
9204/// Note that in case the user sets after calling SetBinError explicitly a new bin content (e.g. using SetBinContent)
9205/// he needs then to provide also the corresponding bin error (using SetBinError) since the bin error
9206/// will not be recalculated after setting the content and a default error = 0 will be used for those bins.
9207///
9208/// See convention for numbering bins in TH1::GetBin
9209
9210void TH1::SetBinError(Int_t bin, Double_t error)
9211{
9212 if (bin < 0 || bin>= fNcells) return;
9213 if (!fSumw2.fN) Sumw2();
9214 fSumw2.fArray[bin] = error * error;
9215 // reset the bin error option
9217}
9218
9219////////////////////////////////////////////////////////////////////////////////
9220/// Set bin content
9221/// see convention for numbering bins in TH1::GetBin
9222/// In case the bin number is greater than the number of bins and
9223/// the timedisplay option is set or CanExtendAllAxes(),
9224/// the number of bins is automatically doubled to accommodate the new bin
9225
9227{
9228 fEntries++;
9229 fTsumw = 0;
9230 if (bin < 0) return;
9231 if (bin >= fNcells-1) {
9233 while (bin >= fNcells-1) LabelsInflate();
9234 } else {
9235 if (bin == fNcells-1) UpdateBinContent(bin, content);
9236 return;
9237 }
9238 }
9240}
9241
9242////////////////////////////////////////////////////////////////////////////////
9243/// See convention for numbering bins in TH1::GetBin
9244
9246{
9247 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9248 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9249 SetBinError(GetBin(binx, biny), error);
9250}
9251
9252////////////////////////////////////////////////////////////////////////////////
9253/// See convention for numbering bins in TH1::GetBin
9254
9256{
9257 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9258 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9259 if (binz < 0 || binz > fZaxis.GetNbins() + 1) return;
9260 SetBinError(GetBin(binx, biny, binz), error);
9261}
9262
9263////////////////////////////////////////////////////////////////////////////////
9264/// This function calculates the background spectrum in this histogram.
9265/// The background is returned as a histogram.
9266///
9267/// \param[in] niter number of iterations (default value = 2)
9268/// Increasing niter make the result smoother and lower.
9269/// \param[in] option may contain one of the following options
9270/// - to set the direction parameter
9271/// "BackDecreasingWindow". By default the direction is BackIncreasingWindow
9272/// - filterOrder-order of clipping filter (default "BackOrder2")
9273/// possible values= "BackOrder4" "BackOrder6" "BackOrder8"
9274/// - "nosmoothing" - if selected, the background is not smoothed
9275/// By default the background is smoothed.
9276/// - smoothWindow - width of smoothing window, (default is "BackSmoothing3")
9277/// possible values= "BackSmoothing5" "BackSmoothing7" "BackSmoothing9"
9278/// "BackSmoothing11" "BackSmoothing13" "BackSmoothing15"
9279/// - "nocompton" - if selected the estimation of Compton edge
9280/// will be not be included (by default the compton estimation is set)
9281/// - "same" if this option is specified, the resulting background
9282/// histogram is superimposed on the picture in the current pad.
9283/// This option is given by default.
9284///
9285/// NOTE that the background is only evaluated in the current range of this histogram.
9286/// i.e., if this has a bin range (set via h->GetXaxis()->SetRange(binmin, binmax),
9287/// the returned histogram will be created with the same number of bins
9288/// as this input histogram, but only bins from binmin to binmax will be filled
9289/// with the estimated background.
9290
9292{
9293 return (TH1*)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticBackground((TH1*)0x%zx,%d,\"%s\")",
9294 (size_t)this, niter, option).Data());
9295}
9296
9297////////////////////////////////////////////////////////////////////////////////
9298/// Interface to TSpectrum::Search.
9299/// The function finds peaks in this histogram where the width is > sigma
9300/// and the peak maximum greater than threshold*maximum bin content of this.
9301/// For more details see TSpectrum::Search.
9302/// Note the difference in the default value for option compared to TSpectrum::Search
9303/// option="" by default (instead of "goff").
9304
9306{
9307 return (Int_t)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticSearch((TH1*)0x%zx,%g,\"%s\",%g)",
9308 (size_t)this, sigma, option, threshold).Data());
9309}
9310
9311////////////////////////////////////////////////////////////////////////////////
9312/// For a given transform (first parameter), fills the histogram (second parameter)
9313/// with the transform output data, specified in the third parameter
9314/// If the 2nd parameter h_output is empty, a new histogram (TH1D or TH2D) is created
9315/// and the user is responsible for deleting it.
9316///
9317/// Available options:
9318/// - "RE" - real part of the output
9319/// - "IM" - imaginary part of the output
9320/// - "MAG" - magnitude of the output
9321/// - "PH" - phase of the output
9322
9324{
9325 if (!fft || !fft->GetN() ) {
9326 ::Error("TransformHisto","Invalid FFT transform class");
9327 return nullptr;
9328 }
9329
9330 if (fft->GetNdim()>2){
9331 ::Error("TransformHisto","Only 1d and 2D transform are supported");
9332 return nullptr;
9333 }
9334 Int_t binx,biny;
9335 TString opt = option;
9336 opt.ToUpper();
9337 Int_t *n = fft->GetN();
9338 TH1 *hout=nullptr;
9339 if (h_output) {
9340 hout = h_output;
9341 }
9342 else {
9343 TString name = TString::Format("out_%s", opt.Data());
9344 if (fft->GetNdim()==1)
9345 hout = new TH1D(name, name,n[0], 0, n[0]);
9346 else if (fft->GetNdim()==2)
9347 hout = new TH2D(name, name, n[0], 0, n[0], n[1], 0, n[1]);
9348 }
9349 R__ASSERT(hout != nullptr);
9350 TString type=fft->GetType();
9351 Int_t ind[2];
9352 if (opt.Contains("RE")){
9353 if (type.Contains("2C") || type.Contains("2HC")) {
9354 Double_t re, im;
9355 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9356 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9357 ind[0] = binx-1; ind[1] = biny-1;
9358 fft->GetPointComplex(ind, re, im);
9359 hout->SetBinContent(binx, biny, re);
9360 }
9361 }
9362 } else {
9363 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9364 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9365 ind[0] = binx-1; ind[1] = biny-1;
9366 hout->SetBinContent(binx, biny, fft->GetPointReal(ind));
9367 }
9368 }
9369 }
9370 }
9371 if (opt.Contains("IM")) {
9372 if (type.Contains("2C") || type.Contains("2HC")) {
9373 Double_t re, im;
9374 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9375 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9376 ind[0] = binx-1; ind[1] = biny-1;
9377 fft->GetPointComplex(ind, re, im);
9378 hout->SetBinContent(binx, biny, im);
9379 }
9380 }
9381 } else {
9382 ::Error("TransformHisto","No complex numbers in the output");
9383 return nullptr;
9384 }
9385 }
9386 if (opt.Contains("MA")) {
9387 if (type.Contains("2C") || type.Contains("2HC")) {
9388 Double_t re, im;
9389 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9390 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9391 ind[0] = binx-1; ind[1] = biny-1;
9392 fft->GetPointComplex(ind, re, im);
9393 hout->SetBinContent(binx, biny, TMath::Sqrt(re*re + im*im));
9394 }
9395 }
9396 } else {
9397 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9398 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9399 ind[0] = binx-1; ind[1] = biny-1;
9400 hout->SetBinContent(binx, biny, TMath::Abs(fft->GetPointReal(ind)));
9401 }
9402 }
9403 }
9404 }
9405 if (opt.Contains("PH")) {
9406 if (type.Contains("2C") || type.Contains("2HC")){
9407 Double_t re, im, ph;
9408 for (binx = 1; binx<=hout->GetNbinsX(); binx++){
9409 for (biny=1; biny<=hout->GetNbinsY(); biny++){
9410 ind[0] = binx-1; ind[1] = biny-1;
9411 fft->GetPointComplex(ind, re, im);
9412 if (TMath::Abs(re) > 1e-13){
9413 ph = TMath::ATan(im/re);
9414 //find the correct quadrant
9415 if (re<0 && im<0)
9416 ph -= TMath::Pi();
9417 if (re<0 && im>=0)
9418 ph += TMath::Pi();
9419 } else {
9420 if (TMath::Abs(im) < 1e-13)
9421 ph = 0;
9422 else if (im>0)
9423 ph = TMath::Pi()*0.5;
9424 else
9425 ph = -TMath::Pi()*0.5;
9426 }
9427 hout->SetBinContent(binx, biny, ph);
9428 }
9429 }
9430 } else {
9431 printf("Pure real output, no phase");
9432 return nullptr;
9433 }
9434 }
9435
9436 return hout;
9437}
9438
9439////////////////////////////////////////////////////////////////////////////////
9440/// Print value overload
9441
9442std::string cling::printValue(TH1 *val) {
9443 std::ostringstream strm;
9444 strm << cling::printValue((TObject*)val) << " NbinsX: " << val->GetNbinsX();
9445 return strm.str();
9446}
9447
9448//______________________________________________________________________________
9449// TH1C methods
9450// TH1C : histograms with one byte per channel. Maximum bin content = 127
9451//______________________________________________________________________________
9452
9453ClassImp(TH1C);
9454
9455////////////////////////////////////////////////////////////////////////////////
9456/// Constructor.
9457
9458TH1C::TH1C()
9459{
9460 fDimension = 1;
9461 SetBinsLength(3);
9462 if (fgDefaultSumw2) Sumw2();
9463}
9464
9465////////////////////////////////////////////////////////////////////////////////
9466/// Create a 1-Dim histogram with fix bins of type char (one byte per channel)
9467/// (see TH1::TH1 for explanation of parameters)
9468
9469TH1C::TH1C(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9470: TH1(name,title,nbins,xlow,xup)
9471{
9472 fDimension = 1;
9474
9475 if (xlow >= xup) SetBuffer(fgBufferSize);
9476 if (fgDefaultSumw2) Sumw2();
9477}
9478
9479////////////////////////////////////////////////////////////////////////////////
9480/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9481/// (see TH1::TH1 for explanation of parameters)
9482
9483TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9484: TH1(name,title,nbins,xbins)
9485{
9486 fDimension = 1;
9488 if (fgDefaultSumw2) Sumw2();
9489}
9490
9491////////////////////////////////////////////////////////////////////////////////
9492/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9493/// (see TH1::TH1 for explanation of parameters)
9494
9495TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9496: TH1(name,title,nbins,xbins)
9497{
9498 fDimension = 1;
9500 if (fgDefaultSumw2) Sumw2();
9501}
9502
9503////////////////////////////////////////////////////////////////////////////////
9504/// Destructor.
9505
9507{
9508}
9509
9510////////////////////////////////////////////////////////////////////////////////
9511/// Copy constructor.
9512/// The list of functions is not copied. (Use Clone() if needed)
9513
9514TH1C::TH1C(const TH1C &h1c) : TH1(), TArrayC()
9515{
9516 h1c.TH1C::Copy(*this);
9517}
9518
9519////////////////////////////////////////////////////////////////////////////////
9520/// Increment bin content by 1.
9521/// Passing an out-of-range bin leads to undefined behavior
9522
9523void TH1C::AddBinContent(Int_t bin)
9524{
9525 if (fArray[bin] < 127) fArray[bin]++;
9526}
9527
9528////////////////////////////////////////////////////////////////////////////////
9529/// Increment bin content by w.
9530/// \warning The value of w is cast to `Int_t` before being added.
9531/// Passing an out-of-range bin leads to undefined behavior
9532
9534{
9535 Int_t newval = fArray[bin] + Int_t(w);
9536 if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
9537 if (newval < -127) fArray[bin] = -127;
9538 if (newval > 127) fArray[bin] = 127;
9539}
9540
9541////////////////////////////////////////////////////////////////////////////////
9542/// Copy this to newth1
9543
9544void TH1C::Copy(TObject &newth1) const
9545{
9547}
9548
9549////////////////////////////////////////////////////////////////////////////////
9550/// Reset.
9551
9553{
9556}
9557
9558////////////////////////////////////////////////////////////////////////////////
9559/// Set total number of bins including under/overflow
9560/// Reallocate bin contents array
9561
9563{
9564 if (n < 0) n = fXaxis.GetNbins() + 2;
9565 fNcells = n;
9566 TArrayC::Set(n);
9567}
9568
9569////////////////////////////////////////////////////////////////////////////////
9570/// Operator =
9571
9572TH1C& TH1C::operator=(const TH1C &h1)
9573{
9574 if (this != &h1)
9575 h1.TH1C::Copy(*this);
9576 return *this;
9577}
9578
9579////////////////////////////////////////////////////////////////////////////////
9580/// Operator *
9581
9583{
9584 TH1C hnew = h1;
9585 hnew.Scale(c1);
9586 hnew.SetDirectory(nullptr);
9587 return hnew;
9588}
9589
9590////////////////////////////////////////////////////////////////////////////////
9591/// Operator +
9592
9593TH1C operator+(const TH1C &h1, const TH1C &h2)
9594{
9595 TH1C hnew = h1;
9596 hnew.Add(&h2,1);
9597 hnew.SetDirectory(nullptr);
9598 return hnew;
9599}
9600
9601////////////////////////////////////////////////////////////////////////////////
9602/// Operator -
9603
9604TH1C operator-(const TH1C &h1, const TH1C &h2)
9605{
9606 TH1C hnew = h1;
9607 hnew.Add(&h2,-1);
9608 hnew.SetDirectory(nullptr);
9609 return hnew;
9610}
9611
9612////////////////////////////////////////////////////////////////////////////////
9613/// Operator *
9614
9615TH1C operator*(const TH1C &h1, const TH1C &h2)
9616{
9617 TH1C hnew = h1;
9618 hnew.Multiply(&h2);
9619 hnew.SetDirectory(nullptr);
9620 return hnew;
9621}
9622
9623////////////////////////////////////////////////////////////////////////////////
9624/// Operator /
9625
9626TH1C operator/(const TH1C &h1, const TH1C &h2)
9627{
9628 TH1C hnew = h1;
9629 hnew.Divide(&h2);
9630 hnew.SetDirectory(nullptr);
9631 return hnew;
9632}
9633
9634//______________________________________________________________________________
9635// TH1S methods
9636// TH1S : histograms with one short per channel. Maximum bin content = 32767
9637//______________________________________________________________________________
9638
9639ClassImp(TH1S);
9640
9641////////////////////////////////////////////////////////////////////////////////
9642/// Constructor.
9643
9644TH1S::TH1S()
9645{
9646 fDimension = 1;
9647 SetBinsLength(3);
9648 if (fgDefaultSumw2) Sumw2();
9649}
9650
9651////////////////////////////////////////////////////////////////////////////////
9652/// Create a 1-Dim histogram with fix bins of type short
9653/// (see TH1::TH1 for explanation of parameters)
9654
9655TH1S::TH1S(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9656: TH1(name,title,nbins,xlow,xup)
9657{
9658 fDimension = 1;
9660
9661 if (xlow >= xup) SetBuffer(fgBufferSize);
9662 if (fgDefaultSumw2) Sumw2();
9663}
9664
9665////////////////////////////////////////////////////////////////////////////////
9666/// Create a 1-Dim histogram with variable bins of type short
9667/// (see TH1::TH1 for explanation of parameters)
9668
9669TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9670: TH1(name,title,nbins,xbins)
9671{
9672 fDimension = 1;
9674 if (fgDefaultSumw2) Sumw2();
9675}
9676
9677////////////////////////////////////////////////////////////////////////////////
9678/// Create a 1-Dim histogram with variable bins of type short
9679/// (see TH1::TH1 for explanation of parameters)
9680
9681TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9682: TH1(name,title,nbins,xbins)
9683{
9684 fDimension = 1;
9686 if (fgDefaultSumw2) Sumw2();
9687}
9688
9689////////////////////////////////////////////////////////////////////////////////
9690/// Destructor.
9691
9693{
9694}
9695
9696////////////////////////////////////////////////////////////////////////////////
9697/// Copy constructor.
9698/// The list of functions is not copied. (Use Clone() if needed)
9699
9700TH1S::TH1S(const TH1S &h1s) : TH1(), TArrayS()
9701{
9702 h1s.TH1S::Copy(*this);
9703}
9704
9705////////////////////////////////////////////////////////////////////////////////
9706/// Increment bin content by 1.
9707/// Passing an out-of-range bin leads to undefined behavior
9708
9709void TH1S::AddBinContent(Int_t bin)
9710{
9711 if (fArray[bin] < 32767) fArray[bin]++;
9712}
9713
9714////////////////////////////////////////////////////////////////////////////////
9715/// Increment bin content by w.
9716/// \warning The value of w is cast to `Int_t` before being added.
9717/// Passing an out-of-range bin leads to undefined behavior
9718
9720{
9721 Int_t newval = fArray[bin] + Int_t(w);
9722 if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
9723 if (newval < -32767) fArray[bin] = -32767;
9724 if (newval > 32767) fArray[bin] = 32767;
9725}
9726
9727////////////////////////////////////////////////////////////////////////////////
9728/// Copy this to newth1
9729
9730void TH1S::Copy(TObject &newth1) const
9731{
9733}
9734
9735////////////////////////////////////////////////////////////////////////////////
9736/// Reset.
9737
9739{
9742}
9743
9744////////////////////////////////////////////////////////////////////////////////
9745/// Set total number of bins including under/overflow
9746/// Reallocate bin contents array
9747
9749{
9750 if (n < 0) n = fXaxis.GetNbins() + 2;
9751 fNcells = n;
9752 TArrayS::Set(n);
9753}
9754
9755////////////////////////////////////////////////////////////////////////////////
9756/// Operator =
9757
9758TH1S& TH1S::operator=(const TH1S &h1)
9759{
9760 if (this != &h1)
9761 h1.TH1S::Copy(*this);
9762 return *this;
9763}
9764
9765////////////////////////////////////////////////////////////////////////////////
9766/// Operator *
9767
9769{
9770 TH1S hnew = h1;
9771 hnew.Scale(c1);
9772 hnew.SetDirectory(nullptr);
9773 return hnew;
9774}
9775
9776////////////////////////////////////////////////////////////////////////////////
9777/// Operator +
9778
9779TH1S operator+(const TH1S &h1, const TH1S &h2)
9780{
9781 TH1S hnew = h1;
9782 hnew.Add(&h2,1);
9783 hnew.SetDirectory(nullptr);
9784 return hnew;
9785}
9786
9787////////////////////////////////////////////////////////////////////////////////
9788/// Operator -
9789
9790TH1S operator-(const TH1S &h1, const TH1S &h2)
9791{
9792 TH1S hnew = h1;
9793 hnew.Add(&h2,-1);
9794 hnew.SetDirectory(nullptr);
9795 return hnew;
9796}
9797
9798////////////////////////////////////////////////////////////////////////////////
9799/// Operator *
9800
9801TH1S operator*(const TH1S &h1, const TH1S &h2)
9802{
9803 TH1S hnew = h1;
9804 hnew.Multiply(&h2);
9805 hnew.SetDirectory(nullptr);
9806 return hnew;
9807}
9808
9809////////////////////////////////////////////////////////////////////////////////
9810/// Operator /
9811
9812TH1S operator/(const TH1S &h1, const TH1S &h2)
9813{
9814 TH1S hnew = h1;
9815 hnew.Divide(&h2);
9816 hnew.SetDirectory(nullptr);
9817 return hnew;
9818}
9819
9820//______________________________________________________________________________
9821// TH1I methods
9822// TH1I : histograms with one int per channel. Maximum bin content = 2147483647
9823// 2147483647 = INT_MAX
9824//______________________________________________________________________________
9825
9826ClassImp(TH1I);
9827
9828////////////////////////////////////////////////////////////////////////////////
9829/// Constructor.
9830
9831TH1I::TH1I()
9832{
9833 fDimension = 1;
9834 SetBinsLength(3);
9835 if (fgDefaultSumw2) Sumw2();
9836}
9837
9838////////////////////////////////////////////////////////////////////////////////
9839/// Create a 1-Dim histogram with fix bins of type integer
9840/// (see TH1::TH1 for explanation of parameters)
9841
9842TH1I::TH1I(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9843: TH1(name,title,nbins,xlow,xup)
9844{
9845 fDimension = 1;
9847
9848 if (xlow >= xup) SetBuffer(fgBufferSize);
9849 if (fgDefaultSumw2) Sumw2();
9850}
9851
9852////////////////////////////////////////////////////////////////////////////////
9853/// Create a 1-Dim histogram with variable bins of type integer
9854/// (see TH1::TH1 for explanation of parameters)
9855
9856TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9857: TH1(name,title,nbins,xbins)
9858{
9859 fDimension = 1;
9861 if (fgDefaultSumw2) Sumw2();
9862}
9863
9864////////////////////////////////////////////////////////////////////////////////
9865/// Create a 1-Dim histogram with variable bins of type integer
9866/// (see TH1::TH1 for explanation of parameters)
9867
9868TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9869: TH1(name,title,nbins,xbins)
9870{
9871 fDimension = 1;
9873 if (fgDefaultSumw2) Sumw2();
9874}
9875
9876////////////////////////////////////////////////////////////////////////////////
9877/// Destructor.
9878
9880{
9881}
9882
9883////////////////////////////////////////////////////////////////////////////////
9884/// Copy constructor.
9885/// The list of functions is not copied. (Use Clone() if needed)
9886
9887TH1I::TH1I(const TH1I &h1i) : TH1(), TArrayI()
9888{
9889 h1i.TH1I::Copy(*this);
9890}
9891
9892////////////////////////////////////////////////////////////////////////////////
9893/// Increment bin content by 1.
9894/// Passing an out-of-range bin leads to undefined behavior
9895
9896void TH1I::AddBinContent(Int_t bin)
9897{
9898 if (fArray[bin] < INT_MAX) fArray[bin]++;
9899}
9900
9901////////////////////////////////////////////////////////////////////////////////
9902/// Increment bin content by w
9903/// \warning The value of w is cast to `Long64_t` before being added.
9904/// Passing an out-of-range bin leads to undefined behavior
9905
9907{
9908 Long64_t newval = fArray[bin] + Long64_t(w);
9909 if (newval > -INT_MAX && newval < INT_MAX) {fArray[bin] = Int_t(newval); return;}
9910 if (newval < -INT_MAX) fArray[bin] = -INT_MAX;
9911 if (newval > INT_MAX) fArray[bin] = INT_MAX;
9912}
9913
9914////////////////////////////////////////////////////////////////////////////////
9915/// Copy this to newth1
9916
9917void TH1I::Copy(TObject &newth1) const
9918{
9920}
9921
9922////////////////////////////////////////////////////////////////////////////////
9923/// Reset.
9924
9926{
9929}
9930
9931////////////////////////////////////////////////////////////////////////////////
9932/// Set total number of bins including under/overflow
9933/// Reallocate bin contents array
9934
9936{
9937 if (n < 0) n = fXaxis.GetNbins() + 2;
9938 fNcells = n;
9939 TArrayI::Set(n);
9940}
9941
9942////////////////////////////////////////////////////////////////////////////////
9943/// Operator =
9944
9945TH1I& TH1I::operator=(const TH1I &h1)
9946{
9947 if (this != &h1)
9948 h1.TH1I::Copy(*this);
9949 return *this;
9950}
9951
9952
9953////////////////////////////////////////////////////////////////////////////////
9954/// Operator *
9955
9957{
9958 TH1I hnew = h1;
9959 hnew.Scale(c1);
9960 hnew.SetDirectory(nullptr);
9961 return hnew;
9962}
9963
9964////////////////////////////////////////////////////////////////////////////////
9965/// Operator +
9966
9967TH1I operator+(const TH1I &h1, const TH1I &h2)
9968{
9969 TH1I hnew = h1;
9970 hnew.Add(&h2,1);
9971 hnew.SetDirectory(nullptr);
9972 return hnew;
9973}
9974
9975////////////////////////////////////////////////////////////////////////////////
9976/// Operator -
9977
9978TH1I operator-(const TH1I &h1, const TH1I &h2)
9979{
9980 TH1I hnew = h1;
9981 hnew.Add(&h2,-1);
9982 hnew.SetDirectory(nullptr);
9983 return hnew;
9984}
9985
9986////////////////////////////////////////////////////////////////////////////////
9987/// Operator *
9988
9989TH1I operator*(const TH1I &h1, const TH1I &h2)
9990{
9991 TH1I hnew = h1;
9992 hnew.Multiply(&h2);
9993 hnew.SetDirectory(nullptr);
9994 return hnew;
9995}
9996
9997////////////////////////////////////////////////////////////////////////////////
9998/// Operator /
9999
10000TH1I operator/(const TH1I &h1, const TH1I &h2)
10001{
10002 TH1I hnew = h1;
10003 hnew.Divide(&h2);
10004 hnew.SetDirectory(nullptr);
10005 return hnew;
10006}
10007
10008//______________________________________________________________________________
10009// TH1L methods
10010// TH1L : histograms with one long64 per channel. Maximum bin content = 9223372036854775807
10011// 9223372036854775807 = LLONG_MAX
10012//______________________________________________________________________________
10013
10014ClassImp(TH1L);
10015
10016////////////////////////////////////////////////////////////////////////////////
10017/// Constructor.
10018
10019TH1L::TH1L()
10020{
10021 fDimension = 1;
10022 SetBinsLength(3);
10023 if (fgDefaultSumw2) Sumw2();
10024}
10025
10026////////////////////////////////////////////////////////////////////////////////
10027/// Create a 1-Dim histogram with fix bins of type long64
10028/// (see TH1::TH1 for explanation of parameters)
10029
10030TH1L::TH1L(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10031: TH1(name,title,nbins,xlow,xup)
10032{
10033 fDimension = 1;
10035
10036 if (xlow >= xup) SetBuffer(fgBufferSize);
10037 if (fgDefaultSumw2) Sumw2();
10038}
10039
10040////////////////////////////////////////////////////////////////////////////////
10041/// Create a 1-Dim histogram with variable bins of type long64
10042/// (see TH1::TH1 for explanation of parameters)
10043
10044TH1L::TH1L(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10045: TH1(name,title,nbins,xbins)
10046{
10047 fDimension = 1;
10049 if (fgDefaultSumw2) Sumw2();
10050}
10051
10052////////////////////////////////////////////////////////////////////////////////
10053/// Create a 1-Dim histogram with variable bins of type long64
10054/// (see TH1::TH1 for explanation of parameters)
10055
10056TH1L::TH1L(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10057: TH1(name,title,nbins,xbins)
10058{
10059 fDimension = 1;
10061 if (fgDefaultSumw2) Sumw2();
10062}
10063
10064////////////////////////////////////////////////////////////////////////////////
10065/// Destructor.
10066
10068{
10069}
10070
10071////////////////////////////////////////////////////////////////////////////////
10072/// Copy constructor.
10073/// The list of functions is not copied. (Use Clone() if needed)
10074
10075TH1L::TH1L(const TH1L &h1l) : TH1(), TArrayL64()
10076{
10077 h1l.TH1L::Copy(*this);
10078}
10079
10080////////////////////////////////////////////////////////////////////////////////
10081/// Increment bin content by 1.
10082/// Passing an out-of-range bin leads to undefined behavior
10083
10084void TH1L::AddBinContent(Int_t bin)
10085{
10086 if (fArray[bin] < LLONG_MAX) fArray[bin]++;
10087}
10088
10089////////////////////////////////////////////////////////////////////////////////
10090/// Increment bin content by w.
10091/// \warning The value of w is cast to `Long64_t` before being added.
10092/// Passing an out-of-range bin leads to undefined behavior
10093
10095{
10096 Long64_t newval = fArray[bin] + Long64_t(w);
10097 if (newval > -LLONG_MAX && newval < LLONG_MAX) {fArray[bin] = newval; return;}
10098 if (newval < -LLONG_MAX) fArray[bin] = -LLONG_MAX;
10099 if (newval > LLONG_MAX) fArray[bin] = LLONG_MAX;
10100}
10101
10102////////////////////////////////////////////////////////////////////////////////
10103/// Copy this to newth1
10104
10105void TH1L::Copy(TObject &newth1) const
10106{
10108}
10109
10110////////////////////////////////////////////////////////////////////////////////
10111/// Reset.
10112
10114{
10117}
10118
10119////////////////////////////////////////////////////////////////////////////////
10120/// Set total number of bins including under/overflow
10121/// Reallocate bin contents array
10122
10124{
10125 if (n < 0) n = fXaxis.GetNbins() + 2;
10126 fNcells = n;
10128}
10129
10130////////////////////////////////////////////////////////////////////////////////
10131/// Operator =
10132
10133TH1L& TH1L::operator=(const TH1L &h1)
10134{
10135 if (this != &h1)
10136 h1.TH1L::Copy(*this);
10137 return *this;
10138}
10139
10140
10141////////////////////////////////////////////////////////////////////////////////
10142/// Operator *
10143
10145{
10146 TH1L hnew = h1;
10147 hnew.Scale(c1);
10148 hnew.SetDirectory(nullptr);
10149 return hnew;
10150}
10151
10152////////////////////////////////////////////////////////////////////////////////
10153/// Operator +
10154
10155TH1L operator+(const TH1L &h1, const TH1L &h2)
10156{
10157 TH1L hnew = h1;
10158 hnew.Add(&h2,1);
10159 hnew.SetDirectory(nullptr);
10160 return hnew;
10161}
10162
10163////////////////////////////////////////////////////////////////////////////////
10164/// Operator -
10165
10166TH1L operator-(const TH1L &h1, const TH1L &h2)
10167{
10168 TH1L hnew = h1;
10169 hnew.Add(&h2,-1);
10170 hnew.SetDirectory(nullptr);
10171 return hnew;
10172}
10173
10174////////////////////////////////////////////////////////////////////////////////
10175/// Operator *
10176
10177TH1L operator*(const TH1L &h1, const TH1L &h2)
10178{
10179 TH1L hnew = h1;
10180 hnew.Multiply(&h2);
10181 hnew.SetDirectory(nullptr);
10182 return hnew;
10183}
10184
10185////////////////////////////////////////////////////////////////////////////////
10186/// Operator /
10187
10188TH1L operator/(const TH1L &h1, const TH1L &h2)
10189{
10190 TH1L hnew = h1;
10191 hnew.Divide(&h2);
10192 hnew.SetDirectory(nullptr);
10193 return hnew;
10194}
10195
10196//______________________________________________________________________________
10197// TH1F methods
10198// TH1F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216
10199//______________________________________________________________________________
10200
10201ClassImp(TH1F);
10202
10203////////////////////////////////////////////////////////////////////////////////
10204/// Constructor.
10205
10206TH1F::TH1F()
10207{
10208 fDimension = 1;
10209 SetBinsLength(3);
10210 if (fgDefaultSumw2) Sumw2();
10211}
10212
10213////////////////////////////////////////////////////////////////////////////////
10214/// Create a 1-Dim histogram with fix bins of type float
10215/// (see TH1::TH1 for explanation of parameters)
10216
10217TH1F::TH1F(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10218: TH1(name,title,nbins,xlow,xup)
10219{
10220 fDimension = 1;
10222
10223 if (xlow >= xup) SetBuffer(fgBufferSize);
10224 if (fgDefaultSumw2) Sumw2();
10225}
10226
10227////////////////////////////////////////////////////////////////////////////////
10228/// Create a 1-Dim histogram with variable bins of type float
10229/// (see TH1::TH1 for explanation of parameters)
10230
10231TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10232: TH1(name,title,nbins,xbins)
10233{
10234 fDimension = 1;
10236 if (fgDefaultSumw2) Sumw2();
10237}
10238
10239////////////////////////////////////////////////////////////////////////////////
10240/// Create a 1-Dim histogram with variable bins of type float
10241/// (see TH1::TH1 for explanation of parameters)
10242
10243TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10244: TH1(name,title,nbins,xbins)
10245{
10246 fDimension = 1;
10248 if (fgDefaultSumw2) Sumw2();
10249}
10250
10251////////////////////////////////////////////////////////////////////////////////
10252/// Create a histogram from a TVectorF
10253/// by default the histogram name is "TVectorF" and title = ""
10254
10255TH1F::TH1F(const TVectorF &v)
10256: TH1("TVectorF","",v.GetNrows(),0,v.GetNrows())
10257{
10259 fDimension = 1;
10260 Int_t ivlow = v.GetLwb();
10261 for (Int_t i=0;i<fNcells-2;i++) {
10262 SetBinContent(i+1,v(i+ivlow));
10263 }
10265 if (fgDefaultSumw2) Sumw2();
10266}
10267
10268////////////////////////////////////////////////////////////////////////////////
10269/// Copy Constructor.
10270/// The list of functions is not copied. (Use Clone() if needed)
10271
10272TH1F::TH1F(const TH1F &h1f) : TH1(), TArrayF()
10273{
10274 h1f.TH1F::Copy(*this);
10275}
10276
10277////////////////////////////////////////////////////////////////////////////////
10278/// Destructor.
10279
10281{
10282}
10283
10284////////////////////////////////////////////////////////////////////////////////
10285/// Copy this to newth1.
10286
10287void TH1F::Copy(TObject &newth1) const
10288{
10290}
10291
10292////////////////////////////////////////////////////////////////////////////////
10293/// Reset.
10294
10296{
10299}
10300
10301////////////////////////////////////////////////////////////////////////////////
10302/// Set total number of bins including under/overflow
10303/// Reallocate bin contents array
10304
10306{
10307 if (n < 0) n = fXaxis.GetNbins() + 2;
10308 fNcells = n;
10309 TArrayF::Set(n);
10310}
10311
10312////////////////////////////////////////////////////////////////////////////////
10313/// Operator =
10314
10316{
10317 if (this != &h1f)
10318 h1f.TH1F::Copy(*this);
10319 return *this;
10320}
10321
10322////////////////////////////////////////////////////////////////////////////////
10323/// Operator *
10324
10326{
10327 TH1F hnew = h1;
10328 hnew.Scale(c1);
10329 hnew.SetDirectory(nullptr);
10330 return hnew;
10331}
10332
10333////////////////////////////////////////////////////////////////////////////////
10334/// Operator +
10335
10336TH1F operator+(const TH1F &h1, const TH1F &h2)
10337{
10338 TH1F hnew = h1;
10339 hnew.Add(&h2,1);
10340 hnew.SetDirectory(nullptr);
10341 return hnew;
10342}
10343
10344////////////////////////////////////////////////////////////////////////////////
10345/// Operator -
10346
10347TH1F operator-(const TH1F &h1, const TH1F &h2)
10348{
10349 TH1F hnew = h1;
10350 hnew.Add(&h2,-1);
10351 hnew.SetDirectory(nullptr);
10352 return hnew;
10353}
10354
10355////////////////////////////////////////////////////////////////////////////////
10356/// Operator *
10357
10358TH1F operator*(const TH1F &h1, const TH1F &h2)
10359{
10360 TH1F hnew = h1;
10361 hnew.Multiply(&h2);
10362 hnew.SetDirectory(nullptr);
10363 return hnew;
10364}
10365
10366////////////////////////////////////////////////////////////////////////////////
10367/// Operator /
10368
10369TH1F operator/(const TH1F &h1, const TH1F &h2)
10370{
10371 TH1F hnew = h1;
10372 hnew.Divide(&h2);
10373 hnew.SetDirectory(nullptr);
10374 return hnew;
10375}
10376
10377//______________________________________________________________________________
10378// TH1D methods
10379// TH1D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992
10380//______________________________________________________________________________
10381
10382ClassImp(TH1D);
10383
10384////////////////////////////////////////////////////////////////////////////////
10385/// Constructor.
10386
10387TH1D::TH1D()
10388{
10389 fDimension = 1;
10390 SetBinsLength(3);
10391 if (fgDefaultSumw2) Sumw2();
10392}
10393
10394////////////////////////////////////////////////////////////////////////////////
10395/// Create a 1-Dim histogram with fix bins of type double
10396/// (see TH1::TH1 for explanation of parameters)
10397
10398TH1D::TH1D(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10399: TH1(name,title,nbins,xlow,xup)
10400{
10401 fDimension = 1;
10403
10404 if (xlow >= xup) SetBuffer(fgBufferSize);
10405 if (fgDefaultSumw2) Sumw2();
10406}
10407
10408////////////////////////////////////////////////////////////////////////////////
10409/// Create a 1-Dim histogram with variable bins of type double
10410/// (see TH1::TH1 for explanation of parameters)
10411
10412TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10413: TH1(name,title,nbins,xbins)
10414{
10415 fDimension = 1;
10417 if (fgDefaultSumw2) Sumw2();
10418}
10419
10420////////////////////////////////////////////////////////////////////////////////
10421/// Create a 1-Dim histogram with variable bins of type double
10422/// (see TH1::TH1 for explanation of parameters)
10423
10424TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10425: TH1(name,title,nbins,xbins)
10426{
10427 fDimension = 1;
10429 if (fgDefaultSumw2) Sumw2();
10430}
10431
10432////////////////////////////////////////////////////////////////////////////////
10433/// Create a histogram from a TVectorD
10434/// by default the histogram name is "TVectorD" and title = ""
10435
10436TH1D::TH1D(const TVectorD &v)
10437: TH1("TVectorD","",v.GetNrows(),0,v.GetNrows())
10438{
10440 fDimension = 1;
10441 Int_t ivlow = v.GetLwb();
10442 for (Int_t i=0;i<fNcells-2;i++) {
10443 SetBinContent(i+1,v(i+ivlow));
10444 }
10446 if (fgDefaultSumw2) Sumw2();
10447}
10448
10449////////////////////////////////////////////////////////////////////////////////
10450/// Destructor.
10451
10453{
10454}
10455
10456////////////////////////////////////////////////////////////////////////////////
10457/// Constructor.
10458
10459TH1D::TH1D(const TH1D &h1d) : TH1(), TArrayD()
10460{
10461 // intentially call virtual method to warn if TProfile is copying
10462 h1d.Copy(*this);
10463}
10464
10465////////////////////////////////////////////////////////////////////////////////
10466/// Copy this to newth1
10467
10468void TH1D::Copy(TObject &newth1) const
10469{
10471}
10472
10473////////////////////////////////////////////////////////////////////////////////
10474/// Reset.
10475
10477{
10480}
10481
10482////////////////////////////////////////////////////////////////////////////////
10483/// Set total number of bins including under/overflow
10484/// Reallocate bin contents array
10485
10487{
10488 if (n < 0) n = fXaxis.GetNbins() + 2;
10489 fNcells = n;
10490 TArrayD::Set(n);
10491}
10492
10493////////////////////////////////////////////////////////////////////////////////
10494/// Operator =
10495
10497{
10498 // intentially call virtual method to warn if TProfile is copying
10499 if (this != &h1d)
10500 h1d.Copy(*this);
10501 return *this;
10502}
10503
10504////////////////////////////////////////////////////////////////////////////////
10505/// Operator *
10506
10508{
10509 TH1D hnew = h1;
10510 hnew.Scale(c1);
10511 hnew.SetDirectory(nullptr);
10512 return hnew;
10513}
10514
10515////////////////////////////////////////////////////////////////////////////////
10516/// Operator +
10517
10518TH1D operator+(const TH1D &h1, const TH1D &h2)
10519{
10520 TH1D hnew = h1;
10521 hnew.Add(&h2,1);
10522 hnew.SetDirectory(nullptr);
10523 return hnew;
10524}
10525
10526////////////////////////////////////////////////////////////////////////////////
10527/// Operator -
10528
10529TH1D operator-(const TH1D &h1, const TH1D &h2)
10530{
10531 TH1D hnew = h1;
10532 hnew.Add(&h2,-1);
10533 hnew.SetDirectory(nullptr);
10534 return hnew;
10535}
10536
10537////////////////////////////////////////////////////////////////////////////////
10538/// Operator *
10539
10540TH1D operator*(const TH1D &h1, const TH1D &h2)
10541{
10542 TH1D hnew = h1;
10543 hnew.Multiply(&h2);
10544 hnew.SetDirectory(nullptr);
10545 return hnew;
10546}
10547
10548////////////////////////////////////////////////////////////////////////////////
10549/// Operator /
10550
10551TH1D operator/(const TH1D &h1, const TH1D &h2)
10552{
10553 TH1D hnew = h1;
10554 hnew.Divide(&h2);
10555 hnew.SetDirectory(nullptr);
10556 return hnew;
10557}
10558
10559////////////////////////////////////////////////////////////////////////////////
10560///return pointer to histogram with name
10561///hid if id >=0
10562///h_id if id <0
10563
10564TH1 *R__H(Int_t hid)
10565{
10566 TString hname;
10567 if(hid >= 0) hname.Form("h%d",hid);
10568 else hname.Form("h_%d",hid);
10569 return (TH1*)gDirectory->Get(hname);
10570}
10571
10572////////////////////////////////////////////////////////////////////////////////
10573///return pointer to histogram with name hname
10574
10575TH1 *R__H(const char * hname)
10576{
10577 return (TH1*)gDirectory->Get(hname);
10578}
10579
10580
10581/// \fn void TH1::SetBarOffset(Float_t offset)
10582/// Set the bar offset as fraction of the bin width for drawing mode "B".
10583/// This shifts bars to the right on the x axis, and helps to draw bars next to each other.
10584/// \see THistPainter, SetBarWidth()
10585
10586/// \fn void TH1::SetBarWidth(Float_t width)
10587/// Set the width of bars as fraction of the bin width for drawing mode "B".
10588/// This allows for making bars narrower than the bin width. With SetBarOffset(), this helps to draw multiple bars next to each other.
10589/// \see THistPainter, SetBarOffset()
#define b(i)
Definition RSha256.hxx:100
#define c(i)
Definition RSha256.hxx:101
#define a(i)
Definition RSha256.hxx:99
#define s1(x)
Definition RSha256.hxx:91
#define h(i)
Definition RSha256.hxx:106
#define e(i)
Definition RSha256.hxx:103
short Style_t
Definition RtypesCore.h:82
bool Bool_t
Definition RtypesCore.h:63
int Int_t
Definition RtypesCore.h:45
short Color_t
Definition RtypesCore.h:85
short Version_t
Definition RtypesCore.h:65
char Char_t
Definition RtypesCore.h:37
float Float_t
Definition RtypesCore.h:57
short Short_t
Definition RtypesCore.h:39
constexpr Bool_t kFALSE
Definition RtypesCore.h:94
double Double_t
Definition RtypesCore.h:59
long long Long64_t
Definition RtypesCore.h:69
constexpr Bool_t kTRUE
Definition RtypesCore.h:93
const char Option_t
Definition RtypesCore.h:66
#define ClassImp(name)
Definition Rtypes.h:374
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define gDirectory
Definition TDirectory.h:384
R__EXTERN TEnv * gEnv
Definition TEnv.h:170
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
Definition TError.h:125
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t option
Option_t Option_t SetLineWidth
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t SetFillStyle
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t del
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t SetLineColor
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t SetFillColor
Option_t Option_t SetMarkerStyle
Option_t Option_t width
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char y1
char name[80]
Definition TGX11.cxx:110
static bool IsEquidistantBinning(const TAxis &axis)
Test if the binning is equidistant.
Definition TH1.cxx:5876
void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
Least square linear fit without weights.
Definition TH1.cxx:4824
void H1InitGaus()
Compute Initial values of parameters for a gaussian.
Definition TH1.cxx:4659
void H1InitExpo()
Compute Initial values of parameters for an exponential.
Definition TH1.cxx:4715
TH1C operator+(const TH1C &h1, const TH1C &h2)
Operator +.
Definition TH1.cxx:9591
TH1C operator-(const TH1C &h1, const TH1C &h2)
Operator -.
Definition TH1.cxx:9602
TH1C operator/(const TH1C &h1, const TH1C &h2)
Operator /.
Definition TH1.cxx:9624
void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
Extracted from CERN Program library routine DSEQN.
Definition TH1.cxx:4870
static Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon=0.00000001)
Test if two double are almost equal.
Definition TH1.cxx:5859
static Bool_t AlmostInteger(Double_t a, Double_t epsilon=0.00000001)
Test if a double is almost an integer.
Definition TH1.cxx:5867
TF1 * gF1
Definition TH1.cxx:583
TH1 * R__H(Int_t hid)
return pointer to histogram with name hid if id >=0 h_id if id <0
Definition TH1.cxx:10562
TH1C operator*(Double_t c1, const TH1C &h1)
Operator *.
Definition TH1.cxx:9580
void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a)
Least squares lpolynomial fitting without weights.
Definition TH1.cxx:4765
void H1InitPolynom()
Compute Initial values of parameters for a polynom.
Definition TH1.cxx:4735
float xmin
int nentries
float ymin
float xmax
float ymax
#define gInterpreter
Int_t gDebug
Definition TROOT.cxx:597
R__EXTERN TVirtualMutex * gROOTMutex
Definition TROOT.h:63
#define gROOT
Definition TROOT.h:406
R__EXTERN TRandom * gRandom
Definition TRandom.h:62
void Printf(const char *fmt,...)
Formats a string in a circular formatting buffer and prints the string.
Definition TString.cxx:2503
R__EXTERN TStyle * gStyle
Definition TStyle.h:442
#define R__LOCKGUARD(mutex)
#define gPad
#define R__WRITE_LOCKGUARD(mutex)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition BinData.h:52
class describing the range in the coordinates it supports multiple range in a coordinate.
Definition DataRange.h:35
void AndersonDarling2SamplesTest(Double_t &pvalue, Double_t &testStat) const
Performs the Anderson-Darling 2-Sample Test.
Definition GoFTest.cxx:646
const_iterator begin() const
const_iterator end() const
Array of chars or bytes (8 bits per element).
Definition TArrayC.h:27
Char_t * fArray
Definition TArrayC.h:30
void Reset(Char_t val=0)
Definition TArrayC.h:47
void Set(Int_t n) override
Set size of this array to n chars.
Definition TArrayC.cxx:105
Array of doubles (64 bits per element).
Definition TArrayD.h:27
Double_t * fArray
Definition TArrayD.h:30
void Streamer(TBuffer &) override
Stream a TArrayD object.
Definition TArrayD.cxx:149
void Copy(TArrayD &array) const
Definition TArrayD.h:42
void Set(Int_t n) override
Set size of this array to n doubles.
Definition TArrayD.cxx:106
const Double_t * GetArray() const
Definition TArrayD.h:43
void Reset()
Definition TArrayD.h:47
Array of floats (32 bits per element).
Definition TArrayF.h:27
void Reset()
Definition TArrayF.h:47
void Set(Int_t n) override
Set size of this array to n floats.
Definition TArrayF.cxx:105
Array of integers (32 bits per element).
Definition TArrayI.h:27
Int_t * fArray
Definition TArrayI.h:30
void Set(Int_t n) override
Set size of this array to n ints.
Definition TArrayI.cxx:105
void Reset()
Definition TArrayI.h:47
Array of long64s (64 bits per element).
Definition TArrayL64.h:27
Long64_t * fArray
Definition TArrayL64.h:30
void Set(Int_t n) override
Set size of this array to n long64s.
void Reset()
Definition TArrayL64.h:47
Array of shorts (16 bits per element).
Definition TArrayS.h:27
void Set(Int_t n) override
Set size of this array to n shorts.
Definition TArrayS.cxx:105
void Reset()
Definition TArrayS.h:47
Short_t * fArray
Definition TArrayS.h:30
Abstract array base class.
Definition TArray.h:31
Int_t fN
Definition TArray.h:38
virtual void Set(Int_t n)=0
virtual Color_t GetTitleColor() const
Definition TAttAxis.h:47
virtual Color_t GetLabelColor() const
Definition TAttAxis.h:39
virtual Int_t GetNdivisions() const
Definition TAttAxis.h:37
virtual Color_t GetAxisColor() const
Definition TAttAxis.h:38
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition TAttAxis.cxx:298
virtual Style_t GetTitleFont() const
Definition TAttAxis.h:48
virtual Float_t GetLabelOffset() const
Definition TAttAxis.h:41
virtual void SetAxisColor(Color_t color=1, Float_t alpha=1.)
Set color of the line axis and tick marks.
Definition TAttAxis.cxx:160
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels.
Definition TAttAxis.cxx:203
virtual Style_t GetLabelFont() const
Definition TAttAxis.h:40
virtual void SetTitleFont(Style_t font=62)
Set the title font.
Definition TAttAxis.cxx:327
virtual void SetLabelOffset(Float_t offset=0.005)
Set distance between the axis and the labels.
Definition TAttAxis.cxx:191
virtual void SetLabelFont(Style_t font=62)
Set labels' font.
Definition TAttAxis.cxx:180
virtual void SetTitleSize(Float_t size=0.04)
Set size of axis title.
Definition TAttAxis.cxx:309
virtual void SetTitleColor(Color_t color=1)
Set color of axis title.
Definition TAttAxis.cxx:318
virtual Float_t GetTitleSize() const
Definition TAttAxis.h:45
virtual Float_t GetLabelSize() const
Definition TAttAxis.h:42
virtual Float_t GetTickLength() const
Definition TAttAxis.h:46
virtual void ResetAttAxis(Option_t *option="")
Reset axis attributes.
Definition TAttAxis.cxx:79
virtual Float_t GetTitleOffset() const
Definition TAttAxis.h:44
virtual void SetTickLength(Float_t length=0.03)
Set tick mark length.
Definition TAttAxis.cxx:284
virtual void SetNdivisions(Int_t n=510, Bool_t optim=kTRUE)
Set the number of divisions for this axis.
Definition TAttAxis.cxx:233
virtual void SetLabelColor(Color_t color=1, Float_t alpha=1.)
Set color of labels.
Definition TAttAxis.cxx:170
virtual void Streamer(TBuffer &)
virtual Color_t GetFillColor() const
Return the fill area color.
Definition TAttFill.h:31
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
Definition TAttFill.cxx:207
virtual Style_t GetFillStyle() const
Return the fill area style.
Definition TAttFill.h:32
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
Definition TAttFill.cxx:239
virtual void Streamer(TBuffer &)
virtual Color_t GetLineColor() const
Return the line color.
Definition TAttLine.h:35
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
Definition TAttLine.h:44
virtual Width_t GetLineWidth() const
Return the line width.
Definition TAttLine.h:37
virtual Style_t GetLineStyle() const
Return the line style.
Definition TAttLine.h:36
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
Definition TAttLine.cxx:177
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
Definition TAttLine.cxx:275
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual Style_t GetMarkerStyle() const
Return the marker style.
Definition TAttMarker.h:33
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition TAttMarker.h:39
virtual Color_t GetMarkerColor() const
Return the marker color.
Definition TAttMarker.h:32
virtual Size_t GetMarkerSize() const
Return the marker size.
Definition TAttMarker.h:34
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition TAttMarker.h:41
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
virtual void Streamer(TBuffer &)
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
Definition TAttMarker.h:46
Class to manage histogram axis.
Definition TAxis.h:32
virtual void GetCenter(Double_t *center) const
Return an array with the center of all bins.
Definition TAxis.cxx:549
virtual Bool_t GetTimeDisplay() const
Definition TAxis.h:133
Bool_t IsAlphanumeric() const
Definition TAxis.h:90
const char * GetTitle() const override
Returns title of object.
Definition TAxis.h:137
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition TAxis.cxx:473
Bool_t CanExtend() const
Definition TAxis.h:88
virtual void SetParent(TObject *obj)
Definition TAxis.h:169
const TArrayD * GetXbins() const
Definition TAxis.h:138
void SetCanExtend(Bool_t canExtend)
Definition TAxis.h:92
void Copy(TObject &axis) const override
Copy axis structure to another axis.
Definition TAxis.cxx:211
Double_t GetXmax() const
Definition TAxis.h:142
@ kLabelsUp
Definition TAxis.h:75
@ kLabelsDown
Definition TAxis.h:74
@ kLabelsHori
Definition TAxis.h:72
@ kAxisRange
Definition TAxis.h:66
@ kLabelsVert
Definition TAxis.h:73
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
Definition TAxis.cxx:288
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition TAxis.cxx:513
virtual void SetTimeDisplay(Int_t value)
Definition TAxis.h:173
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
Definition TAxis.cxx:790
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x.
Definition TAxis.cxx:414
void SaveAttributes(std::ostream &out, const char *name, const char *subname) override
Save axis attributes as C++ statement(s) on output stream out.
Definition TAxis.cxx:706
Int_t GetLast() const
Return last bin on the axis i.e.
Definition TAxis.cxx:464
virtual void SetLimits(Double_t xmin, Double_t xmax)
Definition TAxis.h:166
Double_t GetXmin() const
Definition TAxis.h:141
void Streamer(TBuffer &) override
Stream an object of class TAxis.
Definition TAxis.cxx:1218
Int_t GetNbins() const
Definition TAxis.h:127
virtual void GetLowEdge(Double_t *edge) const
Return an array with the low edge of all bins.
Definition TAxis.cxx:558
virtual void SetRange(Int_t first=0, Int_t last=0)
Set the viewing range for the axis using bin numbers.
Definition TAxis.cxx:1053
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Definition TAxis.cxx:537
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
Definition TAxis.cxx:523
Int_t GetFirst() const
Return first bin on the axis i.e.
Definition TAxis.cxx:453
THashList * GetLabels() const
Definition TAxis.h:123
Using a TBrowser one can browse all ROOT objects.
Definition TBrowser.h:37
Buffer base class used for serializing objects.
Definition TBuffer.h:43
void * New(ENewType defConstructor=kClassNew, Bool_t quiet=kFALSE) const
Return a pointer to a newly allocated object of this class.
Definition TClass.cxx:5087
ROOT::NewFunc_t GetNew() const
Return the wrapper around new ThisClass().
Definition TClass.cxx:7602
Collection abstract base class.
Definition TCollection.h:65
virtual bool UseRWLock(Bool_t enable=true)
Set this collection to use a RW lock upon access, making it thread safe.
TObject * Clone(const char *newname="") const override
Make a clone of an collection using the Streamer facility.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
Describe directory structure in memory.
Definition TDirectory.h:45
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
virtual Int_t GetValue(const char *name, Int_t dflt) const
Returns the integer value for a resource.
Definition TEnv.cxx:491
1-Dim function class
Definition TF1.h:233
static void RejectPoint(Bool_t reject=kTRUE)
Static function to set the global flag to reject points the fgRejectPoint global flag is tested by al...
Definition TF1.cxx:3684
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function Note that this histogram is managed ...
Definition TF1.cxx:1584
static TClass * Class()
virtual Int_t GetNpar() const
Definition TF1.h:509
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition TF1.cxx:2531
virtual void InitArgs(const Double_t *x, const Double_t *params)
Initialize parameters addresses.
Definition TF1.cxx:2482
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
Definition TF1.cxx:2281
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=nullptr)
Evaluate function with given coordinates and parameters.
Definition TF1.cxx:1468
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set lower and upper limits for parameter ipar.
Definition TF1.cxx:3508
static Bool_t RejectedPoint()
See TF1::RejectPoint above.
Definition TF1.cxx:3693
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition TF1.cxx:1439
virtual void SetParameter(Int_t param, Double_t value)
Definition TF1.h:667
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
Definition TF1.h:626
A 2-Dim function with parameters.
Definition TF2.h:29
A 3-Dim function with parameters.
Definition TF3.h:28
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
1-D histogram with a byte per channel (see TH1 documentation)
Definition TH1.h:481
~TH1C() override
Destructor.
Definition TH1.cxx:9504
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9560
TH1C & operator=(const TH1C &h1)
Operator =.
Definition TH1.cxx:9570
TH1C()
Constructor.
Definition TH1.cxx:9456
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9542
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9521
void Reset(Option_t *option="") override
Reset.
Definition TH1.cxx:9550
1-D histogram with a double per channel (see TH1 documentation)
Definition TH1.h:693
~TH1D() override
Destructor.
Definition TH1.cxx:10450
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10484
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10466
TH1D()
Constructor.
Definition TH1.cxx:10385
TH1D & operator=(const TH1D &h1)
Operator =.
Definition TH1.cxx:10494
1-D histogram with a float per channel (see TH1 documentation)
Definition TH1.h:645
Double_t RetrieveBinContent(Int_t bin) const override
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
Definition TH1.h:679
TH1F & operator=(const TH1F &h1)
Operator =.
Definition TH1.cxx:10313
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10285
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10303
~TH1F() override
Destructor.
Definition TH1.cxx:10278
TH1F()
Constructor.
Definition TH1.cxx:10204
1-D histogram with an int per channel (see TH1 documentation)
Definition TH1.h:563
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9933
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9894
~TH1I() override
Destructor.
Definition TH1.cxx:9877
TH1I()
Constructor.
Definition TH1.cxx:9829
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9915
TH1I & operator=(const TH1I &h1)
Operator =.
Definition TH1.cxx:9943
1-D histogram with a long64 per channel (see TH1 documentation)
Definition TH1.h:604
TH1L & operator=(const TH1L &h1)
Operator =.
Definition TH1.cxx:10131
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:10082
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10121
~TH1L() override
Destructor.
Definition TH1.cxx:10065
TH1L()
Constructor.
Definition TH1.cxx:10017
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10103
1-D histogram with a short per channel (see TH1 documentation)
Definition TH1.h:522
TH1S & operator=(const TH1S &h1)
Operator =.
Definition TH1.cxx:9756
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9728
TH1S()
Constructor.
Definition TH1.cxx:9642
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9746
~TH1S() override
Destructor.
Definition TH1.cxx:9690
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9707
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:59
~TH1() override
Histogram default destructor.
Definition TH1.cxx:630
virtual void SetError(const Double_t *error)
Replace bin errors by values in array error.
Definition TH1.cxx:8953
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
Definition TH1.cxx:8939
virtual void FitPanel()
Display a panel with all histogram fit options.
Definition TH1.cxx:4261
Double_t * fBuffer
[fBufferSize] entry buffer
Definition TH1.h:119
virtual Int_t AutoP2FindLimits(Double_t min, Double_t max)
Buffer-based estimate of the histogram range using the power of 2 algorithm.
Definition TH1.cxx:1312
virtual Double_t GetEffectiveEntries() const
Number of effective entries of the histogram.
Definition TH1.cxx:4425
char * GetObjectInfo(Int_t px, Int_t py) const override
Redefines TObject::GetObjectInfo.
Definition TH1.cxx:4479
virtual void Smooth(Int_t ntimes=1, Option_t *option="")
Smooth bin contents of this histogram.
Definition TH1.cxx:6877
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition TH1.cxx:9143
virtual void Rebuild(Option_t *option="")
Using the current bin info, recompute the arrays for contents and errors.
Definition TH1.cxx:7085
virtual void SetBarOffset(Float_t offset=0.25)
Set the bar offset as fraction of the bin width for drawing mode "B".
Definition TH1.h:380
static Bool_t fgStatOverflows
! Flag to use under/overflows in statistics
Definition TH1.h:128
virtual Int_t FindLastBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find last bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold i...
Definition TH1.cxx:3774
TAxis * GetZaxis()
Definition TH1.h:342
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a line.
Definition TH1.cxx:2794
virtual Bool_t Multiply(TF1 *f1, Double_t c1=1)
Performs the operation:
Definition TH1.cxx:6047
@ kXaxis
Definition TH1.h:73
@ kNoAxis
NOTE: Must always be 0 !!!
Definition TH1.h:72
@ kZaxis
Definition TH1.h:75
@ kYaxis
Definition TH1.h:74
Int_t fNcells
Number of bins(1D), cells (2D) +U/Overflows.
Definition TH1.h:100
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition TH1.cxx:7835
void Copy(TObject &hnew) const override
Copy this histogram structure to newth1.
Definition TH1.cxx:2642
void SetTitle(const char *title) override
Change/set the title.
Definition TH1.cxx:6716
Double_t fTsumw
Total Sum of weights.
Definition TH1.h:107
virtual Float_t GetBarWidth() const
Definition TH1.h:273
Double_t fTsumw2
Total Sum of squares of weights.
Definition TH1.h:108
static void StatOverflows(Bool_t flag=kTRUE)
if flag=kTRUE, underflows and overflows are used by the Fill functions in the computation of statisti...
Definition TH1.cxx:6923
virtual Float_t GetBarOffset() const
Definition TH1.h:272
TList * fFunctions
->Pointer to list of functions (fits and user)
Definition TH1.h:117
static Bool_t fgAddDirectory
! Flag to add histograms to the directory
Definition TH1.h:127
static TClass * Class()
static Int_t GetDefaultBufferSize()
Static function return the default buffer size for automatic histograms the parameter fgBufferSize ma...
Definition TH1.cxx:4383
virtual Double_t DoIntegral(Int_t ix1, Int_t ix2, Int_t iy1, Int_t iy2, Int_t iz1, Int_t iz2, Double_t &err, Option_t *opt, Bool_t doerr=kFALSE) const
Internal function compute integral and optionally the error between the limits specified by the bin n...
Definition TH1.cxx:7979
Double_t fTsumwx2
Total Sum of weight*X*X.
Definition TH1.h:110
virtual Double_t GetStdDev(Int_t axis=1) const
Returns the Standard Deviation (Sigma).
Definition TH1.cxx:7609
TH1()
Histogram default constructor.
Definition TH1.cxx:602
static TH1 * TransformHisto(TVirtualFFT *fft, TH1 *h_output, Option_t *option)
For a given transform (first parameter), fills the histogram (second parameter) with the transform ou...
Definition TH1.cxx:9321
void UseCurrentStyle() override
Copy current attributes from/to current style.
Definition TH1.cxx:7471
virtual void LabelsOption(Option_t *option="h", Option_t *axis="X")
Sort bins with labels or set option(s) to draw axis with labels.
Definition TH1.cxx:5380
virtual Int_t GetNbinsY() const
Definition TH1.h:314
Short_t fBarOffset
(1000*offset) for bar charts or legos
Definition TH1.h:104
virtual Double_t Chi2TestX(const TH1 *h2, Double_t &chi2, Int_t &ndf, Int_t &igood, Option_t *option="UU", Double_t *res=nullptr) const
The computation routine of the Chisquare test.
Definition TH1.cxx:2038
static bool CheckBinLimits(const TAxis *a1, const TAxis *a2)
Check bin limits.
Definition TH1.cxx:1510
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition TH1.cxx:9065
static Int_t FitOptionsMake(Option_t *option, Foption_t &Foption)
Decode string choptin and fill fitOption structure.
Definition TH1.cxx:4650
virtual Int_t GetNbinsZ() const
Definition TH1.h:315
virtual Double_t GetNormFactor() const
Definition TH1.h:317
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
Definition TH1.cxx:7537
virtual Double_t GetSkewness(Int_t axis=1) const
Definition TH1.cxx:7673
virtual void ClearUnderflowAndOverflow()
Remove all the content from the underflow and overflow bins, without changing the number of entries A...
Definition TH1.cxx:2488
virtual void FillRandom(TF1 *f1, Int_t ntimes=5000, TRandom *rng=nullptr)
Definition TH1.cxx:3499
virtual Double_t GetContourLevelPad(Int_t level) const
Return the value of contour number "level" in Pad coordinates.
Definition TH1.cxx:8442
virtual TH1 * DrawNormalized(Option_t *option="", Double_t norm=1) const
Draw a normalized copy of this histogram.
Definition TH1.cxx:3115
@ kNeutral
Adapt to the global flag.
Definition TH1.h:83
virtual Int_t GetDimension() const
Definition TH1.h:299
void Streamer(TBuffer &) override
Stream a class object.
Definition TH1.cxx:6931
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition TH1.cxx:1263
@ kIsAverage
Bin contents are average (used by Add)
Definition TH1.h:181
@ kUserContour
User specified contour levels.
Definition TH1.h:176
@ kNoStats
Don't draw stats box.
Definition TH1.h:175
@ kAutoBinPTwo
different than 1.
Definition TH1.h:184
@ kIsNotW
Histogram is forced to be not weighted even when the histogram is filled with weighted.
Definition TH1.h:182
@ kIsHighlight
bit set if histo is highlight
Definition TH1.h:185
virtual void SetContourLevel(Int_t level, Double_t value)
Set value for one contour level.
Definition TH1.cxx:8524
virtual Bool_t CanExtendAllAxes() const
Returns true if all axes are extendable.
Definition TH1.cxx:6634
TDirectory * fDirectory
! Pointer to directory holding this histogram
Definition TH1.h:120
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition TH1.cxx:7101
void SetNameTitle(const char *name, const char *title) override
Change the name and title of this histogram.
Definition TH1.cxx:8976
TAxis * GetXaxis()
Definition TH1.h:340
virtual void GetBinXYZ(Int_t binglobal, Int_t &binx, Int_t &biny, Int_t &binz) const
Return binx, biny, binz corresponding to the global bin number globalbin see TH1::GetBin function abo...
Definition TH1.cxx:4972
TH1 * GetCumulative(Bool_t forward=kTRUE, const char *suffix="_cumulative") const
Return a pointer to a histogram containing the cumulative content.
Definition TH1.cxx:2587
static Double_t AutoP2GetPower2(Double_t x, Bool_t next=kTRUE)
Auxiliary function to get the power of 2 next (larger) or previous (smaller) a given x.
Definition TH1.cxx:1277
virtual Int_t GetNcells() const
Definition TH1.h:316
virtual Int_t ShowPeaks(Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
Interface to TSpectrum::Search.
Definition TH1.cxx:9303
static Bool_t RecomputeAxisLimits(TAxis &destAxis, const TAxis &anAxis)
Finds new limits for the axis for the Merge function.
Definition TH1.cxx:5906
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition TH1.cxx:7886
TVirtualHistPainter * GetPainter(Option_t *option="")
Return pointer to painter.
Definition TH1.cxx:4488
TObject * FindObject(const char *name) const override
Search object named name in the list of functions.
Definition TH1.cxx:3834
void Print(Option_t *option="") const override
Print some global quantities for this histogram.
Definition TH1.cxx:7007
static Bool_t GetDefaultSumw2()
Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
Definition TH1.cxx:4392
virtual Int_t FindFirstBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find first bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold ...
Definition TH1.cxx:3711
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
Definition TH1.cxx:3875
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition TH1.cxx:4959
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
Definition TH1.cxx:8547
virtual Int_t GetNbinsX() const
Definition TH1.h:313
virtual void SetMaximum(Double_t maximum=-1111)
Definition TH1.h:420
virtual TH1 * FFT(TH1 *h_output, Option_t *option)
This function allows to do discrete Fourier transforms of TH1 and TH2.
Definition TH1.cxx:3255
virtual void LabelsInflate(Option_t *axis="X")
Double the number of bins for axis.
Definition TH1.cxx:5313
virtual TH1 * ShowBackground(Int_t niter=20, Option_t *option="same")
This function calculates the background spectrum in this histogram.
Definition TH1.cxx:9289
static Bool_t SameLimitsAndNBins(const TAxis &axis1, const TAxis &axis2)
Same limits and bins.
Definition TH1.cxx:5896
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:813
Double_t fMaximum
Maximum value for plotting.
Definition TH1.h:111
Int_t fBufferSize
fBuffer size
Definition TH1.h:118
virtual Double_t IntegralAndError(Int_t binx1, Int_t binx2, Double_t &err, Option_t *option="") const
Return integral of bin contents in range [binx1,binx2] and its error.
Definition TH1.cxx:7970
Int_t fDimension
! Histogram dimension (1, 2 or 3 dim)
Definition TH1.h:121
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition TH1.cxx:9208
EBinErrorOpt fBinStatErrOpt
Option for bin statistical errors.
Definition TH1.h:124
static Int_t fgBufferSize
! Default buffer size for automatic histograms
Definition TH1.h:126
virtual void SetBinsLength(Int_t=-1)
Definition TH1.h:396
Double_t fNormFactor
Normalization factor.
Definition TH1.h:113
@ kFullyConsistent
Definition TH1.h:89
@ kDifferentNumberOfBins
Definition TH1.h:93
@ kDifferentDimensions
Definition TH1.h:94
@ kDifferentBinLimits
Definition TH1.h:91
@ kDifferentAxisLimits
Definition TH1.h:92
@ kDifferentLabels
Definition TH1.h:90
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition TH1.cxx:3315
TAxis * GetYaxis()
Definition TH1.h:341
TArrayD fContour
Array to display contour levels.
Definition TH1.h:114
virtual Double_t GetBinErrorLow(Int_t bin) const
Return lower error associated to bin number bin.
Definition TH1.cxx:9081
void Browse(TBrowser *b) override
Browse the Histogram object.
Definition TH1.cxx:749
virtual void SetContent(const Double_t *content)
Replace bin contents by the contents of array content.
Definition TH1.cxx:8400
void Draw(Option_t *option="") override
Draw this histogram with options.
Definition TH1.cxx:3037
virtual void SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option="")
Helper function for the SavePrimitive functions from TH1 or classes derived from TH1,...
Definition TH1.cxx:7381
Short_t fBarWidth
(1000*width) for bar charts or legos
Definition TH1.h:105
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
Definition TH1.h:472
Int_t AxisChoice(Option_t *axis) const
Choose an axis according to "axis".
Definition Haxis.cxx:14
virtual void SetMinimum(Double_t minimum=-1111)
Definition TH1.h:421
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
Definition TH1.cxx:5212
void SavePrimitive(std::ostream &out, Option_t *option="") override
Save primitive as a C++ statement(s) on output stream out.
Definition TH1.cxx:7235
static bool CheckBinLabels(const TAxis *a1, const TAxis *a2)
Check that axis have same labels.
Definition TH1.cxx:1537
virtual Double_t Interpolate(Double_t x) const
Given a point x, approximates the value via linear interpolation based on the two nearest bin centers...
Definition TH1.cxx:5113
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
Definition TH1.cxx:6701
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
Definition TH1.cxx:5180
UInt_t GetAxisLabelStatus() const
Internal function used in TH1::Fill to see which axis is full alphanumeric, i.e.
Definition TH1.cxx:6673
Double_t * fIntegral
! Integral of bins used by GetRandom
Definition TH1.h:122
Double_t fMinimum
Minimum value for plotting.
Definition TH1.h:112
virtual Double_t Integral(Option_t *option="") const
Return integral of bin contents.
Definition TH1.cxx:7943
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition TH1.cxx:9224
virtual void DirectoryAutoAdd(TDirectory *)
Perform the automatic addition of the histogram to the given directory.
Definition TH1.cxx:2772
virtual void GetLowEdge(Double_t *edge) const
Fill array with low edge of bins for 1D histogram Better to use h1.GetXaxis()->GetLowEdge(edge)
Definition TH1.cxx:9189
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
Definition TH1.cxx:9154
void Build()
Creates histogram basic data structure.
Definition TH1.cxx:758
virtual Double_t GetEntries() const
Return the current number of entries.
Definition TH1.cxx:4400
virtual Double_t RetrieveBinContent(Int_t bin) const =0
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
virtual TF1 * GetFunction(const char *name) const
Return pointer to function with name.
Definition TH1.cxx:9053
virtual TH1 * Rebin(Int_t ngroup=2, const char *newname="", const Double_t *xbins=nullptr)
Rebin this histogram.
Definition TH1.cxx:6273
virtual Int_t BufferFill(Double_t x, Double_t w)
accumulate arguments in buffer.
Definition TH1.cxx:1475
virtual Double_t GetBinWithContent(Double_t c, Int_t &binx, Int_t firstx=0, Int_t lastx=0, Double_t maxdiff=0) const
Compute first binx in the range [firstx,lastx] for which diff = abs(bin_content-c) <= maxdiff.
Definition TH1.cxx:5084
virtual UInt_t SetCanExtend(UInt_t extendBitMask)
Make the histogram axes extendable / not extendable according to the bit mask returns the previous bi...
Definition TH1.cxx:6647
TList * GetListOfFunctions() const
Definition TH1.h:260
void SetName(const char *name) override
Change the name of this histogram.
Definition TH1.cxx:8962
virtual TH1 * DrawCopy(Option_t *option="", const char *name_postfix="_copy") const
Copy this histogram and Draw in the current pad.
Definition TH1.cxx:3084
Bool_t IsEmpty() const
Check if a histogram is empty (this is a protected method used mainly by TH1Merger )
Definition TH1.cxx:5162
virtual Double_t GetMeanError(Int_t axis=1) const
Return standard error of mean of this histogram along the X axis.
Definition TH1.cxx:7577
void Paint(Option_t *option="") override
Control routine to paint any kind of histograms.
Definition TH1.cxx:6204
virtual Double_t AndersonDarlingTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using the Anderson-Darling ...
Definition TH1.cxx:8064
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculated from bin cont...
Definition TH1.cxx:7904
static void SetDefaultBufferSize(Int_t buffersize=1000)
Static function to set the default buffer size for automatic histograms.
Definition TH1.cxx:6691
virtual void SetBinErrorOption(EBinErrorOpt type)
Definition TH1.h:397
virtual void SetBuffer(Int_t buffersize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
Definition TH1.cxx:8460
virtual void DrawPanel()
Display a panel with all histogram drawing options.
Definition TH1.cxx:3146
virtual Double_t GetRandom(TRandom *rng=nullptr) const
Return a random number distributed according the histogram bin contents.
Definition TH1.cxx:5008
virtual Double_t Chisquare(TF1 *f1, Option_t *option="") const
Compute and return the chisquare of this histogram with respect to a function The chisquare is comput...
Definition TH1.cxx:2467
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=nullptr) const
test for comparing weighted and unweighted histograms.
Definition TH1.cxx:1979
virtual void DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Internal method to fill histogram content from a vector called directly by TH1::BufferEmpty.
Definition TH1.cxx:3444
virtual void GetMinimumAndMaximum(Double_t &min, Double_t &max) const
Retrieve the minimum and maximum values in the histogram.
Definition TH1.cxx:8733
@ kNstat
Size of statistics data (up to TProfile3D)
Definition TH1.h:194
virtual Int_t GetMaximumBin() const
Return location of bin with maximum value in the range.
Definition TH1.cxx:8579
static Int_t AutoP2GetBins(Int_t n)
Auxiliary function to get the next power of 2 integer value larger then n.
Definition TH1.cxx:1290
Double_t fEntries
Number of entries.
Definition TH1.h:106
virtual Long64_t Merge(TCollection *list)
Definition TH1.h:361
virtual void SetColors(Color_t linecolor=-1, Color_t markercolor=-1, Color_t fillcolor=-1)
Shortcut to set the three histogram colors with a single call.
Definition TH1.cxx:4444
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
Definition TH1.cxx:3211
virtual Double_t * GetIntegral()
Return a pointer to the array of bins integral.
Definition TH1.cxx:2557
TAxis fZaxis
Z axis descriptor.
Definition TH1.h:103
EStatOverflows fStatOverflows
Per object flag to use under/overflows in statistics.
Definition TH1.h:125
TClass * IsA() const override
Definition TH1.h:460
virtual void FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Fill this histogram with an array x and weights w.
Definition TH1.cxx:3418
static bool CheckEqualAxes(const TAxis *a1, const TAxis *a2)
Check that the axis are the same.
Definition TH1.cxx:1580
@ kPoisson2
Errors from Poisson interval at 95% CL (~ 2 sigma)
Definition TH1.h:67
@ kNormal
Errors with Normal (Wald) approximation: errorUp=errorLow= sqrt(N)
Definition TH1.h:65
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:5059
virtual Int_t GetContour(Double_t *levels=nullptr)
Return contour values into array levels if pointer levels is non zero.
Definition TH1.cxx:8413
TAxis fXaxis
X axis descriptor.
Definition TH1.h:101
virtual Bool_t IsHighlight() const
Definition TH1.h:354
virtual void ExtendAxis(Double_t x, TAxis *axis)
Histogram is resized along axis such that x is in the axis range.
Definition TH1.cxx:6502
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
Definition TH1.cxx:9165
TArrayD fSumw2
Array of sum of squares of weights.
Definition TH1.h:115
TH1 * GetAsymmetry(TH1 *h2, Double_t c2=1, Double_t dc2=0)
Return a histogram containing the asymmetry of this histogram with h2, where the asymmetry is defined...
Definition TH1.cxx:4316
virtual Double_t GetContourLevel(Int_t level) const
Return value of contour number level.
Definition TH1.cxx:8432
virtual void SetContour(Int_t nlevels, const Double_t *levels=nullptr)
Set the number and values of contour levels.
Definition TH1.cxx:8485
virtual void SetHighlight(Bool_t set=kTRUE)
Set highlight (enable/disable) mode for the histogram by default highlight mode is disable.
Definition TH1.cxx:4459
virtual Double_t GetBinErrorUp(Int_t bin) const
Return upper error associated to bin number bin.
Definition TH1.cxx:9112
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
Definition TH1.cxx:6602
virtual Int_t GetMinimumBin() const
Return location of bin with minimum value in the range.
Definition TH1.cxx:8667
virtual Int_t GetSumw2N() const
Definition TH1.h:331
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3649
Bool_t GetStatOverflowsBehaviour() const
Definition TH1.h:163
void SaveAs(const char *filename="hist", Option_t *option="") const override
Save the histogram as .csv, .tsv or .txt.
Definition TH1.cxx:7179
virtual Int_t GetQuantiles(Int_t n, Double_t *xp, const Double_t *p=nullptr)
Compute Quantiles for this histogram Quantile x_p := Q(p) is defined as the value x_p such that the c...
Definition TH1.cxx:4588
virtual void AddBinContent(Int_t bin)=0
Increment bin content by 1.
TObject * Clone(const char *newname="") const override
Make a complete copy of the underlying object.
Definition TH1.cxx:2723
virtual Double_t GetStdDevError(Int_t axis=1) const
Return error of standard deviation estimation for Normal distribution.
Definition TH1.cxx:7657
virtual Bool_t Divide(TF1 *f1, Double_t c1=1)
Performs the operation: this = this/(c1*f1) if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:2811
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
Return minimum value larger than minval of bins in the range, unless the value has been overridden by...
Definition TH1.cxx:8637
int LoggedInconsistency(const char *name, const TH1 *h1, const TH1 *h2, bool useMerge=false) const
Definition TH1.cxx:870
static bool CheckConsistentSubAxes(const TAxis *a1, Int_t firstBin1, Int_t lastBin1, const TAxis *a2, Int_t firstBin2=0, Int_t lastBin2=0)
Check that two sub axis are the same.
Definition TH1.cxx:1609
static Int_t CheckConsistency(const TH1 *h1, const TH1 *h2)
Check histogram compatibility.
Definition TH1.cxx:1648
void RecursiveRemove(TObject *obj) override
Recursively remove object from the list of functions.
Definition TH1.cxx:6574
TAxis fYaxis
Y axis descriptor.
Definition TH1.h:102
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using Kolmogorov test.
Definition TH1.cxx:8180
virtual Double_t GetSumOfWeights() const
Return the sum of weights excluding under/overflows.
Definition TH1.cxx:7919
static void SmoothArray(Int_t NN, Double_t *XX, Int_t ntimes=1)
Smooth array xx, translation of Hbook routine hsmoof.F.
Definition TH1.cxx:6766
virtual void GetCenter(Double_t *center) const
Fill array with center of bins for 1D histogram Better to use h1.GetXaxis()->GetCenter(center)
Definition TH1.cxx:9176
TVirtualHistPainter * fPainter
! Pointer to histogram painter
Definition TH1.h:123
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
Definition TH1.cxx:8769
virtual Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3682
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition TH1.cxx:9022
virtual void SetEntries(Double_t n)
Definition TH1.h:407
virtual Bool_t FindNewAxisLimits(const TAxis *axis, const Double_t point, Double_t &newMin, Double_t &newMax)
finds new limits for the axis so that point is within the range and the limits are compatible with th...
Definition TH1.cxx:6458
static bool CheckAxisLimits(const TAxis *a1, const TAxis *a2)
Check that the axis limits of the histograms are the same.
Definition TH1.cxx:1566
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
Definition TH1.cxx:741
static Bool_t fgDefaultSumw2
! Flag to call TH1::Sumw2 automatically at histogram creation time
Definition TH1.h:129
virtual void UpdateBinContent(Int_t bin, Double_t content)=0
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
Double_t fTsumwx
Total Sum of weight*X.
Definition TH1.h:109
virtual void LabelsDeflate(Option_t *axis="X")
Reduce the number of bins for the axis passed in the option to the number of bins having a label.
Definition TH1.cxx:5243
virtual Double_t ComputeIntegral(Bool_t onlyPositive=false)
Compute integral (normalized cumulative sum of bins) w/o under/overflows The result is stored in fInt...
Definition TH1.cxx:2508
TString fOption
Histogram options.
Definition TH1.h:116
virtual void Eval(TF1 *f1, Option_t *option="")
Evaluate function f1 at the center of bins of this histogram.
Definition TH1.cxx:3163
virtual void SetBarWidth(Float_t width=0.5)
Set the width of bars as fraction of the bin width for drawing mode "B".
Definition TH1.h:381
virtual Int_t BufferEmpty(Int_t action=0)
Fill histogram with all entries in the buffer.
Definition TH1.cxx:1383
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition TH1.cxx:8992
virtual Double_t GetKurtosis(Int_t axis=1) const
Definition TH1.cxx:7746
2-D histogram with a double per channel (see TH1 documentation)
Definition TH2.h:356
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
THashList implements a hybrid collection class consisting of a hash table and a list to store TObject...
Definition THashList.h:34
void Clear(Option_t *option="") override
Remove all objects from the list.
A doubly linked list.
Definition TList.h:38
void Streamer(TBuffer &) override
Stream all objects in the collection to or from the I/O buffer.
Definition TList.cxx:1192
TObject * FindObject(const char *name) const override
Find an object in this list using its name.
Definition TList.cxx:576
void RecursiveRemove(TObject *obj) override
Remove object from this collection and recursively remove the object from all other objects (and coll...
Definition TList.cxx:762
void Add(TObject *obj) override
Definition TList.h:81
TObject * Remove(TObject *obj) override
Remove object from the list.
Definition TList.cxx:820
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
Definition TList.cxx:657
virtual TObjLink * FirstLink() const
Definition TList.h:102
void Delete(Option_t *option="") override
Remove all objects from the list AND delete all heap based objects.
Definition TList.cxx:468
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
Definition TList.cxx:355
The TNamed class is the base class for all named ROOT classes.
Definition TNamed.h:29
void Copy(TObject &named) const override
Copy this to obj.
Definition TNamed.cxx:94
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:164
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
void Streamer(TBuffer &) override
Stream an object of class TObject.
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:48
TString fTitle
Definition TNamed.h:33
TString fName
Definition TNamed.h:32
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition TNamed.cxx:140
Mother of all ROOT objects.
Definition TObject.h:41
virtual const char * GetName() const
Returns name of object.
Definition TObject.cxx:456
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition TObject.h:199
virtual UInt_t GetUniqueID() const
Return the unique object id.
Definition TObject.cxx:474
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:225
virtual void UseCurrentStyle()
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyl...
Definition TObject.cxx:819
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition TObject.cxx:991
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
Definition TObject.cxx:202
virtual void SaveAs(const char *filename="", Option_t *option="") const
Save this object in the file specified by filename.
Definition TObject.cxx:704
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition TObject.cxx:798
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition TObject.cxx:542
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition TObject.cxx:1005
virtual void SetUniqueID(UInt_t uid)
Set the unique object id.
Definition TObject.cxx:809
void ResetBit(UInt_t f)
Definition TObject.h:198
@ kCanDelete
if object in a list can be deleted
Definition TObject.h:62
@ kInvalidObject
if object ctor succeeded but object should not be used
Definition TObject.h:72
@ kMustCleanup
if object destructor must call RecursiveRemove()
Definition TObject.h:64
Longptr_t ExecPlugin(int nargs)
Int_t LoadPlugin()
Load the plugin library for this handler.
static TClass * Class()
This is the base class for the ROOT Random number generators.
Definition TRandom.h:27
Double_t Rndm() override
Machine independent random number generator.
Definition TRandom.cxx:559
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
Definition TRandom.cxx:461
virtual ULong64_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
Definition TRandom.cxx:404
Basic string class.
Definition TString.h:139
Ssiz_t Length() const
Definition TString.h:417
void ToLower()
Change string to lower-case.
Definition TString.cxx:1182
const char * Data() const
Definition TString.h:376
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition TString.h:704
void ToUpper()
Change string to upper case.
Definition TString.cxx:1195
Bool_t IsNull() const
Definition TString.h:414
virtual void Streamer(TBuffer &)
Stream a string object.
Definition TString.cxx:1412
TString & Append(const char *cs)
Definition TString.h:572
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2378
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition TString.h:632
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition TString.h:651
Int_t GetOptStat() const
Definition TStyle.h:247
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Definition TStyle.cxx:1642
void SetHistFillColor(Color_t color=1)
Definition TStyle.h:383
Color_t GetHistLineColor() const
Definition TStyle.h:235
Bool_t IsReading() const
Definition TStyle.h:300
Float_t GetBarOffset() const
Definition TStyle.h:184
void SetHistLineStyle(Style_t styl=0)
Definition TStyle.h:386
Style_t GetHistFillStyle() const
Definition TStyle.h:236
Color_t GetHistFillColor() const
Definition TStyle.h:234
Float_t GetBarWidth() const
Definition TStyle.h:185
Bool_t GetCanvasPreferGL() const
Definition TStyle.h:189
void SetHistLineColor(Color_t color=1)
Definition TStyle.h:384
void SetBarOffset(Float_t baroff=0.5)
Definition TStyle.h:339
Style_t GetHistLineStyle() const
Definition TStyle.h:237
void SetBarWidth(Float_t barwidth=0.5)
Definition TStyle.h:340
void SetHistFillStyle(Style_t styl=0)
Definition TStyle.h:385
Width_t GetHistLineWidth() const
Definition TStyle.h:238
Int_t GetOptFit() const
Definition TStyle.h:246
void SetHistLineWidth(Width_t width=1)
Definition TStyle.h:387
TVectorT.
Definition TVectorT.h:29
TVirtualFFT is an interface class for Fast Fourier Transforms.
Definition TVirtualFFT.h:88
static TVirtualFFT * FFT(Int_t ndim, Int_t *n, Option_t *option)
Returns a pointer to the FFT of requested size and type.
static TVirtualFFT * SineCosine(Int_t ndim, Int_t *n, Int_t *r2rkind, Option_t *option)
Returns a pointer to a sine or cosine transform of requested size and kind.
Abstract Base Class for Fitting.
static TVirtualFitter * GetFitter()
static: return the current Fitter
Abstract interface to a histogram painter.
virtual void DrawPanel()=0
Int_t DistancetoPrimitive(Int_t px, Int_t py) override=0
Computes distance from point (px,py) to the object.
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override=0
Execute action corresponding to an event at (px,py).
virtual void SetHighlight()=0
static TVirtualHistPainter * HistPainter(TH1 *obj)
Static function returning a pointer to the current histogram painter.
void Paint(Option_t *option="") override=0
This method must be overridden if a class wants to paint itself.
double gamma_quantile_c(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the upper tail of the gamma distribution (gamm...
double gamma_quantile(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the lower tail of the gamma distribution (gamm...
const Double_t sigma
std::ostream & Info()
Definition hadd.cxx:171
Double_t y[n]
Definition legend1.C:17
return c1
Definition legend1.C:41
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
TH1F * h1
Definition legend1.C:5
TF1 * f1
Definition legend1.C:11
return c2
Definition legend2.C:14
R__ALWAYS_INLINE bool HasBeenDeleted(const TObject *obj)
Check if the TObject's memory has been deleted.
Definition TObject.h:402
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
Definition HFitImpl.cxx:973
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, EChisquareType type)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
Definition HFitImpl.cxx:685
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.
R__EXTERN TVirtualRWMutex * gCoreMutex
Bool_t IsNaN(Double_t x)
Definition TMath.h:896
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
Definition TMath.h:697
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Definition TMathBase.h:250
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
Definition TMath.cxx:637
Double_t Median(Long64_t n, const T *a, const Double_t *w=nullptr, Long64_t *work=nullptr)
Same as RMS.
Definition TMath.h:1352
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
Definition TMath.h:906
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
Definition TMath.h:684
Double_t ATan(Double_t)
Returns the principal value of the arc tangent of x, expressed in radians.
Definition TMath.h:644
Double_t Ceil(Double_t x)
Rounds x upward, returning the smallest integral value that is not less than x.
Definition TMath.h:672
T MinElement(Long64_t n, const T *a)
Returns minimum of array a of length n.
Definition TMath.h:964
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Definition TMath.h:760
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:666
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Definition TMath.h:725
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Definition TMathBase.h:198
constexpr Double_t Pi()
Definition TMath.h:37
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Definition TMath.h:426
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Comparing floating points.
Definition TMath.h:418
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
Definition TMath.cxx:679
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
Definition TMathBase.h:431
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Binary search in an array of n values to locate value.
Definition TMathBase.h:347
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Definition TMath.h:766
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:123
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
Definition TMath.h:921
th1 Draw()
TMarker m
Definition textangle.C:8
TLine l
Definition textangle.C:4
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2345