Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TH1.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// Author: Rene Brun 26/12/94
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#include <array>
13#include <cctype>
14#include <climits>
15#include <cmath>
16#include <cstdio>
17#include <cstdlib>
18#include <cstring>
19#include <iostream>
20#include <memory>
21#include <sstream>
22#include <fstream>
23#include <limits>
24#include <iomanip>
25
26#include "TROOT.h"
27#include "TBuffer.h"
28#include "TEnv.h"
29#include "TClass.h"
30#include "TMath.h"
31#include "THashList.h"
32#include "TH1.h"
33#include "TH2.h"
34#include "TH3.h"
35#include "TF2.h"
36#include "TF3.h"
37#include "TPluginManager.h"
38#include "TVirtualPad.h"
39#include "TRandom.h"
40#include "TVirtualFitter.h"
41#include "THLimitsFinder.h"
42#include "TProfile.h"
43#include "TStyle.h"
44#include "TVectorF.h"
45#include "TVectorD.h"
46#include "TBrowser.h"
47#include "TError.h"
48#include "TVirtualHistPainter.h"
49#include "TVirtualFFT.h"
50#include "TVirtualPaveStats.h"
51
52#include "HFitInterface.h"
53#include "Fit/DataRange.h"
54#include "Fit/BinData.h"
55#include "Math/GoFTest.h"
58
59#include "TH1Merger.h"
60
61/** \addtogroup Histograms
62@{
63\class TH1C
64\brief 1-D histogram with a byte per channel (see TH1 documentation)
65\class TH1S
66\brief 1-D histogram with a short per channel (see TH1 documentation)
67\class TH1I
68\brief 1-D histogram with an int per channel (see TH1 documentation)
69\class TH1L
70\brief 1-D histogram with a long64 per channel (see TH1 documentation)
71\class TH1F
72\brief 1-D histogram with a float per channel (see TH1 documentation)
73\class TH1D
74\brief 1-D histogram with a double per channel (see TH1 documentation)
75@}
76*/
77
78/** \class TH1
79 \ingroup Histograms
80TH1 is the base class of all histogram classes in %ROOT.
81
82It provides the common interface for operations such as binning, filling, drawing, which
83will be detailed below.
84
85-# [Creating histograms](\ref creating-histograms)
86 - [Labelling axes](\ref labelling-axis)
87-# [Binning](\ref binning)
88 - [Fix or variable bin size](\ref fix-var)
89 - [Convention for numbering bins](\ref convention)
90 - [Alphanumeric Bin Labels](\ref alpha)
91 - [Histograms with automatic bins](\ref auto-bin)
92 - [Rebinning](\ref rebinning)
93-# [Filling histograms](\ref filling-histograms)
94 - [Associated errors](\ref associated-errors)
95 - [Associated functions](\ref associated-functions)
96 - [Projections of histograms](\ref prof-hist)
97 - [Random Numbers and histograms](\ref random-numbers)
98 - [Making a copy of a histogram](\ref making-a-copy)
99 - [Normalizing histograms](\ref normalizing)
100-# [Drawing histograms](\ref drawing-histograms)
101 - [Setting Drawing histogram contour levels (2-D hists only)](\ref cont-level)
102 - [Setting histogram graphics attributes](\ref graph-att)
103 - [Customising how axes are drawn](\ref axis-drawing)
104-# [Fitting histograms](\ref fitting-histograms)
105-# [Saving/reading histograms to/from a ROOT file](\ref saving-histograms)
106-# [Operations on histograms](\ref operations-on-histograms)
107-# [Miscellaneous operations](\ref misc)
108
109ROOT supports the following histogram types:
110
111 - 1-D histograms:
112 - TH1C : histograms with one byte per channel. Maximum bin content = 127
113 - TH1S : histograms with one short per channel. Maximum bin content = 32767
114 - TH1I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
115 - TH1L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
116 - TH1F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
117 - TH1D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
118 - 2-D histograms:
119 - TH2C : histograms with one byte per channel. Maximum bin content = 127
120 - TH2S : histograms with one short per channel. Maximum bin content = 32767
121 - TH2I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
122 - TH2L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
123 - TH2F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
124 - TH2D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
125 - 3-D histograms:
126 - TH3C : histograms with one byte per channel. Maximum bin content = 127
127 - TH3S : histograms with one short per channel. Maximum bin content = 32767
128 - TH3I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
129 - TH3L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
130 - TH3F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
131 - TH3D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
132 - Profile histograms: See classes TProfile, TProfile2D and TProfile3D.
133 Profile histograms are used to display the mean value of Y and its standard deviation
134 for each bin in X. Profile histograms are in many cases an elegant
135 replacement of two-dimensional histograms : the inter-relation of two
136 measured quantities X and Y can always be visualized by a two-dimensional
137 histogram or scatter-plot; If Y is an unknown (but single-valued)
138 approximate function of X, this function is displayed by a profile
139 histogram with much better precision than by a scatter-plot.
140
141<sup>
142\anchor intmax (*) INT_MAX = 2147483647 is the [maximum value for a variable of type int.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
143\anchor llongmax (**) LLONG_MAX = 9223372036854775807 is the [maximum value for a variable of type long64.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
144\anchor floatmax (***) 2^24 = 16777216 is the [maximum integer that can be properly represented by a float32 with 23-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)<br>
145\anchor doublemax (****) 2^53 = 9007199254740992 is the [maximum integer that can be properly represented by a double64 with 52-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)
146</sup>
147
148The inheritance hierarchy looks as follows:
149
150\image html classTH1__inherit__graph_org.svg width=100%
151
152\anchor creating-histograms
153## Creating histograms
154
155Histograms are created by invoking one of the constructors, e.g.
156~~~ {.cpp}
157 TH1F *h1 = new TH1F("h1", "h1 title", 100, 0, 4.4);
158 TH2F *h2 = new TH2F("h2", "h2 title", 40, 0, 4, 30, -3, 3);
159~~~
160Histograms may also be created by:
161
162 - calling the Clone() function, see below
163 - making a projection from a 2-D or 3-D histogram, see below
164 - reading a histogram from a file
165
166 When a histogram is created, a reference to it is automatically added
167 to the list of in-memory objects for the current file or directory.
168 Then the pointer to this histogram in the current directory can be found
169 by its name, doing:
170~~~ {.cpp}
171 TH1F *h1 = (TH1F*)gDirectory->FindObject(name);
172~~~
173
174 This default behaviour can be changed by:
175~~~ {.cpp}
176 h->SetDirectory(nullptr); // for the current histogram h
177 TH1::AddDirectory(kFALSE); // sets a global switch disabling the referencing
178~~~
179 When the histogram is deleted, the reference to it is removed from
180 the list of objects in memory.
181 When a file is closed, all histograms in memory associated with this file
182 are automatically deleted.
183
184\anchor labelling-axis
185### Labelling axes
186
187 Axis titles can be specified in the title argument of the constructor.
188 They must be separated by ";":
189~~~ {.cpp}
190 TH1F* h=new TH1F("h", "Histogram title;X Axis;Y Axis", 100, 0, 1);
191~~~
192 The histogram title and the axis titles can be any TLatex string, and
193 are persisted if a histogram is written to a file.
194
195 Any title can be omitted:
196~~~ {.cpp}
197 TH1F* h=new TH1F("h", "Histogram title;;Y Axis", 100, 0, 1);
198 TH1F* h=new TH1F("h", ";;Y Axis", 100, 0, 1);
199~~~
200 The method SetTitle() has the same syntax:
201~~~ {.cpp}
202 h->SetTitle("Histogram title;Another X title Axis");
203~~~
204Alternatively, the title of each axis can be set directly:
205~~~ {.cpp}
206 h->GetXaxis()->SetTitle("X axis title");
207 h->GetYaxis()->SetTitle("Y axis title");
208~~~
209For bin labels see \ref binning.
210
211\anchor binning
212## Binning
213
214\anchor fix-var
215### Fix or variable bin size
216
217 All histogram types support either fix or variable bin sizes.
218 2-D histograms may have fix size bins along X and variable size bins
219 along Y or vice-versa. The functions to fill, manipulate, draw or access
220 histograms are identical in both cases.
221
222 Each histogram always contains 3 axis objects of type TAxis: fXaxis, fYaxis and fZaxis.
223 To access the axis parameters, use:
224~~~ {.cpp}
225 TAxis *xaxis = h->GetXaxis(); etc.
226 Double_t binCenter = xaxis->GetBinCenter(bin), etc.
227~~~
228 See class TAxis for a description of all the access functions.
229 The axis range is always stored internally in double precision.
230
231\anchor convention
232### Convention for numbering bins
233
234 For all histogram types: nbins, xlow, xup
235~~~ {.cpp}
236 bin = 0; underflow bin
237 bin = 1; first bin with low-edge xlow INCLUDED
238 bin = nbins; last bin with upper-edge xup EXCLUDED
239 bin = nbins+1; overflow bin
240~~~
241 In case of 2-D or 3-D histograms, a "global bin" number is defined.
242 For example, assuming a 3-D histogram with (binx, biny, binz), the function
243~~~ {.cpp}
244 Int_t gbin = h->GetBin(binx, biny, binz);
245~~~
246 returns a global/linearized gbin number. This global gbin is useful
247 to access the bin content/error information independently of the dimension.
248 Note that to access the information other than bin content and errors
249 one should use the TAxis object directly with e.g.:
250~~~ {.cpp}
251 Double_t xcenter = h3->GetZaxis()->GetBinCenter(27);
252~~~
253 returns the center along z of bin number 27 (not the global bin)
254 in the 3-D histogram h3.
255
256\anchor alpha
257### Alphanumeric Bin Labels
258
259 By default, a histogram axis is drawn with its numeric bin labels.
260 One can specify alphanumeric labels instead with:
261
262 - call TAxis::SetBinLabel(bin, label);
263 This can always be done before or after filling.
264 When the histogram is drawn, bin labels will be automatically drawn.
265 See examples labels1.C and labels2.C
266 - call to a Fill function with one of the arguments being a string, e.g.
267~~~ {.cpp}
268 hist1->Fill(somename, weight);
269 hist2->Fill(x, somename, weight);
270 hist2->Fill(somename, y, weight);
271 hist2->Fill(somenamex, somenamey, weight);
272~~~
273 See examples hlabels1.C and hlabels2.C
274 - via TTree::Draw. see for example cernstaff.C
275~~~ {.cpp}
276 tree.Draw("Nation::Division");
277~~~
278 where "Nation" and "Division" are two branches of a Tree.
279
280When using the options 2 or 3 above, the labels are automatically
281 added to the list (THashList) of labels for a given axis.
282 By default, an axis is drawn with the order of bins corresponding
283 to the filling sequence. It is possible to reorder the axis
284
285 - alphabetically
286 - by increasing or decreasing values
287
288 The reordering can be triggered via the TAxis context menu by selecting
289 the menu item "LabelsOption" or by calling directly
290 TH1::LabelsOption(option, axis) where
291
292 - axis may be "X", "Y" or "Z"
293 - option may be:
294 - "a" sort by alphabetic order
295 - ">" sort by decreasing values
296 - "<" sort by increasing values
297 - "h" draw labels horizontal
298 - "v" draw labels vertical
299 - "u" draw labels up (end of label right adjusted)
300 - "d" draw labels down (start of label left adjusted)
301
302 When using the option 2 above, new labels are added by doubling the current
303 number of bins in case one label does not exist yet.
304 When the Filling is terminated, it is possible to trim the number
305 of bins to match the number of active labels by calling
306~~~ {.cpp}
307 TH1::LabelsDeflate(axis) with axis = "X", "Y" or "Z"
308~~~
309 This operation is automatic when using TTree::Draw.
310 Once bin labels have been created, they become persistent if the histogram
311 is written to a file or when generating the C++ code via SavePrimitive.
312
313\anchor auto-bin
314### Histograms with automatic bins
315
316 When a histogram is created with an axis lower limit greater or equal
317 to its upper limit, the SetBuffer is automatically called with an
318 argument fBufferSize equal to fgBufferSize (default value=1000).
319 fgBufferSize may be reset via the static function TH1::SetDefaultBufferSize.
320 The axis limits will be automatically computed when the buffer will
321 be full or when the function BufferEmpty is called.
322
323\anchor rebinning
324### Rebinning
325
326 At any time, a histogram can be rebinned via TH1::Rebin. This function
327 returns a new histogram with the rebinned contents.
328 If bin errors were stored, they are recomputed during the rebinning.
329
330
331\anchor filling-histograms
332## Filling histograms
333
334 A histogram is typically filled with statements like:
335~~~ {.cpp}
336 h1->Fill(x);
337 h1->Fill(x, w); //fill with weight
338 h2->Fill(x, y)
339 h2->Fill(x, y, w)
340 h3->Fill(x, y, z)
341 h3->Fill(x, y, z, w)
342~~~
343 or via one of the Fill functions accepting names described above.
344 The Fill functions compute the bin number corresponding to the given
345 x, y or z argument and increment this bin by the given weight.
346 The Fill functions return the bin number for 1-D histograms or global
347 bin number for 2-D and 3-D histograms.
348 If TH1::Sumw2 has been called before filling, the sum of squares of
349 weights is also stored.
350 One can also increment directly a bin number via TH1::AddBinContent
351 or replace the existing content via TH1::SetBinContent. Passing an
352 out-of-range bin to TH1::AddBinContent leads to undefined behavior.
353 To access the bin content of a given bin, do:
354~~~ {.cpp}
355 Double_t binContent = h->GetBinContent(bin);
356~~~
357
358 By default, the bin number is computed using the current axis ranges.
359 If the automatic binning option has been set via
360~~~ {.cpp}
361 h->SetCanExtend(TH1::kAllAxes);
362~~~
363 then, the Fill Function will automatically extend the axis range to
364 accomodate the new value specified in the Fill argument. The method
365 used is to double the bin size until the new value fits in the range,
366 merging bins two by two. This automatic binning options is extensively
367 used by the TTree::Draw function when histogramming Tree variables
368 with an unknown range.
369 This automatic binning option is supported for 1-D, 2-D and 3-D histograms.
370
371 During filling, some statistics parameters are incremented to compute
372 the mean value and Root Mean Square with the maximum precision.
373
374 In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S
375 a check is made that the bin contents do not exceed the maximum positive
376 capacity (127 or 32767). Histograms of all types may have positive
377 or/and negative bin contents.
378
379\anchor associated-errors
380### Associated errors
381 By default, for each bin, the sum of weights is computed at fill time.
382 One can also call TH1::Sumw2 to force the storage and computation
383 of the sum of the square of weights per bin.
384 If Sumw2 has been called, the error per bin is computed as the
385 sqrt(sum of squares of weights), otherwise the error is set equal
386 to the sqrt(bin content).
387 To return the error for a given bin number, do:
388~~~ {.cpp}
389 Double_t error = h->GetBinError(bin);
390~~~
391
392\anchor associated-functions
393### Associated functions
394 One or more objects (typically a TF1*) can be added to the list
395 of functions (fFunctions) associated to each histogram.
396 When TH1::Fit is invoked, the fitted function is added to this list.
397 Given a histogram (or TGraph) `h`, one can retrieve an associated function
398 with:
399~~~ {.cpp}
400 TF1 *myfunc = h->GetFunction("myfunc");
401~~~
402
403
404\anchor operations-on-histograms
405## Operations on histograms
406
407 Many types of operations are supported on histograms or between histograms
408
409 - Addition of a histogram to the current histogram.
410 - Additions of two histograms with coefficients and storage into the current
411 histogram.
412 - Multiplications and Divisions are supported in the same way as additions.
413 - The Add, Divide and Multiply functions also exist to add, divide or multiply
414 a histogram by a function.
415
416 If a histogram has associated error bars (TH1::Sumw2 has been called),
417 the resulting error bars are also computed assuming independent histograms.
418 In case of divisions, Binomial errors are also supported.
419 One can mark a histogram to be an "average" histogram by setting its bit kIsAverage via
420 myhist.SetBit(TH1::kIsAverage);
421 When adding (see TH1::Add) average histograms, the histograms are averaged and not summed.
422
423
424\anchor prof-hist
425### Projections of histograms
426
427 One can:
428
429 - make a 1-D projection of a 2-D histogram or Profile
430 see functions TH2::ProjectionX,Y, TH2::ProfileX,Y, TProfile::ProjectionX
431 - make a 1-D, 2-D or profile out of a 3-D histogram
432 see functions TH3::ProjectionZ, TH3::Project3D.
433
434 One can fit these projections via:
435~~~ {.cpp}
436 TH2::FitSlicesX,Y, TH3::FitSlicesZ.
437~~~
438
439\anchor random-numbers
440### Random Numbers and histograms
441
442 TH1::FillRandom can be used to randomly fill a histogram using
443 the contents of an existing TF1 function or another
444 TH1 histogram (for all dimensions).
445 For example, the following two statements create and fill a histogram
446 10000 times with a default gaussian distribution of mean 0 and sigma 1:
447~~~ {.cpp}
448 TH1F h1("h1", "histo from a gaussian", 100, -3, 3);
449 h1.FillRandom("gaus", 10000);
450~~~
451 TH1::GetRandom can be used to return a random number distributed
452 according to the contents of a histogram.
453
454\anchor making-a-copy
455### Making a copy of a histogram
456 Like for any other ROOT object derived from TObject, one can use
457 the Clone() function. This makes an identical copy of the original
458 histogram including all associated errors and functions, e.g.:
459~~~ {.cpp}
460 TH1F *hnew = (TH1F*)h->Clone("hnew");
461~~~
462
463\anchor normalizing
464### Normalizing histograms
465
466 One can scale a histogram such that the bins integral is equal to
467 the normalization parameter via TH1::Scale(Double_t norm), where norm
468 is the desired normalization divided by the integral of the histogram.
471\anchor drawing-histograms
472## Drawing histograms
473
474 Histograms are drawn via the THistPainter class. Each histogram has
475 a pointer to its own painter (to be usable in a multithreaded program).
476 Many drawing options are supported.
477 See THistPainter::Paint() for more details.
478
479 The same histogram can be drawn with different options in different pads.
480 When a histogram drawn in a pad is deleted, the histogram is
481 automatically removed from the pad or pads where it was drawn.
482 If a histogram is drawn in a pad, then filled again, the new status
483 of the histogram will be automatically shown in the pad next time
484 the pad is updated. One does not need to redraw the histogram.
485 To draw the current version of a histogram in a pad, one can use
486~~~ {.cpp}
487 h->DrawCopy();
488~~~
489 This makes a clone (see Clone below) of the histogram. Once the clone
490 is drawn, the original histogram may be modified or deleted without
491 affecting the aspect of the clone.
492
493 One can use TH1::SetMaximum() and TH1::SetMinimum() to force a particular
494 value for the maximum or the minimum scale on the plot. (For 1-D
495 histograms this means the y-axis, while for 2-D histograms these
496 functions affect the z-axis).
497
498 TH1::UseCurrentStyle() can be used to change all histogram graphics
499 attributes to correspond to the current selected style.
500 This function must be called for each histogram.
501 In case one reads and draws many histograms from a file, one can force
502 the histograms to inherit automatically the current graphics style
503 by calling before gROOT->ForceStyle().
504
505\anchor cont-level
506### Setting Drawing histogram contour levels (2-D hists only)
507
508 By default contours are automatically generated at equidistant
509 intervals. A default value of 20 levels is used. This can be modified
510 via TH1::SetContour() or TH1::SetContourLevel().
511 the contours level info is used by the drawing options "cont", "surf",
512 and "lego".
513
514\anchor graph-att
515### Setting histogram graphics attributes
517 The histogram classes inherit from the attribute classes:
518 TAttLine, TAttFill, and TAttMarker.
519 See the member functions of these classes for the list of options.
520
521\anchor axis-drawing
522### Customizing how axes are drawn
523
524 Use the functions of TAxis, such as
525~~~ {.cpp}
526 histogram.GetXaxis()->SetTicks("+");
527 histogram.GetYaxis()->SetRangeUser(1., 5.);
528~~~
529
530\anchor fitting-histograms
531## Fitting histograms
532
533 Histograms (1-D, 2-D, 3-D and Profiles) can be fitted with a user
534 specified function or a pre-defined function via TH1::Fit.
535 See TH1::Fit(TF1*, Option_t *, Option_t *, Double_t, Double_t) for the fitting documentation and the possible [fitting options](\ref HFitOpt)
536
537 The FitPanel can also be used for fitting an histogram. See the [FitPanel documentation](https://root.cern/manual/fitting/#using-the-fit-panel).
538
539\anchor saving-histograms
540## Saving/reading histograms to/from a ROOT file
541
542 The following statements create a ROOT file and store a histogram
543 on the file. Because TH1 derives from TNamed, the key identifier on
544 the file is the histogram name:
545~~~ {.cpp}
546 TFile f("histos.root", "new");
547 TH1F h1("hgaus", "histo from a gaussian", 100, -3, 3);
548 h1.FillRandom("gaus", 10000);
549 h1->Write();
550~~~
551 To read this histogram in another Root session, do:
552~~~ {.cpp}
553 TFile f("histos.root");
554 TH1F *h = (TH1F*)f.Get("hgaus");
555~~~
556 One can save all histograms in memory to the file by:
557~~~ {.cpp}
558 file->Write();
559~~~
560
561
562\anchor misc
563## Miscellaneous operations
564
565~~~ {.cpp}
566 TH1::KolmogorovTest(): statistical test of compatibility in shape
567 between two histograms
568 TH1::Smooth() smooths the bin contents of a 1-d histogram
569 TH1::Integral() returns the integral of bin contents in a given bin range
570 TH1::GetMean(int axis) returns the mean value along axis
571 TH1::GetStdDev(int axis) returns the sigma distribution along axis
572 TH1::GetEntries() returns the number of entries
573 TH1::Reset() resets the bin contents and errors of a histogram
574~~~
575 IMPORTANT NOTE: The returned values for GetMean and GetStdDev depend on how the
576 histogram statistics are calculated. By default, if no range has been set, the
577 returned values are the (unbinned) ones calculated at fill time. If a range has been
578 set, however, the values are calculated using the bins in range; THIS IS TRUE EVEN
579 IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset the range.
580 To ensure that the returned values are always those of the binned data stored in the
581 histogram, call TH1::ResetStats. See TH1::GetStats.
582*/
583
584TF1 *gF1=nullptr; //left for back compatibility (use TVirtualFitter::GetUserFunc instead)
585
590
591extern void H1InitGaus();
592extern void H1InitExpo();
593extern void H1InitPolynom();
594extern void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a);
597
598
599////////////////////////////////////////////////////////////////////////////////
600/// Histogram default constructor.
601
603{
604 fDirectory = nullptr;
605 fFunctions = new TList;
606 fNcells = 0;
607 fIntegral = nullptr;
608 fPainter = nullptr;
609 fEntries = 0;
610 fNormFactor = 0;
612 fMaximum = -1111;
613 fMinimum = -1111;
614 fBufferSize = 0;
615 fBuffer = nullptr;
618 fXaxis.SetName("xaxis");
619 fYaxis.SetName("yaxis");
620 fZaxis.SetName("zaxis");
621 fXaxis.SetParent(this);
622 fYaxis.SetParent(this);
623 fZaxis.SetParent(this);
625}
626
627////////////////////////////////////////////////////////////////////////////////
628/// Histogram default destructor.
629
631{
633 return;
634 }
635 delete[] fIntegral;
636 fIntegral = nullptr;
637 delete[] fBuffer;
638 fBuffer = nullptr;
639 if (fFunctions) {
641
643 TObject* obj = nullptr;
644 //special logic to support the case where the same object is
645 //added multiple times in fFunctions.
646 //This case happens when the same object is added with different
647 //drawing modes
648 //In the loop below we must be careful with objects (eg TCutG) that may
649 // have been added to the list of functions of several histograms
650 //and may have been already deleted.
651 while ((obj = fFunctions->First())) {
652 while(fFunctions->Remove(obj)) { }
654 break;
655 }
656 delete obj;
657 obj = nullptr;
658 }
659 delete fFunctions;
660 fFunctions = nullptr;
661 }
662 if (fDirectory) {
663 fDirectory->Remove(this);
664 fDirectory = nullptr;
665 }
666 delete fPainter;
667 fPainter = nullptr;
668}
669
670////////////////////////////////////////////////////////////////////////////////
671/// Constructor for fix bin size histograms.
672/// Creates the main histogram structure.
673///
674/// \param[in] name name of histogram (avoid blanks)
675/// \param[in] title histogram title.
676/// If title is of the form `stringt;stringx;stringy;stringz`,
677/// the histogram title is set to `stringt`,
678/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
679/// \param[in] nbins number of bins
680/// \param[in] xlow low edge of first bin
681/// \param[in] xup upper edge of last bin (not included in last bin)
682
683
684TH1::TH1(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
685 :TNamed(name,title)
686{
687 Build();
688 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
689 fXaxis.Set(nbins,xlow,xup);
690 fNcells = fXaxis.GetNbins()+2;
691}
692
693////////////////////////////////////////////////////////////////////////////////
694/// Constructor for variable bin size histograms using an input array of type float.
695/// Creates the main histogram structure.
696///
697/// \param[in] name name of histogram (avoid blanks)
698/// \param[in] title histogram title.
699/// If title is of the form `stringt;stringx;stringy;stringz`
700/// the histogram title is set to `stringt`,
701/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
702/// \param[in] nbins number of bins
703/// \param[in] xbins array of low-edges for each bin.
704/// This is an array of type float and size nbins+1
705
706TH1::TH1(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
707 :TNamed(name,title)
708{
709 Build();
710 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
711 if (xbins) fXaxis.Set(nbins,xbins);
712 else fXaxis.Set(nbins,0,1);
713 fNcells = fXaxis.GetNbins()+2;
714}
715
716////////////////////////////////////////////////////////////////////////////////
717/// Constructor for variable bin size histograms using an input array of type double.
718///
719/// \param[in] name name of histogram (avoid blanks)
720/// \param[in] title histogram title.
721/// If title is of the form `stringt;stringx;stringy;stringz`
722/// the histogram title is set to `stringt`,
723/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
724/// \param[in] nbins number of bins
725/// \param[in] xbins array of low-edges for each bin.
726/// This is an array of type double and size nbins+1
727
728TH1::TH1(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
729 :TNamed(name,title)
730{
731 Build();
732 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
733 if (xbins) fXaxis.Set(nbins,xbins);
734 else fXaxis.Set(nbins,0,1);
735 fNcells = fXaxis.GetNbins()+2;
736}
737
738////////////////////////////////////////////////////////////////////////////////
739/// Static function: cannot be inlined on Windows/NT.
740
745
746////////////////////////////////////////////////////////////////////////////////
747/// Browse the Histogram object.
748
750{
751 Draw(b ? b->GetDrawOption() : "");
752 gPad->Update();
753}
754
755////////////////////////////////////////////////////////////////////////////////
756/// Creates histogram basic data structure.
757
759{
760 fDirectory = nullptr;
761 fPainter = nullptr;
762 fIntegral = nullptr;
763 fEntries = 0;
764 fNormFactor = 0;
766 fMaximum = -1111;
767 fMinimum = -1111;
768 fBufferSize = 0;
769 fBuffer = nullptr;
772 fXaxis.SetName("xaxis");
773 fYaxis.SetName("yaxis");
774 fZaxis.SetName("zaxis");
775 fYaxis.Set(1,0.,1.);
776 fZaxis.Set(1,0.,1.);
777 fXaxis.SetParent(this);
778 fYaxis.SetParent(this);
779 fZaxis.SetParent(this);
780
782
783 fFunctions = new TList;
784
786
789 if (fDirectory) {
791 fDirectory->Append(this,kTRUE);
792 }
793 }
794}
795
796////////////////////////////////////////////////////////////////////////////////
797/// Performs the operation: `this = this + c1*f1`
798/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
799///
800/// By default, the function is computed at the centre of the bin.
801/// if option "I" is specified (1-d histogram only), the integral of the
802/// function in each bin is used instead of the value of the function at
803/// the centre of the bin.
804///
805/// Only bins inside the function range are recomputed.
806///
807/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
808/// you should call Sumw2 before making this operation.
809/// This is particularly important if you fit the histogram after TH1::Add
810///
811/// The function return kFALSE if the Add operation failed
812
814{
815 if (!f1) {
816 Error("Add","Attempt to add a non-existing function");
817 return kFALSE;
818 }
819
820 TString opt = option;
821 opt.ToLower();
822 Bool_t integral = kFALSE;
823 if (opt.Contains("i") && fDimension == 1) integral = kTRUE;
824
825 Int_t ncellsx = GetNbinsX() + 2; // cells = normal bins + underflow bin + overflow bin
826 Int_t ncellsy = GetNbinsY() + 2;
827 Int_t ncellsz = GetNbinsZ() + 2;
828 if (fDimension < 2) ncellsy = 1;
829 if (fDimension < 3) ncellsz = 1;
830
831 // delete buffer if it is there since it will become invalid
832 if (fBuffer) BufferEmpty(1);
833
834 // - Add statistics
835 Double_t s1[10];
836 for (Int_t i = 0; i < 10; ++i) s1[i] = 0;
837 PutStats(s1);
838 SetMinimum();
839 SetMaximum();
840
841 // - Loop on bins (including underflows/overflows)
842 Int_t bin, binx, biny, binz;
843 Double_t cu=0;
844 Double_t xx[3];
845 Double_t *params = nullptr;
846 f1->InitArgs(xx,params);
847 for (binz = 0; binz < ncellsz; ++binz) {
849 for (biny = 0; biny < ncellsy; ++biny) {
851 for (binx = 0; binx < ncellsx; ++binx) {
853 if (!f1->IsInside(xx)) continue;
855 bin = binx + ncellsx * (biny + ncellsy * binz);
856 if (integral) {
858 } else {
859 cu = c1*f1->EvalPar(xx);
860 }
861 if (TF1::RejectedPoint()) continue;
862 AddBinContent(bin,cu);
863 }
864 }
865 }
866
867 return kTRUE;
868}
869
870int TH1::LoggedInconsistency(const char *name, const TH1 *h1, const TH1 *h2, bool useMerge) const
871{
872 const auto inconsistency = CheckConsistency(h1, h2);
873
875 if (useMerge)
876 Info(name, "Histograms have different dimensions - trying to use TH1::Merge");
877 else {
878 Error(name, "Histograms have different dimensions");
879 }
881 if (useMerge)
882 Info(name, "Histograms have different number of bins - trying to use TH1::Merge");
883 else {
884 Error(name, "Histograms have different number of bins");
885 }
886 } else if (inconsistency & kDifferentAxisLimits) {
887 if (useMerge)
888 Info(name, "Histograms have different axis limits - trying to use TH1::Merge");
889 else
890 Warning(name, "Histograms have different axis limits");
891 } else if (inconsistency & kDifferentBinLimits) {
892 if (useMerge)
893 Info(name, "Histograms have different bin limits - trying to use TH1::Merge");
894 else
895 Warning(name, "Histograms have different bin limits");
896 } else if (inconsistency & kDifferentLabels) {
897 // in case of different labels -
898 if (useMerge)
899 Info(name, "Histograms have different labels - trying to use TH1::Merge");
900 else
901 Info(name, "Histograms have different labels");
902 }
903
904 return inconsistency;
905}
906
907////////////////////////////////////////////////////////////////////////////////
908/// Performs the operation: `this = this + c1*h1`
909/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
910///
911/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
912/// if not already set.
913///
914/// Note also that adding histogram with labels is not supported, histogram will be
915/// added merging them by bin number independently of the labels.
916/// For adding histogram with labels one should use TH1::Merge
917///
918/// SPECIAL CASE (Average/Efficiency histograms)
919/// For histograms representing averages or efficiencies, one should compute the average
920/// of the two histograms and not the sum. One can mark a histogram to be an average
921/// histogram by setting its bit kIsAverage with
922/// myhist.SetBit(TH1::kIsAverage);
923/// Note that the two histograms must have their kIsAverage bit set
924///
925/// IMPORTANT NOTE1: If you intend to use the errors of this histogram later
926/// you should call Sumw2 before making this operation.
927/// This is particularly important if you fit the histogram after TH1::Add
928///
929/// IMPORTANT NOTE2: if h1 has a normalisation factor, the normalisation factor
930/// is used , ie this = this + c1*factor*h1
931/// Use the other TH1::Add function if you do not want this feature
932///
933/// IMPORTANT NOTE3: You should be careful about the statistics of the
934/// returned histogram, whose statistics may be binned or unbinned,
935/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
936/// and whether TH1::ResetStats has been called on either this or h1.
937/// See TH1::GetStats.
938///
939/// The function return kFALSE if the Add operation failed
940
942{
943 if (!h1) {
944 Error("Add","Attempt to add a non-existing histogram");
945 return kFALSE;
946 }
947
948 // delete buffer if it is there since it will become invalid
949 if (fBuffer) BufferEmpty(1);
950
951 bool useMerge = false;
952 const bool considerMerge = (c1 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
953 const auto inconsistency = LoggedInconsistency("Add", this, h1, considerMerge);
954 // If there is a bad inconsistency and we can't even consider merging, just give up
956 return false;
957 }
958 // If there is an inconsistency, we try to use merging
961 }
962
963 if (useMerge) {
964 TList l;
965 l.Add(const_cast<TH1*>(h1));
966 auto iret = Merge(&l);
967 return (iret >= 0);
968 }
969
970 // Create Sumw2 if h1 has Sumw2 set
971 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
972
973 // - Add statistics
974 Double_t entries = TMath::Abs( GetEntries() + c1 * h1->GetEntries() );
975
976 // statistics can be preserved only in case of positive coefficients
977 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
978 Bool_t resetStats = (c1 < 0);
979 Double_t s1[kNstat] = {0};
980 Double_t s2[kNstat] = {0};
981 if (!resetStats) {
982 // need to initialize to zero s1 and s2 since
983 // GetStats fills only used elements depending on dimension and type
984 GetStats(s1);
985 h1->GetStats(s2);
986 }
987
988 SetMinimum();
989 SetMaximum();
990
991 // - Loop on bins (including underflows/overflows)
992 Double_t factor = 1;
993 if (h1->GetNormFactor() != 0) factor = h1->GetNormFactor()/h1->GetSumOfWeights();
994 Double_t c1sq = c1 * c1;
995 Double_t factsq = factor * factor;
996
997 for (Int_t bin = 0; bin < fNcells; ++bin) {
998 //special case where histograms have the kIsAverage bit set
999 if (this->TestBit(kIsAverage) && h1->TestBit(kIsAverage)) {
1001 Double_t y2 = this->RetrieveBinContent(bin);
1004 Double_t w1 = 1., w2 = 1.;
1005
1006 // consider all special cases when bin errors are zero
1007 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1008 if (e1sq) w1 = 1. / e1sq;
1009 else if (h1->fSumw2.fN) {
1010 w1 = 1.E200; // use an arbitrary huge value
1011 if (y1 == 0) {
1012 // use an estimated error from the global histogram scale
1013 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1014 w1 = 1./(sf*sf);
1015 }
1016 }
1017 if (e2sq) w2 = 1. / e2sq;
1018 else if (fSumw2.fN) {
1019 w2 = 1.E200; // use an arbitrary huge value
1020 if (y2 == 0) {
1021 // use an estimated error from the global histogram scale
1022 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1023 w2 = 1./(sf*sf);
1024 }
1025 }
1026
1027 double y = (w1*y1 + w2*y2)/(w1 + w2);
1028 UpdateBinContent(bin, y);
1029 if (fSumw2.fN) {
1030 double err2 = 1./(w1 + w2);
1031 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1032 fSumw2.fArray[bin] = err2;
1033 }
1034 } else { // normal case of addition between histograms
1035 AddBinContent(bin, c1 * factor * h1->RetrieveBinContent(bin));
1036 if (fSumw2.fN) fSumw2.fArray[bin] += c1sq * factsq * h1->GetBinErrorSqUnchecked(bin);
1037 }
1038 }
1039
1040 // update statistics (do here to avoid changes by SetBinContent)
1041 if (resetStats) {
1042 // statistics need to be reset in case coefficient are negative
1043 ResetStats();
1044 }
1045 else {
1046 for (Int_t i=0;i<kNstat;i++) {
1047 if (i == 1) s1[i] += c1*c1*s2[i];
1048 else s1[i] += c1*s2[i];
1049 }
1050 PutStats(s1);
1051 SetEntries(entries);
1052 }
1053 return kTRUE;
1054}
1055
1056////////////////////////////////////////////////////////////////////////////////
1057/// Replace contents of this histogram by the addition of h1 and h2.
1058///
1059/// `this = c1*h1 + c2*h2`
1060/// if errors are defined (see TH1::Sumw2), errors are also recalculated
1061///
1062/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
1063/// if not already set.
1064///
1065/// Note also that adding histogram with labels is not supported, histogram will be
1066/// added merging them by bin number independently of the labels.
1067/// For adding histogram ith labels one should use TH1::Merge
1068///
1069/// SPECIAL CASE (Average/Efficiency histograms)
1070/// For histograms representing averages or efficiencies, one should compute the average
1071/// of the two histograms and not the sum. One can mark a histogram to be an average
1072/// histogram by setting its bit kIsAverage with
1073/// myhist.SetBit(TH1::kIsAverage);
1074/// Note that the two histograms must have their kIsAverage bit set
1075///
1076/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
1077/// you should call Sumw2 before making this operation.
1078/// This is particularly important if you fit the histogram after TH1::Add
1079///
1080/// IMPORTANT NOTE2: You should be careful about the statistics of the
1081/// returned histogram, whose statistics may be binned or unbinned,
1082/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
1083/// and whether TH1::ResetStats has been called on either this or h1.
1084/// See TH1::GetStats.
1085///
1086/// ANOTHER SPECIAL CASE : h1 = h2 and c2 < 0
1087/// do a scaling this = c1 * h1 / (bin Volume)
1088///
1089/// The function returns kFALSE if the Add operation failed
1090
1092{
1093
1094 if (!h1 || !h2) {
1095 Error("Add","Attempt to add a non-existing histogram");
1096 return kFALSE;
1097 }
1098
1099 // delete buffer if it is there since it will become invalid
1100 if (fBuffer) BufferEmpty(1);
1101
1103 if (h1 == h2 && c2 < 0) {c2 = 0; normWidth = kTRUE;}
1104
1105 if (h1 != h2) {
1106 bool useMerge = false;
1107 const bool considerMerge = (c1 == 1. && c2 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
1108
1109 // We can combine inconsistencies like this, since they are ordered and a
1110 // higher inconsistency is worse
1111 auto const inconsistency = std::max(LoggedInconsistency("Add", this, h1, considerMerge),
1112 LoggedInconsistency("Add", h1, h2, considerMerge));
1113
1114 // If there is a bad inconsistency and we can't even consider merging, just give up
1116 return false;
1117 }
1118 // If there is an inconsistency, we try to use merging
1121 }
1122
1123 if (useMerge) {
1124 TList l;
1125 // why TList takes non-const pointers ????
1126 l.Add(const_cast<TH1*>(h1));
1127 l.Add(const_cast<TH1*>(h2));
1128 Reset("ICE");
1129 auto iret = Merge(&l);
1130 return (iret >= 0);
1131 }
1132 }
1133
1134 // Create Sumw2 if h1 or h2 have Sumw2 set
1135 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
1136
1137 // - Add statistics
1138 Double_t nEntries = TMath::Abs( c1*h1->GetEntries() + c2*h2->GetEntries() );
1139
1140 // TODO remove
1141 // statistics can be preserved only in case of positive coefficients
1142 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
1143 // also in case of scaling with the width we cannot preserve the statistics
1144 Double_t s1[kNstat] = {0};
1145 Double_t s2[kNstat] = {0};
1147
1148
1149 Bool_t resetStats = (c1*c2 < 0) || normWidth;
1150 if (!resetStats) {
1151 // need to initialize to zero s1 and s2 since
1152 // GetStats fills only used elements depending on dimension and type
1153 h1->GetStats(s1);
1154 h2->GetStats(s2);
1155 for (Int_t i=0;i<kNstat;i++) {
1156 if (i == 1) s3[i] = c1*c1*s1[i] + c2*c2*s2[i];
1157 //else s3[i] = TMath::Abs(c1)*s1[i] + TMath::Abs(c2)*s2[i];
1158 else s3[i] = c1*s1[i] + c2*s2[i];
1159 }
1160 }
1161
1162 SetMinimum();
1163 SetMaximum();
1164
1165 if (normWidth) { // DEPRECATED CASE: belongs to fitting / drawing modules
1166
1167 Int_t nbinsx = GetNbinsX() + 2; // normal bins + underflow, overflow
1168 Int_t nbinsy = GetNbinsY() + 2;
1169 Int_t nbinsz = GetNbinsZ() + 2;
1170
1171 if (fDimension < 2) nbinsy = 1;
1172 if (fDimension < 3) nbinsz = 1;
1173
1174 Int_t bin, binx, biny, binz;
1175 for (binz = 0; binz < nbinsz; ++binz) {
1177 for (biny = 0; biny < nbinsy; ++biny) {
1179 for (binx = 0; binx < nbinsx; ++binx) {
1181 bin = GetBin(binx, biny, binz);
1182 Double_t w = wx*wy*wz;
1183 UpdateBinContent(bin, c1 * h1->RetrieveBinContent(bin) / w);
1184 if (fSumw2.fN) {
1185 Double_t e1 = h1->GetBinError(bin)/w;
1186 fSumw2.fArray[bin] = c1*c1*e1*e1;
1187 }
1188 }
1189 }
1190 }
1191 } else if (h1->TestBit(kIsAverage) && h2->TestBit(kIsAverage)) {
1192 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
1193 // special case where histograms have the kIsAverage bit set
1195 Double_t y2 = h2->RetrieveBinContent(i);
1197 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
1198 Double_t w1 = 1., w2 = 1.;
1199
1200 // consider all special cases when bin errors are zero
1201 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1202 if (e1sq) w1 = 1./ e1sq;
1203 else if (h1->fSumw2.fN) {
1204 w1 = 1.E200; // use an arbitrary huge value
1205 if (y1 == 0 ) { // use an estimated error from the global histogram scale
1206 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1207 w1 = 1./(sf*sf);
1208 }
1209 }
1210 if (e2sq) w2 = 1./ e2sq;
1211 else if (h2->fSumw2.fN) {
1212 w2 = 1.E200; // use an arbitrary huge value
1213 if (y2 == 0) { // use an estimated error from the global histogram scale
1214 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1215 w2 = 1./(sf*sf);
1216 }
1217 }
1218
1219 double y = (w1*y1 + w2*y2)/(w1 + w2);
1220 UpdateBinContent(i, y);
1221 if (fSumw2.fN) {
1222 double err2 = 1./(w1 + w2);
1223 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1224 fSumw2.fArray[i] = err2;
1225 }
1226 }
1227 } else { // case of simple histogram addition
1228 Double_t c1sq = c1 * c1;
1229 Double_t c2sq = c2 * c2;
1230 for (Int_t i = 0; i < fNcells; ++i) { // Loop on cells (bins including underflows/overflows)
1231 UpdateBinContent(i, c1 * h1->RetrieveBinContent(i) + c2 * h2->RetrieveBinContent(i));
1232 if (fSumw2.fN) {
1233 fSumw2.fArray[i] = c1sq * h1->GetBinErrorSqUnchecked(i) + c2sq * h2->GetBinErrorSqUnchecked(i);
1234 }
1235 }
1236 }
1237
1238 if (resetStats) {
1239 // statistics need to be reset in case coefficient are negative
1240 ResetStats();
1241 }
1242 else {
1243 // update statistics (do here to avoid changes by SetBinContent) FIXME remove???
1244 PutStats(s3);
1246 }
1247
1248 return kTRUE;
1249}
1250
1251////////////////////////////////////////////////////////////////////////////////
1252/// Sets the flag controlling the automatic add of histograms in memory
1253///
1254/// By default (fAddDirectory = kTRUE), histograms are automatically added
1255/// to the list of objects in memory.
1256/// Note that one histogram can be removed from its support directory
1257/// by calling h->SetDirectory(nullptr) or h->SetDirectory(dir) to add it
1258/// to the list of objects in the directory dir.
1259///
1260/// NOTE that this is a static function. To call it, use;
1261/// TH1::AddDirectory
1262
1264{
1265 fgAddDirectory = add;
1266}
1267
1268////////////////////////////////////////////////////////////////////////////////
1269/// Auxiliary function to get the power of 2 next (larger) or previous (smaller)
1270/// a given x
1271///
1272/// next = kTRUE : next larger
1273/// next = kFALSE : previous smaller
1274///
1275/// Used by the autobin power of 2 algorithm
1276
1278{
1279 Int_t nn;
1280 Double_t f2 = std::frexp(x, &nn);
1281 return ((next && x > 0.) || (!next && x <= 0.)) ? std::ldexp(std::copysign(1., f2), nn)
1282 : std::ldexp(std::copysign(1., f2), --nn);
1283}
1284
1285////////////////////////////////////////////////////////////////////////////////
1286/// Auxiliary function to get the next power of 2 integer value larger then n
1287///
1288/// Used by the autobin power of 2 algorithm
1289
1291{
1292 Int_t nn;
1293 Double_t f2 = std::frexp(n, &nn);
1294 if (TMath::Abs(f2 - .5) > 0.001)
1295 return (Int_t)std::ldexp(1., nn);
1296 return n;
1297}
1298
1299////////////////////////////////////////////////////////////////////////////////
1300/// Buffer-based estimate of the histogram range using the power of 2 algorithm.
1301///
1302/// Used by the autobin power of 2 algorithm.
1303///
1304/// Works on arguments (min and max from fBuffer) and internal inputs: fXmin,
1305/// fXmax, NBinsX (from fXaxis), ...
1306/// Result save internally in fXaxis.
1307///
1308/// Overloaded by TH2 and TH3.
1309///
1310/// Return -1 if internal inputs are inconsistent, 0 otherwise.
1311
1313{
1314 // We need meaningful raw limits
1315 if (xmi >= xma)
1316 return -1;
1317
1318 THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this, xmi, xma);
1321
1322 // Now adjust
1323 if (TMath::Abs(xhma) > TMath::Abs(xhmi)) {
1324 // Start from the upper limit
1327 } else {
1328 // Start from the lower limit
1331 }
1332
1333 // Round the bins to the next power of 2; take into account the possible inflation
1334 // of the range
1335 Double_t rr = (xhma - xhmi) / (xma - xmi);
1337
1338 // Adjust using the same bin width and offsets
1339 Double_t bw = (xhma - xhmi) / nb;
1340 // Bins to left free on each side
1341 Double_t autoside = gEnv->GetValue("Hist.Binning.Auto.Side", 0.05);
1342 Int_t nbside = (Int_t)(nb * autoside);
1343
1344 // Side up
1345 Int_t nbup = (xhma - xma) / bw;
1346 if (nbup % 2 != 0)
1347 nbup++; // Must be even
1348 if (nbup != nbside) {
1349 // Accounts also for both case: larger or smaller
1350 xhma -= bw * (nbup - nbside);
1351 nb -= (nbup - nbside);
1352 }
1353
1354 // Side low
1355 Int_t nblw = (xmi - xhmi) / bw;
1356 if (nblw % 2 != 0)
1357 nblw++; // Must be even
1358 if (nblw != nbside) {
1359 // Accounts also for both case: larger or smaller
1360 xhmi += bw * (nblw - nbside);
1361 nb -= (nblw - nbside);
1362 }
1363
1364 // Set everything and project
1365 SetBins(nb, xhmi, xhma);
1366
1367 // Done
1368 return 0;
1369}
1370
1371/// Fill histogram with all entries in the buffer.
1372///
1373/// - action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
1374/// - action = 0 histogram is reset and filled from the buffer. When the histogram is filled from the
1375/// buffer the value fBuffer[0] is set to a negative number (= - number of entries)
1376/// When calling with action == 0 the histogram is NOT refilled when fBuffer[0] is < 0
1377/// While when calling with action = -1 the histogram is reset and ALWAYS refilled independently if
1378/// the histogram was filled before. This is needed when drawing the histogram
1379/// - action = 1 histogram is filled and buffer is deleted
1380/// The buffer is automatically deleted when filling the histogram and the entries is
1381/// larger than the buffer size
1382
1384{
1385 // do we need to compute the bin size?
1386 if (!fBuffer) return 0;
1388
1389 // nbentries correspond to the number of entries of histogram
1390
1391 if (nbentries == 0) {
1392 // if action is 1 we delete the buffer
1393 // this will avoid infinite recursion
1394 if (action > 0) {
1395 delete [] fBuffer;
1396 fBuffer = nullptr;
1397 fBufferSize = 0;
1398 }
1399 return 0;
1400 }
1401 if (nbentries < 0 && action == 0) return 0; // case histogram has been already filled from the buffer
1402
1403 Double_t *buffer = fBuffer;
1404 if (nbentries < 0) {
1406 // a reset might call BufferEmpty() giving an infinite recursion
1407 // Protect it by setting fBuffer = nullptr
1408 fBuffer = nullptr;
1409 //do not reset the list of functions
1410 Reset("ICES");
1411 fBuffer = buffer;
1412 }
1413 if (CanExtendAllAxes() || (fXaxis.GetXmax() <= fXaxis.GetXmin())) {
1414 //find min, max of entries in buffer
1417 for (Int_t i=0;i<nbentries;i++) {
1418 Double_t x = fBuffer[2*i+2];
1419 // skip infinity or NaN values
1420 if (!std::isfinite(x)) continue;
1421 if (x < xmin) xmin = x;
1422 if (x > xmax) xmax = x;
1423 }
1424 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
1425 Int_t rc = -1;
1427 if ((rc = AutoP2FindLimits(xmin, xmax)) < 0)
1428 Warning("BufferEmpty",
1429 "inconsistency found by power-of-2 autobin algorithm: fallback to standard method");
1430 }
1431 if (rc < 0)
1432 THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this, xmin, xmax);
1433 } else {
1434 fBuffer = nullptr;
1437 if (xmax >= fXaxis.GetXmax()) ExtendAxis(xmax, &fXaxis);
1438 fBuffer = buffer;
1439 fBufferSize = keep;
1440 }
1441 }
1442
1443 // call DoFillN which will not put entries in the buffer as FillN does
1444 // set fBuffer to zero to avoid re-emptying the buffer from functions called
1445 // by DoFillN (e.g Sumw2)
1446 buffer = fBuffer; fBuffer = nullptr;
1447 DoFillN(nbentries,&buffer[2],&buffer[1],2);
1448 fBuffer = buffer;
1449
1450 // if action == 1 - delete the buffer
1451 if (action > 0) {
1452 delete [] fBuffer;
1453 fBuffer = nullptr;
1454 fBufferSize = 0;
1455 } else {
1456 // if number of entries is consistent with buffer - set it negative to avoid
1457 // refilling the histogram every time BufferEmpty(0) is called
1458 // In case it is not consistent, by setting fBuffer[0]=0 is like resetting the buffer
1459 // (it will not be used anymore the next time BufferEmpty is called)
1460 if (nbentries == (Int_t)fEntries)
1461 fBuffer[0] = -nbentries;
1462 else
1463 fBuffer[0] = 0;
1464 }
1465 return nbentries;
1466}
1467
1468////////////////////////////////////////////////////////////////////////////////
1469/// accumulate arguments in buffer. When buffer is full, empty the buffer
1470///
1471/// - `fBuffer[0]` = number of entries in buffer
1472/// - `fBuffer[1]` = w of first entry
1473/// - `fBuffer[2]` = x of first entry
1474
1476{
1477 if (!fBuffer) return -2;
1479
1480
1481 if (nbentries < 0) {
1482 // reset nbentries to a positive value so next time BufferEmpty() is called
1483 // the histogram will be refilled
1485 fBuffer[0] = nbentries;
1486 if (fEntries > 0) {
1487 // set fBuffer to zero to avoid calling BufferEmpty in Reset
1488 Double_t *buffer = fBuffer; fBuffer=nullptr;
1489 Reset("ICES"); // do not reset list of functions
1490 fBuffer = buffer;
1491 }
1492 }
1493 if (2*nbentries+2 >= fBufferSize) {
1494 BufferEmpty(1);
1495 if (!fBuffer)
1496 // to avoid infinite recursion Fill->BufferFill->Fill
1497 return Fill(x,w);
1498 // this cannot happen
1499 R__ASSERT(0);
1500 }
1501 fBuffer[2*nbentries+1] = w;
1502 fBuffer[2*nbentries+2] = x;
1503 fBuffer[0] += 1;
1504 return -2;
1505}
1506
1507////////////////////////////////////////////////////////////////////////////////
1508/// Check bin limits.
1509
1510bool TH1::CheckBinLimits(const TAxis* a1, const TAxis * a2)
1511{
1512 const TArrayD * h1Array = a1->GetXbins();
1513 const TArrayD * h2Array = a2->GetXbins();
1514 Int_t fN = h1Array->fN;
1515 if ( fN != 0 ) {
1516 if ( h2Array->fN != fN ) {
1517 return false;
1518 }
1519 else {
1520 for ( int i = 0; i < fN; ++i ) {
1521 // for i==fN (nbin+1) a->GetBinWidth() returns last bin width
1522 // we do not need to exclude that case
1523 double binWidth = a1->GetBinWidth(i);
1524 if ( ! TMath::AreEqualAbs( h1Array->GetAt(i), h2Array->GetAt(i), binWidth*1E-10 ) ) {
1525 return false;
1526 }
1527 }
1528 }
1529 }
1530
1531 return true;
1532}
1533
1534////////////////////////////////////////////////////////////////////////////////
1535/// Check that axis have same labels.
1536
1537bool TH1::CheckBinLabels(const TAxis* a1, const TAxis * a2)
1538{
1539 THashList *l1 = a1->GetLabels();
1540 THashList *l2 = a2->GetLabels();
1541
1542 if (!l1 && !l2 )
1543 return true;
1544 if (!l1 || !l2 ) {
1545 return false;
1546 }
1547 // check now labels sizes are the same
1548 if (l1->GetSize() != l2->GetSize() ) {
1549 return false;
1550 }
1551 for (int i = 1; i <= a1->GetNbins(); ++i) {
1552 TString label1 = a1->GetBinLabel(i);
1553 TString label2 = a2->GetBinLabel(i);
1554 if (label1 != label2) {
1555 return false;
1556 }
1557 }
1558
1559 return true;
1560}
1561
1562////////////////////////////////////////////////////////////////////////////////
1563/// Check that the axis limits of the histograms are the same.
1564/// If a first and last bin is passed the axis is compared between the given range
1565
1566bool TH1::CheckAxisLimits(const TAxis *a1, const TAxis *a2 )
1567{
1568 double firstBin = a1->GetBinWidth(1);
1569 double lastBin = a1->GetBinWidth( a1->GetNbins() );
1570 if ( ! TMath::AreEqualAbs(a1->GetXmin(), a2->GetXmin(), firstBin* 1.E-10) ||
1571 ! TMath::AreEqualAbs(a1->GetXmax(), a2->GetXmax(), lastBin*1.E-10) ) {
1572 return false;
1573 }
1574 return true;
1575}
1576
1577////////////////////////////////////////////////////////////////////////////////
1578/// Check that the axis are the same
1579
1580bool TH1::CheckEqualAxes(const TAxis *a1, const TAxis *a2 )
1581{
1582 if (a1->GetNbins() != a2->GetNbins() ) {
1583 ::Info("CheckEqualAxes","Axes have different number of bins : nbin1 = %d nbin2 = %d",a1->GetNbins(),a2->GetNbins() );
1584 return false;
1585 }
1586 if(!CheckAxisLimits(a1,a2)) {
1587 ::Info("CheckEqualAxes","Axes have different limits");
1588 return false;
1589 }
1590 if(!CheckBinLimits(a1,a2)) {
1591 ::Info("CheckEqualAxes","Axes have different bin limits");
1592 return false;
1593 }
1594
1595 // check labels
1596 if(!CheckBinLabels(a1,a2)) {
1597 ::Info("CheckEqualAxes","Axes have different labels");
1598 return false;
1599 }
1600
1601 return true;
1602}
1603
1604////////////////////////////////////////////////////////////////////////////////
1605/// Check that two sub axis are the same.
1606/// The limits are defined by first bin and last bin
1607/// N.B. no check is done in this case for variable bins
1608
1610{
1611 // By default is assumed that no bins are given for the second axis
1613 Double_t xmin1 = a1->GetBinLowEdge(firstBin1);
1614 Double_t xmax1 = a1->GetBinUpEdge(lastBin1);
1615
1616 Int_t nbins2 = a2->GetNbins();
1617 Double_t xmin2 = a2->GetXmin();
1618 Double_t xmax2 = a2->GetXmax();
1619
1620 if (firstBin2 < lastBin2) {
1621 // in this case assume no bins are given for the second axis
1623 xmin2 = a1->GetBinLowEdge(firstBin1);
1624 xmax2 = a1->GetBinUpEdge(lastBin1);
1625 }
1626
1627 if (nbins1 != nbins2 ) {
1628 ::Info("CheckConsistentSubAxes","Axes have different number of bins");
1629 return false;
1630 }
1631
1632 Double_t firstBin = a1->GetBinWidth(firstBin1);
1633 Double_t lastBin = a1->GetBinWidth(lastBin1);
1634 if ( ! TMath::AreEqualAbs(xmin1,xmin2,1.E-10 * firstBin) ||
1635 ! TMath::AreEqualAbs(xmax1,xmax2,1.E-10 * lastBin) ) {
1636 ::Info("CheckConsistentSubAxes","Axes have different limits");
1637 return false;
1638 }
1639
1640 return true;
1641}
1642
1643////////////////////////////////////////////////////////////////////////////////
1644/// Check histogram compatibility.
1645/// The returned integer is part of EInconsistencyBits
1646/// The value 0 means that the histograms are compatible
1647
1649{
1650 if (h1 == h2) return kFullyConsistent;
1651
1652 if (h1->GetDimension() != h2->GetDimension() ) {
1653 return kDifferentDimensions;
1654 }
1655 Int_t dim = h1->GetDimension();
1656
1657 // returns kTRUE if number of bins and bin limits are identical
1658 Int_t nbinsx = h1->GetNbinsX();
1659 Int_t nbinsy = h1->GetNbinsY();
1660 Int_t nbinsz = h1->GetNbinsZ();
1661
1662 // Check whether the histograms have the same number of bins.
1663 if (nbinsx != h2->GetNbinsX() ||
1664 (dim > 1 && nbinsy != h2->GetNbinsY()) ||
1665 (dim > 2 && nbinsz != h2->GetNbinsZ()) ) {
1667 }
1668
1669 bool ret = true;
1670
1671 // check axis limits
1672 ret &= CheckAxisLimits(h1->GetXaxis(), h2->GetXaxis());
1673 if (dim > 1) ret &= CheckAxisLimits(h1->GetYaxis(), h2->GetYaxis());
1674 if (dim > 2) ret &= CheckAxisLimits(h1->GetZaxis(), h2->GetZaxis());
1675 if (!ret) return kDifferentAxisLimits;
1676
1677 // check bin limits
1678 ret &= CheckBinLimits(h1->GetXaxis(), h2->GetXaxis());
1679 if (dim > 1) ret &= CheckBinLimits(h1->GetYaxis(), h2->GetYaxis());
1680 if (dim > 2) ret &= CheckBinLimits(h1->GetZaxis(), h2->GetZaxis());
1681 if (!ret) return kDifferentBinLimits;
1682
1683 // check labels if histograms are both not empty
1684 if ( !h1->IsEmpty() && !h2->IsEmpty() ) {
1685 ret &= CheckBinLabels(h1->GetXaxis(), h2->GetXaxis());
1686 if (dim > 1) ret &= CheckBinLabels(h1->GetYaxis(), h2->GetYaxis());
1687 if (dim > 2) ret &= CheckBinLabels(h1->GetZaxis(), h2->GetZaxis());
1688 if (!ret) return kDifferentLabels;
1689 }
1690
1691 return kFullyConsistent;
1692}
1693
1694////////////////////////////////////////////////////////////////////////////////
1695/// \f$ \chi^{2} \f$ test for comparing weighted and unweighted histograms.
1696///
1697/// Compares the histograms' adjusted (normalized) residuals.
1698/// Function: Returns p-value. Other return values are specified by the 3rd parameter
1699///
1700/// \param[in] h2 the second histogram
1701/// \param[in] option
1702/// - "UU" = experiment experiment comparison (unweighted-unweighted)
1703/// - "UW" = experiment MC comparison (unweighted-weighted). Note that
1704/// the first histogram should be unweighted
1705/// - "WW" = MC MC comparison (weighted-weighted)
1706/// - "NORM" = to be used when one or both of the histograms is scaled
1707/// but the histogram originally was unweighted
1708/// - by default underflows and overflows are not included:
1709/// * "OF" = overflows included
1710/// * "UF" = underflows included
1711/// - "P" = print chi2, ndf, p_value, igood
1712/// - "CHI2" = returns chi2 instead of p-value
1713/// - "CHI2/NDF" = returns \f$ \chi^{2} \f$/ndf
1714/// \param[in] res not empty - computes normalized residuals and returns them in this array
1715///
1716/// The current implementation is based on the papers \f$ \chi^{2} \f$ test for comparison
1717/// of weighted and unweighted histograms" in Proceedings of PHYSTAT05 and
1718/// "Comparison weighted and unweighted histograms", arXiv:physics/0605123
1719/// by N.Gagunashvili. This function has been implemented by Daniel Haertl in August 2006.
1720///
1721/// #### Introduction:
1722///
1723/// A frequently used technique in data analysis is the comparison of
1724/// histograms. First suggested by Pearson [1] the \f$ \chi^{2} \f$ test of
1725/// homogeneity is used widely for comparing usual (unweighted) histograms.
1726/// This paper describes the implementation modified \f$ \chi^{2} \f$ tests
1727/// for comparison of weighted and unweighted histograms and two weighted
1728/// histograms [2] as well as usual Pearson's \f$ \chi^{2} \f$ test for
1729/// comparison two usual (unweighted) histograms.
1730///
1731/// #### Overview:
1732///
1733/// Comparison of two histograms expect hypotheses that two histograms
1734/// represent identical distributions. To make a decision p-value should
1735/// be calculated. The hypotheses of identity is rejected if the p-value is
1736/// lower then some significance level. Traditionally significance levels
1737/// 0.1, 0.05 and 0.01 are used. The comparison procedure should include an
1738/// analysis of the residuals which is often helpful in identifying the
1739/// bins of histograms responsible for a significant overall \f$ \chi^{2} \f$ value.
1740/// Residuals are the difference between bin contents and expected bin
1741/// contents. Most convenient for analysis are the normalized residuals. If
1742/// hypotheses of identity are valid then normalized residuals are
1743/// approximately independent and identically distributed random variables
1744/// having N(0,1) distribution. Analysis of residuals expect test of above
1745/// mentioned properties of residuals. Notice that indirectly the analysis
1746/// of residuals increase the power of \f$ \chi^{2} \f$ test.
1747///
1748/// #### Methods of comparison:
1749///
1750/// \f$ \chi^{2} \f$ test for comparison two (unweighted) histograms:
1751/// Let us consider two histograms with the same binning and the number
1752/// of bins equal to r. Let us denote the number of events in the ith bin
1753/// in the first histogram as ni and as mi in the second one. The total
1754/// number of events in the first histogram is equal to:
1755/// \f[
1756/// N = \sum_{i=1}^{r} n_{i}
1757/// \f]
1758/// and
1759/// \f[
1760/// M = \sum_{i=1}^{r} m_{i}
1761/// \f]
1762/// in the second histogram. The hypothesis of identity (homogeneity) [3]
1763/// is that the two histograms represent random values with identical
1764/// distributions. It is equivalent that there exist r constants p1,...,pr,
1765/// such that
1766/// \f[
1767///\sum_{i=1}^{r} p_{i}=1
1768/// \f]
1769/// and the probability of belonging to the ith bin for some measured value
1770/// in both experiments is equal to pi. The number of events in the ith
1771/// bin is a random variable with a distribution approximated by a Poisson
1772/// probability distribution
1773/// \f[
1774///\frac{e^{-Np_{i}}(Np_{i})^{n_{i}}}{n_{i}!}
1775/// \f]
1776///for the first histogram and with distribution
1777/// \f[
1778///\frac{e^{-Mp_{i}}(Mp_{i})^{m_{i}}}{m_{i}!}
1779/// \f]
1780/// for the second histogram. If the hypothesis of homogeneity is valid,
1781/// then the maximum likelihood estimator of pi, i=1,...,r, is
1782/// \f[
1783///\hat{p}_{i}= \frac{n_{i}+m_{i}}{N+M}
1784/// \f]
1785/// and then
1786/// \f[
1787/// X^{2} = \sum_{i=1}^{r}\frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r}\frac{(m_{i}-M\hat{p}_{i})^{2}}{M\hat{p}_{i}} =\frac{1}{MN} \sum_{i=1}^{r}\frac{(Mn_{i}-Nm_{i})^{2}}{n_{i}+m_{i}}
1788/// \f]
1789/// has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [3].
1790/// The comparison procedure can include an analysis of the residuals which
1791/// is often helpful in identifying the bins of histograms responsible for
1792/// a significant overall \f$ \chi^{2} \f$ value. Most convenient for
1793/// analysis are the adjusted (normalized) residuals [4]
1794/// \f[
1795/// r_{i} = \frac{n_{i}-N\hat{p}_{i}}{\sqrt{N\hat{p}_{i}}\sqrt{(1-N/(N+M))(1-(n_{i}+m_{i})/(N+M))}}
1796/// \f]
1797/// If hypotheses of homogeneity are valid then residuals ri are
1798/// approximately independent and identically distributed random variables
1799/// having N(0,1) distribution. The application of the \f$ \chi^{2} \f$ test has
1800/// restrictions related to the value of the expected frequencies Npi,
1801/// Mpi, i=1,...,r. A conservative rule formulated in [5] is that all the
1802/// expectations must be 1 or greater for both histograms. In practical
1803/// cases when expected frequencies are not known the estimated expected
1804/// frequencies \f$ M\hat{p}_{i}, N\hat{p}_{i}, i=1,...,r \f$ can be used.
1805///
1806/// #### Unweighted and weighted histograms comparison:
1807///
1808/// A simple modification of the ideas described above can be used for the
1809/// comparison of the usual (unweighted) and weighted histograms. Let us
1810/// denote the number of events in the ith bin in the unweighted
1811/// histogram as ni and the common weight of events in the ith bin of the
1812/// weighted histogram as wi. The total number of events in the
1813/// unweighted histogram is equal to
1814///\f[
1815/// N = \sum_{i=1}^{r} n_{i}
1816///\f]
1817/// and the total weight of events in the weighted histogram is equal to
1818///\f[
1819/// W = \sum_{i=1}^{r} w_{i}
1820///\f]
1821/// Let us formulate the hypothesis of identity of an unweighted histogram
1822/// to a weighted histogram so that there exist r constants p1,...,pr, such
1823/// that
1824///\f[
1825/// \sum_{i=1}^{r} p_{i} = 1
1826///\f]
1827/// for the unweighted histogram. The weight wi is a random variable with a
1828/// distribution approximated by the normal probability distribution
1829/// \f$ N(Wp_{i},\sigma_{i}^{2}) \f$ where \f$ \sigma_{i}^{2} \f$ is the variance of the weight wi.
1830/// If we replace the variance \f$ \sigma_{i}^{2} \f$
1831/// with estimate \f$ s_{i}^{2} \f$ (sum of squares of weights of
1832/// events in the ith bin) and the hypothesis of identity is valid, then the
1833/// maximum likelihood estimator of pi,i=1,...,r, is
1834///\f[
1835/// \hat{p}_{i} = \frac{Ww_{i}-Ns_{i}^{2}+\sqrt{(Ww_{i}-Ns_{i}^{2})^{2}+4W^{2}s_{i}^{2}n_{i}}}{2W^{2}}
1836///\f]
1837/// We may then use the test statistic
1838///\f[
1839/// X^{2} = \sum_{i=1}^{r} \frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r} \frac{(w_{i}-W\hat{p}_{i})^{2}}{s_{i}^{2}}
1840///\f]
1841/// and it has approximately a \f$ \sigma^{2}_{(r-1)} \f$ distribution [2]. This test, as well
1842/// as the original one [3], has a restriction on the expected frequencies. The
1843/// expected frequencies recommended for the weighted histogram is more than 25.
1844/// The value of the minimal expected frequency can be decreased down to 10 for
1845/// the case when the weights of the events are close to constant. In the case
1846/// of a weighted histogram if the number of events is unknown, then we can
1847/// apply this recommendation for the equivalent number of events as
1848///\f[
1849/// n_{i}^{equiv} = \frac{ w_{i}^{2} }{ s_{i}^{2} }
1850///\f]
1851/// The minimal expected frequency for an unweighted histogram must be 1. Notice
1852/// that any usual (unweighted) histogram can be considered as a weighted
1853/// histogram with events that have constant weights equal to 1.
1854/// The variance \f$ z_{i}^{2} \f$ of the difference between the weight wi
1855/// and the estimated expectation value of the weight is approximately equal to:
1856///\f[
1857/// z_{i}^{2} = Var(w_{i}-W\hat{p}_{i}) = N\hat{p}_{i}(1-N\hat{p}_{i})\left(\frac{Ws_{i}^{2}}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}+\frac{s_{i}^{2}}{4}\left(1+\frac{Ns_{i}^{2}-w_{i}W}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}
1858///\f]
1859/// The residuals
1860///\f[
1861/// r_{i} = \frac{w_{i}-W\hat{p}_{i}}{z_{i}}
1862///\f]
1863/// have approximately a normal distribution with mean equal to 0 and standard
1864/// deviation equal to 1.
1865///
1866/// #### Two weighted histograms comparison:
1867///
1868/// Let us denote the common weight of events of the ith bin in the first
1869/// histogram as w1i and as w2i in the second one. The total weight of events
1870/// in the first histogram is equal to
1871///\f[
1872/// W_{1} = \sum_{i=1}^{r} w_{1i}
1873///\f]
1874/// and
1875///\f[
1876/// W_{2} = \sum_{i=1}^{r} w_{2i}
1877///\f]
1878/// in the second histogram. Let us formulate the hypothesis of identity of
1879/// weighted histograms so that there exist r constants p1,...,pr, such that
1880///\f[
1881/// \sum_{i=1}^{r} p_{i} = 1
1882///\f]
1883/// and also expectation value of weight w1i equal to W1pi and expectation value
1884/// of weight w2i equal to W2pi. Weights in both the histograms are random
1885/// variables with distributions which can be approximated by a normal
1886/// probability distribution \f$ N(W_{1}p_{i},\sigma_{1i}^{2}) \f$ for the first histogram
1887/// and by a distribution \f$ N(W_{2}p_{i},\sigma_{2i}^{2}) \f$ for the second.
1888/// Here \f$ \sigma_{1i}^{2} \f$ and \f$ \sigma_{2i}^{2} \f$ are the variances
1889/// of w1i and w2i with estimators \f$ s_{1i}^{2} \f$ and \f$ s_{2i}^{2} \f$ respectively.
1890/// If the hypothesis of identity is valid, then the maximum likelihood and
1891/// Least Square Method estimator of pi,i=1,...,r, is
1892///\f[
1893/// \hat{p}_{i} = \frac{w_{1i}W_{1}/s_{1i}^{2}+w_{2i}W_{2} /s_{2i}^{2}}{W_{1}^{2}/s_{1i}^{2}+W_{2}^{2}/s_{2i}^{2}}
1894///\f]
1895/// We may then use the test statistic
1896///\f[
1897/// X^{2} = \sum_{i=1}^{r} \frac{(w_{1i}-W_{1}\hat{p}_{i})^{2}}{s_{1i}^{2}} + \sum_{i=1}^{r} \frac{(w_{2i}-W_{2}\hat{p}_{i})^{2}}{s_{2i}^{2}} = \sum_{i=1}^{r} \frac{(W_{1}w_{2i}-W_{2}w_{1i})^{2}}{W_{1}^{2}s_{2i}^{2}+W_{2}^{2}s_{1i}^{2}}
1898///\f]
1899/// and it has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [2].
1900/// The normalized or studentised residuals [6]
1901///\f[
1902/// r_{i} = \frac{w_{1i}-W_{1}\hat{p}_{i}}{s_{1i}\sqrt{1 - \frac{1}{(1+W_{2}^{2}s_{1i}^{2}/W_{1}^{2}s_{2i}^{2})}}}
1903///\f]
1904/// have approximately a normal distribution with mean equal to 0 and standard
1905/// deviation 1. A recommended minimal expected frequency is equal to 10 for
1906/// the proposed test.
1907///
1908/// #### Numerical examples:
1909///
1910/// The method described herein is now illustrated with an example.
1911/// We take a distribution
1912///\f[
1913/// \phi(x) = \frac{2}{(x-10)^{2}+1} + \frac{1}{(x-14)^{2}+1} (1)
1914///\f]
1915/// defined on the interval [4,16]. Events distributed according to the formula
1916/// (1) are simulated to create the unweighted histogram. Uniformly distributed
1917/// events are simulated for the weighted histogram with weights calculated by
1918/// formula (1). Each histogram has the same number of bins: 20. Fig.1 shows
1919/// the result of comparison of the unweighted histogram with 200 events
1920/// (minimal expected frequency equal to one) and the weighted histogram with
1921/// 500 events (minimal expected frequency equal to 25)
1922/// Begin_Macro
1923/// ../../../tutorials/math/chi2test.C
1924/// End_Macro
1925/// Fig 1. An example of comparison of the unweighted histogram with 200 events
1926/// and the weighted histogram with 500 events:
1927/// 1. unweighted histogram;
1928/// 2. weighted histogram;
1929/// 3. normalized residuals plot;
1930/// 4. normal Q-Q plot of residuals.
1931///
1932/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1933/// 21.09 with p-value equal to 0.33, therefore the hypothesis of identity of
1934/// the two histograms can be accepted for 0.05 significant level. The behavior
1935/// of the normalized residuals plot (see Fig. 1c) and the normal Q-Q plot
1936/// (see Fig. 1d) of residuals are regular and we cannot identify the outliers
1937/// or bins with a big influence on \f$ \chi^{2} \f$.
1938///
1939/// The second example presents the same two histograms but 17 events was added
1940/// to content of bin number 15 in unweighted histogram. Fig.2 shows the result
1941/// of comparison of the unweighted histogram with 217 events (minimal expected
1942/// frequency equal to one) and the weighted histogram with 500 events (minimal
1943/// expected frequency equal to 25)
1944/// Begin_Macro
1945/// ../../../tutorials/math/chi2test.C(17)
1946/// End_Macro
1947/// Fig 2. An example of comparison of the unweighted histogram with 217 events
1948/// and the weighted histogram with 500 events:
1949/// 1. unweighted histogram;
1950/// 2. weighted histogram;
1951/// 3. normalized residuals plot;
1952/// 4. normal Q-Q plot of residuals.
1953///
1954/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1955/// 32.33 with p-value equal to 0.029, therefore the hypothesis of identity of
1956/// the two histograms is rejected for 0.05 significant level. The behavior of
1957/// the normalized residuals plot (see Fig. 2c) and the normal Q-Q plot (see
1958/// Fig. 2d) of residuals are not regular and we can identify the outlier or
1959/// bin with a big influence on \f$ \chi^{2} \f$.
1960///
1961/// #### References:
1962///
1963/// - [1] Pearson, K., 1904. On the Theory of Contingency and Its Relation to
1964/// Association and Normal Correlation. Drapers' Co. Memoirs, Biometric
1965/// Series No. 1, London.
1966/// - [2] Gagunashvili, N., 2006. \f$ \sigma^{2} \f$ test for comparison
1967/// of weighted and unweighted histograms. Statistical Problems in Particle
1968/// Physics, Astrophysics and Cosmology, Proceedings of PHYSTAT05,
1969/// Oxford, UK, 12-15 September 2005, Imperial College Press, London, 43-44.
1970/// Gagunashvili,N., Comparison of weighted and unweighted histograms,
1971/// arXiv:physics/0605123, 2006.
1972/// - [3] Cramer, H., 1946. Mathematical methods of statistics.
1973/// Princeton University Press, Princeton.
1974/// - [4] Haberman, S.J., 1973. The analysis of residuals in cross-classified tables.
1975/// Biometrics 29, 205-220.
1976/// - [5] Lewontin, R.C. and Felsenstein, J., 1965. The robustness of homogeneity
1977/// test in 2xN tables. Biometrics 21, 19-33.
1978/// - [6] Seber, G.A.F., Lee, A.J., 2003, Linear Regression Analysis.
1979/// John Wiley & Sons Inc., New York.
1980
1981Double_t TH1::Chi2Test(const TH1* h2, Option_t *option, Double_t *res) const
1982{
1983 Double_t chi2 = 0;
1984 Int_t ndf = 0, igood = 0;
1985
1986 TString opt = option;
1987 opt.ToUpper();
1988
1990
1991 if(opt.Contains("P")) {
1992 printf("Chi2 = %f, Prob = %g, NDF = %d, igood = %d\n", chi2,prob,ndf,igood);
1993 }
1994 if(opt.Contains("CHI2/NDF")) {
1995 if (ndf == 0) return 0;
1996 return chi2/ndf;
1997 }
1998 if(opt.Contains("CHI2")) {
1999 return chi2;
2000 }
2001
2002 return prob;
2003}
2004
2005////////////////////////////////////////////////////////////////////////////////
2006/// The computation routine of the Chisquare test. For the method description,
2007/// see Chi2Test() function.
2008///
2009/// \return p-value
2010/// \param[in] h2 the second histogram
2011/// \param[in] option
2012/// - "UU" = experiment experiment comparison (unweighted-unweighted)
2013/// - "UW" = experiment MC comparison (unweighted-weighted). Note that the first
2014/// histogram should be unweighted
2015/// - "WW" = MC MC comparison (weighted-weighted)
2016/// - "NORM" = if one or both histograms is scaled
2017/// - "OF" = overflows included
2018/// - "UF" = underflows included
2019/// by default underflows and overflows are not included
2020/// \param[out] igood test output
2021/// - igood=0 - no problems
2022/// - For unweighted unweighted comparison
2023/// - igood=1'There is a bin in the 1st histogram with less than 1 event'
2024/// - igood=2'There is a bin in the 2nd histogram with less than 1 event'
2025/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2026/// - For unweighted weighted comparison
2027/// - igood=1'There is a bin in the 1st histogram with less then 1 event'
2028/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective number of events'
2029/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2030/// - For weighted weighted comparison
2031/// - igood=1'There is a bin in the 1st histogram with less then 10 effective
2032/// number of events'
2033/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective
2034/// number of events'
2035/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2036/// \param[out] chi2 chisquare of the test
2037/// \param[out] ndf number of degrees of freedom (important, when both histograms have the same empty bins)
2038/// \param[out] res normalized residuals for further analysis
2039
2041{
2042
2046
2047 Double_t sum1 = 0.0, sumw1 = 0.0;
2048 Double_t sum2 = 0.0, sumw2 = 0.0;
2049
2050 chi2 = 0.0;
2051 ndf = 0;
2052
2053 TString opt = option;
2054 opt.ToUpper();
2055
2056 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
2057
2058 const TAxis *xaxis1 = GetXaxis();
2059 const TAxis *xaxis2 = h2->GetXaxis();
2060 const TAxis *yaxis1 = GetYaxis();
2061 const TAxis *yaxis2 = h2->GetYaxis();
2062 const TAxis *zaxis1 = GetZaxis();
2063 const TAxis *zaxis2 = h2->GetZaxis();
2064
2065 Int_t nbinx1 = xaxis1->GetNbins();
2066 Int_t nbinx2 = xaxis2->GetNbins();
2067 Int_t nbiny1 = yaxis1->GetNbins();
2068 Int_t nbiny2 = yaxis2->GetNbins();
2069 Int_t nbinz1 = zaxis1->GetNbins();
2070 Int_t nbinz2 = zaxis2->GetNbins();
2071
2072 //check dimensions
2073 if (this->GetDimension() != h2->GetDimension() ){
2074 Error("Chi2TestX","Histograms have different dimensions.");
2075 return 0.0;
2076 }
2077
2078 //check number of channels
2079 if (nbinx1 != nbinx2) {
2080 Error("Chi2TestX","different number of x channels");
2081 }
2082 if (nbiny1 != nbiny2) {
2083 Error("Chi2TestX","different number of y channels");
2084 }
2085 if (nbinz1 != nbinz2) {
2086 Error("Chi2TestX","different number of z channels");
2087 }
2088
2089 //check for ranges
2090 i_start = j_start = k_start = 1;
2091 i_end = nbinx1;
2092 j_end = nbiny1;
2093 k_end = nbinz1;
2094
2095 if (xaxis1->TestBit(TAxis::kAxisRange)) {
2096 i_start = xaxis1->GetFirst();
2097 i_end = xaxis1->GetLast();
2098 }
2099 if (yaxis1->TestBit(TAxis::kAxisRange)) {
2100 j_start = yaxis1->GetFirst();
2101 j_end = yaxis1->GetLast();
2102 }
2103 if (zaxis1->TestBit(TAxis::kAxisRange)) {
2104 k_start = zaxis1->GetFirst();
2105 k_end = zaxis1->GetLast();
2106 }
2107
2108
2109 if (opt.Contains("OF")) {
2110 if (GetDimension() == 3) k_end = ++nbinz1;
2111 if (GetDimension() >= 2) j_end = ++nbiny1;
2112 if (GetDimension() >= 1) i_end = ++nbinx1;
2113 }
2114
2115 if (opt.Contains("UF")) {
2116 if (GetDimension() == 3) k_start = 0;
2117 if (GetDimension() >= 2) j_start = 0;
2118 if (GetDimension() >= 1) i_start = 0;
2119 }
2120
2121 ndf = (i_end - i_start + 1) * (j_end - j_start + 1) * (k_end - k_start + 1) - 1;
2122
2123 Bool_t comparisonUU = opt.Contains("UU");
2124 Bool_t comparisonUW = opt.Contains("UW");
2125 Bool_t comparisonWW = opt.Contains("WW");
2126 Bool_t scaledHistogram = opt.Contains("NORM");
2127
2128 if (scaledHistogram && !comparisonUU) {
2129 Info("Chi2TestX", "NORM option should be used together with UU option. It is ignored");
2130 }
2131
2132 // look at histo global bin content and effective entries
2133 Stat_t s[kNstat];
2134 GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2135 Double_t sumBinContent1 = s[0];
2136 Double_t effEntries1 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2137
2138 h2->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2139 Double_t sumBinContent2 = s[0];
2140 Double_t effEntries2 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2141
2142 if (!comparisonUU && !comparisonUW && !comparisonWW ) {
2143 // deduce automatically from type of histogram
2146 else comparisonUW = true;
2147 }
2148 else comparisonWW = true;
2149 }
2150 // check unweighted histogram
2151 if (comparisonUW) {
2153 Warning("Chi2TestX","First histogram is not unweighted and option UW has been requested");
2154 }
2155 }
2156 if ( (!scaledHistogram && comparisonUU) ) {
2158 Warning("Chi2TestX","Both histograms are not unweighted and option UU has been requested");
2159 }
2160 }
2161
2162
2163 //get number of events in histogram
2165 for (Int_t i = i_start; i <= i_end; ++i) {
2166 for (Int_t j = j_start; j <= j_end; ++j) {
2167 for (Int_t k = k_start; k <= k_end; ++k) {
2168
2169 Int_t bin = GetBin(i, j, k);
2170
2172 Double_t cnt2 = h2->RetrieveBinContent(bin);
2174 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2175
2176 if (e1sq > 0.0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2177 else cnt1 = 0.0;
2178
2179 if (e2sq > 0.0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2180 else cnt2 = 0.0;
2181
2182 // sum contents
2183 sum1 += cnt1;
2184 sum2 += cnt2;
2185 sumw1 += e1sq;
2186 sumw2 += e2sq;
2187 }
2188 }
2189 }
2190 if (sumw1 <= 0.0 || sumw2 <= 0.0) {
2191 Error("Chi2TestX", "Cannot use option NORM when one histogram has all zero errors");
2192 return 0.0;
2193 }
2194
2195 } else {
2196 for (Int_t i = i_start; i <= i_end; ++i) {
2197 for (Int_t j = j_start; j <= j_end; ++j) {
2198 for (Int_t k = k_start; k <= k_end; ++k) {
2199
2200 Int_t bin = GetBin(i, j, k);
2201
2202 sum1 += RetrieveBinContent(bin);
2203 sum2 += h2->RetrieveBinContent(bin);
2204
2206 if ( comparisonUW || comparisonWW ) sumw2 += h2->GetBinErrorSqUnchecked(bin);
2207 }
2208 }
2209 }
2210 }
2211 //checks that the histograms are not empty
2212 if (sum1 == 0.0 || sum2 == 0.0) {
2213 Error("Chi2TestX","one histogram is empty");
2214 return 0.0;
2215 }
2216
2217 if ( comparisonWW && ( sumw1 <= 0.0 && sumw2 <= 0.0 ) ){
2218 Error("Chi2TestX","Hist1 and Hist2 have both all zero errors\n");
2219 return 0.0;
2220 }
2221
2222 //THE TEST
2223 Int_t m = 0, n = 0;
2224
2225 //Experiment - experiment comparison
2226 if (comparisonUU) {
2227 Double_t sum = sum1 + sum2;
2228 for (Int_t i = i_start; i <= i_end; ++i) {
2229 for (Int_t j = j_start; j <= j_end; ++j) {
2230 for (Int_t k = k_start; k <= k_end; ++k) {
2231
2232 Int_t bin = GetBin(i, j, k);
2233
2235 Double_t cnt2 = h2->RetrieveBinContent(bin);
2236
2237 if (scaledHistogram) {
2238 // scale bin value to effective bin entries
2240 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2241
2242 if (e1sq > 0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2243 else cnt1 = 0;
2244
2245 if (e2sq > 0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2246 else cnt2 = 0;
2247 }
2248
2249 if (Int_t(cnt1) == 0 && Int_t(cnt2) == 0) --ndf; // no data means one degree of freedom less
2250 else {
2251
2254 //Double_t nexp2 = binsum*sum2/sum;
2255
2256 if (res) res[i - i_start] = (cnt1 - nexp1) / TMath::Sqrt(nexp1);
2257
2258 if (cnt1 < 1) ++m;
2259 if (cnt2 < 1) ++n;
2260
2261 //Habermann correction for residuals
2262 Double_t correc = (1. - sum1 / sum) * (1. - cntsum / sum);
2263 if (res) res[i - i_start] /= TMath::Sqrt(correc);
2264
2265 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2266 chi2 += delta * delta / cntsum;
2267 }
2268 }
2269 }
2270 }
2271 chi2 /= sum1 * sum2;
2272
2273 // flag error only when of the two histogram is zero
2274 if (m) {
2275 igood += 1;
2276 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2277 }
2278 if (n) {
2279 igood += 2;
2280 Info("Chi2TestX","There is a bin in h2 with less than 1 event.\n");
2281 }
2282
2284 return prob;
2285
2286 }
2287
2288 // unweighted - weighted comparison
2289 // case of error = 0 and content not zero is treated without problems by excluding second chi2 sum
2290 // and can be considered as a data-theory comparison
2291 if ( comparisonUW ) {
2292 for (Int_t i = i_start; i <= i_end; ++i) {
2293 for (Int_t j = j_start; j <= j_end; ++j) {
2294 for (Int_t k = k_start; k <= k_end; ++k) {
2295
2296 Int_t bin = GetBin(i, j, k);
2297
2299 Double_t cnt2 = h2->RetrieveBinContent(bin);
2300 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2301
2302 // case both histogram have zero bin contents
2303 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2304 --ndf; //no data means one degree of freedom less
2305 continue;
2306 }
2307
2308 // case weighted histogram has zero bin content and error
2309 if (cnt2 * cnt2 == 0 && e2sq == 0) {
2310 if (sumw2 > 0) {
2311 // use as approximated error as 1 scaled by a scaling ratio
2312 // estimated from the total sum weight and sum weight squared
2313 e2sq = sumw2 / sum2;
2314 }
2315 else {
2316 // return error because infinite discrepancy here:
2317 // bin1 != 0 and bin2 =0 in a histogram with all errors zero
2318 Error("Chi2TestX","Hist2 has in bin (%d,%d,%d) zero content and zero errors\n", i, j, k);
2319 chi2 = 0; return 0;
2320 }
2321 }
2322
2323 if (cnt1 < 1) m++;
2324 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2325
2326 Double_t var1 = sum2 * cnt2 - sum1 * e2sq;
2327 Double_t var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2328
2329 // if cnt1 is zero and cnt2 = 1 and sum1 = sum2 var1 = 0 && var2 == 0
2330 // approximate by incrementing cnt1
2331 // LM (this need to be fixed for numerical errors)
2332 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2333 sum1++;
2334 cnt1++;
2335 var1 = sum2 * cnt2 - sum1 * e2sq;
2336 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2337 }
2339
2340 while (var1 + var2 == 0) {
2341 sum1++;
2342 cnt1++;
2343 var1 = sum2 * cnt2 - sum1 * e2sq;
2344 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2345 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2346 sum1++;
2347 cnt1++;
2348 var1 = sum2 * cnt2 - sum1 * e2sq;
2349 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2350 }
2352 }
2353
2354 Double_t probb = (var1 + var2) / (2. * sum2 * sum2);
2355
2358
2361
2362 chi2 += delta1 * delta1 / nexp1;
2363
2364 if (e2sq > 0) {
2365 chi2 += delta2 * delta2 / e2sq;
2366 }
2367
2368 if (res) {
2369 if (e2sq > 0) {
2370 Double_t temp1 = sum2 * e2sq / var2;
2371 Double_t temp2 = 1.0 + (sum1 * e2sq - sum2 * cnt2) / var2;
2372 temp2 = temp1 * temp1 * sum1 * probb * (1.0 - probb) + temp2 * temp2 * e2sq / 4.0;
2373 // invert sign here
2374 res[i - i_start] = - delta2 / TMath::Sqrt(temp2);
2375 }
2376 else
2377 res[i - i_start] = delta1 / TMath::Sqrt(nexp1);
2378 }
2379 }
2380 }
2381 }
2382
2383 if (m) {
2384 igood += 1;
2385 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2386 }
2387 if (n) {
2388 igood += 2;
2389 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2390 }
2391
2393
2394 return prob;
2395 }
2396
2397 // weighted - weighted comparison
2398 if (comparisonWW) {
2399 for (Int_t i = i_start; i <= i_end; ++i) {
2400 for (Int_t j = j_start; j <= j_end; ++j) {
2401 for (Int_t k = k_start; k <= k_end; ++k) {
2402
2403 Int_t bin = GetBin(i, j, k);
2405 Double_t cnt2 = h2->RetrieveBinContent(bin);
2407 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2408
2409 // case both histogram have zero bin contents
2410 // (use square of content to avoid numerical errors)
2411 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2412 --ndf; //no data means one degree of freedom less
2413 continue;
2414 }
2415
2416 if (e1sq == 0 && e2sq == 0) {
2417 // cannot treat case of booth histogram have zero zero errors
2418 Error("Chi2TestX","h1 and h2 both have bin %d,%d,%d with all zero errors\n", i,j,k);
2419 chi2 = 0; return 0;
2420 }
2421
2422 Double_t sigma = sum1 * sum1 * e2sq + sum2 * sum2 * e1sq;
2423 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2424 chi2 += delta * delta / sigma;
2425
2426 if (res) {
2427 Double_t temp = cnt1 * sum1 * e2sq + cnt2 * sum2 * e1sq;
2428 Double_t probb = temp / sigma;
2429 Double_t z = 0;
2430 if (e1sq > e2sq) {
2431 Double_t d1 = cnt1 - sum1 * probb;
2432 Double_t s1 = e1sq * ( 1. - e2sq * sum1 * sum1 / sigma );
2433 z = d1 / TMath::Sqrt(s1);
2434 }
2435 else {
2436 Double_t d2 = cnt2 - sum2 * probb;
2437 Double_t s2 = e2sq * ( 1. - e1sq * sum2 * sum2 / sigma );
2438 z = -d2 / TMath::Sqrt(s2);
2439 }
2440 res[i - i_start] = z;
2441 }
2442
2443 if (e1sq > 0 && cnt1 * cnt1 / e1sq < 10) m++;
2444 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2445 }
2446 }
2447 }
2448 if (m) {
2449 igood += 1;
2450 Info("Chi2TestX","There is a bin in h1 with less than 10 effective events.\n");
2451 }
2452 if (n) {
2453 igood += 2;
2454 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2455 }
2457 return prob;
2458 }
2459 return 0;
2460}
2461////////////////////////////////////////////////////////////////////////////////
2462/// Compute and return the chisquare of this histogram with respect to a function
2463/// The chisquare is computed by weighting each histogram point by the bin error
2464/// By default the full range of the histogram is used, unless TAxis::SetRange or TAxis::SetRangeUser was called before.
2465/// Use option "R" for restricting the chisquare calculation to the given range of the function
2466/// Use option "L" for using the chisquare based on the poisson likelihood (Baker-Cousins Chisquare)
2467/// Use option "P" for using the Pearson chisquare based on the expected bin errors
2468
2470{
2471 if (!func) {
2472 Error("Chisquare","Function pointer is Null - return -1");
2473 return -1;
2474 }
2475
2476 TString opt(option); opt.ToUpper();
2477 bool useRange = opt.Contains("R");
2478 ROOT::Fit::EChisquareType type = ROOT::Fit::EChisquareType::kNeyman; // default chi2 with observed error
2481
2482 return ROOT::Fit::Chisquare(*this, *func, useRange, type);
2483}
2484
2485////////////////////////////////////////////////////////////////////////////////
2486/// Remove all the content from the underflow and overflow bins, without changing the number of entries
2487/// After calling this method, every undeflow and overflow bins will have content 0.0
2488/// The Sumw2 is also cleared, since there is no more content in the bins
2489
2491{
2492 for (Int_t bin = 0; bin < fNcells; ++bin)
2493 if (IsBinUnderflow(bin) || IsBinOverflow(bin)) {
2494 UpdateBinContent(bin, 0.0);
2495 if (fSumw2.fN) fSumw2.fArray[bin] = 0.0;
2496 }
2497}
2498
2499////////////////////////////////////////////////////////////////////////////////
2500/// Compute integral (normalized cumulative sum of bins) w/o under/overflows
2501/// The result is stored in fIntegral and used by the GetRandom functions.
2502/// This function is automatically called by GetRandom when the fIntegral
2503/// array does not exist or when the number of entries in the histogram
2504/// has changed since the previous call to GetRandom.
2505/// The resulting integral is normalized to 1.
2506/// If the routine is called with the onlyPositive flag set an error will
2507/// be produced in case of negative bin content and a NaN value returned
2508/// \param onlyPositive If set to true, an error will be produced and NaN will be returned
2509/// when a bin with negative number of entries is encountered.
2510/// \param option
2511/// - `""` (default) Compute the cumulative density function assuming current bin contents represent counts.
2512/// - `"width"` Computes the cumulative density function assuming current bin contents represent densities.
2513/// \return 1 if success, 0 if integral is zero, NAN if onlyPositive-test fails
2514
2516{
2517 if (fBuffer) BufferEmpty();
2519 // delete previously computed integral (if any)
2520 if (fIntegral) delete [] fIntegral;
2521
2522 // - Allocate space to store the integral and compute integral
2526 Int_t nbins = nbinsx * nbinsy * nbinsz;
2527
2528 fIntegral = new Double_t[nbins + 2];
2529 Int_t ibin = 0; fIntegral[ibin] = 0;
2530
2531 for (Int_t binz=1; binz <= nbinsz; ++binz) {
2533 for (Int_t biny=1; biny <= nbinsy; ++biny) {
2535 for (Int_t binx=1; binx <= nbinsx; ++binx) {
2537 ++ibin;
2539 if (useArea)
2540 y *= xWidth * yWidth * zWidth;
2541
2542 if (onlyPositive && y < 0) {
2543 Error("ComputeIntegral","Bin content is negative - return a NaN value");
2544 fIntegral[nbins] = TMath::QuietNaN();
2545 break;
2546 }
2547 fIntegral[ibin] = fIntegral[ibin - 1] + y;
2548 }
2549 }
2550 }
2551
2552 // - Normalize integral to 1
2553 if (fIntegral[nbins] == 0 ) {
2554 Error("ComputeIntegral", "Integral = 0, no hits in histogram bins (excluding over/underflow).");
2555 return 0;
2556 }
2557 for (Int_t bin=1; bin <= nbins; ++bin) fIntegral[bin] /= fIntegral[nbins];
2558 fIntegral[nbins+1] = fEntries;
2559 return fIntegral[nbins];
2560}
2561
2562////////////////////////////////////////////////////////////////////////////////
2563/// Return a pointer to the array of bins integral.
2564/// if the pointer fIntegral is null, TH1::ComputeIntegral is called
2565/// The array dimension is the number of bins in the histograms
2566/// including underflow and overflow (fNCells)
2567/// the last value integral[fNCells] is set to the number of entries of
2568/// the histogram
2569
2571{
2572 if (!fIntegral) ComputeIntegral();
2573 return fIntegral;
2574}
2575
2576////////////////////////////////////////////////////////////////////////////////
2577/// Return a pointer to a histogram containing the cumulative content.
2578/// The cumulative can be computed both in the forward (default) or backward
2579/// direction; the name of the new histogram is constructed from
2580/// the name of this histogram with the suffix "suffix" appended provided
2581/// by the user. If not provided a default suffix="_cumulative" is used.
2582///
2583/// The cumulative distribution is formed by filling each bin of the
2584/// resulting histogram with the sum of that bin and all previous
2585/// (forward == kTRUE) or following (forward = kFALSE) bins.
2586///
2587/// Note: while cumulative distributions make sense in one dimension, you
2588/// may not be getting what you expect in more than 1D because the concept
2589/// of a cumulative distribution is much trickier to define; make sure you
2590/// understand the order of summation before you use this method with
2591/// histograms of dimension >= 2.
2592///
2593/// Note 2: By default the cumulative is computed from bin 1 to Nbins
2594/// If an axis range is set, values between the minimum and maximum of the range
2595/// are set.
2596/// Setting an axis range can also be used for including underflow and overflow in
2597/// the cumulative (e.g. by setting h->GetXaxis()->SetRange(0, h->GetNbinsX()+1); )
2599
2600TH1 *TH1::GetCumulative(Bool_t forward, const char* suffix) const
2601{
2602 const Int_t firstX = fXaxis.GetFirst();
2603 const Int_t lastX = fXaxis.GetLast();
2604 const Int_t firstY = (fDimension > 1) ? fYaxis.GetFirst() : 1;
2605 const Int_t lastY = (fDimension > 1) ? fYaxis.GetLast() : 1;
2606 const Int_t firstZ = (fDimension > 1) ? fZaxis.GetFirst() : 1;
2607 const Int_t lastZ = (fDimension > 1) ? fZaxis.GetLast() : 1;
2608
2610 hintegrated->Reset();
2611 Double_t sum = 0.;
2612 Double_t esum = 0;
2613 if (forward) { // Forward computation
2614 for (Int_t binz = firstZ; binz <= lastZ; ++binz) {
2615 for (Int_t biny = firstY; biny <= lastY; ++biny) {
2616 for (Int_t binx = firstX; binx <= lastX; ++binx) {
2617 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2618 sum += RetrieveBinContent(bin);
2619 hintegrated->AddBinContent(bin, sum);
2620 if (fSumw2.fN) {
2622 hintegrated->fSumw2.fArray[bin] = esum;
2623 }
2624 }
2625 }
2626 }
2627 } else { // Backward computation
2628 for (Int_t binz = lastZ; binz >= firstZ; --binz) {
2629 for (Int_t biny = lastY; biny >= firstY; --biny) {
2630 for (Int_t binx = lastX; binx >= firstX; --binx) {
2631 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2632 sum += RetrieveBinContent(bin);
2633 hintegrated->AddBinContent(bin, sum);
2634 if (fSumw2.fN) {
2636 hintegrated->fSumw2.fArray[bin] = esum;
2637 }
2638 }
2639 }
2640 }
2641 }
2642 return hintegrated;
2643}
2644
2645////////////////////////////////////////////////////////////////////////////////
2646/// Copy this histogram structure to newth1.
2647///
2648/// Note that this function does not copy the list of associated functions.
2649/// Use TObject::Clone to make a full copy of a histogram.
2650///
2651/// Note also that the histogram it will be created in gDirectory (if AddDirectoryStatus()=true)
2652/// or will not be added to any directory if AddDirectoryStatus()=false
2653/// independently of the current directory stored in the original histogram
2654
2655void TH1::Copy(TObject &obj) const
2656{
2657 if (((TH1&)obj).fDirectory) {
2658 // We are likely to change the hash value of this object
2659 // with TNamed::Copy, to keep things correct, we need to
2660 // clean up its existing entries.
2661 ((TH1&)obj).fDirectory->Remove(&obj);
2662 ((TH1&)obj).fDirectory = nullptr;
2663 }
2664 TNamed::Copy(obj);
2665 ((TH1&)obj).fDimension = fDimension;
2666 ((TH1&)obj).fNormFactor= fNormFactor;
2667 ((TH1&)obj).fNcells = fNcells;
2668 ((TH1&)obj).fBarOffset = fBarOffset;
2669 ((TH1&)obj).fBarWidth = fBarWidth;
2670 ((TH1&)obj).fOption = fOption;
2671 ((TH1&)obj).fBinStatErrOpt = fBinStatErrOpt;
2672 ((TH1&)obj).fBufferSize= fBufferSize;
2673 // copy the Buffer
2674 // delete first a previously existing buffer
2675 if (((TH1&)obj).fBuffer != nullptr) {
2676 delete [] ((TH1&)obj).fBuffer;
2677 ((TH1&)obj).fBuffer = nullptr;
2678 }
2679 if (fBuffer) {
2680 Double_t *buf = new Double_t[fBufferSize];
2681 for (Int_t i=0;i<fBufferSize;i++) buf[i] = fBuffer[i];
2682 // obj.fBuffer has been deleted before
2683 ((TH1&)obj).fBuffer = buf;
2684 }
2685
2686 // copy bin contents (this should be done by the derived classes, since TH1 does not store the bin content)
2687 // Do this in case derived from TArray
2688 TArray* a = dynamic_cast<TArray*>(&obj);
2689 if (a) {
2690 a->Set(fNcells);
2691 for (Int_t i = 0; i < fNcells; i++)
2693 }
2694
2695 ((TH1&)obj).fEntries = fEntries;
2696
2697 // which will call BufferEmpty(0) and set fBuffer[0] to a Maybe one should call
2698 // assignment operator on the TArrayD
2699
2700 ((TH1&)obj).fTsumw = fTsumw;
2701 ((TH1&)obj).fTsumw2 = fTsumw2;
2702 ((TH1&)obj).fTsumwx = fTsumwx;
2703 ((TH1&)obj).fTsumwx2 = fTsumwx2;
2704 ((TH1&)obj).fMaximum = fMaximum;
2705 ((TH1&)obj).fMinimum = fMinimum;
2706
2707 TAttLine::Copy(((TH1&)obj));
2708 TAttFill::Copy(((TH1&)obj));
2709 TAttMarker::Copy(((TH1&)obj));
2710 fXaxis.Copy(((TH1&)obj).fXaxis);
2711 fYaxis.Copy(((TH1&)obj).fYaxis);
2712 fZaxis.Copy(((TH1&)obj).fZaxis);
2713 ((TH1&)obj).fXaxis.SetParent(&obj);
2714 ((TH1&)obj).fYaxis.SetParent(&obj);
2715 ((TH1&)obj).fZaxis.SetParent(&obj);
2716 fContour.Copy(((TH1&)obj).fContour);
2717 fSumw2.Copy(((TH1&)obj).fSumw2);
2718 // fFunctions->Copy(((TH1&)obj).fFunctions);
2719 // when copying an histogram if the AddDirectoryStatus() is true it
2720 // will be added to gDirectory independently of the fDirectory stored.
2721 // and if the AddDirectoryStatus() is false it will not be added to
2722 // any directory (fDirectory = nullptr)
2723 if (fgAddDirectory && gDirectory) {
2724 gDirectory->Append(&obj);
2725 ((TH1&)obj).fFunctions->UseRWLock();
2726 ((TH1&)obj).fDirectory = gDirectory;
2727 } else
2728 ((TH1&)obj).fDirectory = nullptr;
2729
2730}
2731
2732////////////////////////////////////////////////////////////////////////////////
2733/// Make a complete copy of the underlying object. If 'newname' is set,
2734/// the copy's name will be set to that name.
2735
2736TObject* TH1::Clone(const char* newname) const
2737{
2738 TH1* obj = (TH1*)IsA()->GetNew()(nullptr);
2739 Copy(*obj);
2740
2741 // Now handle the parts that Copy doesn't do
2742 if(fFunctions) {
2743 // The Copy above might have published 'obj' to the ListOfCleanups.
2744 // Clone can call RecursiveRemove, for example via TCheckHashRecursiveRemoveConsistency
2745 // when dictionary information is initialized, so we need to
2746 // keep obj->fFunction valid during its execution and
2747 // protect the update with the write lock.
2748
2749 // Reset stats parent - else cloning the stats will clone this histogram, too.
2750 auto oldstats = dynamic_cast<TVirtualPaveStats*>(fFunctions->FindObject("stats"));
2751 TObject *oldparent = nullptr;
2752 if (oldstats) {
2753 oldparent = oldstats->GetParent();
2754 oldstats->SetParent(nullptr);
2755 }
2756
2757 auto newlist = (TList*)fFunctions->Clone();
2758
2759 if (oldstats)
2760 oldstats->SetParent(oldparent);
2761 auto newstats = dynamic_cast<TVirtualPaveStats*>(obj->fFunctions->FindObject("stats"));
2762 if (newstats)
2763 newstats->SetParent(obj);
2764
2765 auto oldlist = obj->fFunctions;
2766 {
2768 obj->fFunctions = newlist;
2769 }
2770 delete oldlist;
2771 }
2772 if(newname && strlen(newname) ) {
2773 obj->SetName(newname);
2774 }
2775 return obj;
2776}
2777
2778////////////////////////////////////////////////////////////////////////////////
2779/// Perform the automatic addition of the histogram to the given directory
2780///
2781/// Note this function is called in place when the semantic requires
2782/// this object to be added to a directory (I.e. when being read from
2783/// a TKey or being Cloned)
2784
2786{
2788 if (addStatus) {
2789 SetDirectory(dir);
2790 if (dir) {
2792 }
2793 }
2794}
2795
2796////////////////////////////////////////////////////////////////////////////////
2797/// Compute distance from point px,py to a line.
2798///
2799/// Compute the closest distance of approach from point px,py to elements
2800/// of a histogram.
2801/// The distance is computed in pixels units.
2802///
2803/// #### Algorithm:
2804/// Currently, this simple model computes the distance from the mouse
2805/// to the histogram contour only.
2806
2808{
2809 if (!fPainter) return 9999;
2810 return fPainter->DistancetoPrimitive(px,py);
2811}
2812
2813////////////////////////////////////////////////////////////////////////////////
2814/// Performs the operation: `this = this/(c1*f1)`
2815/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2816///
2817/// Only bins inside the function range are recomputed.
2818/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2819/// you should call Sumw2 before making this operation.
2820/// This is particularly important if you fit the histogram after TH1::Divide
2821///
2822/// The function return kFALSE if the divide operation failed
2823
2825{
2826 if (!f1) {
2827 Error("Divide","Attempt to divide by a non-existing function");
2828 return kFALSE;
2829 }
2830
2831 // delete buffer if it is there since it will become invalid
2832 if (fBuffer) BufferEmpty(1);
2833
2834 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of
2835 Int_t ny = GetNbinsY() + 2;
2836 Int_t nz = GetNbinsZ() + 2;
2837 if (fDimension < 2) ny = 1;
2838 if (fDimension < 3) nz = 1;
2839
2840
2841 SetMinimum();
2842 SetMaximum();
2843
2844 // - Loop on bins (including underflows/overflows)
2845 Int_t bin, binx, biny, binz;
2846 Double_t cu, w;
2847 Double_t xx[3];
2848 Double_t *params = nullptr;
2849 f1->InitArgs(xx,params);
2850 for (binz = 0; binz < nz; ++binz) {
2851 xx[2] = fZaxis.GetBinCenter(binz);
2852 for (biny = 0; biny < ny; ++biny) {
2853 xx[1] = fYaxis.GetBinCenter(biny);
2854 for (binx = 0; binx < nx; ++binx) {
2855 xx[0] = fXaxis.GetBinCenter(binx);
2856 if (!f1->IsInside(xx)) continue;
2858 bin = binx + nx * (biny + ny * binz);
2859 cu = c1 * f1->EvalPar(xx);
2860 if (TF1::RejectedPoint()) continue;
2861 if (cu) w = RetrieveBinContent(bin) / cu;
2862 else w = 0;
2863 UpdateBinContent(bin, w);
2864 if (fSumw2.fN) {
2865 if (cu != 0) fSumw2.fArray[bin] = GetBinErrorSqUnchecked(bin) / (cu * cu);
2866 else fSumw2.fArray[bin] = 0;
2867 }
2868 }
2869 }
2870 }
2871 ResetStats();
2872 return kTRUE;
2873}
2874
2875////////////////////////////////////////////////////////////////////////////////
2876/// Divide this histogram by h1.
2877///
2878/// `this = this/h1`
2879/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2880/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
2881/// if not already set.
2882/// The resulting errors are calculated assuming uncorrelated histograms.
2883/// See the other TH1::Divide that gives the possibility to optionally
2884/// compute binomial errors.
2885///
2886/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2887/// you should call Sumw2 before making this operation.
2888/// This is particularly important if you fit the histogram after TH1::Scale
2889///
2890/// The function return kFALSE if the divide operation failed
2891
2892Bool_t TH1::Divide(const TH1 *h1)
2893{
2894 if (!h1) {
2895 Error("Divide", "Input histogram passed does not exist (NULL).");
2896 return kFALSE;
2897 }
2898
2899 // delete buffer if it is there since it will become invalid
2900 if (fBuffer) BufferEmpty(1);
2901
2902 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins) {
2903 return false;
2904 }
2905
2906 // Create Sumw2 if h1 has Sumw2 set
2907 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
2908
2909 // - Loop on bins (including underflows/overflows)
2910 for (Int_t i = 0; i < fNcells; ++i) {
2913 if (c1) UpdateBinContent(i, c0 / c1);
2914 else UpdateBinContent(i, 0);
2915
2916 if(fSumw2.fN) {
2917 if (c1 == 0) { fSumw2.fArray[i] = 0; continue; }
2918 Double_t c1sq = c1 * c1;
2919 fSumw2.fArray[i] = (GetBinErrorSqUnchecked(i) * c1sq + h1->GetBinErrorSqUnchecked(i) * c0 * c0) / (c1sq * c1sq);
2920 }
2921 }
2922 ResetStats();
2923 return kTRUE;
2924}
2925
2926////////////////////////////////////////////////////////////////////////////////
2927/// Replace contents of this histogram by the division of h1 by h2.
2928///
2929/// `this = c1*h1/(c2*h2)`
2930///
2931/// If errors are defined (see TH1::Sumw2), errors are also recalculated
2932/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
2933/// if not already set.
2934/// The resulting errors are calculated assuming uncorrelated histograms.
2935/// However, if option ="B" is specified, Binomial errors are computed.
2936/// In this case c1 and c2 do not make real sense and they are ignored.
2937///
2938/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2939/// you should call Sumw2 before making this operation.
2940/// This is particularly important if you fit the histogram after TH1::Divide
2941///
2942/// Please note also that in the binomial case errors are calculated using standard
2943/// binomial statistics, which means when b1 = b2, the error is zero.
2944/// If you prefer to have efficiency errors not going to zero when the efficiency is 1, you must
2945/// use the function TGraphAsymmErrors::BayesDivide, which will return an asymmetric and non-zero lower
2946/// error for the case b1=b2.
2947///
2948/// The function return kFALSE if the divide operation failed
2949
2951{
2952
2953 TString opt = option;
2954 opt.ToLower();
2955 Bool_t binomial = kFALSE;
2956 if (opt.Contains("b")) binomial = kTRUE;
2957 if (!h1 || !h2) {
2958 Error("Divide", "At least one of the input histograms passed does not exist (NULL).");
2959 return kFALSE;
2960 }
2961
2962 // delete buffer if it is there since it will become invalid
2963 if (fBuffer) BufferEmpty(1);
2964
2965 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins ||
2966 LoggedInconsistency("Divide", h1, h2) >= kDifferentNumberOfBins) {
2967 return false;
2968 }
2969
2970 if (!c2) {
2971 Error("Divide","Coefficient of dividing histogram cannot be zero");
2972 return kFALSE;
2973 }
2974
2975 // Create Sumw2 if h1 or h2 have Sumw2 set, or if binomial errors are explicitly requested
2976 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0 || binomial)) Sumw2();
2977
2978 SetMinimum();
2979 SetMaximum();
2980
2981 // - Loop on bins (including underflows/overflows)
2982 for (Int_t i = 0; i < fNcells; ++i) {
2984 Double_t b2 = h2->RetrieveBinContent(i);
2985 if (b2) UpdateBinContent(i, c1 * b1 / (c2 * b2));
2986 else UpdateBinContent(i, 0);
2987
2988 if (fSumw2.fN) {
2989 if (b2 == 0) { fSumw2.fArray[i] = 0; continue; }
2990 Double_t b1sq = b1 * b1; Double_t b2sq = b2 * b2;
2991 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
2993 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
2994 if (binomial) {
2995 if (b1 != b2) {
2996 // in the case of binomial statistics c1 and c2 must be 1 otherwise it does not make sense
2997 // c1 and c2 are ignored
2998 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/(c2*b2));//this is the formula in Hbook/Hoper1
2999 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/b2); // old formula from G. Flucke
3000 // formula which works also for weighted histogram (see http://root-forum.cern.ch/viewtopic.php?t=3753 )
3001 fSumw2.fArray[i] = TMath::Abs( ( (1. - 2.* b1 / b2) * e1sq + b1sq * e2sq / b2sq ) / b2sq );
3002 } else {
3003 //in case b1=b2 error is zero
3004 //use TGraphAsymmErrors::BayesDivide for getting the asymmetric error not equal to zero
3005 fSumw2.fArray[i] = 0;
3006 }
3007 } else {
3008 fSumw2.fArray[i] = c1sq * c2sq * (e1sq * b2sq + e2sq * b1sq) / (c2sq * c2sq * b2sq * b2sq);
3009 }
3010 }
3011 }
3012 ResetStats();
3013 if (binomial)
3014 // in case of binomial division use denominator for number of entries
3015 SetEntries ( h2->GetEntries() );
3016
3017 return kTRUE;
3018}
3019
3020////////////////////////////////////////////////////////////////////////////////
3021/// Draw this histogram with options.
3022///
3023/// Histograms are drawn via the THistPainter class. Each histogram has
3024/// a pointer to its own painter (to be usable in a multithreaded program).
3025/// The same histogram can be drawn with different options in different pads.
3026/// When a histogram drawn in a pad is deleted, the histogram is
3027/// automatically removed from the pad or pads where it was drawn.
3028/// If a histogram is drawn in a pad, then filled again, the new status
3029/// of the histogram will be automatically shown in the pad next time
3030/// the pad is updated. One does not need to redraw the histogram.
3031/// To draw the current version of a histogram in a pad, one can use
3032/// `h->DrawCopy();`
3033/// This makes a clone of the histogram. Once the clone is drawn, the original
3034/// histogram may be modified or deleted without affecting the aspect of the
3035/// clone.
3036/// By default, TH1::Draw clears the current pad.
3037///
3038/// One can use TH1::SetMaximum and TH1::SetMinimum to force a particular
3039/// value for the maximum or the minimum scale on the plot.
3040///
3041/// TH1::UseCurrentStyle can be used to change all histogram graphics
3042/// attributes to correspond to the current selected style.
3043/// This function must be called for each histogram.
3044/// In case one reads and draws many histograms from a file, one can force
3045/// the histograms to inherit automatically the current graphics style
3046/// by calling before gROOT->ForceStyle();
3047///
3048/// See the THistPainter class for a description of all the drawing options.
3049
3051{
3052 TString opt1 = option; opt1.ToLower();
3054 Int_t index = opt1.Index("same");
3055
3056 // Check if the string "same" is part of a TCutg name.
3057 if (index>=0) {
3058 Int_t indb = opt1.Index("[");
3059 if (indb>=0) {
3060 Int_t indk = opt1.Index("]");
3061 if (index>indb && index<indk) index = -1;
3062 }
3063 }
3064
3065 // If there is no pad or an empty pad the "same" option is ignored.
3066 if (gPad) {
3067 if (!gPad->IsEditable()) gROOT->MakeDefCanvas();
3068 if (index>=0) {
3069 if (gPad->GetX1() == 0 && gPad->GetX2() == 1 &&
3070 gPad->GetY1() == 0 && gPad->GetY2() == 1 &&
3071 gPad->GetListOfPrimitives()->GetSize()==0) opt2.Remove(index,4);
3072 } else {
3073 //the following statement is necessary in case one attempts to draw
3074 //a temporary histogram already in the current pad
3075 if (TestBit(kCanDelete)) gPad->Remove(this);
3076 gPad->Clear();
3077 }
3078 gPad->IncrementPaletteColor(1, opt1);
3079 } else {
3080 if (index>=0) opt2.Remove(index,4);
3081 }
3082
3083 AppendPad(opt2.Data());
3084}
3085
3086////////////////////////////////////////////////////////////////////////////////
3087/// Copy this histogram and Draw in the current pad.
3088///
3089/// Once the histogram is drawn into the pad, any further modification
3090/// using graphics input will be made on the copy of the histogram,
3091/// and not to the original object.
3092/// By default a postfix "_copy" is added to the histogram name. Pass an empty postfix in case
3093/// you want to draw a histogram with the same name
3094///
3095/// See Draw for the list of options
3096
3097TH1 *TH1::DrawCopy(Option_t *option, const char * name_postfix) const
3098{
3099 TString opt = option;
3100 opt.ToLower();
3101 if (gPad && !opt.Contains("same")) gPad->Clear();
3103 if (name_postfix) newName.Form("%s%s", GetName(), name_postfix);
3104 TH1 *newth1 = (TH1 *)Clone(newName.Data());
3105 newth1->SetDirectory(nullptr);
3106 newth1->SetBit(kCanDelete);
3107 if (gPad) gPad->IncrementPaletteColor(1, opt);
3108
3109 newth1->AppendPad(option);
3110 return newth1;
3111}
3112
3113////////////////////////////////////////////////////////////////////////////////
3114/// Draw a normalized copy of this histogram.
3115///
3116/// A clone of this histogram is normalized to norm and drawn with option.
3117/// A pointer to the normalized histogram is returned.
3118/// The contents of the histogram copy are scaled such that the new
3119/// sum of weights (excluding under and overflow) is equal to norm.
3120/// Note that the returned normalized histogram is not added to the list
3121/// of histograms in the current directory in memory.
3122/// It is the user's responsibility to delete this histogram.
3123/// The kCanDelete bit is set for the returned object. If a pad containing
3124/// this copy is cleared, the histogram will be automatically deleted.
3125///
3126/// See Draw for the list of options
3127
3129{
3131 if (sum == 0) {
3132 Error("DrawNormalized","Sum of weights is null. Cannot normalize histogram: %s",GetName());
3133 return nullptr;
3134 }
3137 TH1 *h = (TH1*)Clone();
3139 // in case of drawing with error options - scale correctly the error
3140 TString opt(option); opt.ToUpper();
3141 if (fSumw2.fN == 0) {
3142 h->Sumw2();
3143 // do not use in this case the "Error option " for drawing which is enabled by default since the normalized histogram has now errors
3144 if (opt.IsNull() || opt == "SAME") opt += "HIST";
3145 }
3146 h->Scale(norm/sum);
3147 if (TMath::Abs(fMaximum+1111) > 1e-3) h->SetMaximum(fMaximum*norm/sum);
3148 if (TMath::Abs(fMinimum+1111) > 1e-3) h->SetMinimum(fMinimum*norm/sum);
3149 h->Draw(opt);
3151 return h;
3152}
3153
3154////////////////////////////////////////////////////////////////////////////////
3155/// Display a panel with all histogram drawing options.
3156///
3157/// See class TDrawPanelHist for example
3158
3159void TH1::DrawPanel()
3160{
3161 if (!fPainter) {Draw(); if (gPad) gPad->Update();}
3162 if (fPainter) fPainter->DrawPanel();
3163}
3164
3165////////////////////////////////////////////////////////////////////////////////
3166/// Evaluate function f1 at the center of bins of this histogram.
3167///
3168/// - If option "R" is specified, the function is evaluated only
3169/// for the bins included in the function range.
3170/// - If option "A" is specified, the value of the function is added to the
3171/// existing bin contents
3172/// - If option "S" is specified, the value of the function is used to
3173/// generate a value, distributed according to the Poisson
3174/// distribution, with f1 as the mean.
3175
3177{
3178 Double_t x[3];
3179 Int_t range, stat, add;
3180 if (!f1) return;
3181
3182 TString opt = option;
3183 opt.ToLower();
3184 if (opt.Contains("a")) add = 1;
3185 else add = 0;
3186 if (opt.Contains("s")) stat = 1;
3187 else stat = 0;
3188 if (opt.Contains("r")) range = 1;
3189 else range = 0;
3190
3191 // delete buffer if it is there since it will become invalid
3192 if (fBuffer) BufferEmpty(1);
3193
3197 if (!add) Reset();
3198
3199 for (Int_t binz = 1; binz <= nbinsz; ++binz) {
3200 x[2] = fZaxis.GetBinCenter(binz);
3201 for (Int_t biny = 1; biny <= nbinsy; ++biny) {
3202 x[1] = fYaxis.GetBinCenter(biny);
3203 for (Int_t binx = 1; binx <= nbinsx; ++binx) {
3204 Int_t bin = GetBin(binx,biny,binz);
3205 x[0] = fXaxis.GetBinCenter(binx);
3206 if (range && !f1->IsInside(x)) continue;
3207 Double_t fu = f1->Eval(x[0], x[1], x[2]);
3208 if (stat) fu = gRandom->PoissonD(fu);
3209 AddBinContent(bin, fu);
3210 if (fSumw2.fN) fSumw2.fArray[bin] += TMath::Abs(fu);
3211 }
3212 }
3213 }
3214}
3215
3216////////////////////////////////////////////////////////////////////////////////
3217/// Execute action corresponding to one event.
3218///
3219/// This member function is called when a histogram is clicked with the locator
3220///
3221/// If Left button clicked on the bin top value, then the content of this bin
3222/// is modified according to the new position of the mouse when it is released.
3223
3224void TH1::ExecuteEvent(Int_t event, Int_t px, Int_t py)
3225{
3226 if (fPainter) fPainter->ExecuteEvent(event, px, py);
3227}
3228
3229////////////////////////////////////////////////////////////////////////////////
3230/// This function allows to do discrete Fourier transforms of TH1 and TH2.
3231/// Available transform types and flags are described below.
3232///
3233/// To extract more information about the transform, use the function
3234/// TVirtualFFT::GetCurrentTransform() to get a pointer to the current
3235/// transform object.
3236///
3237/// \param[out] h_output histogram for the output. If a null pointer is passed, a new histogram is created
3238/// and returned, otherwise, the provided histogram is used and should be big enough
3239/// \param[in] option option parameters consists of 3 parts:
3240/// - option on what to return
3241/// - "RE" - returns a histogram of the real part of the output
3242/// - "IM" - returns a histogram of the imaginary part of the output
3243/// - "MAG"- returns a histogram of the magnitude of the output
3244/// - "PH" - returns a histogram of the phase of the output
3245/// - option of transform type
3246/// - "R2C" - real to complex transforms - default
3247/// - "R2HC" - real to halfcomplex (special format of storing output data,
3248/// results the same as for R2C)
3249/// - "DHT" - discrete Hartley transform
3250/// real to real transforms (sine and cosine):
3251/// - "R2R_0", "R2R_1", "R2R_2", "R2R_3" - discrete cosine transforms of types I-IV
3252/// - "R2R_4", "R2R_5", "R2R_6", "R2R_7" - discrete sine transforms of types I-IV
3253/// To specify the type of each dimension of a 2-dimensional real to real
3254/// transform, use options of form "R2R_XX", for example, "R2R_02" for a transform,
3255/// which is of type "R2R_0" in 1st dimension and "R2R_2" in the 2nd.
3256/// - option of transform flag
3257/// - "ES" (from "estimate") - no time in preparing the transform, but probably sub-optimal
3258/// performance
3259/// - "M" (from "measure") - some time spend in finding the optimal way to do the transform
3260/// - "P" (from "patient") - more time spend in finding the optimal way to do the transform
3261/// - "EX" (from "exhaustive") - the most optimal way is found
3262/// This option should be chosen depending on how many transforms of the same size and
3263/// type are going to be done. Planning is only done once, for the first transform of this
3264/// size and type. Default is "ES".
3265///
3266/// Examples of valid options: "Mag R2C M" "Re R2R_11" "Im R2C ES" "PH R2HC EX"
3267
3269{
3270
3271 Int_t ndim[3];
3272 ndim[0] = this->GetNbinsX();
3273 ndim[1] = this->GetNbinsY();
3274 ndim[2] = this->GetNbinsZ();
3275
3277 TString opt = option;
3278 opt.ToUpper();
3279 if (!opt.Contains("2R")){
3280 if (!opt.Contains("2C") && !opt.Contains("2HC") && !opt.Contains("DHT")) {
3281 //no type specified, "R2C" by default
3282 opt.Append("R2C");
3283 }
3284 fft = TVirtualFFT::FFT(this->GetDimension(), ndim, opt.Data());
3285 }
3286 else {
3287 //find the kind of transform
3288 Int_t ind = opt.Index("R2R", 3);
3289 Int_t *kind = new Int_t[2];
3290 char t;
3291 t = opt[ind+4];
3292 kind[0] = atoi(&t);
3293 if (h_output->GetDimension()>1) {
3294 t = opt[ind+5];
3295 kind[1] = atoi(&t);
3296 }
3297 fft = TVirtualFFT::SineCosine(this->GetDimension(), ndim, kind, option);
3298 delete [] kind;
3299 }
3300
3301 if (!fft) return nullptr;
3302 Int_t in=0;
3303 for (Int_t binx = 1; binx<=ndim[0]; binx++) {
3304 for (Int_t biny=1; biny<=ndim[1]; biny++) {
3305 for (Int_t binz=1; binz<=ndim[2]; binz++) {
3306 fft->SetPoint(in, this->GetBinContent(binx, biny, binz));
3307 in++;
3308 }
3309 }
3310 }
3311 fft->Transform();
3313 return h_output;
3314}
3315
3316////////////////////////////////////////////////////////////////////////////////
3317/// Increment bin with abscissa X by 1.
3318///
3319/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3320/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3321///
3322/// If the storage of the sum of squares of weights has been triggered,
3323/// via the function Sumw2, then the sum of the squares of weights is incremented
3324/// by 1 in the bin corresponding to x.
3325///
3326/// The function returns the corresponding bin number which has its content incremented by 1
3327
3329{
3330 if (fBuffer) return BufferFill(x,1);
3331
3332 Int_t bin;
3333 fEntries++;
3334 bin =fXaxis.FindBin(x);
3335 if (bin <0) return -1;
3336 AddBinContent(bin);
3337 if (fSumw2.fN) ++fSumw2.fArray[bin];
3338 if (bin == 0 || bin > fXaxis.GetNbins()) {
3339 if (!GetStatOverflowsBehaviour()) return -1;
3340 }
3341 ++fTsumw;
3342 ++fTsumw2;
3343 fTsumwx += x;
3344 fTsumwx2 += x*x;
3345 return bin;
3346}
3347
3348////////////////////////////////////////////////////////////////////////////////
3349/// Increment bin with abscissa X with a weight w.
3350///
3351/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3352/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3353///
3354/// If the weight is not equal to 1, the storage of the sum of squares of
3355/// weights is automatically triggered and the sum of the squares of weights is incremented
3356/// by \f$ w^2 \f$ in the bin corresponding to x.
3357///
3358/// The function returns the corresponding bin number which has its content incremented by w
3359
3361{
3362
3363 if (fBuffer) return BufferFill(x,w);
3364
3365 Int_t bin;
3366 fEntries++;
3367 bin =fXaxis.FindBin(x);
3368 if (bin <0) return -1;
3369 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW) ) Sumw2(); // must be called before AddBinContent
3370 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3371 AddBinContent(bin, w);
3372 if (bin == 0 || bin > fXaxis.GetNbins()) {
3373 if (!GetStatOverflowsBehaviour()) return -1;
3374 }
3375 Double_t z= w;
3376 fTsumw += z;
3377 fTsumw2 += z*z;
3378 fTsumwx += z*x;
3379 fTsumwx2 += z*x*x;
3380 return bin;
3381}
3382
3383////////////////////////////////////////////////////////////////////////////////
3384/// Increment bin with namex with a weight w
3385///
3386/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3387/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3388///
3389/// If the weight is not equal to 1, the storage of the sum of squares of
3390/// weights is automatically triggered and the sum of the squares of weights is incremented
3391/// by \f$ w^2 \f$ in the bin corresponding to x.
3392///
3393/// The function returns the corresponding bin number which has its content
3394/// incremented by w.
3395
3396Int_t TH1::Fill(const char *namex, Double_t w)
3397{
3398 Int_t bin;
3399 fEntries++;
3400 bin =fXaxis.FindBin(namex);
3401 if (bin <0) return -1;
3402 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3403 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3404 AddBinContent(bin, w);
3405 if (bin == 0 || bin > fXaxis.GetNbins()) return -1;
3406 Double_t z= w;
3407 fTsumw += z;
3408 fTsumw2 += z*z;
3409 // this make sense if the histogram is not expanding (the x axis cannot be extended)
3410 if (!fXaxis.CanExtend() || !fXaxis.IsAlphanumeric()) {
3412 fTsumwx += z*x;
3413 fTsumwx2 += z*x*x;
3414 }
3415 return bin;
3416}
3417
3418////////////////////////////////////////////////////////////////////////////////
3419/// Fill this histogram with an array x and weights w.
3420///
3421/// \param[in] ntimes number of entries in arrays x and w (array size must be ntimes*stride)
3422/// \param[in] x array of values to be histogrammed
3423/// \param[in] w array of weighs
3424/// \param[in] stride step size through arrays x and w
3425///
3426/// If the weight is not equal to 1, the storage of the sum of squares of
3427/// weights is automatically triggered and the sum of the squares of weights is incremented
3428/// by \f$ w^2 \f$ in the bin corresponding to x.
3429/// if w is NULL each entry is assumed a weight=1
3430
3431void TH1::FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3432{
3433 //If a buffer is activated, fill buffer
3434 if (fBuffer) {
3435 ntimes *= stride;
3436 Int_t i = 0;
3437 for (i=0;i<ntimes;i+=stride) {
3438 if (!fBuffer) break; // buffer can be deleted in BufferFill when is empty
3439 if (w) BufferFill(x[i],w[i]);
3440 else BufferFill(x[i], 1.);
3441 }
3442 // fill the remaining entries if the buffer has been deleted
3443 if (i < ntimes && !fBuffer) {
3444 auto weights = w ? &w[i] : nullptr;
3445 DoFillN((ntimes-i)/stride,&x[i],weights,stride);
3446 }
3447 return;
3448 }
3449 // call internal method
3450 DoFillN(ntimes, x, w, stride);
3451}
3452
3453////////////////////////////////////////////////////////////////////////////////
3454/// Internal method to fill histogram content from a vector
3455/// called directly by TH1::BufferEmpty
3456
3457void TH1::DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3458{
3459 Int_t bin,i;
3460
3461 fEntries += ntimes;
3462 Double_t ww = 1;
3463 Int_t nbins = fXaxis.GetNbins();
3464 ntimes *= stride;
3465 for (i=0;i<ntimes;i+=stride) {
3466 bin =fXaxis.FindBin(x[i]);
3467 if (bin <0) continue;
3468 if (w) ww = w[i];
3469 if (!fSumw2.fN && ww != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3470 if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
3471 AddBinContent(bin, ww);
3472 if (bin == 0 || bin > nbins) {
3473 if (!GetStatOverflowsBehaviour()) continue;
3474 }
3475 Double_t z= ww;
3476 fTsumw += z;
3477 fTsumw2 += z*z;
3478 fTsumwx += z*x[i];
3479 fTsumwx2 += z*x[i]*x[i];
3480 }
3481}
3482
3483////////////////////////////////////////////////////////////////////////////////
3484/// Fill histogram following distribution in function fname.
3485///
3486/// @param fname : Function name used for filling the histogram
3487/// @param ntimes : number of times the histogram is filled
3488/// @param rng : (optional) Random number generator used to sample
3489///
3490///
3491/// The distribution contained in the function fname (TF1) is integrated
3492/// over the channel contents for the bin range of this histogram.
3493/// It is normalized to 1.
3494///
3495/// Getting one random number implies:
3496/// - Generating a random number between 0 and 1 (say r1)
3497/// - Look in which bin in the normalized integral r1 corresponds to
3498/// - Fill histogram channel
3499/// ntimes random numbers are generated
3500///
3501/// One can also call TF1::GetRandom to get a random variate from a function.
3502
3503void TH1::FillRandom(const char *fname, Int_t ntimes, TRandom * rng)
3504{
3505 // - Search for fname in the list of ROOT defined functions
3506 TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
3507 if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }
3508
3511
3513{
3514 Int_t bin, binx, ibin, loop;
3515 Double_t r1, x;
3516
3517 // - Allocate temporary space to store the integral and compute integral
3518
3519 TAxis * xAxis = &fXaxis;
3520
3521 // in case axis of histogram is not defined use the function axis
3522 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
3524 f1->GetRange(xmin,xmax);
3525 Info("FillRandom","Using function axis and range [%g,%g]",xmin, xmax);
3526 xAxis = f1->GetHistogram()->GetXaxis();
3527 }
3528
3529 Int_t first = xAxis->GetFirst();
3530 Int_t last = xAxis->GetLast();
3531 Int_t nbinsx = last-first+1;
3532
3533 Double_t *integral = new Double_t[nbinsx+1];
3534 integral[0] = 0;
3535 for (binx=1;binx<=nbinsx;binx++) {
3536 Double_t fint = f1->Integral(xAxis->GetBinLowEdge(binx+first-1),xAxis->GetBinUpEdge(binx+first-1), 0.);
3537 integral[binx] = integral[binx-1] + fint;
3538 }
3539
3540 // - Normalize integral to 1
3541 if (integral[nbinsx] == 0 ) {
3542 delete [] integral;
3543 Error("FillRandom", "Integral = zero"); return;
3544 }
3545 for (bin=1;bin<=nbinsx;bin++) integral[bin] /= integral[nbinsx];
3546
3547 // --------------Start main loop ntimes
3548 for (loop=0;loop<ntimes;loop++) {
3549 r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
3550 ibin = TMath::BinarySearch(nbinsx,&integral[0],r1);
3551 //binx = 1 + ibin;
3552 //x = xAxis->GetBinCenter(binx); //this is not OK when SetBuffer is used
3553 x = xAxis->GetBinLowEdge(ibin+first)
3554 +xAxis->GetBinWidth(ibin+first)*(r1-integral[ibin])/(integral[ibin+1] - integral[ibin]);
3555 Fill(x);
3556 }
3557 delete [] integral;
3558}
3559
3560////////////////////////////////////////////////////////////////////////////////
3561/// Fill histogram following distribution in histogram h.
3562///
3563/// @param h : Histogram pointer used for sampling random number
3564/// @param ntimes : number of times the histogram is filled
3565/// @param rng : (optional) Random number generator used for sampling
3566///
3567/// The distribution contained in the histogram h (TH1) is integrated
3568/// over the channel contents for the bin range of this histogram.
3569/// It is normalized to 1.
3570///
3571/// Getting one random number implies:
3572/// - Generating a random number between 0 and 1 (say r1)
3573/// - Look in which bin in the normalized integral r1 corresponds to
3574/// - Fill histogram channel ntimes random numbers are generated
3575///
3576/// SPECIAL CASE when the target histogram has the same binning as the source.
3577/// in this case we simply use a poisson distribution where
3578/// the mean value per bin = bincontent/integral.
3579
3581{
3582 if (!h) { Error("FillRandom", "Null histogram"); return; }
3583 if (fDimension != h->GetDimension()) {
3584 Error("FillRandom", "Histograms with different dimensions"); return;
3585 }
3586 if (std::isnan(h->ComputeIntegral(true))) {
3587 Error("FillRandom", "Histograms contains negative bins, does not represent probabilities");
3588 return;
3589 }
3590
3591 //in case the target histogram has the same binning and ntimes much greater
3592 //than the number of bins we can use a fast method
3593 Int_t first = fXaxis.GetFirst();
3594 Int_t last = fXaxis.GetLast();
3595 Int_t nbins = last-first+1;
3596 if (ntimes > 10*nbins) {
3597 auto inconsistency = CheckConsistency(this,h);
3598 if (inconsistency != kFullyConsistent) return; // do nothing
3599 Double_t sumw = h->Integral(first,last);
3600 if (sumw == 0) return;
3601 Double_t sumgen = 0;
3602 for (Int_t bin=first;bin<=last;bin++) {
3603 Double_t mean = h->RetrieveBinContent(bin)*ntimes/sumw;
3604 Double_t cont = (rng) ? rng->Poisson(mean) : gRandom->Poisson(mean);
3605 sumgen += cont;
3606 AddBinContent(bin,cont);
3607 if (fSumw2.fN) fSumw2.fArray[bin] += cont;
3608 }
3609
3610 // fix for the fluctuations in the total number n
3611 // since we use Poisson instead of multinomial
3612 // add a correction to have ntimes as generated entries
3613 Int_t i;
3614 if (sumgen < ntimes) {
3615 // add missing entries
3616 for (i = Int_t(sumgen+0.5); i < ntimes; ++i)
3617 {
3618 Double_t x = h->GetRandom();
3619 Fill(x);
3620 }
3621 }
3622 else if (sumgen > ntimes) {
3623 // remove extra entries
3624 i = Int_t(sumgen+0.5);
3625 while( i > ntimes) {
3626 Double_t x = h->GetRandom(rng);
3629 // skip in case bin is empty
3630 if (y > 0) {
3631 SetBinContent(ibin, y-1.);
3632 i--;
3633 }
3634 }
3635 }
3636
3637 ResetStats();
3638 return;
3639 }
3640 // case of different axis and not too large ntimes
3641
3642 if (h->ComputeIntegral() ==0) return;
3643 Int_t loop;
3644 Double_t x;
3645 for (loop=0;loop<ntimes;loop++) {
3646 x = h->GetRandom();
3647 Fill(x);
3648 }
3649}
3650
3651////////////////////////////////////////////////////////////////////////////////
3652/// Return Global bin number corresponding to x,y,z
3653///
3654/// 2-D and 3-D histograms are represented with a one dimensional
3655/// structure. This has the advantage that all existing functions, such as
3656/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3657/// This function tries to extend the axis if the given point belongs to an
3658/// under-/overflow bin AND if CanExtendAllAxes() is true.
3659///
3660/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3661
3663{
3664 if (GetDimension() < 2) {
3665 return fXaxis.FindBin(x);
3666 }
3667 if (GetDimension() < 3) {
3668 Int_t nx = fXaxis.GetNbins()+2;
3671 return binx + nx*biny;
3672 }
3673 if (GetDimension() < 4) {
3674 Int_t nx = fXaxis.GetNbins()+2;
3675 Int_t ny = fYaxis.GetNbins()+2;
3678 Int_t binz = fZaxis.FindBin(z);
3679 return binx + nx*(biny +ny*binz);
3680 }
3681 return -1;
3682}
3683
3684////////////////////////////////////////////////////////////////////////////////
3685/// Return Global bin number corresponding to x,y,z.
3686///
3687/// 2-D and 3-D histograms are represented with a one dimensional
3688/// structure. This has the advantage that all existing functions, such as
3689/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3690/// This function DOES NOT try to extend the axis if the given point belongs
3691/// to an under-/overflow bin.
3692///
3693/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3694
3696{
3697 if (GetDimension() < 2) {
3698 return fXaxis.FindFixBin(x);
3699 }
3700 if (GetDimension() < 3) {
3701 Int_t nx = fXaxis.GetNbins()+2;
3704 return binx + nx*biny;
3705 }
3706 if (GetDimension() < 4) {
3707 Int_t nx = fXaxis.GetNbins()+2;
3708 Int_t ny = fYaxis.GetNbins()+2;
3712 return binx + nx*(biny +ny*binz);
3713 }
3714 return -1;
3715}
3716
3717////////////////////////////////////////////////////////////////////////////////
3718/// Find first bin with content > threshold for axis (1=x, 2=y, 3=z)
3719/// if no bins with content > threshold is found the function returns -1.
3720/// The search will occur between the specified first and last bin. Specifying
3721/// the value of the last bin to search to less than zero will search until the
3722/// last defined bin.
3723
3725{
3726 if (fBuffer) ((TH1*)this)->BufferEmpty();
3727
3728 if (axis < 1 || (axis > 1 && GetDimension() == 1 ) ||
3729 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3 ) ) {
3730 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3731 axis = 1;
3732 }
3733 if (firstBin < 1) {
3734 firstBin = 1;
3735 }
3737 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3738 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3739
3740 if (axis == 1) {
3743 }
3744 for (Int_t binx = firstBin; binx <= lastBin; binx++) {
3745 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3746 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3748 }
3749 }
3750 }
3751 }
3752 else if (axis == 2) {
3755 }
3756 for (Int_t biny = firstBin; biny <= lastBin; biny++) {
3757 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3758 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3760 }
3761 }
3762 }
3763 }
3764 else if (axis == 3) {
3767 }
3768 for (Int_t binz = firstBin; binz <= lastBin; binz++) {
3769 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3770 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3772 }
3773 }
3774 }
3775 }
3776
3777 return -1;
3778}
3779
3780////////////////////////////////////////////////////////////////////////////////
3781/// Find last bin with content > threshold for axis (1=x, 2=y, 3=z)
3782/// if no bins with content > threshold is found the function returns -1.
3783/// The search will occur between the specified first and last bin. Specifying
3784/// the value of the last bin to search to less than zero will search until the
3785/// last defined bin.
3786
3788{
3789 if (fBuffer) ((TH1*)this)->BufferEmpty();
3790
3791
3792 if (axis < 1 || ( axis > 1 && GetDimension() == 1 ) ||
3793 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3) ) {
3794 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3795 axis = 1;
3796 }
3797 if (firstBin < 1) {
3798 firstBin = 1;
3799 }
3801 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3802 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3803
3804 if (axis == 1) {
3807 }
3808 for (Int_t binx = lastBin; binx >= firstBin; binx--) {
3809 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3810 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3812 }
3813 }
3814 }
3815 }
3816 else if (axis == 2) {
3819 }
3820 for (Int_t biny = lastBin; biny >= firstBin; biny--) {
3821 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3822 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3824 }
3825 }
3826 }
3827 }
3828 else if (axis == 3) {
3831 }
3832 for (Int_t binz = lastBin; binz >= firstBin; binz--) {
3833 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3834 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3836 }
3837 }
3838 }
3839 }
3840
3841 return -1;
3842}
3843
3844////////////////////////////////////////////////////////////////////////////////
3845/// Search object named name in the list of functions.
3846
3847TObject *TH1::FindObject(const char *name) const
3848{
3849 if (fFunctions) return fFunctions->FindObject(name);
3850 return nullptr;
3851}
3852
3853////////////////////////////////////////////////////////////////////////////////
3854/// Search object obj in the list of functions.
3855
3856TObject *TH1::FindObject(const TObject *obj) const
3857{
3858 if (fFunctions) return fFunctions->FindObject(obj);
3859 return nullptr;
3860}
3861
3862////////////////////////////////////////////////////////////////////////////////
3863/// Fit histogram with function fname.
3864///
3865///
3866/// fname is the name of a function available in the global ROOT list of functions
3867/// `gROOT->GetListOfFunctions`
3868/// The list include any TF1 object created by the user plus some pre-defined functions
3869/// which are automatically created by ROOT the first time a pre-defined function is requested from `gROOT`
3870/// (i.e. when calling `gROOT->GetFunction(const char *name)`).
3871/// These pre-defined functions are:
3872/// - `gaus, gausn` where gausn is the normalized Gaussian
3873/// - `landau, landaun`
3874/// - `expo`
3875/// - `pol1,...9, chebyshev1,...9`.
3876///
3877/// For printing the list of all available functions do:
3878///
3879/// TF1::InitStandardFunctions(); // not needed if `gROOT->GetFunction` is called before
3880/// gROOT->GetListOfFunctions()->ls()
3881///
3882/// `fname` can also be a formula that is accepted by the linear fitter containing the special operator `++`,
3883/// representing linear components separated by `++` sign, for example `x++sin(x)` for fitting `[0]*x+[1]*sin(x)`
3884///
3885/// This function finds a pointer to the TF1 object with name `fname` and calls TH1::Fit(TF1 *, Option_t *, Option_t *,
3886/// Double_t, Double_t). See there for the fitting options and the details about fitting histograms
3887
3889{
3890 char *linear;
3891 linear= (char*)strstr(fname, "++");
3892 Int_t ndim=GetDimension();
3893 if (linear){
3894 if (ndim<2){
3896 return Fit(&f1,option,goption,xxmin,xxmax);
3897 }
3898 else if (ndim<3){
3899 TF2 f2(fname, fname);
3900 return Fit(&f2,option,goption,xxmin,xxmax);
3901 }
3902 else{
3903 TF3 f3(fname, fname);
3904 return Fit(&f3,option,goption,xxmin,xxmax);
3905 }
3906 }
3907 else{
3908 TF1 * f1 = (TF1*)gROOT->GetFunction(fname);
3909 if (!f1) { Printf("Unknown function: %s",fname); return -1; }
3910 return Fit(f1,option,goption,xxmin,xxmax);
3911 }
3912}
3913
3914////////////////////////////////////////////////////////////////////////////////
3915/// Fit histogram with the function pointer f1.
3916///
3917/// \param[in] f1 pointer to the function object
3918/// \param[in] option string defining the fit options (see table below).
3919/// \param[in] goption specify a list of graphics options. See TH1::Draw for a complete list of these options.
3920/// \param[in] xxmin lower fitting range
3921/// \param[in] xxmax upper fitting range
3922/// \return A smart pointer to the TFitResult class
3923///
3924/// \anchor HFitOpt
3925/// ### Histogram Fitting Options
3926///
3927/// Here is the full list of fit options that can be given in the parameter `option`.
3928/// Several options can be used together by concatanating the strings without the need of any delimiters.
3929///
3930/// option | description
3931/// -------|------------
3932/// "L" | Uses a log likelihood method (default is chi-square method). To be used when the histogram represents counts.
3933/// "WL" | Weighted log likelihood method. To be used when the histogram has been filled with weights different than 1. This is needed for getting correct parameter uncertainties for weighted fits.
3934/// "P" | Uses Pearson chi-square method. Uses expected errors instead of the observed one (default case). The expected error is instead estimated from the square-root of the bin function value.
3935/// "MULTI" | Uses Loglikelihood method based on multi-nomial distribution. In this case the function must be normalized and one fits only the function shape.
3936/// "W" | Fit using the chi-square method and ignoring the bin uncertainties and skip empty bins.
3937/// "WW" | Fit using the chi-square method and ignoring the bin uncertainties and include the empty bins.
3938/// "I" | Uses the integral of function in the bin instead of the default bin center value.
3939/// "F" | Uses the default minimizer (e.g. Minuit) when fitting a linear function (e.g. polN) instead of the linear fitter.
3940/// "U" | Uses a user specified objective function (e.g. user providedlikelihood function) defined using `TVirtualFitter::SetFCN`
3941/// "E" | Performs a better parameter errors estimation using the Minos technique for all fit parameters.
3942/// "M" | Uses the IMPROVE algorithm (available only in TMinuit). This algorithm attempts improve the found local minimum by searching for a better one.
3943/// "S" | The full result of the fit is returned in the `TFitResultPtr`. This is needed to get the covariance matrix of the fit. See `TFitResult` and the base class `ROOT::Math::FitResult`.
3944/// "Q" | Quiet mode (minimum printing)
3945/// "V" | Verbose mode (default is between Q and V)
3946/// "+" | Adds this new fitted function to the list of fitted functions. By default, the previous function is deleted and only the last one is kept.
3947/// "N" | Does not store the graphics function, does not draw the histogram with the function after fitting.
3948/// "0" | Does not draw the histogram and the fitted function after fitting, but in contrast to option "N", it stores the fitted function in the histogram list of functions.
3949/// "R" | Fit using a fitting range specified in the function range with `TF1::SetRange`.
3950/// "B" | Use this option when you want to fix or set limits on one or more parameters and the fitting function is a predefined one (e.g gaus, expo,..), otherwise in case of pre-defined functions, some default initial values and limits will be used.
3951/// "C" | In case of linear fitting, do no calculate the chisquare (saves CPU time).
3952/// "G" | Uses the gradient implemented in `TF1::GradientPar` for the minimization. This allows to use Automatic Differentiation when it is supported by the provided TF1 function.
3953/// "WIDTH" | Scales the histogran bin content by the bin width (useful for variable bins histograms)
3954/// "SERIAL" | Runs in serial mode. By default if ROOT is built with MT support and MT is enables, the fit is perfomed in multi-thread - "E" Perform better Errors estimation using Minos technique
3955/// "MULTITHREAD" | Forces usage of multi-thread execution whenever possible
3956///
3957/// The default fitting of an histogram (when no option is given) is perfomed as following:
3958/// - a chi-square fit (see below Chi-square Fits) computed using the bin histogram errors and excluding bins with zero errors (empty bins);
3959/// - the full range of the histogram is used, unless TAxis::SetRange or TAxis::SetRangeUser was called before;
3960/// - the default Minimizer with its default configuration is used (see below Minimizer Configuration) except for linear function;
3961/// - for linear functions (`polN`, `chenbyshev` or formula expressions combined using operator `++`) a linear minimization is used.
3962/// - only the status of the fit is returned;
3963/// - the fit is performed in Multithread whenever is enabled in ROOT;
3964/// - only the last fitted function is saved in the histogram;
3965/// - the histogram is drawn after fitting overalyed with the resulting fitting function
3966///
3967/// \anchor HFitMinimizer
3968/// ### Minimizer Configuration
3969///
3970/// The Fit is perfomed using the default Minimizer, defined in the `ROOT::Math::MinimizerOptions` class.
3971/// It is possible to change the default minimizer and its configuration parameters by calling these static functions before fitting (before calling `TH1::Fit`):
3972/// - `ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerName, minimizerAgorithm)` for changing the minmizer and/or the corresponding algorithm.
3973/// For example `ROOT::Math::MinimizerOptions::SetDefaultMinimizer("GSLMultiMin","BFGS");` will set the usage of the BFGS algorithm of the GSL multi-dimensional minimization
3974/// The current defaults are ("Minuit","Migrad").
3975/// See the documentation of the `ROOT::Math::MinimizerOptions` for the available minimizers in ROOT and their corresponding algorithms.
3976/// - `ROOT::Math::MinimizerOptions::SetDefaultTolerance` for setting a different tolerance value for the minimization.
3977/// - `ROOT::Math::MinimizerOptions::SetDefaultMaxFunctionCalls` for setting the maximum number of function calls.
3978/// - `ROOT::Math::MinimizerOptions::SetDefaultPrintLevel` for changing the minimizer print level from level=0 (minimal printing) to level=3 maximum printing
3979///
3980/// Other options are possible depending on the Minimizer used, see the corresponding documentation.
3981/// The default minimizer can be also set in the resource file in etc/system.rootrc. For example
3982///
3983/// ~~~ {.cpp}
3984/// Root.Fitter: Minuit2
3985/// ~~~
3986///
3987/// \anchor HFitChi2
3988/// ### Chi-square Fits
3989///
3990/// By default a chi-square (least-square) fit is performed on the histogram. The so-called modified least-square method
3991/// is used where the residual for each bin is computed using as error the observed value (the bin error) returned by `TH1::GetBinError`
3992///
3993/// \f[
3994/// Chi2 = \sum_{i}{ \left(\frac{y(i) - f(x(i) | p )}{e(i)} \right)^2 }
3995/// \f]
3996///
3997/// where `y(i)` is the bin content for each bin `i`, `x(i)` is the bin center and `e(i)` is the bin error (`sqrt(y(i)` for
3998/// an un-weighted histogram). Bins with zero errors are excluded from the fit. See also later the note on the treatment
3999/// of empty bins. When using option "I" the residual is computed not using the function value at the bin center, `f(x(i)|p)`,
4000/// but the integral of the function in the bin, Integral{ f(x|p)dx }, divided by the bin volume.
4001/// When using option `P` (Pearson chi2), the expected error computed as `e(i) = sqrt(f(x(i)|p))` is used.
4002/// In this case empty bins are considered in the fit.
4003/// Both chi-square methods should not be used when the bin content represent counts, especially in case of low bin statistics,
4004/// because they could return a biased result.
4005///
4006/// \anchor HFitNLL
4007/// ### Likelihood Fits
4008///
4009/// When using option "L" a likelihood fit is used instead of the default chi-square fit.
4010/// The likelihood is built assuming a Poisson probability density function for each bin.
4011/// The negative log-likelihood to be minimized is
4012///
4013/// \f[
4014/// NLL = - \sum_{i}{ \log {\mathrm P} ( y(i) | f(x(i) | p ) ) }
4015/// \f]
4016/// where `P(y|f)` is the Poisson distribution of observing a count `y(i)` in the bin when the expected count is `f(x(i)|p)`.
4017/// The exact likelihood used is the Poisson likelihood described in this paper:
4018/// S. Baker and R. D. Cousins, “Clarification of the use of chi-square and likelihood functions in fits to histograms,”
4019/// Nucl. Instrum. Meth. 221 (1984) 437.
4020///
4021/// \f[
4022/// NLL = \sum_{i}{( f(x(i) | p ) + y(i)\log(y(i)/ f(x(i) | p )) - y(i)) }
4023/// \f]
4024/// By using this formulation, `2*NLL` can be interpreted as the chi-square resulting from the fit.
4025///
4026/// This method should be always used when the bin content represents counts (i.e. errors are sqrt(N) ).
4027/// The likelihood method has the advantage of treating correctly bins with low statistics. In case of high
4028/// statistics/bin the distribution of the bin content becomes a normal distribution and the likelihood and the chi2 fit
4029/// give the same result.
4030///
4031/// The likelihood method, although a bit slower, it is therefore the recommended method,
4032/// when the histogram represent counts (Poisson statistics), where the chi-square methods may
4033/// give incorrect results, especially in case of low statistics.
4034/// In case of a weighted histogram, it is possible to perform also a likelihood fit by using the
4035/// option "WL". Note a weighted histogram is a histogram which has been filled with weights and it
4036/// has the information on the sum of the weight square for each bin ( TH1::Sumw2() has been called).
4037/// The bin error for a weighted histogram is the square root of the sum of the weight square.
4038///
4039/// \anchor HFitRes
4040/// ### Fit Result
4041///
4042/// The function returns a TFitResultPtr which can hold a pointer to a TFitResult object.
4043/// By default the TFitResultPtr contains only the status of the fit which is return by an
4044/// automatic conversion of the TFitResultPtr to an integer. One can write in this case directly:
4045///
4046/// ~~~ {.cpp}
4047/// Int_t fitStatus = h->Fit(myFunc);
4048/// ~~~
4049///
4050/// If the option "S" is instead used, TFitResultPtr behaves as a smart
4051/// pointer to the TFitResult object. This is useful for retrieving the full result information from the fit, such as the covariance matrix,
4052/// as shown in this example code:
4053///
4054/// ~~~ {.cpp}
4055/// TFitResultPtr r = h->Fit(myFunc,"S");
4056/// TMatrixDSym cov = r->GetCovarianceMatrix(); // to access the covariance matrix
4057/// Double_t chi2 = r->Chi2(); // to retrieve the fit chi2
4058/// Double_t par0 = r->Parameter(0); // retrieve the value for the parameter 0
4059/// Double_t err0 = r->ParError(0); // retrieve the error for the parameter 0
4060/// r->Print("V"); // print full information of fit including covariance matrix
4061/// r->Write(); // store the result in a file
4062/// ~~~
4063///
4064/// The fit parameters, error and chi-square (but not covariance matrix) can be retrieved also
4065/// directly from the fitted function that is passed to this call.
4066/// Given a pointer to an associated fitted function `myfunc`, one can retrieve the function/fit
4067/// parameters with calls such as:
4068///
4069/// ~~~ {.cpp}
4070/// Double_t chi2 = myfunc->GetChisquare();
4071/// Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
4072/// Double_t err0 = myfunc->GetParError(0); //error on first parameter
4073/// ~~~
4074///
4075/// ##### Associated functions
4076///
4077/// One or more objects (typically a TF1*) can be added to the list
4078/// of functions (fFunctions) associated to each histogram.
4079/// When TH1::Fit is invoked, the fitted function is added to the histogram list of functions (fFunctions).
4080/// If the histogram is made persistent, the list of associated functions is also persistent.
4081/// Given a histogram h, one can retrieve an associated function with:
4082///
4083/// ~~~ {.cpp}
4084/// TF1 *myfunc = h->GetFunction("myfunc");
4085/// ~~~
4086/// or by quering directly the list obtained by calling `TH1::GetListOfFunctions`.
4087///
4088/// \anchor HFitStatus
4089/// ### Fit status
4090///
4091/// The status of the fit is obtained converting the TFitResultPtr to an integer
4092/// independently if the fit option "S" is used or not:
4093///
4094/// ~~~ {.cpp}
4095/// TFitResultPtr r = h->Fit(myFunc,opt);
4096/// Int_t fitStatus = r;
4097/// ~~~
4098///
4099/// - `status = 0` : the fit has been performed successfully (i.e no error occurred).
4100/// - `status < 0` : there is an error not connected with the minimization procedure, for example when a wrong function is used.
4101/// - `status > 0` : return status from Minimizer, depends on used Minimizer. For example for TMinuit and Minuit2 we have:
4102/// - `status = migradStatus + 10*minosStatus + 100*hesseStatus + 1000*improveStatus`.
4103/// TMinuit returns 0 (for migrad, minos, hesse or improve) in case of success and 4 in case of error (see the documentation of TMinuit::mnexcm). For example, for an error
4104/// only in Minos but not in Migrad a fitStatus of 40 will be returned.
4105/// Minuit2 returns 0 in case of success and different values in migrad,minos or
4106/// hesse depending on the error. See in this case the documentation of
4107/// Minuit2Minimizer::Minimize for the migrad return status, Minuit2Minimizer::GetMinosError for the
4108/// minos return status and Minuit2Minimizer::Hesse for the hesse return status.
4109/// If other minimizers are used see their specific documentation for the status code returned.
4110/// For example in the case of Fumili, see TFumili::Minimize.
4111///
4112/// \anchor HFitRange
4113/// ### Fitting in a range
4114///
4115/// In order to fit in a sub-range of the histogram you have two options:
4116/// - pass to this function the lower (`xxmin`) and upper (`xxmax`) values for the fitting range;
4117/// - define a specific range in the fitted function and use the fitting option "R".
4118/// For example, if your histogram has a defined range between -4 and 4 and you want to fit a gaussian
4119/// only in the interval 1 to 3, you can do:
4120///
4121/// ~~~ {.cpp}
4122/// TF1 *f1 = new TF1("f1", "gaus", 1, 3);
4123/// histo->Fit("f1", "R");
4124/// ~~~
4125///
4126/// The fitting range is also limited by the histogram range defined using TAxis::SetRange
4127/// or TAxis::SetRangeUser. Therefore the fitting range is the smallest range between the
4128/// histogram one and the one defined by one of the two previous options described above.
4129///
4130/// \anchor HFitInitial
4131/// ### Setting initial conditions
4132///
4133/// Parameters must be initialized before invoking the Fit function.
4134/// The setting of the parameter initial values is automatic for the
4135/// predefined functions such as poln, expo, gaus, landau. One can however disable
4136/// this automatic computation by using the option "B".
4137/// Note that if a predefined function is defined with an argument,
4138/// eg, gaus(0), expo(1), you must specify the initial values for
4139/// the parameters.
4140/// You can specify boundary limits for some or all parameters via
4141///
4142/// ~~~ {.cpp}
4143/// f1->SetParLimits(p_number, parmin, parmax);
4144/// ~~~
4145///
4146/// if `parmin >= parmax`, the parameter is fixed
4147/// Note that you are not forced to fix the limits for all parameters.
4148/// For example, if you fit a function with 6 parameters, you can do:
4149///
4150/// ~~~ {.cpp}
4151/// func->SetParameters(0, 3.1, 1.e-6, -8, 0, 100);
4152/// func->SetParLimits(3, -10, -4);
4153/// func->FixParameter(4, 0);
4154/// func->SetParLimits(5, 1, 1);
4155/// ~~~
4156///
4157/// With this setup, parameters 0->2 can vary freely
4158/// Parameter 3 has boundaries [-10,-4] with initial value -8
4159/// Parameter 4 is fixed to 0
4160/// Parameter 5 is fixed to 100.
4161/// When the lower limit and upper limit are equal, the parameter is fixed.
4162/// However to fix a parameter to 0, one must call the FixParameter function.
4163///
4164/// \anchor HFitStatBox
4165/// ### Fit Statistics Box
4166///
4167/// The statistics box can display the result of the fit.
4168/// You can change the statistics box to display the fit parameters with
4169/// the TStyle::SetOptFit(mode) method. This mode has four digits.
4170/// mode = pcev (default = 0111)
4171///
4172/// v = 1; print name/values of parameters
4173/// e = 1; print errors (if e=1, v must be 1)
4174/// c = 1; print Chisquare/Number of degrees of freedom
4175/// p = 1; print Probability
4176///
4177/// For example: gStyle->SetOptFit(1011);
4178/// prints the fit probability, parameter names/values, and errors.
4179/// You can change the position of the statistics box with these lines
4180/// (where g is a pointer to the TGraph):
4181///
4182/// TPaveStats *st = (TPaveStats*)g->GetListOfFunctions()->FindObject("stats");
4183/// st->SetX1NDC(newx1); //new x start position
4184/// st->SetX2NDC(newx2); //new x end position
4185///
4186/// \anchor HFitExtra
4187/// ### Additional Notes on Fitting
4188///
4189/// #### Fitting a histogram of dimension N with a function of dimension N-1
4190///
4191/// It is possible to fit a TH2 with a TF1 or a TH3 with a TF2.
4192/// In this case the chi-square is computed from the squared error distance between the function values and the bin centers weighted by the bin content.
4193/// For correct error scaling, the obtained parameter error are corrected as in the case when the
4194/// option "W" is used.
4195///
4196/// #### User defined objective functions
4197///
4198/// By default when fitting a chi square function is used for fitting. When option "L" is used
4199/// a Poisson likelihood function is used. Using option "MULTI" a multinomial likelihood fit is used.
4200/// Thes functions are defined in the header Fit/Chi2Func.h or Fit/PoissonLikelihoodFCN and they
4201/// are implemented using the routines FitUtil::EvaluateChi2 or FitUtil::EvaluatePoissonLogL in
4202/// the file math/mathcore/src/FitUtil.cxx.
4203/// It is possible to specify a user defined fitting function, using option "U" and
4204/// calling the following functions:
4205///
4206/// ~~~ {.cpp}
4207/// TVirtualFitter::Fitter(myhist)->SetFCN(MyFittingFunction);
4208/// ~~~
4209///
4210/// where MyFittingFunction is of type:
4211///
4212/// ~~~ {.cpp}
4213/// extern void MyFittingFunction(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
4214/// ~~~
4215///
4216/// #### Note on treatment of empty bins
4217///
4218/// Empty bins, which have the content equal to zero AND error equal to zero,
4219/// are excluded by default from the chi-square fit, but they are considered in the likelihood fit.
4220/// since they affect the likelihood if the function value in these bins is not negligible.
4221/// Note that if the histogram is having bins with zero content and non zero-errors they are considered as
4222/// any other bins in the fit. Instead bins with zero error and non-zero content are by default excluded in the chi-squared fit.
4223/// In general, one should not fit a histogram with non-empty bins and zero errors.
4224///
4225/// If the bin errors are not known, one should use the fit option "W", which gives a weight=1 for each bin (it is an unweighted least-square
4226/// fit). When using option "WW" the empty bins will be also considered in the chi-square fit with an error of 1.
4227/// Note that in this fitting case (option "W" or "WW") the resulting fitted parameter errors
4228/// are corrected by the obtained chi2 value using this scaling expression:
4229/// `errorp *= sqrt(chisquare/(ndf-1))` as it is done when fitting a TGraph with
4230/// no point errors.
4231///
4232/// #### Excluding points
4233///
4234/// You can use TF1::RejectPoint inside your fitting function to exclude some points
4235/// within a certain range from the fit. See the tutorial `fit/fitExclude.C`.
4236///
4237///
4238/// #### Warning when using the option "0"
4239///
4240/// When selecting the option "0", the fitted function is added to
4241/// the list of functions of the histogram, but it is not drawn when the histogram is drawn.
4242/// You can undo this behaviour resetting its corresponding bit in the TF1 object as following:
4243///
4244/// ~~~ {.cpp}
4245/// h.Fit("myFunction", "0"); // fit, store function but do not draw
4246/// h.Draw(); // function is not drawn
4247/// h.GetFunction("myFunction")->ResetBit(TF1::kNotDraw);
4248/// h.Draw(); // function is visible again
4249/// ~~~
4251
4253{
4254 // implementation of Fit method is in file hist/src/HFitImpl.cxx
4257
4258 // create range and minimizer options with default values
4261
4262 // need to empty the buffer before
4263 // (t.b.d. do a ML unbinned fit with buffer data)
4264 if (fBuffer) BufferEmpty();
4265
4267}
4268
4269////////////////////////////////////////////////////////////////////////////////
4270/// Display a panel with all histogram fit options.
4271///
4272/// See class TFitPanel for example
4273
4274void TH1::FitPanel()
4275{
4276 if (!gPad)
4277 gROOT->MakeDefCanvas();
4278
4279 if (!gPad) {
4280 Error("FitPanel", "Unable to create a default canvas");
4281 return;
4282 }
4283
4284
4285 // use plugin manager to create instance of TFitEditor
4286 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TFitEditor");
4287 if (handler && handler->LoadPlugin() != -1) {
4288 if (handler->ExecPlugin(2, gPad, this) == 0)
4289 Error("FitPanel", "Unable to create the FitPanel");
4290 }
4291 else
4292 Error("FitPanel", "Unable to find the FitPanel plug-in");
4293}
4294
4295////////////////////////////////////////////////////////////////////////////////
4296/// Return a histogram containing the asymmetry of this histogram with h2,
4297/// where the asymmetry is defined as:
4298///
4299/// ~~~ {.cpp}
4300/// Asymmetry = (h1 - h2)/(h1 + h2) where h1 = this
4301/// ~~~
4302///
4303/// works for 1D, 2D, etc. histograms
4304/// c2 is an optional argument that gives a relative weight between the two
4305/// histograms, and dc2 is the error on this weight. This is useful, for example,
4306/// when forming an asymmetry between two histograms from 2 different data sets that
4307/// need to be normalized to each other in some way. The function calculates
4308/// the errors assuming Poisson statistics on h1 and h2 (that is, dh = sqrt(h)).
4309///
4310/// example: assuming 'h1' and 'h2' are already filled
4311///
4312/// ~~~ {.cpp}
4313/// h3 = h1->GetAsymmetry(h2)
4314/// ~~~
4315///
4316/// then 'h3' is created and filled with the asymmetry between 'h1' and 'h2';
4317/// h1 and h2 are left intact.
4318///
4319/// Note that it is the user's responsibility to manage the created histogram.
4320/// The name of the returned histogram will be `Asymmetry_nameOfh1-nameOfh2`
4321///
4322/// code proposed by Jason Seely (seely@mit.edu) and adapted by R.Brun
4323///
4324/// clone the histograms so top and bottom will have the
4325/// correct dimensions:
4326/// Sumw2 just makes sure the errors will be computed properly
4327/// when we form sums and ratios below.
4328
4330{
4331 TH1 *h1 = this;
4332 TString name = TString::Format("Asymmetry_%s-%s",h1->GetName(),h2->GetName() );
4333 TH1 *asym = (TH1*)Clone(name);
4334
4335 // set also the title
4336 TString title = TString::Format("(%s - %s)/(%s+%s)",h1->GetName(),h2->GetName(),h1->GetName(),h2->GetName() );
4337 asym->SetTitle(title);
4338
4339 asym->Sumw2();
4342 TH1 *top = (TH1*)asym->Clone();
4343 TH1 *bottom = (TH1*)asym->Clone();
4345
4346 // form the top and bottom of the asymmetry, and then divide:
4347 top->Add(h1,h2,1,-c2);
4348 bottom->Add(h1,h2,1,c2);
4349 asym->Divide(top,bottom);
4350
4351 Int_t xmax = asym->GetNbinsX();
4352 Int_t ymax = asym->GetNbinsY();
4353 Int_t zmax = asym->GetNbinsZ();
4354
4355 if (h1->fBuffer) h1->BufferEmpty(1);
4356 if (h2->fBuffer) h2->BufferEmpty(1);
4357 if (bottom->fBuffer) bottom->BufferEmpty(1);
4358
4359 // now loop over bins to calculate the correct errors
4360 // the reason this error calculation looks complex is because of c2
4361 for(Int_t i=1; i<= xmax; i++){
4362 for(Int_t j=1; j<= ymax; j++){
4363 for(Int_t k=1; k<= zmax; k++){
4364 Int_t bin = GetBin(i, j, k);
4365 // here some bin contents are written into variables to make the error
4366 // calculation a little more legible:
4368 Double_t b = h2->RetrieveBinContent(bin);
4369 Double_t bot = bottom->RetrieveBinContent(bin);
4370
4371 // make sure there are some events, if not, then the errors are set = 0
4372 // automatically.
4373 //if(bot < 1){} was changed to the next line from recommendation of Jason Seely (28 Nov 2005)
4374 if(bot < 1e-6){}
4375 else{
4376 // computation of errors by Christos Leonidopoulos
4378 Double_t dbsq = h2->GetBinErrorSqUnchecked(bin);
4379 Double_t error = 2*TMath::Sqrt(a*a*c2*c2*dbsq + c2*c2*b*b*dasq+a*a*b*b*dc2*dc2)/(bot*bot);
4380 asym->SetBinError(i,j,k,error);
4381 }
4382 }
4383 }
4384 }
4385 delete top;
4386 delete bottom;
4387
4388 return asym;
4389}
4390
4391////////////////////////////////////////////////////////////////////////////////
4392/// Static function
4393/// return the default buffer size for automatic histograms
4394/// the parameter fgBufferSize may be changed via SetDefaultBufferSize
4395
4397{
4398 return fgBufferSize;
4399}
4400
4401////////////////////////////////////////////////////////////////////////////////
4402/// Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
4403/// see TH1::SetDefaultSumw2.
4404
4406{
4407 return fgDefaultSumw2;
4408}
4409
4410////////////////////////////////////////////////////////////////////////////////
4411/// Return the current number of entries.
4412
4414{
4415 if (fBuffer) {
4416 Int_t nentries = (Int_t) fBuffer[0];
4417 if (nentries > 0) return nentries;
4418 }
4419
4420 return fEntries;
4421}
4422
4423////////////////////////////////////////////////////////////////////////////////
4424/// Number of effective entries of the histogram.
4425///
4426/// \f[
4427/// neff = \frac{(\sum Weights )^2}{(\sum Weight^2 )}
4428/// \f]
4429///
4430/// In case of an unweighted histogram this number is equivalent to the
4431/// number of entries of the histogram.
4432/// For a weighted histogram, this number corresponds to the hypothetical number of unweighted entries
4433/// a histogram would need to have the same statistical power as this weighted histogram.
4434/// Note: The underflow/overflow are included if one has set the TH1::StatOverFlows flag
4435/// and if the statistics has been computed at filling time.
4436/// If a range is set in the histogram the number is computed from the given range.
4437
4439{
4440 Stat_t s[kNstat];
4441 this->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
4442 return (s[1] ? s[0]*s[0]/s[1] : TMath::Abs(s[0]) );
4443}
4444
4445////////////////////////////////////////////////////////////////////////////////
4446/// Shortcut to set the three histogram colors with a single call.
4447///
4448/// By default: linecolor = markercolor = fillcolor = -1
4449/// If a color is < 0 this method does not change the corresponding color if positive or null it set the color.
4450///
4451/// For instance:
4452/// ~~~ {.cpp}
4453/// h->SetColors(kRed, kRed);
4454/// ~~~
4455/// will set the line color and the marker color to red.
4456
4458{
4459 if (linecolor >= 0)
4461 if (markercolor >= 0)
4463 if (fillcolor >= 0)
4465}
4466
4467
4468////////////////////////////////////////////////////////////////////////////////
4469/// Set highlight (enable/disable) mode for the histogram
4470/// by default highlight mode is disable
4471
4472void TH1::SetHighlight(Bool_t set)
4473{
4474 if (IsHighlight() == set)
4475 return;
4476 if (fDimension > 2) {
4477 Info("SetHighlight", "Supported only 1-D or 2-D histograms");
4478 return;
4479 }
4480
4481 SetBit(kIsHighlight, set);
4482
4483 if (fPainter)
4485}
4486
4487////////////////////////////////////////////////////////////////////////////////
4488/// Redefines TObject::GetObjectInfo.
4489/// Displays the histogram info (bin number, contents, integral up to bin
4490/// corresponding to cursor position px,py
4491
4492char *TH1::GetObjectInfo(Int_t px, Int_t py) const
4493{
4494 return ((TH1*)this)->GetPainter()->GetObjectInfo(px,py);
4495}
4496
4497////////////////////////////////////////////////////////////////////////////////
4498/// Return pointer to painter.
4499/// If painter does not exist, it is created
4500
4502{
4503 if (!fPainter) {
4504 TString opt = option;
4505 opt.ToLower();
4506 if (opt.Contains("gl") || gStyle->GetCanvasPreferGL()) {
4507 //try to create TGLHistPainter
4508 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TGLHistPainter");
4509
4510 if (handler && handler->LoadPlugin() != -1)
4511 fPainter = reinterpret_cast<TVirtualHistPainter *>(handler->ExecPlugin(1, this));
4512 }
4513 }
4514
4516
4517 return fPainter;
4518}
4519
4520////////////////////////////////////////////////////////////////////////////////
4521/// Compute Quantiles for this histogram.
4522/// A quantile x_p := Q(p) is defined as the value x_p such that the cumulative
4523/// probability distribution Function F of variable X yields:
4524///
4525/// ~~~ {.cpp}
4526/// F(x_p) = Pr(X <= x_p) = p with 0 <= p <= 1.
4527/// x_p = Q(p) = F_inv(p)
4528/// ~~~
4529///
4530/// For instance the median x_0.5 of a distribution is defined as that value
4531/// of the random variable X for which the distribution function equals 0.5:
4532///
4533/// ~~~ {.cpp}
4534/// F(x_0.5) = Probability(X < x_0.5) = 0.5
4535/// x_0.5 = Q(0.5)
4536/// ~~~
4537///
4538/// \author Eddy Offermann
4539/// code from Eddy Offermann, Renaissance
4540///
4541/// \param[in] n maximum size of the arrays xp and p (if given)
4542/// \param[out] xp array to be filled with nq quantiles evaluated at (p). Memory has to be preallocated by caller.
4543/// - If `p == nullptr`, the quantiles are computed at the (first `n`) probabilities p given by the CDF of the histogram;
4544/// `n` must thus be smaller or equal Nbins+1, otherwise the extra values of `xp` will not be filled and `nq` will be smaller than `n`.
4545/// If all bins have non-zero entries, the quantiles happen to be the bin centres.
4546/// Empty bins will, however, be skipped in the quantiles.
4547/// If the CDF is e.g. [0., 0., 0.1, ...], the quantiles would be, [3., 3., 3., ...], with the third bin starting
4548/// at 3.
4549/// \param[in] p array of cumulative probabilities where quantiles should be evaluated.
4550/// - if `p == nullptr`, the CDF of the histogram will be used to compute the quantiles, and will
4551/// have a size of n.
4552/// - Otherwise, it is assumed to contain at least n values.
4553/// \return number of quantiles computed
4554/// \note Unlike in TF1::GetQuantiles, `p` is here an optional argument
4555///
4556/// Note that the Integral of the histogram is automatically recomputed
4557/// if the number of entries is different of the number of entries when
4558/// the integral was computed last time. In case you do not use the Fill
4559/// functions to fill your histogram, but SetBinContent, you must call
4560/// TH1::ComputeIntegral before calling this function.
4561///
4562/// Getting quantiles xp from two histograms and storing results in a TGraph,
4563/// a so-called QQ-plot
4564///
4565/// ~~~ {.cpp}
4566/// TGraph *gr = new TGraph(nprob);
4567/// h1->GetQuantiles(nprob,gr->GetX());
4568/// h2->GetQuantiles(nprob,gr->GetY());
4569/// gr->Draw("alp");
4570/// ~~~
4571///
4572/// Example:
4573///
4574/// ~~~ {.cpp}
4575/// void quantiles() {
4576/// // demo for quantiles
4577/// const Int_t nq = 20;
4578/// TH1F *h = new TH1F("h","demo quantiles",100,-3,3);
4579/// h->FillRandom("gaus",5000);
4580/// h->GetXaxis()->SetTitle("x");
4581/// h->GetYaxis()->SetTitle("Counts");
4582///
4583/// Double_t p[nq]; // probabilities where to evaluate the quantiles in [0,1]
4584/// Double_t xp[nq]; // array of positions X to store the resulting quantiles
4585/// for (Int_t i=0;i<nq;i++) p[i] = Float_t(i+1)/nq;
4586/// h->GetQuantiles(nq,xp,p);
4587///
4588/// //show the original histogram in the top pad
4589/// TCanvas *c1 = new TCanvas("c1","demo quantiles",10,10,700,900);
4590/// c1->Divide(1,2);
4591/// c1->cd(1);
4592/// h->Draw();
4593///
4594/// // show the quantiles in the bottom pad
4595/// c1->cd(2);
4596/// gPad->SetGrid();
4597/// TGraph *gr = new TGraph(nq,p,xp);
4598/// gr->SetMarkerStyle(21);
4599/// gr->GetXaxis()->SetTitle("p");
4600/// gr->GetYaxis()->SetTitle("x");
4601/// gr->Draw("alp");
4602/// }
4603/// ~~~
4604
4606{
4607 if (GetDimension() > 1) {
4608 Error("GetQuantiles","Only available for 1-d histograms");
4609 return 0;
4610 }
4611
4612 const Int_t nbins = GetXaxis()->GetNbins();
4613 if (!fIntegral) ComputeIntegral();
4614 if (fIntegral[nbins+1] != fEntries) ComputeIntegral();
4615
4616 Int_t i, ibin;
4617 Int_t nq = n;
4618 std::unique_ptr<Double_t[]> localProb;
4619 if (p == nullptr) {
4620 nq = nbins+1;
4621 localProb.reset(new Double_t[nq]);
4622 localProb[0] = 0;
4623 for (i=1;i<nq;i++) {
4624 localProb[i] = fIntegral[i] / fIntegral[nbins];
4625 }
4626 }
4627 Double_t const *const prob = p ? p : localProb.get();
4628
4629 for (i = 0; i < nq; i++) {
4631 if (fIntegral[ibin] == prob[i]) {
4632 if (prob[i] == 0.) {
4633 for (; ibin+1 <= nbins && fIntegral[ibin+1] == 0.; ++ibin) {
4634
4635 }
4636 xp[i] = fXaxis.GetBinUpEdge(ibin);
4637 }
4638 else if (prob[i] == 1.) {
4639 xp[i] = fXaxis.GetBinUpEdge(ibin);
4640 }
4641 else {
4642 // Find equal integral in later bins (ie their entries are zero)
4643 Double_t width = 0;
4644 for (Int_t j = ibin+1; j <= nbins; ++j) {
4645 if (prob[i] == fIntegral[j]) {
4647 }
4648 else
4649 break;
4650 }
4652 }
4653 }
4654 else {
4655 xp[i] = GetBinLowEdge(ibin+1);
4657 if (dint > 0) xp[i] += GetBinWidth(ibin+1)*(prob[i]-fIntegral[ibin])/dint;
4658 }
4659 }
4660
4661 return nq;
4662}
4663
4664////////////////////////////////////////////////////////////////////////////////
4670 return 1;
4671}
4672
4673////////////////////////////////////////////////////////////////////////////////
4674/// Compute Initial values of parameters for a gaussian.
4675
4676void H1InitGaus()
4677{
4678 Double_t allcha, sumx, sumx2, x, val, stddev, mean;
4679 Int_t bin;
4680 const Double_t sqrtpi = 2.506628;
4681
4682 // - Compute mean value and StdDev of the histogram in the given range
4684 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4685 Int_t hxfirst = hFitter->GetXfirst();
4686 Int_t hxlast = hFitter->GetXlast();
4687 Double_t valmax = curHist->GetBinContent(hxfirst);
4688 Double_t binwidx = curHist->GetBinWidth(hxfirst);
4689 allcha = sumx = sumx2 = 0;
4690 for (bin=hxfirst;bin<=hxlast;bin++) {
4691 x = curHist->GetBinCenter(bin);
4692 val = TMath::Abs(curHist->GetBinContent(bin));
4693 if (val > valmax) valmax = val;
4694 sumx += val*x;
4695 sumx2 += val*x*x;
4696 allcha += val;
4697 }
4698 if (allcha == 0) return;
4699 mean = sumx/allcha;
4700 stddev = sumx2/allcha - mean*mean;
4701 if (stddev > 0) stddev = TMath::Sqrt(stddev);
4702 else stddev = 0;
4703 if (stddev == 0) stddev = binwidx*(hxlast-hxfirst+1)/4;
4704 //if the distribution is really gaussian, the best approximation
4705 //is binwidx*allcha/(sqrtpi*stddev)
4706 //However, in case of non-gaussian tails, this underestimates
4707 //the normalisation constant. In this case the maximum value
4708 //is a better approximation.
4709 //We take the average of both quantities
4711
4712 //In case the mean value is outside the histo limits and
4713 //the StdDev is bigger than the range, we take
4714 // mean = center of bins
4715 // stddev = half range
4716 Double_t xmin = curHist->GetXaxis()->GetXmin();
4717 Double_t xmax = curHist->GetXaxis()->GetXmax();
4718 if ((mean < xmin || mean > xmax) && stddev > (xmax-xmin)) {
4719 mean = 0.5*(xmax+xmin);
4720 stddev = 0.5*(xmax-xmin);
4721 }
4722 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4724 f1->SetParameter(1,mean);
4726 f1->SetParLimits(2,0,10*stddev);
4727}
4728
4729////////////////////////////////////////////////////////////////////////////////
4730/// Compute Initial values of parameters for an exponential.
4731
4732void H1InitExpo()
4733{
4735 Int_t ifail;
4737 Int_t hxfirst = hFitter->GetXfirst();
4738 Int_t hxlast = hFitter->GetXlast();
4739 Int_t nchanx = hxlast - hxfirst + 1;
4740
4742
4743 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4745 f1->SetParameter(1,slope);
4746
4747}
4748
4749////////////////////////////////////////////////////////////////////////////////
4750/// Compute Initial values of parameters for a polynom.
4751
4752void H1InitPolynom()
4753{
4754 Double_t fitpar[25];
4755
4757 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4758 Int_t hxfirst = hFitter->GetXfirst();
4759 Int_t hxlast = hFitter->GetXlast();
4760 Int_t nchanx = hxlast - hxfirst + 1;
4761 Int_t npar = f1->GetNpar();
4762
4763 if (nchanx <=1 || npar == 1) {
4764 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4765 fitpar[0] = curHist->GetSumOfWeights()/Double_t(nchanx);
4766 } else {
4768 }
4769 for (Int_t i=0;i<npar;i++) f1->SetParameter(i, fitpar[i]);
4770}
4771
4772////////////////////////////////////////////////////////////////////////////////
4773/// Least squares lpolynomial fitting without weights.
4774///
4775/// \param[in] n number of points to fit
4776/// \param[in] m number of parameters
4777/// \param[in] a array of parameters
4778///
4779/// based on CERNLIB routine LSQ: Translated to C++ by Rene Brun
4780/// (E.Keil. revised by B.Schorr, 23.10.1981.)
4781
4783{
4784 const Double_t zero = 0.;
4785 const Double_t one = 1.;
4786 const Int_t idim = 20;
4787
4788 Double_t b[400] /* was [20][20] */;
4789 Int_t i, k, l, ifail;
4791 Double_t da[20], xk, yk;
4792
4793 if (m <= 2) {
4794 H1LeastSquareLinearFit(n, a[0], a[1], ifail);
4795 return;
4796 }
4797 if (m > idim || m > n) return;
4798 b[0] = Double_t(n);
4799 da[0] = zero;
4800 for (l = 2; l <= m; ++l) {
4801 b[l-1] = zero;
4802 b[m + l*20 - 21] = zero;
4803 da[l-1] = zero;
4804 }
4806 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4807 Int_t hxfirst = hFitter->GetXfirst();
4808 Int_t hxlast = hFitter->GetXlast();
4809 for (k = hxfirst; k <= hxlast; ++k) {
4810 xk = curHist->GetBinCenter(k);
4811 yk = curHist->GetBinContent(k);
4812 power = one;
4813 da[0] += yk;
4814 for (l = 2; l <= m; ++l) {
4815 power *= xk;
4816 b[l-1] += power;
4817 da[l-1] += power*yk;
4818 }
4819 for (l = 2; l <= m; ++l) {
4820 power *= xk;
4821 b[m + l*20 - 21] += power;
4822 }
4823 }
4824 for (i = 3; i <= m; ++i) {
4825 for (k = i; k <= m; ++k) {
4826 b[k - 1 + (i-1)*20 - 21] = b[k + (i-2)*20 - 21];
4827 }
4828 }
4830
4831 for (i=0; i<m; ++i) a[i] = da[i];
4832
4833}
4834
4835////////////////////////////////////////////////////////////////////////////////
4836/// Least square linear fit without weights.
4837///
4838/// extracted from CERNLIB LLSQ: Translated to C++ by Rene Brun
4839/// (added to LSQ by B. Schorr, 15.02.1982.)
4840
4842{
4844 Int_t i, n;
4846 Double_t fn, xk, yk;
4847 Double_t det;
4848
4849 n = TMath::Abs(ndata);
4850 ifail = -2;
4851 xbar = ybar = x2bar = xybar = 0;
4853 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4854 Int_t hxfirst = hFitter->GetXfirst();
4855 Int_t hxlast = hFitter->GetXlast();
4856 for (i = hxfirst; i <= hxlast; ++i) {
4857 xk = curHist->GetBinCenter(i);
4858 yk = curHist->GetBinContent(i);
4859 if (ndata < 0) {
4860 if (yk <= 0) yk = 1e-9;
4861 yk = TMath::Log(yk);
4862 }
4863 xbar += xk;
4864 ybar += yk;
4865 x2bar += xk*xk;
4866 xybar += xk*yk;
4867 }
4868 fn = Double_t(n);
4869 det = fn*x2bar - xbar*xbar;
4870 ifail = -1;
4871 if (det <= 0) {
4872 a0 = ybar/fn;
4873 a1 = 0;
4874 return;
4875 }
4876 ifail = 0;
4877 a0 = (x2bar*ybar - xbar*xybar) / det;
4878 a1 = (fn*xybar - xbar*ybar) / det;
4879
4880}
4881
4882////////////////////////////////////////////////////////////////////////////////
4883/// Extracted from CERN Program library routine DSEQN.
4884///
4885/// Translated to C++ by Rene Brun
4886
4888{
4890 Int_t nmjp1, i, j, l;
4891 Int_t im1, jp1, nm1, nmi;
4892 Double_t s1, s21, s22;
4893 const Double_t one = 1.;
4894
4895 /* Parameter adjustments */
4896 b_dim1 = idim;
4897 b_offset = b_dim1 + 1;
4898 b -= b_offset;
4899 a_dim1 = idim;
4900 a_offset = a_dim1 + 1;
4901 a -= a_offset;
4902
4903 if (idim < n) return;
4904
4905 ifail = 0;
4906 for (j = 1; j <= n; ++j) {
4907 if (a[j + j*a_dim1] <= 0) { ifail = -1; return; }
4908 a[j + j*a_dim1] = one / a[j + j*a_dim1];
4909 if (j == n) continue;
4910 jp1 = j + 1;
4911 for (l = jp1; l <= n; ++l) {
4912 a[j + l*a_dim1] = a[j + j*a_dim1] * a[l + j*a_dim1];
4913 s1 = -a[l + (j+1)*a_dim1];
4914 for (i = 1; i <= j; ++i) { s1 = a[l + i*a_dim1] * a[i + (j+1)*a_dim1] + s1; }
4915 a[l + (j+1)*a_dim1] = -s1;
4916 }
4917 }
4918 if (k <= 0) return;
4919
4920 for (l = 1; l <= k; ++l) {
4921 b[l*b_dim1 + 1] = a[a_dim1 + 1]*b[l*b_dim1 + 1];
4922 }
4923 if (n == 1) return;
4924 for (l = 1; l <= k; ++l) {
4925 for (i = 2; i <= n; ++i) {
4926 im1 = i - 1;
4927 s21 = -b[i + l*b_dim1];
4928 for (j = 1; j <= im1; ++j) {
4929 s21 = a[i + j*a_dim1]*b[j + l*b_dim1] + s21;
4930 }
4931 b[i + l*b_dim1] = -a[i + i*a_dim1]*s21;
4932 }
4933 nm1 = n - 1;
4934 for (i = 1; i <= nm1; ++i) {
4935 nmi = n - i;
4936 s22 = -b[nmi + l*b_dim1];
4937 for (j = 1; j <= i; ++j) {
4938 nmjp1 = n - j + 1;
4939 s22 = a[nmi + nmjp1*a_dim1]*b[nmjp1 + l*b_dim1] + s22;
4940 }
4941 b[nmi + l*b_dim1] = -s22;
4942 }
4943 }
4944}
4945
4946////////////////////////////////////////////////////////////////////////////////
4947/// Return Global bin number corresponding to binx,y,z.
4948///
4949/// 2-D and 3-D histograms are represented with a one dimensional
4950/// structure.
4951/// This has the advantage that all existing functions, such as
4952/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
4953///
4954/// In case of a TH1x, returns binx directly.
4955/// see TH1::GetBinXYZ for the inverse transformation.
4956///
4957/// Convention for numbering bins
4958///
4959/// For all histogram types: nbins, xlow, xup
4960///
4961/// - bin = 0; underflow bin
4962/// - bin = 1; first bin with low-edge xlow INCLUDED
4963/// - bin = nbins; last bin with upper-edge xup EXCLUDED
4964/// - bin = nbins+1; overflow bin
4965///
4966/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
4967/// For example, assuming a 3-D histogram with binx,biny,binz, the function
4968///
4969/// ~~~ {.cpp}
4970/// Int_t bin = h->GetBin(binx,biny,binz);
4971/// ~~~
4972///
4973/// returns a global/linearized bin number. This global bin is useful
4974/// to access the bin information independently of the dimension.
4975
4977{
4978 Int_t ofx = fXaxis.GetNbins() + 1; // overflow bin
4979 if (binx < 0) binx = 0;
4980 if (binx > ofx) binx = ofx;
4981
4982 return binx;
4983}
4984
4985////////////////////////////////////////////////////////////////////////////////
4986/// Return binx, biny, binz corresponding to the global bin number globalbin
4987/// see TH1::GetBin function above
4988
4990{
4991 Int_t nx = fXaxis.GetNbins()+2;
4992 Int_t ny = fYaxis.GetNbins()+2;
4993
4994 if (GetDimension() == 1) {
4995 binx = binglobal%nx;
4996 biny = 0;
4997 binz = 0;
4998 return;
4999 }
5000 if (GetDimension() == 2) {
5001 binx = binglobal%nx;
5002 biny = ((binglobal-binx)/nx)%ny;
5003 binz = 0;
5004 return;
5005 }
5006 if (GetDimension() == 3) {
5007 binx = binglobal%nx;
5008 biny = ((binglobal-binx)/nx)%ny;
5009 binz = ((binglobal-binx)/nx -biny)/ny;
5010 }
5011}
5012
5013////////////////////////////////////////////////////////////////////////////////
5014/// Return a random number distributed according the histogram bin contents.
5015/// This function checks if the bins integral exists. If not, the integral
5016/// is evaluated, normalized to one.
5017///
5018/// @param rng (optional) Random number generator pointer used (default is gRandom)
5019/// @param option (optional) Set it to "width" if your non-uniform bin contents represent a density rather than counts
5020///
5021/// The integral is automatically recomputed if the number of entries
5022/// is not the same then when the integral was computed.
5023/// @note Only valid for 1-d histograms. Use GetRandom2 or GetRandom3 otherwise.
5024/// If the histogram has a bin with negative content, a NaN is returned.
5025
5027{
5028 if (fDimension > 1) {
5029 Error("GetRandom","Function only valid for 1-d histograms");
5030 return 0;
5031 }
5033 Double_t integral = 0;
5034 // compute integral checking that all bins have positive content (see ROOT-5894)
5035 if (fIntegral) {
5036 if (fIntegral[nbinsx + 1] != fEntries)
5037 integral = const_cast<TH1 *>(this)->ComputeIntegral(true, option);
5038 else integral = fIntegral[nbinsx];
5039 } else {
5040 integral = const_cast<TH1 *>(this)->ComputeIntegral(true, option);
5041 }
5042 if (integral == 0) return 0;
5043 // return a NaN in case some bins have negative content
5044 if (integral == TMath::QuietNaN() ) return TMath::QuietNaN();
5045
5046 Double_t r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
5049 if (r1 > fIntegral[ibin]) x +=
5051 return x;
5052}
5053
5054////////////////////////////////////////////////////////////////////////////////
5055/// Return content of bin number bin.
5056///
5057/// Implemented in TH1C,S,F,D
5058///
5059/// Convention for numbering bins
5060///
5061/// For all histogram types: nbins, xlow, xup
5062///
5063/// - bin = 0; underflow bin
5064/// - bin = 1; first bin with low-edge xlow INCLUDED
5065/// - bin = nbins; last bin with upper-edge xup EXCLUDED
5066/// - bin = nbins+1; overflow bin
5067///
5068/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
5069/// For example, assuming a 3-D histogram with binx,biny,binz, the function
5070///
5071/// ~~~ {.cpp}
5072/// Int_t bin = h->GetBin(binx,biny,binz);
5073/// ~~~
5074///
5075/// returns a global/linearized bin number. This global bin is useful
5076/// to access the bin information independently of the dimension.
5077
5079{
5080 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
5081 if (bin < 0) bin = 0;
5082 if (bin >= fNcells) bin = fNcells-1;
5083
5084 return RetrieveBinContent(bin);
5085}
5086
5087////////////////////////////////////////////////////////////////////////////////
5088/// Compute first binx in the range [firstx,lastx] for which
5089/// diff = abs(bin_content-c) <= maxdiff
5090///
5091/// In case several bins in the specified range with diff=0 are found
5092/// the first bin found is returned in binx.
5093/// In case several bins in the specified range satisfy diff <=maxdiff
5094/// the bin with the smallest difference is returned in binx.
5095/// In all cases the function returns the smallest difference.
5096///
5097/// NOTE1: if firstx <= 0, firstx is set to bin 1
5098/// if (lastx < firstx then firstx is set to the number of bins
5099/// ie if firstx=0 and lastx=0 (default) the search is on all bins.
5100///
5101/// NOTE2: if maxdiff=0 (default), the first bin with content=c is returned.
5102
5104{
5105 if (fDimension > 1) {
5106 binx = 0;
5107 Error("GetBinWithContent","function is only valid for 1-D histograms");
5108 return 0;
5109 }
5110
5111 if (fBuffer) ((TH1*)this)->BufferEmpty();
5112
5113 if (firstx <= 0) firstx = 1;
5114 if (lastx < firstx) lastx = fXaxis.GetNbins();
5115 Int_t binminx = 0;
5116 Double_t diff, curmax = 1.e240;
5117 for (Int_t i=firstx;i<=lastx;i++) {
5119 if (diff <= 0) {binx = i; return diff;}
5120 if (diff < curmax && diff <= maxdiff) {curmax = diff, binminx=i;}
5121 }
5122 binx = binminx;
5123 return curmax;
5124}
5125
5126////////////////////////////////////////////////////////////////////////////////
5127/// Given a point x, approximates the value via linear interpolation
5128/// based on the two nearest bin centers
5129///
5130/// Andy Mastbaum 10/21/08
5131
5133{
5134 if (fBuffer) ((TH1*)this)->BufferEmpty();
5135
5137 Double_t x0,x1,y0,y1;
5138
5139 if(x<=GetBinCenter(1)) {
5140 return RetrieveBinContent(1);
5141 } else if(x>=GetBinCenter(GetNbinsX())) {
5142 return RetrieveBinContent(GetNbinsX());
5143 } else {
5144 if(x<=GetBinCenter(xbin)) {
5146 x0 = GetBinCenter(xbin-1);
5148 x1 = GetBinCenter(xbin);
5149 } else {
5151 x0 = GetBinCenter(xbin);
5153 x1 = GetBinCenter(xbin+1);
5154 }
5155 return y0 + (x-x0)*((y1-y0)/(x1-x0));
5156 }
5157}
5158
5159////////////////////////////////////////////////////////////////////////////////
5160/// 2d Interpolation. Not yet implemented.
5161
5163{
5164 Error("Interpolate","This function must be called with 1 argument for a TH1");
5165 return 0;
5166}
5167
5168////////////////////////////////////////////////////////////////////////////////
5169/// 3d Interpolation. Not yet implemented.
5170
5172{
5173 Error("Interpolate","This function must be called with 1 argument for a TH1");
5174 return 0;
5175}
5176
5177///////////////////////////////////////////////////////////////////////////////
5178/// Check if a histogram is empty
5179/// (this is a protected method used mainly by TH1Merger )
5180
5181Bool_t TH1::IsEmpty() const
5182{
5183 // if fTsumw or fentries are not zero histogram is not empty
5184 // need to use GetEntries() instead of fEntries in case of bugger histograms
5185 // so we will flash the buffer
5186 if (fTsumw != 0) return kFALSE;
5187 if (GetEntries() != 0) return kFALSE;
5188 // case fTSumw == 0 amd entries are also zero
5189 // this should not really happening, but if one sets content by hand
5190 // it can happen. a call to ResetStats() should be done in such cases
5191 double sumw = 0;
5192 for (int i = 0; i< GetNcells(); ++i) sumw += RetrieveBinContent(i);
5193 return (sumw != 0) ? kFALSE : kTRUE;
5194}
5195
5196////////////////////////////////////////////////////////////////////////////////
5197/// Return true if the bin is overflow.
5198
5200{
5201 Int_t binx, biny, binz;
5202 GetBinXYZ(bin, binx, biny, binz);
5203
5204 if (iaxis == 0) {
5205 if ( fDimension == 1 )
5206 return binx >= GetNbinsX() + 1;
5207 if ( fDimension == 2 )
5208 return (binx >= GetNbinsX() + 1) ||
5209 (biny >= GetNbinsY() + 1);
5210 if ( fDimension == 3 )
5211 return (binx >= GetNbinsX() + 1) ||
5212 (biny >= GetNbinsY() + 1) ||
5213 (binz >= GetNbinsZ() + 1);
5214 return kFALSE;
5215 }
5216 if (iaxis == 1)
5217 return binx >= GetNbinsX() + 1;
5218 if (iaxis == 2)
5219 return biny >= GetNbinsY() + 1;
5220 if (iaxis == 3)
5221 return binz >= GetNbinsZ() + 1;
5222
5223 Error("IsBinOverflow","Invalid axis value");
5224 return kFALSE;
5225}
5226
5227////////////////////////////////////////////////////////////////////////////////
5228/// Return true if the bin is underflow.
5229/// If iaxis = 0 make OR with all axes otherwise check only for the given axis
5230
5232{
5233 Int_t binx, biny, binz;
5234 GetBinXYZ(bin, binx, biny, binz);
5235
5236 if (iaxis == 0) {
5237 if ( fDimension == 1 )
5238 return (binx <= 0);
5239 else if ( fDimension == 2 )
5240 return (binx <= 0 || biny <= 0);
5241 else if ( fDimension == 3 )
5242 return (binx <= 0 || biny <= 0 || binz <= 0);
5243 else
5244 return kFALSE;
5245 }
5246 if (iaxis == 1)
5247 return (binx <= 0);
5248 if (iaxis == 2)
5249 return (biny <= 0);
5250 if (iaxis == 3)
5251 return (binz <= 0);
5252
5253 Error("IsBinUnderflow","Invalid axis value");
5254 return kFALSE;
5255}
5256
5257////////////////////////////////////////////////////////////////////////////////
5258/// Reduce the number of bins for the axis passed in the option to the number of bins having a label.
5259/// The method will remove only the extra bins existing after the last "labeled" bin.
5260/// Note that if there are "un-labeled" bins present between "labeled" bins they will not be removed
5261
5263{
5265 TAxis *axis = nullptr;
5266 if (iaxis == 1) axis = GetXaxis();
5267 if (iaxis == 2) axis = GetYaxis();
5268 if (iaxis == 3) axis = GetZaxis();
5269 if (!axis) {
5270 Error("LabelsDeflate","Invalid axis option %s",ax);
5271 return;
5272 }
5273 if (!axis->GetLabels()) return;
5274
5275 // find bin with last labels
5276 // bin number is object ID in list of labels
5277 // therefore max bin number is number of bins of the deflated histograms
5278 TIter next(axis->GetLabels());
5279 TObject *obj;
5280 Int_t nbins = 0;
5281 while ((obj = next())) {
5282 Int_t ibin = obj->GetUniqueID();
5283 if (ibin > nbins) nbins = ibin;
5284 }
5285 if (nbins < 1) nbins = 1;
5286
5287 // Do nothing in case it was the last bin
5288 if (nbins==axis->GetNbins()) return;
5289
5290 TH1 *hold = (TH1*)IsA()->New();
5291 R__ASSERT(hold);
5292 hold->SetDirectory(nullptr);
5293 Copy(*hold);
5294
5295 Bool_t timedisp = axis->GetTimeDisplay();
5296 Double_t xmin = axis->GetXmin();
5297 Double_t xmax = axis->GetBinUpEdge(nbins);
5298 if (xmax <= xmin) xmax = xmin +nbins;
5299 axis->SetRange(0,0);
5300 axis->Set(nbins,xmin,xmax);
5301 SetBinsLength(-1); // reset the number of cells
5303 if (errors) fSumw2.Set(fNcells);
5304 axis->SetTimeDisplay(timedisp);
5305 // reset histogram content
5306 Reset("ICE");
5307
5308 //now loop on all bins and refill
5309 // NOTE that if the bins without labels have content
5310 // it will be put in the underflow/overflow.
5311 // For this reason we use AddBinContent method
5313 Int_t bin,binx,biny,binz;
5314 for (bin=0; bin < hold->fNcells; ++bin) {
5315 hold->GetBinXYZ(bin,binx,biny,binz);
5317 Double_t cu = hold->RetrieveBinContent(bin);
5319 if (errors) {
5320 fSumw2.fArray[ibin] += hold->fSumw2.fArray[bin];
5321 }
5322 }
5324 delete hold;
5325}
5326
5327////////////////////////////////////////////////////////////////////////////////
5328/// Double the number of bins for axis.
5329/// Refill histogram.
5330/// This function is called by TAxis::FindBin(const char *label)
5331
5333{
5335 TAxis *axis = nullptr;
5336 if (iaxis == 1) axis = GetXaxis();
5337 if (iaxis == 2) axis = GetYaxis();
5338 if (iaxis == 3) axis = GetZaxis();
5339 if (!axis) return;
5340
5341 TH1 *hold = (TH1*)IsA()->New();
5342 hold->SetDirectory(nullptr);
5343 Copy(*hold);
5344 hold->ResetBit(kMustCleanup);
5345
5346 Bool_t timedisp = axis->GetTimeDisplay();
5347 Int_t nbins = axis->GetNbins();
5348 Double_t xmin = axis->GetXmin();
5349 Double_t xmax = axis->GetXmax();
5350 xmax = xmin + 2*(xmax-xmin);
5351 axis->SetRange(0,0);
5352 // double the bins and recompute ncells
5353 axis->Set(2*nbins,xmin,xmax);
5354 SetBinsLength(-1);
5356 if (errors) fSumw2.Set(fNcells);
5357 axis->SetTimeDisplay(timedisp);
5358
5359 Reset("ICE"); // reset content and error
5360
5361 //now loop on all bins and refill
5363 Int_t bin,ibin,binx,biny,binz;
5364 for (ibin =0; ibin < hold->fNcells; ibin++) {
5365 // get the binx,y,z values . The x-y-z (axis) bin values will stay the same between new-old after the expanding
5366 hold->GetBinXYZ(ibin,binx,biny,binz);
5367 bin = GetBin(binx,biny,binz);
5368
5369 // underflow and overflow will be cleaned up because their meaning has been altered
5370 if (hold->IsBinUnderflow(ibin,iaxis) || hold->IsBinOverflow(ibin,iaxis)) {
5371 continue;
5372 }
5373 else {
5374 AddBinContent(bin, hold->RetrieveBinContent(ibin));
5375 if (errors) fSumw2.fArray[bin] += hold->fSumw2.fArray[ibin];
5376 }
5377 }
5379 delete hold;
5380}
5381
5382////////////////////////////////////////////////////////////////////////////////
5383/// Sort bins with labels or set option(s) to draw axis with labels
5384/// \param[in] option
5385/// - "a" sort by alphabetic order
5386/// - ">" sort by decreasing values
5387/// - "<" sort by increasing values
5388/// - "h" draw labels horizontal
5389/// - "v" draw labels vertical
5390/// - "u" draw labels up (end of label right adjusted)
5391/// - "d" draw labels down (start of label left adjusted)
5392///
5393/// In case not all bins have labels sorting will work only in the case
5394/// the first `n` consecutive bins have all labels and sorting will be performed on
5395/// those label bins.
5396///
5397/// \param[in] ax axis
5398
5400{
5402 TAxis *axis = nullptr;
5403 if (iaxis == 1)
5404 axis = GetXaxis();
5405 if (iaxis == 2)
5406 axis = GetYaxis();
5407 if (iaxis == 3)
5408 axis = GetZaxis();
5409 if (!axis)
5410 return;
5411 THashList *labels = axis->GetLabels();
5412 if (!labels) {
5413 Warning("LabelsOption", "Axis %s has no labels!",axis->GetName());
5414 return;
5415 }
5416 TString opt = option;
5417 opt.ToLower();
5418 Int_t iopt = -1;
5419 if (opt.Contains("h")) {
5424 iopt = 0;
5425 }
5426 if (opt.Contains("v")) {
5431 iopt = 1;
5432 }
5433 if (opt.Contains("u")) {
5434 axis->SetBit(TAxis::kLabelsUp);
5438 iopt = 2;
5439 }
5440 if (opt.Contains("d")) {
5445 iopt = 3;
5446 }
5447 Int_t sort = -1;
5448 if (opt.Contains("a"))
5449 sort = 0;
5450 if (opt.Contains(">"))
5451 sort = 1;
5452 if (opt.Contains("<"))
5453 sort = 2;
5454 if (sort < 0) {
5455 if (iopt < 0)
5456 Error("LabelsOption", "%s is an invalid label placement option!",opt.Data());
5457 return;
5458 }
5459
5460 // Code works only if first n bins have labels if we uncomment following line
5461 // but we don't want to support this special case
5462 // Int_t n = TMath::Min(axis->GetNbins(), labels->GetSize());
5463
5464 // support only cases where each bin has a labels (should be when axis is alphanumeric)
5465 Int_t n = labels->GetSize();
5466 if (n != axis->GetNbins()) {
5467 // check if labels are all consecutive and starts from the first bin
5468 // in that case the current code will work fine
5469 Int_t firstLabelBin = axis->GetNbins()+1;
5470 Int_t lastLabelBin = -1;
5471 for (Int_t i = 0; i < n; ++i) {
5472 Int_t bin = labels->At(i)->GetUniqueID();
5473 if (bin < firstLabelBin) firstLabelBin = bin;
5474 if (bin > lastLabelBin) lastLabelBin = bin;
5475 }
5476 if (firstLabelBin != 1 || lastLabelBin-firstLabelBin +1 != n) {
5477 Error("LabelsOption", "%s of Histogram %s contains bins without labels. Sorting will not work correctly - return",
5478 axis->GetName(), GetName());
5479 return;
5480 }
5481 // case where label bins are consecutive starting from first bin will work
5482 // calling before a TH1::LabelsDeflate() will avoid this error message
5483 Warning("LabelsOption", "axis %s of Histogram %s has extra following bins without labels. Sorting will work only for first label bins",
5484 axis->GetName(), GetName());
5485 }
5486 std::vector<Int_t> a(n);
5487 std::vector<Int_t> b(n);
5488
5489
5490 Int_t i, j, k;
5491 std::vector<Double_t> cont;
5492 std::vector<Double_t> errors2;
5493 THashList *labold = new THashList(labels->GetSize(), 1);
5494 TIter nextold(labels);
5495 TObject *obj = nullptr;
5496 labold->AddAll(labels);
5497 labels->Clear();
5498
5499 // delete buffer if it is there since bins will be reordered.
5500 if (fBuffer)
5501 BufferEmpty(1);
5502
5503 if (sort > 0) {
5504 //---sort by values of bins
5505 if (GetDimension() == 1) {
5506 cont.resize(n);
5507 if (fSumw2.fN)
5508 errors2.resize(n);
5509 for (i = 0; i < n; i++) {
5510 cont[i] = RetrieveBinContent(i + 1);
5511 if (!errors2.empty())
5512 errors2[i] = GetBinErrorSqUnchecked(i + 1);
5513 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5514 a[i] = i;
5515 }
5516 if (sort == 1)
5517 TMath::Sort(n, cont.data(), a.data(), kTRUE); // sort by decreasing values
5518 else
5519 TMath::Sort(n, cont.data(), a.data(), kFALSE); // sort by increasing values
5520 for (i = 0; i < n; i++) {
5521 // use UpdateBinCOntent to not screw up histogram entries
5522 UpdateBinContent(i + 1, cont[b[a[i]] - 1]); // b[a[i]] returns bin number. .we need to subtract 1
5523 if (gDebug)
5524 Info("LabelsOption","setting bin %d value %f from bin %d label %s at pos %d ",
5525 i+1,cont[b[a[i]] - 1],b[a[i]],labold->At(a[i])->GetName(),a[i]);
5526 if (!errors2.empty())
5527 fSumw2.fArray[i + 1] = errors2[b[a[i]] - 1];
5528 }
5529 for (i = 0; i < n; i++) {
5530 obj = labold->At(a[i]);
5531 labels->Add(obj);
5532 obj->SetUniqueID(i + 1);
5533 }
5534 } else if (GetDimension() == 2) {
5535 std::vector<Double_t> pcont(n + 2);
5536 Int_t nx = fXaxis.GetNbins() + 2;
5537 Int_t ny = fYaxis.GetNbins() + 2;
5538 cont.resize((nx + 2) * (ny + 2));
5539 if (fSumw2.fN)
5540 errors2.resize((nx + 2) * (ny + 2));
5541 for (i = 0; i < nx; i++) {
5542 for (j = 0; j < ny; j++) {
5543 Int_t bin = GetBin(i,j);
5544 cont[i + nx * j] = RetrieveBinContent(bin);
5545 if (!errors2.empty())
5546 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5547 if (axis == GetXaxis())
5548 k = i - 1;
5549 else
5550 k = j - 1;
5551 if (k >= 0 && k < n) { // we consider underflow/overflows in y for ordering the bins
5552 pcont[k] += cont[i + nx * j];
5553 a[k] = k;
5554 }
5555 }
5556 }
5557 if (sort == 1)
5558 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5559 else
5560 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5561 for (i = 0; i < n; i++) {
5562 // iterate on old label list to find corresponding bin match
5563 TIter next(labold);
5564 UInt_t bin = a[i] + 1;
5565 while ((obj = next())) {
5566 if (obj->GetUniqueID() == (UInt_t)bin)
5567 break;
5568 else
5569 obj = nullptr;
5570 }
5571 if (!obj) {
5572 // this should not really happen
5573 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5574 return;
5575 }
5576
5577 labels->Add(obj);
5578 if (gDebug)
5579 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from order " << a[i] << " bin "
5580 << b[a[i]] << "content " << pcont[a[i]] << std::endl;
5581 }
5582 // need to set here new ordered labels - otherwise loop before does not work since labold and labels list
5583 // contain same objects
5584 for (i = 0; i < n; i++) {
5585 labels->At(i)->SetUniqueID(i + 1);
5586 }
5587 // set now the bin contents
5588 if (axis == GetXaxis()) {
5589 for (i = 0; i < n; i++) {
5590 Int_t ix = a[i] + 1;
5591 for (j = 0; j < ny; j++) {
5592 Int_t bin = GetBin(i + 1, j);
5593 UpdateBinContent(bin, cont[ix + nx * j]);
5594 if (!errors2.empty())
5595 fSumw2.fArray[bin] = errors2[ix + nx * j];
5596 }
5597 }
5598 } else {
5599 // using y axis
5600 for (i = 0; i < nx; i++) {
5601 for (j = 0; j < n; j++) {
5602 Int_t iy = a[j] + 1;
5603 Int_t bin = GetBin(i, j + 1);
5604 UpdateBinContent(bin, cont[i + nx * iy]);
5605 if (!errors2.empty())
5606 fSumw2.fArray[bin] = errors2[i + nx * iy];
5607 }
5608 }
5609 }
5610 } else {
5611 // sorting histograms: 3D case
5612 std::vector<Double_t> pcont(n + 2);
5613 Int_t nx = fXaxis.GetNbins() + 2;
5614 Int_t ny = fYaxis.GetNbins() + 2;
5615 Int_t nz = fZaxis.GetNbins() + 2;
5616 Int_t l = 0;
5617 cont.resize((nx + 2) * (ny + 2) * (nz + 2));
5618 if (fSumw2.fN)
5619 errors2.resize((nx + 2) * (ny + 2) * (nz + 2));
5620 for (i = 0; i < nx; i++) {
5621 for (j = 0; j < ny; j++) {
5622 for (k = 0; k < nz; k++) {
5623 Int_t bin = GetBin(i,j,k);
5625 if (axis == GetXaxis())
5626 l = i - 1;
5627 else if (axis == GetYaxis())
5628 l = j - 1;
5629 else
5630 l = k - 1;
5631 if (l >= 0 && l < n) { // we consider underflow/overflows in y for ordering the bins
5632 pcont[l] += c;
5633 a[l] = l;
5634 }
5635 cont[i + nx * (j + ny * k)] = c;
5636 if (!errors2.empty())
5637 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5638 }
5639 }
5640 }
5641 if (sort == 1)
5642 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5643 else
5644 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5645 for (i = 0; i < n; i++) {
5646 // iterate on the old label list to find corresponding bin match
5647 TIter next(labold);
5648 UInt_t bin = a[i] + 1;
5649 obj = nullptr;
5650 while ((obj = next())) {
5651 if (obj->GetUniqueID() == (UInt_t)bin) {
5652 break;
5653 }
5654 else
5655 obj = nullptr;
5656 }
5657 if (!obj) {
5658 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5659 return;
5660 }
5661 labels->Add(obj);
5662 if (gDebug)
5663 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from bin " << a[i] << "content "
5664 << pcont[a[i]] << std::endl;
5665 }
5666
5667 // need to set here new ordered labels - otherwise loop before does not work since labold and llabels list
5668 // contain same objects
5669 for (i = 0; i < n; i++) {
5670 labels->At(i)->SetUniqueID(i + 1);
5671 }
5672 // set now the bin contents
5673 if (axis == GetXaxis()) {
5674 for (i = 0; i < n; i++) {
5675 Int_t ix = a[i] + 1;
5676 for (j = 0; j < ny; j++) {
5677 for (k = 0; k < nz; k++) {
5678 Int_t bin = GetBin(i + 1, j, k);
5679 UpdateBinContent(bin, cont[ix + nx * (j + ny * k)]);
5680 if (!errors2.empty())
5681 fSumw2.fArray[bin] = errors2[ix + nx * (j + ny * k)];
5682 }
5683 }
5684 }
5685 } else if (axis == GetYaxis()) {
5686 // using y axis
5687 for (i = 0; i < nx; i++) {
5688 for (j = 0; j < n; j++) {
5689 Int_t iy = a[j] + 1;
5690 for (k = 0; k < nz; k++) {
5691 Int_t bin = GetBin(i, j + 1, k);
5692 UpdateBinContent(bin, cont[i + nx * (iy + ny * k)]);
5693 if (!errors2.empty())
5694 fSumw2.fArray[bin] = errors2[i + nx * (iy + ny * k)];
5695 }
5696 }
5697 }
5698 } else {
5699 // using z axis
5700 for (i = 0; i < nx; i++) {
5701 for (j = 0; j < ny; j++) {
5702 for (k = 0; k < n; k++) {
5703 Int_t iz = a[k] + 1;
5704 Int_t bin = GetBin(i, j , k +1);
5705 UpdateBinContent(bin, cont[i + nx * (j + ny * iz)]);
5706 if (!errors2.empty())
5707 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * iz)];
5708 }
5709 }
5710 }
5711 }
5712 }
5713 } else {
5714 //---alphabetic sort
5715 // sort labels using vector of strings and TMath::Sort
5716 // I need to array because labels order in list is not necessary that of the bins
5717 std::vector<std::string> vecLabels(n);
5718 for (i = 0; i < n; i++) {
5719 vecLabels[i] = labold->At(i)->GetName();
5720 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5721 a[i] = i;
5722 }
5723 // sort in ascending order for strings
5724 TMath::Sort(n, vecLabels.data(), a.data(), kFALSE);
5725 // set the new labels
5726 for (i = 0; i < n; i++) {
5727 TObject *labelObj = labold->At(a[i]);
5728 labels->Add(labold->At(a[i]));
5729 // set the corresponding bin. NB bin starts from 1
5730 labelObj->SetUniqueID(i + 1);
5731 if (gDebug)
5732 std::cout << "bin " << i + 1 << " setting new labels for axis " << labold->At(a[i])->GetName() << " from "
5733 << b[a[i]] << std::endl;
5734 }
5735
5736 if (GetDimension() == 1) {
5737 cont.resize(n + 2);
5738 if (fSumw2.fN)
5739 errors2.resize(n + 2);
5740 for (i = 0; i < n; i++) {
5741 cont[i] = RetrieveBinContent(b[a[i]]);
5742 if (!errors2.empty())
5744 }
5745 for (i = 0; i < n; i++) {
5746 UpdateBinContent(i + 1, cont[i]);
5747 if (!errors2.empty())
5748 fSumw2.fArray[i+1] = errors2[i];
5749 }
5750 } else if (GetDimension() == 2) {
5751 Int_t nx = fXaxis.GetNbins() + 2;
5752 Int_t ny = fYaxis.GetNbins() + 2;
5753 cont.resize(nx * ny);
5754 if (fSumw2.fN)
5755 errors2.resize(nx * ny);
5756 // copy old bin contents and then set to new ordered bins
5757 // N.B. bin in histograms starts from 1, but in y we consider under/overflows
5758 for (i = 0; i < nx; i++) {
5759 for (j = 0; j < ny; j++) { // ny is nbins+2
5760 Int_t bin = GetBin(i, j);
5761 cont[i + nx * j] = RetrieveBinContent(bin);
5762 if (!errors2.empty())
5763 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5764 }
5765 }
5766 if (axis == GetXaxis()) {
5767 for (i = 0; i < n; i++) {
5768 for (j = 0; j < ny; j++) {
5769 Int_t bin = GetBin(i + 1 , j);
5770 UpdateBinContent(bin, cont[b[a[i]] + nx * j]);
5771 if (!errors2.empty())
5772 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * j];
5773 }
5774 }
5775 } else {
5776 for (i = 0; i < nx; i++) {
5777 for (j = 0; j < n; j++) {
5778 Int_t bin = GetBin(i, j + 1);
5779 UpdateBinContent(bin, cont[i + nx * b[a[j]]]);
5780 if (!errors2.empty())
5781 fSumw2.fArray[bin] = errors2[i + nx * b[a[j]]];
5782 }
5783 }
5784 }
5785 } else {
5786 // case of 3D (needs to be tested)
5787 Int_t nx = fXaxis.GetNbins() + 2;
5788 Int_t ny = fYaxis.GetNbins() + 2;
5789 Int_t nz = fZaxis.GetNbins() + 2;
5790 cont.resize(nx * ny * nz);
5791 if (fSumw2.fN)
5792 errors2.resize(nx * ny * nz);
5793 for (i = 0; i < nx; i++) {
5794 for (j = 0; j < ny; j++) {
5795 for (k = 0; k < nz; k++) {
5796 Int_t bin = GetBin(i, j, k);
5797 cont[i + nx * (j + ny * k)] = RetrieveBinContent(bin);
5798 if (!errors2.empty())
5799 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5800 }
5801 }
5802 }
5803 if (axis == GetXaxis()) {
5804 // labels on x axis
5805 for (i = 0; i < n; i++) { // for x we loop only on bins with the labels
5806 for (j = 0; j < ny; j++) {
5807 for (k = 0; k < nz; k++) {
5808 Int_t bin = GetBin(i + 1, j, k);
5809 UpdateBinContent(bin, cont[b[a[i]] + nx * (j + ny * k)]);
5810 if (!errors2.empty())
5811 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * (j + ny * k)];
5812 }
5813 }
5814 }
5815 } else if (axis == GetYaxis()) {
5816 // labels on y axis
5817 for (i = 0; i < nx; i++) {
5818 for (j = 0; j < n; j++) {
5819 for (k = 0; k < nz; k++) {
5820 Int_t bin = GetBin(i, j+1, k);
5821 UpdateBinContent(bin, cont[i + nx * (b[a[j]] + ny * k)]);
5822 if (!errors2.empty())
5823 fSumw2.fArray[bin] = errors2[i + nx * (b[a[j]] + ny * k)];
5824 }
5825 }
5826 }
5827 } else {
5828 // labels on z axis
5829 for (i = 0; i < nx; i++) {
5830 for (j = 0; j < ny; j++) {
5831 for (k = 0; k < n; k++) {
5832 Int_t bin = GetBin(i, j, k+1);
5833 UpdateBinContent(bin, cont[i + nx * (j + ny * b[a[k]])]);
5834 if (!errors2.empty())
5835 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * b[a[k]])];
5836 }
5837 }
5838 }
5839 }
5840 }
5841 }
5842 // need to set to zero the statistics if axis has been sorted
5843 // see for example TH3::PutStats for definition of s vector
5844 bool labelsAreSorted = kFALSE;
5845 for (i = 0; i < n; ++i) {
5846 if (a[i] != i) {
5848 break;
5849 }
5850 }
5851 if (labelsAreSorted) {
5852 double s[TH1::kNstat];
5853 GetStats(s);
5854 if (iaxis == 1) {
5855 s[2] = 0; // fTsumwx
5856 s[3] = 0; // fTsumwx2
5857 s[6] = 0; // fTsumwxy
5858 s[9] = 0; // fTsumwxz
5859 } else if (iaxis == 2) {
5860 s[4] = 0; // fTsumwy
5861 s[5] = 0; // fTsumwy2
5862 s[6] = 0; // fTsumwxy
5863 s[10] = 0; // fTsumwyz
5864 } else if (iaxis == 3) {
5865 s[7] = 0; // fTsumwz
5866 s[8] = 0; // fTsumwz2
5867 s[9] = 0; // fTsumwxz
5868 s[10] = 0; // fTsumwyz
5869 }
5870 PutStats(s);
5871 }
5872 delete labold;
5873}
5874
5875////////////////////////////////////////////////////////////////////////////////
5876/// Test if two double are almost equal.
5877
5878static inline Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon = 0.00000001)
5879{
5880 return TMath::Abs(a - b) < epsilon;
5881}
5882
5883////////////////////////////////////////////////////////////////////////////////
5884/// Test if a double is almost an integer.
5885
5886static inline Bool_t AlmostInteger(Double_t a, Double_t epsilon = 0.00000001)
5887{
5888 return AlmostEqual(a - TMath::Floor(a), 0, epsilon) ||
5889 AlmostEqual(a - TMath::Floor(a), 1, epsilon);
5890}
5891
5892////////////////////////////////////////////////////////////////////////////////
5893/// Test if the binning is equidistant.
5894
5895static inline bool IsEquidistantBinning(const TAxis& axis)
5896{
5897 // check if axis bin are equals
5898 if (!axis.GetXbins()->fN) return true; //
5899 // not able to check if there is only one axis entry
5900 bool isEquidistant = true;
5901 const Double_t firstBinWidth = axis.GetBinWidth(1);
5902 for (int i = 1; i < axis.GetNbins(); ++i) {
5903 const Double_t binWidth = axis.GetBinWidth(i);
5904 const bool match = TMath::AreEqualRel(firstBinWidth, binWidth, 1.E-10);
5905 isEquidistant &= match;
5906 if (!match)
5907 break;
5908 }
5909 return isEquidistant;
5910}
5911
5912////////////////////////////////////////////////////////////////////////////////
5913/// Same limits and bins.
5914
5916 return axis1.GetNbins() == axis2.GetNbins() &&
5917 TMath::AreEqualAbs(axis1.GetXmin(), axis2.GetXmin(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10) &&
5918 TMath::AreEqualAbs(axis1.GetXmax(), axis2.GetXmax(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10);
5919}
5920
5921////////////////////////////////////////////////////////////////////////////////
5922/// Finds new limits for the axis for the Merge function.
5923/// returns false if the limits are incompatible
5924
5926{
5928 return kTRUE;
5929
5931 return kFALSE; // not equidistant user binning not supported
5932
5933 Double_t width1 = destAxis.GetBinWidth(0);
5934 Double_t width2 = anAxis.GetBinWidth(0);
5935 if (width1 == 0 || width2 == 0)
5936 return kFALSE; // no binning not supported
5937
5938 Double_t xmin = TMath::Min(destAxis.GetXmin(), anAxis.GetXmin());
5939 Double_t xmax = TMath::Max(destAxis.GetXmax(), anAxis.GetXmax());
5941
5942 // check the bin size
5944 return kFALSE;
5945
5946 // std::cout << "Find new limit using given axis " << anAxis.GetXmin() << " , " << anAxis.GetXmax() << " bin width " << width2 << std::endl;
5947 // std::cout << " and destination axis " << destAxis.GetXmin() << " , " << destAxis.GetXmax() << " bin width " << width1 << std::endl;
5948
5949
5950 // check the limits
5951 Double_t delta;
5952 delta = (destAxis.GetXmin() - xmin)/width1;
5953 if (!AlmostInteger(delta))
5954 xmin -= (TMath::Ceil(delta) - delta)*width1;
5955
5956 delta = (anAxis.GetXmin() - xmin)/width2;
5957 if (!AlmostInteger(delta))
5958 xmin -= (TMath::Ceil(delta) - delta)*width2;
5959
5960
5961 delta = (destAxis.GetXmin() - xmin)/width1;
5962 if (!AlmostInteger(delta))
5963 return kFALSE;
5964
5965
5966 delta = (xmax - destAxis.GetXmax())/width1;
5967 if (!AlmostInteger(delta))
5968 xmax += (TMath::Ceil(delta) - delta)*width1;
5969
5970
5971 delta = (xmax - anAxis.GetXmax())/width2;
5972 if (!AlmostInteger(delta))
5973 xmax += (TMath::Ceil(delta) - delta)*width2;
5974
5975
5976 delta = (xmax - destAxis.GetXmax())/width1;
5977 if (!AlmostInteger(delta))
5978 return kFALSE;
5979#ifdef DEBUG
5980 if (!AlmostInteger((xmax - xmin) / width)) { // unnecessary check
5981 printf("TH1::RecomputeAxisLimits - Impossible\n");
5982 return kFALSE;
5983 }
5984#endif
5985
5986
5988
5989 //std::cout << "New re-computed axis : [ " << xmin << " , " << xmax << " ] width = " << width << " nbins " << destAxis.GetNbins() << std::endl;
5990
5991 return kTRUE;
5992}
5993
5994////////////////////////////////////////////////////////////////////////////////
5995/// Add all histograms in the collection to this histogram.
5996/// This function computes the min/max for the x axis,
5997/// compute a new number of bins, if necessary,
5998/// add bin contents, errors and statistics.
5999/// If all histograms have bin labels, bins with identical labels
6000/// will be merged, no matter what their order is.
6001/// If overflows are present and limits are different the function will fail.
6002/// The function returns the total number of entries in the result histogram
6003/// if the merge is successful, -1 otherwise.
6004///
6005/// Possible option:
6006/// -NOL : the merger will ignore the labels and merge the histograms bin by bin using bin center values to match bins
6007/// -NOCHECK: the histogram will not perform a check for duplicate labels in case of axes with labels. The check
6008/// (enabled by default) slows down the merging
6009///
6010/// IMPORTANT remark. The axis x may have different number
6011/// of bins and different limits, BUT the largest bin width must be
6012/// a multiple of the smallest bin width and the upper limit must also
6013/// be a multiple of the bin width.
6014/// Example:
6015///
6016/// ~~~ {.cpp}
6017/// void atest() {
6018/// TH1F *h1 = new TH1F("h1","h1",110,-110,0);
6019/// TH1F *h2 = new TH1F("h2","h2",220,0,110);
6020/// TH1F *h3 = new TH1F("h3","h3",330,-55,55);
6021/// TRandom r;
6022/// for (Int_t i=0;i<10000;i++) {
6023/// h1->Fill(r.Gaus(-55,10));
6024/// h2->Fill(r.Gaus(55,10));
6025/// h3->Fill(r.Gaus(0,10));
6026/// }
6027///
6028/// TList *list = new TList;
6029/// list->Add(h1);
6030/// list->Add(h2);
6031/// list->Add(h3);
6032/// TH1F *h = (TH1F*)h1->Clone("h");
6033/// h->Reset();
6034/// h->Merge(list);
6035/// h->Draw();
6036/// }
6037/// ~~~
6038
6040{
6041 if (!li) return 0;
6042 if (li->IsEmpty()) return (Long64_t) GetEntries();
6043
6044 // use TH1Merger class
6045 TH1Merger merger(*this,*li,opt);
6046 Bool_t ret = merger();
6047
6048 return (ret) ? GetEntries() : -1;
6049}
6050
6051
6052////////////////////////////////////////////////////////////////////////////////
6053/// Performs the operation:
6054///
6055/// `this = this*c1*f1`
6056///
6057/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
6058///
6059/// Only bins inside the function range are recomputed.
6060/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6061/// you should call Sumw2 before making this operation.
6062/// This is particularly important if you fit the histogram after TH1::Multiply
6063///
6064/// The function return kFALSE if the Multiply operation failed
6065
6067{
6068 if (!f1) {
6069 Error("Multiply","Attempt to multiply by a non-existing function");
6070 return kFALSE;
6071 }
6072
6073 // delete buffer if it is there since it will become invalid
6074 if (fBuffer) BufferEmpty(1);
6075
6076 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of (cells)
6077 Int_t ny = GetNbinsY() + 2;
6078 Int_t nz = GetNbinsZ() + 2;
6079 if (fDimension < 2) ny = 1;
6080 if (fDimension < 3) nz = 1;
6081
6082 // reset min-maximum
6083 SetMinimum();
6084 SetMaximum();
6085
6086 // - Loop on bins (including underflows/overflows)
6087 Double_t xx[3];
6088 Double_t *params = nullptr;
6089 f1->InitArgs(xx,params);
6090
6091 for (Int_t binz = 0; binz < nz; ++binz) {
6092 xx[2] = fZaxis.GetBinCenter(binz);
6093 for (Int_t biny = 0; biny < ny; ++biny) {
6094 xx[1] = fYaxis.GetBinCenter(biny);
6095 for (Int_t binx = 0; binx < nx; ++binx) {
6096 xx[0] = fXaxis.GetBinCenter(binx);
6097 if (!f1->IsInside(xx)) continue;
6099 Int_t bin = binx + nx * (biny + ny *binz);
6100 Double_t cu = c1*f1->EvalPar(xx);
6101 if (TF1::RejectedPoint()) continue;
6103 if (fSumw2.fN) {
6104 fSumw2.fArray[bin] = cu * cu * GetBinErrorSqUnchecked(bin);
6105 }
6106 }
6107 }
6108 }
6109 ResetStats();
6110 return kTRUE;
6111}
6112
6113////////////////////////////////////////////////////////////////////////////////
6114/// Multiply this histogram by h1.
6115///
6116/// `this = this*h1`
6117///
6118/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6119/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
6120/// if not already set.
6121///
6122/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6123/// you should call Sumw2 before making this operation.
6124/// This is particularly important if you fit the histogram after TH1::Multiply
6125///
6126/// The function return kFALSE if the Multiply operation failed
6127
6128Bool_t TH1::Multiply(const TH1 *h1)
6129{
6130 if (!h1) {
6131 Error("Multiply","Attempt to multiply by a non-existing histogram");
6132 return kFALSE;
6133 }
6134
6135 // delete buffer if it is there since it will become invalid
6136 if (fBuffer) BufferEmpty(1);
6137
6138 if (LoggedInconsistency("Multiply", this, h1) >= kDifferentNumberOfBins) {
6139 return false;
6140 }
6141
6142 // Create Sumw2 if h1 has Sumw2 set
6143 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
6144
6145 // - Reset min- maximum
6146 SetMinimum();
6147 SetMaximum();
6148
6149 // - Loop on bins (including underflows/overflows)
6150 for (Int_t i = 0; i < fNcells; ++i) {
6153 UpdateBinContent(i, c0 * c1);
6154 if (fSumw2.fN) {
6156 }
6157 }
6158 ResetStats();
6159 return kTRUE;
6160}
6161
6162////////////////////////////////////////////////////////////////////////////////
6163/// Replace contents of this histogram by multiplication of h1 by h2.
6164///
6165/// `this = (c1*h1)*(c2*h2)`
6166///
6167/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6168/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
6169/// if not already set.
6170///
6171/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6172/// you should call Sumw2 before making this operation.
6173/// This is particularly important if you fit the histogram after TH1::Multiply
6174///
6175/// The function return kFALSE if the Multiply operation failed
6176
6178{
6179 TString opt = option;
6180 opt.ToLower();
6181 // Bool_t binomial = kFALSE;
6182 // if (opt.Contains("b")) binomial = kTRUE;
6183 if (!h1 || !h2) {
6184 Error("Multiply","Attempt to multiply by a non-existing histogram");
6185 return kFALSE;
6186 }
6187
6188 // delete buffer if it is there since it will become invalid
6189 if (fBuffer) BufferEmpty(1);
6190
6191 if (LoggedInconsistency("Multiply", this, h1) >= kDifferentNumberOfBins ||
6192 LoggedInconsistency("Multiply", h1, h2) >= kDifferentNumberOfBins) {
6193 return false;
6194 }
6195
6196 // Create Sumw2 if h1 or h2 have Sumw2 set
6197 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
6198
6199 // - Reset min - maximum
6200 SetMinimum();
6201 SetMaximum();
6202
6203 // - Loop on bins (including underflows/overflows)
6204 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
6205 for (Int_t i = 0; i < fNcells; ++i) {
6207 Double_t b2 = h2->RetrieveBinContent(i);
6208 UpdateBinContent(i, c1 * b1 * c2 * b2);
6209 if (fSumw2.fN) {
6210 fSumw2.fArray[i] = c1sq * c2sq * (h1->GetBinErrorSqUnchecked(i) * b2 * b2 + h2->GetBinErrorSqUnchecked(i) * b1 * b1);
6211 }
6212 }
6213 ResetStats();
6214 return kTRUE;
6215}
6216
6217////////////////////////////////////////////////////////////////////////////////
6218/// @brief Normalize a histogram to its integral or to its maximum.
6219/// @note Works for TH1, TH2, TH3, ...
6220/// @param option: normalization strategy ("", "max" or "sum")
6221/// - "": Scale to `1/(sum*bin_width)`.
6222/// - max: Scale to `1/GetMaximum()`
6223/// - sum: Scale to `1/sum`.
6224///
6225/// In case the norm is zero, it raises an error.
6226/// @sa https://root-forum.cern.ch/t/different-ways-of-normalizing-histograms/15582/
6227
6229{
6230 TString opt = option;
6231 opt.ToLower();
6232 if (!opt.IsNull() && (opt != "max") && (opt != "sum")) {
6233 Error("Normalize", "Unrecognized option %s", option);
6234 return;
6235 }
6236
6237 const Double_t norm = (opt == "max") ? GetMaximum() : Integral(opt.IsNull() ? "width" : "");
6238
6239 if (norm == 0) {
6240 Error("Normalize", "Attempt to normalize histogram with zero integral");
6241 } else {
6242 Scale(1.0 / norm, "");
6243 // An alternative could have been to call Integral("") and Scale(1/norm, "width"), but this
6244 // will lead to a different value of GetEntries.
6245 // Instead, doing simultaneously Integral("width") and Scale(1/norm, "width") leads to an error since you are
6246 // dividing twice by bin width.
6247 }
6248}
6249
6250////////////////////////////////////////////////////////////////////////////////
6251/// Control routine to paint any kind of histograms.
6252///
6253/// This function is automatically called by TCanvas::Update.
6254/// (see TH1::Draw for the list of options)
6255
6257{
6259
6260 if (fPainter) {
6261 if (option && strlen(option) > 0)
6263 else
6265 }
6266}
6267
6268////////////////////////////////////////////////////////////////////////////////
6269/// Rebin this histogram
6270///
6271/// #### case 1 xbins=0
6272///
6273/// If newname is blank (default), the current histogram is modified and
6274/// a pointer to it is returned.
6275///
6276/// If newname is not blank, the current histogram is not modified, and a
6277/// new histogram is returned which is a Clone of the current histogram
6278/// with its name set to newname.
6279///
6280/// The parameter ngroup indicates how many bins of this have to be merged
6281/// into one bin of the result.
6282///
6283/// If the original histogram has errors stored (via Sumw2), the resulting
6284/// histograms has new errors correctly calculated.
6285///
6286/// examples: if h1 is an existing TH1F histogram with 100 bins
6287///
6288/// ~~~ {.cpp}
6289/// h1->Rebin(); //merges two bins in one in h1: previous contents of h1 are lost
6290/// h1->Rebin(5); //merges five bins in one in h1
6291/// TH1F *hnew = dynamic_cast<TH1F*>(h1->Rebin(5,"hnew")); // creates a new histogram hnew
6292/// // merging 5 bins of h1 in one bin
6293/// ~~~
6294///
6295/// NOTE: If ngroup is not an exact divider of the number of bins,
6296/// the top limit of the rebinned histogram is reduced
6297/// to the upper edge of the last bin that can make a complete
6298/// group. The remaining bins are added to the overflow bin.
6299/// Statistics will be recomputed from the new bin contents.
6300///
6301/// #### case 2 xbins!=0
6302///
6303/// A new histogram is created (you should specify newname).
6304/// The parameter ngroup is the number of variable size bins in the created histogram.
6305/// The array xbins must contain ngroup+1 elements that represent the low-edges
6306/// of the bins.
6307/// If the original histogram has errors stored (via Sumw2), the resulting
6308/// histograms has new errors correctly calculated.
6309///
6310/// NOTE: The bin edges specified in xbins should correspond to bin edges
6311/// in the original histogram. If a bin edge in the new histogram is
6312/// in the middle of a bin in the original histogram, all entries in
6313/// the split bin in the original histogram will be transfered to the
6314/// lower of the two possible bins in the new histogram. This is
6315/// probably not what you want. A warning message is emitted in this
6316/// case
6317///
6318/// examples: if h1 is an existing TH1F histogram with 100 bins
6319///
6320/// ~~~ {.cpp}
6321/// Double_t xbins[25] = {...} array of low-edges (xbins[25] is the upper edge of last bin
6322/// h1->Rebin(24,"hnew",xbins); //creates a new variable bin size histogram hnew
6323/// ~~~
6324
6325TH1 *TH1::Rebin(Int_t ngroup, const char*newname, const Double_t *xbins)
6326{
6327 Int_t nbins = fXaxis.GetNbins();
6330 if ((ngroup <= 0) || (ngroup > nbins)) {
6331 Error("Rebin", "Illegal value of ngroup=%d",ngroup);
6332 return nullptr;
6333 }
6334
6335 if (fDimension > 1 || InheritsFrom(TProfile::Class())) {
6336 Error("Rebin", "Operation valid on 1-D histograms only");
6337 return nullptr;
6338 }
6339 if (!newname && xbins) {
6340 Error("Rebin","if xbins is specified, newname must be given");
6341 return nullptr;
6342 }
6343
6344 Int_t newbins = nbins/ngroup;
6345 if (!xbins) {
6346 Int_t nbg = nbins/ngroup;
6347 if (nbg*ngroup != nbins) {
6348 Warning("Rebin", "ngroup=%d is not an exact divider of nbins=%d.",ngroup,nbins);
6349 }
6350 }
6351 else {
6352 // in the case that xbins is given (rebinning in variable bins), ngroup is
6353 // the new number of bins and number of grouped bins is not constant.
6354 // when looping for setting the contents for the new histogram we
6355 // need to loop on all bins of original histogram. Then set ngroup=nbins
6356 newbins = ngroup;
6357 ngroup = nbins;
6358 }
6359
6360 // Save old bin contents into a new array
6361 Double_t entries = fEntries;
6362 Double_t *oldBins = new Double_t[nbins+2];
6363 Int_t bin, i;
6364 for (bin=0;bin<nbins+2;bin++) oldBins[bin] = RetrieveBinContent(bin);
6365 Double_t *oldErrors = nullptr;
6366 if (fSumw2.fN != 0) {
6367 oldErrors = new Double_t[nbins+2];
6368 for (bin=0;bin<nbins+2;bin++) oldErrors[bin] = GetBinError(bin);
6369 }
6370 // rebin will not include underflow/overflow if new axis range is larger than old axis range
6371 if (xbins) {
6372 if (xbins[0] < fXaxis.GetXmin() && oldBins[0] != 0 )
6373 Warning("Rebin","underflow entries will not be used when rebinning");
6374 if (xbins[newbins] > fXaxis.GetXmax() && oldBins[nbins+1] != 0 )
6375 Warning("Rebin","overflow entries will not be used when rebinning");
6376 }
6377
6378
6379 // create a clone of the old histogram if newname is specified
6380 TH1 *hnew = this;
6381 if ((newname && strlen(newname) > 0) || xbins) {
6382 hnew = (TH1*)Clone(newname);
6383 }
6384
6385 //reset can extend bit to avoid an axis extension in SetBinContent
6386 UInt_t oldExtendBitMask = hnew->SetCanExtend(kNoAxis);
6387
6388 // save original statistics
6389 Double_t stat[kNstat];
6390 GetStats(stat);
6391 bool resetStat = false;
6392 // change axis specs and rebuild bin contents array::RebinAx
6393 if(!xbins && (newbins*ngroup != nbins)) {
6395 resetStat = true; //stats must be reset because top bins will be moved to overflow bin
6396 }
6397 // save the TAttAxis members (reset by SetBins)
6409
6410 if(!xbins && (fXaxis.GetXbins()->GetSize() > 0)){ // variable bin sizes
6411 Double_t *bins = new Double_t[newbins+1];
6412 for(i = 0; i <= newbins; ++i) bins[i] = fXaxis.GetBinLowEdge(1+i*ngroup);
6413 hnew->SetBins(newbins,bins); //this also changes errors array (if any)
6414 delete [] bins;
6415 } else if (xbins) {
6416 hnew->SetBins(newbins,xbins);
6417 } else {
6418 hnew->SetBins(newbins,xmin,xmax);
6419 }
6420
6421 // Restore axis attributes
6433
6434 // copy merged bin contents (ignore under/overflows)
6435 // Start merging only once the new lowest edge is reached
6436 Int_t startbin = 1;
6437 const Double_t newxmin = hnew->GetXaxis()->GetBinLowEdge(1);
6438 while( fXaxis.GetBinCenter(startbin) < newxmin && startbin <= nbins ) {
6439 startbin++;
6440 }
6443 for (bin = 1;bin<=newbins;bin++) {
6444 binContent = 0;
6445 binError = 0;
6446 Int_t imax = ngroup;
6447 Double_t xbinmax = hnew->GetXaxis()->GetBinUpEdge(bin);
6448 // check bin edges for the cases when we provide an array of bins
6449 // be careful in case bins can have zero width
6451 hnew->GetXaxis()->GetBinLowEdge(bin),
6452 TMath::Max(1.E-8 * fXaxis.GetBinWidth(oldbin), 1.E-16 )) )
6453 {
6454 Warning("Rebin","Bin edge %d of rebinned histogram does not match any bin edges of the old histogram. Result can be inconsistent",bin);
6455 }
6456 for (i=0;i<ngroup;i++) {
6457 if( (oldbin+i > nbins) ||
6458 ( hnew != this && (fXaxis.GetBinCenter(oldbin+i) > xbinmax)) ) {
6459 imax = i;
6460 break;
6461 }
6464 }
6465 hnew->SetBinContent(bin,binContent);
6466 if (oldErrors) hnew->SetBinError(bin,TMath::Sqrt(binError));
6467 oldbin += imax;
6468 }
6469
6470 // sum underflow and overflow contents until startbin
6471 binContent = 0;
6472 binError = 0;
6473 for (i = 0; i < startbin; ++i) {
6474 binContent += oldBins[i];
6475 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6476 }
6477 hnew->SetBinContent(0,binContent);
6478 if (oldErrors) hnew->SetBinError(0,TMath::Sqrt(binError));
6479 // sum overflow
6480 binContent = 0;
6481 binError = 0;
6482 for (i = oldbin; i <= nbins+1; ++i) {
6483 binContent += oldBins[i];
6484 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6485 }
6486 hnew->SetBinContent(newbins+1,binContent);
6487 if (oldErrors) hnew->SetBinError(newbins+1,TMath::Sqrt(binError));
6488
6489 hnew->SetCanExtend(oldExtendBitMask); // restore previous state
6490
6491 // restore statistics and entries modified by SetBinContent
6492 hnew->SetEntries(entries);
6493 if (!resetStat) hnew->PutStats(stat);
6494 delete [] oldBins;
6495 if (oldErrors) delete [] oldErrors;
6496 return hnew;
6497}
6498
6499////////////////////////////////////////////////////////////////////////////////
6500/// finds new limits for the axis so that *point* is within the range and
6501/// the limits are compatible with the previous ones (see TH1::Merge).
6502/// new limits are put into *newMin* and *newMax* variables.
6503/// axis - axis whose limits are to be recomputed
6504/// point - point that should fit within the new axis limits
6505/// newMin - new minimum will be stored here
6506/// newMax - new maximum will be stored here.
6507/// false if failed (e.g. if the initial axis limits are wrong
6508/// or the new range is more than \f$ 2^{64} \f$ times the old one).
6509
6511{
6512 Double_t xmin = axis->GetXmin();
6513 Double_t xmax = axis->GetXmax();
6514 if (xmin >= xmax) return kFALSE;
6516
6517 //recompute new axis limits by doubling the current range
6518 Int_t ntimes = 0;
6519 while (point < xmin) {
6520 if (ntimes++ > 64)
6521 return kFALSE;
6522 xmin = xmin - range;
6523 range *= 2;
6524 }
6525 while (point >= xmax) {
6526 if (ntimes++ > 64)
6527 return kFALSE;
6528 xmax = xmax + range;
6529 range *= 2;
6530 }
6531 newMin = xmin;
6532 newMax = xmax;
6533 // Info("FindNewAxisLimits", "OldAxis: (%lf, %lf), new: (%lf, %lf), point: %lf",
6534 // axis->GetXmin(), axis->GetXmax(), xmin, xmax, point);
6535
6536 return kTRUE;
6537}
6538
6539////////////////////////////////////////////////////////////////////////////////
6540/// Histogram is resized along axis such that x is in the axis range.
6541/// The new axis limits are recomputed by doubling iteratively
6542/// the current axis range until the specified value x is within the limits.
6543/// The algorithm makes a copy of the histogram, then loops on all bins
6544/// of the old histogram to fill the extended histogram.
6545/// Takes into account errors (Sumw2) if any.
6546/// The algorithm works for 1-d, 2-D and 3-D histograms.
6547/// The axis must be extendable before invoking this function.
6548/// Ex:
6549///
6550/// ~~~ {.cpp}
6551/// h->GetXaxis()->SetCanExtend(kTRUE);
6552/// ~~~
6553
6554void TH1::ExtendAxis(Double_t x, TAxis *axis)
6555{
6556 if (!axis->CanExtend()) return;
6557 if (TMath::IsNaN(x)) { // x may be a NaN
6559 return;
6560 }
6561
6562 if (axis->GetXmin() >= axis->GetXmax()) return;
6563 if (axis->GetNbins() <= 0) return;
6564
6566 if (!FindNewAxisLimits(axis, x, xmin, xmax))
6567 return;
6568
6569 //save a copy of this histogram
6570 TH1 *hold = (TH1*)IsA()->New();
6571 hold->SetDirectory(nullptr);
6572 Copy(*hold);
6573 //set new axis limits
6574 axis->SetLimits(xmin,xmax);
6575
6576
6577 //now loop on all bins and refill
6579
6580 Reset("ICE"); //reset only Integral, contents and Errors
6581
6582 int iaxis = 0;
6583 if (axis == &fXaxis) iaxis = 1;
6584 if (axis == &fYaxis) iaxis = 2;
6585 if (axis == &fZaxis) iaxis = 3;
6586 bool firstw = kTRUE;
6587 Int_t binx,biny, binz = 0;
6588 Int_t ix = 0,iy = 0,iz = 0;
6589 Double_t bx,by,bz;
6590 Int_t ncells = hold->GetNcells();
6591 for (Int_t bin = 0; bin < ncells; ++bin) {
6592 hold->GetBinXYZ(bin,binx,biny,binz);
6593 bx = hold->GetXaxis()->GetBinCenter(binx);
6594 ix = fXaxis.FindFixBin(bx);
6595 if (fDimension > 1) {
6596 by = hold->GetYaxis()->GetBinCenter(biny);
6597 iy = fYaxis.FindFixBin(by);
6598 if (fDimension > 2) {
6599 bz = hold->GetZaxis()->GetBinCenter(binz);
6600 iz = fZaxis.FindFixBin(bz);
6601 }
6602 }
6603 // exclude underflow/overflow
6604 double content = hold->RetrieveBinContent(bin);
6605 if (content == 0) continue;
6606 if (IsBinUnderflow(bin,iaxis) || IsBinOverflow(bin,iaxis) ) {
6607 if (firstw) {
6608 Warning("ExtendAxis","Histogram %s has underflow or overflow in the axis that is extendable"
6609 " their content will be lost",GetName() );
6610 firstw= kFALSE;
6611 }
6612 continue;
6613 }
6614 Int_t ibin= GetBin(ix,iy,iz);
6616 if (errors) {
6617 fSumw2.fArray[ibin] += hold->GetBinErrorSqUnchecked(bin);
6618 }
6619 }
6620 delete hold;
6621}
6622
6623////////////////////////////////////////////////////////////////////////////////
6624/// Recursively remove object from the list of functions
6625
6627{
6628 // Rely on TROOT::RecursiveRemove to take the readlock.
6629
6630 if (fFunctions) {
6632 }
6633}
6634
6635////////////////////////////////////////////////////////////////////////////////
6636/// Multiply this histogram by a constant c1.
6637///
6638/// `this = c1*this`
6639///
6640/// Note that both contents and errors (if any) are scaled.
6641/// This function uses the services of TH1::Add
6642///
6643/// IMPORTANT NOTE: Sumw2() is called automatically when scaling.
6644/// If you are not interested in the histogram statistics you can call
6645/// Sumw2(kFALSE) or use the option "nosw2"
6646///
6647/// One can scale a histogram such that the bins integral is equal to
6648/// the normalization parameter via TH1::Scale(Double_t norm), where norm
6649/// is the desired normalization divided by the integral of the histogram.
6650///
6651/// If option contains "width" the bin contents and errors are divided
6652/// by the bin width.
6653
6655{
6656
6657 TString opt = option; opt.ToLower();
6658 // store bin errors when scaling since cannot anymore be computed as sqrt(N)
6659 if (!opt.Contains("nosw2") && GetSumw2N() == 0) Sumw2();
6660 if (opt.Contains("width")) Add(this, this, c1, -1);
6661 else {
6662 if (fBuffer) BufferEmpty(1);
6663 for(Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, c1 * RetrieveBinContent(i));
6664 if (fSumw2.fN) for(Int_t i = 0; i < fNcells; ++i) fSumw2.fArray[i] *= (c1 * c1); // update errors
6665 // update global histograms statistics
6666 Double_t s[kNstat] = {0};
6667 GetStats(s);
6668 for (Int_t i=0 ; i < kNstat; i++) {
6669 if (i == 1) s[i] = c1*c1*s[i];
6670 else s[i] = c1*s[i];
6671 }
6672 PutStats(s);
6673 SetMinimum(); SetMaximum(); // minimum and maximum value will be recalculated the next time
6674 }
6675
6676 // if contours set, must also scale contours
6678 if (ncontours == 0) return;
6680 for (Int_t i = 0; i < ncontours; ++i) levels[i] *= c1;
6681}
6682
6683////////////////////////////////////////////////////////////////////////////////
6684/// Returns true if all axes are extendable.
6685
6687{
6689 if (GetDimension() > 1) canExtend &= fYaxis.CanExtend();
6690 if (GetDimension() > 2) canExtend &= fZaxis.CanExtend();
6691
6692 return canExtend;
6693}
6694
6695////////////////////////////////////////////////////////////////////////////////
6696/// Make the histogram axes extendable / not extendable according to the bit mask
6697/// returns the previous bit mask specifying which axes are extendable
6698
6700{
6702
6706
6707 if (GetDimension() > 1) {
6711 }
6712
6713 if (GetDimension() > 2) {
6717 }
6718
6719 return oldExtendBitMask;
6720}
6721
6722///////////////////////////////////////////////////////////////////////////////
6723/// Internal function used in TH1::Fill to see which axis is full alphanumeric,
6724/// i.e. can be extended and is alphanumeric
6726{
6730 bitMask |= kYaxis;
6732 bitMask |= kZaxis;
6733
6734 return bitMask;
6735}
6736
6737////////////////////////////////////////////////////////////////////////////////
6738/// Static function to set the default buffer size for automatic histograms.
6739/// When a histogram is created with one of its axis lower limit greater
6740/// or equal to its upper limit, the function SetBuffer is automatically
6741/// called with the default buffer size.
6742
6744{
6745 fgBufferSize = bufsize > 0 ? bufsize : 0;
6746}
6747
6748////////////////////////////////////////////////////////////////////////////////
6749/// When this static function is called with `sumw2=kTRUE`, all new
6750/// histograms will automatically activate the storage
6751/// of the sum of squares of errors, ie TH1::Sumw2 is automatically called.
6752
6754{
6756}
6757
6758////////////////////////////////////////////////////////////////////////////////
6759/// Change/set the title.
6760///
6761/// If title is in the form `stringt;stringx;stringy;stringz`
6762/// the histogram title is set to `stringt`, the x axis title to `stringx`,
6763/// the y axis title to `stringy`, and the z axis title to `stringz`.
6764///
6765/// To insert the character `;` in one of the titles, one should use `#;`
6766/// or `#semicolon`.
6767
6768void TH1::SetTitle(const char *title)
6769{
6770 fTitle = title;
6771 fTitle.ReplaceAll("#;",2,"#semicolon",10);
6772
6773 // Decode fTitle. It may contain X, Y and Z titles
6775 Int_t isc = str1.Index(";");
6776 Int_t lns = str1.Length();
6777
6778 if (isc >=0 ) {
6779 fTitle = str1(0,isc);
6780 str1 = str1(isc+1, lns);
6781 isc = str1.Index(";");
6782 if (isc >=0 ) {
6783 str2 = str1(0,isc);
6784 str2.ReplaceAll("#semicolon",10,";",1);
6785 fXaxis.SetTitle(str2.Data());
6786 lns = str1.Length();
6787 str1 = str1(isc+1, lns);
6788 isc = str1.Index(";");
6789 if (isc >=0 ) {
6790 str2 = str1(0,isc);
6791 str2.ReplaceAll("#semicolon",10,";",1);
6792 fYaxis.SetTitle(str2.Data());
6793 lns = str1.Length();
6794 str1 = str1(isc+1, lns);
6795 str1.ReplaceAll("#semicolon",10,";",1);
6796 fZaxis.SetTitle(str1.Data());
6797 } else {
6798 str1.ReplaceAll("#semicolon",10,";",1);
6799 fYaxis.SetTitle(str1.Data());
6800 }
6801 } else {
6802 str1.ReplaceAll("#semicolon",10,";",1);
6803 fXaxis.SetTitle(str1.Data());
6804 }
6805 }
6806
6807 fTitle.ReplaceAll("#semicolon",10,";",1);
6808
6809 if (gPad && TestBit(kMustCleanup)) gPad->Modified();
6810}
6811
6812////////////////////////////////////////////////////////////////////////////////
6813/// Smooth array xx, translation of Hbook routine `hsmoof.F`.
6814/// Based on algorithm 353QH twice presented by J. Friedman
6815/// in [Proc. of the 1974 CERN School of Computing, Norway, 11-24 August, 1974](https://cds.cern.ch/record/186223).
6816/// See also Section 4.2 in [J. Friedman, Data Analysis Techniques for High Energy Physics](https://www.slac.stanford.edu/pubs/slacreports/reports16/slac-r-176.pdf).
6817
6819{
6820 if (nn < 3 ) {
6821 ::Error("SmoothArray","Need at least 3 points for smoothing: n = %d",nn);
6822 return;
6823 }
6824
6825 Int_t ii;
6826 std::array<double, 3> hh{};
6827
6828 std::vector<double> yy(nn);
6829 std::vector<double> zz(nn);
6830 std::vector<double> rr(nn);
6831
6832 for (Int_t pass=0;pass<ntimes;pass++) {
6833 // first copy original data into temp array
6834 std::copy(xx, xx+nn, zz.begin() );
6835
6836 for (int noent = 0; noent < 2; ++noent) { // run algorithm two times
6837
6838 // do 353 i.e. running median 3, 5, and 3 in a single loop
6839 for (int kk = 0; kk < 3; kk++) {
6840 std::copy(zz.begin(), zz.end(), yy.begin());
6841 int medianType = (kk != 1) ? 3 : 5;
6842 int ifirst = (kk != 1 ) ? 1 : 2;
6843 int ilast = (kk != 1 ) ? nn-1 : nn -2;
6844 //nn2 = nn - ik - 1;
6845 // do all elements beside the first and last point for median 3
6846 // and first two and last 2 for median 5
6847 for ( ii = ifirst; ii < ilast; ii++) {
6848 zz[ii] = TMath::Median(medianType, yy.data() + ii - ifirst);
6849 }
6850
6851 if (kk == 0) { // first median 3
6852 // first point
6853 hh[0] = zz[1];
6854 hh[1] = zz[0];
6855 hh[2] = 3*zz[1] - 2*zz[2];
6856 zz[0] = TMath::Median(3, hh.data());
6857 // last point
6858 hh[0] = zz[nn - 2];
6859 hh[1] = zz[nn - 1];
6860 hh[2] = 3*zz[nn - 2] - 2*zz[nn - 3];
6861 zz[nn - 1] = TMath::Median(3, hh.data());
6862 }
6863
6864 if (kk == 1) { // median 5
6865 // second point with window length 3
6866 zz[1] = TMath::Median(3, yy.data());
6867 // second-to-last point with window length 3
6868 zz[nn - 2] = TMath::Median(3, yy.data() + nn - 3);
6869 }
6870
6871 // In the third iteration (kk == 2), the first and last point stay
6872 // the same (see paper linked in the documentation).
6873 }
6874
6875 std::copy ( zz.begin(), zz.end(), yy.begin() );
6876
6877 // quadratic interpolation for flat segments
6878 for (ii = 2; ii < (nn - 2); ii++) {
6879 if (zz[ii - 1] != zz[ii]) continue;
6880 if (zz[ii] != zz[ii + 1]) continue;
6881 const double tmp0 = zz[ii - 2] - zz[ii];
6882 const double tmp1 = zz[ii + 2] - zz[ii];
6883 if (tmp0 * tmp1 <= 0) continue;
6884 int jk = 1;
6885 if ( std::abs(tmp1) > std::abs(tmp0) ) jk = -1;
6886 yy[ii] = -0.5*zz[ii - 2*jk] + zz[ii]/0.75 + zz[ii + 2*jk] /6.;
6887 yy[ii + jk] = 0.5*(zz[ii + 2*jk] - zz[ii - 2*jk]) + zz[ii];
6888 }
6889
6890 // running means
6891 //std::copy(zz.begin(), zz.end(), yy.begin());
6892 for (ii = 1; ii < nn - 1; ii++) {
6893 zz[ii] = 0.25*yy[ii - 1] + 0.5*yy[ii] + 0.25*yy[ii + 1];
6894 }
6895 zz[0] = yy[0];
6896 zz[nn - 1] = yy[nn - 1];
6897
6898 if (noent == 0) {
6899
6900 // save computed values
6901 std::copy(zz.begin(), zz.end(), rr.begin());
6902
6903 // COMPUTE residuals
6904 for (ii = 0; ii < nn; ii++) {
6905 zz[ii] = xx[ii] - zz[ii];
6906 }
6907 }
6908
6909 } // end loop on noent
6910
6911
6912 double xmin = TMath::MinElement(nn,xx);
6913 for (ii = 0; ii < nn; ii++) {
6914 if (xmin < 0) xx[ii] = rr[ii] + zz[ii];
6915 // make smoothing defined positive - not better using 0 ?
6916 else xx[ii] = std::max((rr[ii] + zz[ii]),0.0 );
6917 }
6918 }
6919}
6920
6921////////////////////////////////////////////////////////////////////////////////
6922/// Smooth bin contents of this histogram.
6923/// if option contains "R" smoothing is applied only to the bins
6924/// defined in the X axis range (default is to smooth all bins)
6925/// Bin contents are replaced by their smooth values.
6926/// Errors (if any) are not modified.
6927/// the smoothing procedure is repeated ntimes (default=1)
6928
6930{
6931 if (fDimension != 1) {
6932 Error("Smooth","Smooth only supported for 1-d histograms");
6933 return;
6934 }
6935 Int_t nbins = fXaxis.GetNbins();
6936 if (nbins < 3) {
6937 Error("Smooth","Smooth only supported for histograms with >= 3 bins. Nbins = %d",nbins);
6938 return;
6939 }
6940
6941 // delete buffer if it is there since it will become invalid
6942 if (fBuffer) BufferEmpty(1);
6943
6944 Int_t firstbin = 1, lastbin = nbins;
6945 TString opt = option;
6946 opt.ToLower();
6947 if (opt.Contains("r")) {
6950 }
6951 nbins = lastbin - firstbin + 1;
6952 Double_t *xx = new Double_t[nbins];
6954 Int_t i;
6955 for (i=0;i<nbins;i++) {
6957 }
6958
6959 TH1::SmoothArray(nbins,xx,ntimes);
6960
6961 for (i=0;i<nbins;i++) {
6963 }
6964 fEntries = nent;
6965 delete [] xx;
6966
6967 if (gPad) gPad->Modified();
6968}
6969
6970////////////////////////////////////////////////////////////////////////////////
6971/// if flag=kTRUE, underflows and overflows are used by the Fill functions
6972/// in the computation of statistics (mean value, StdDev).
6973/// By default, underflows or overflows are not used.
6974
6976{
6978}
6979
6980////////////////////////////////////////////////////////////////////////////////
6981/// Stream a class object.
6982
6983void TH1::Streamer(TBuffer &b)
6984{
6985 if (b.IsReading()) {
6986 UInt_t R__s, R__c;
6987 Version_t R__v = b.ReadVersion(&R__s, &R__c);
6988 if (fDirectory) fDirectory->Remove(this);
6989 fDirectory = nullptr;
6990 if (R__v > 2) {
6991 b.ReadClassBuffer(TH1::Class(), this, R__v, R__s, R__c);
6992
6994 fXaxis.SetParent(this);
6995 fYaxis.SetParent(this);
6996 fZaxis.SetParent(this);
6997 TIter next(fFunctions);
6998 TObject *obj;
6999 while ((obj=next())) {
7000 if (obj->InheritsFrom(TF1::Class())) ((TF1*)obj)->SetParent(this);
7001 }
7002 return;
7003 }
7004 //process old versions before automatic schema evolution
7009 b >> fNcells;
7010 fXaxis.Streamer(b);
7011 fYaxis.Streamer(b);
7012 fZaxis.Streamer(b);
7013 fXaxis.SetParent(this);
7014 fYaxis.SetParent(this);
7015 fZaxis.SetParent(this);
7016 b >> fBarOffset;
7017 b >> fBarWidth;
7018 b >> fEntries;
7019 b >> fTsumw;
7020 b >> fTsumw2;
7021 b >> fTsumwx;
7022 b >> fTsumwx2;
7023 if (R__v < 2) {
7025 Float_t *contour=nullptr;
7026 b >> maximum; fMaximum = maximum;
7027 b >> minimum; fMinimum = minimum;
7028 b >> norm; fNormFactor = norm;
7029 Int_t n = b.ReadArray(contour);
7030 fContour.Set(n);
7031 for (Int_t i=0;i<n;i++) fContour.fArray[i] = contour[i];
7032 delete [] contour;
7033 } else {
7034 b >> fMaximum;
7035 b >> fMinimum;
7036 b >> fNormFactor;
7038 }
7039 fSumw2.Streamer(b);
7041 fFunctions->Delete();
7043 b.CheckByteCount(R__s, R__c, TH1::IsA());
7044
7045 } else {
7046 b.WriteClassBuffer(TH1::Class(),this);
7047 }
7048}
7049
7050////////////////////////////////////////////////////////////////////////////////
7051/// Print some global quantities for this histogram.
7052/// \param[in] option
7053/// - "base" is given, number of bins and ranges are also printed
7054/// - "range" is given, bin contents and errors are also printed
7055/// for all bins in the current range (default 1-->nbins)
7056/// - "all" is given, bin contents and errors are also printed
7057/// for all bins including under and overflows.
7058
7059void TH1::Print(Option_t *option) const
7060{
7061 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7062 printf( "TH1.Print Name = %s, Entries= %d, Total sum= %g\n",GetName(),Int_t(fEntries),GetSumOfWeights());
7063 TString opt = option;
7064 opt.ToLower();
7065 Int_t all;
7066 if (opt.Contains("all")) all = 0;
7067 else if (opt.Contains("range")) all = 1;
7068 else if (opt.Contains("base")) all = 2;
7069 else return;
7070
7071 Int_t bin, binx, biny, binz;
7073 if (all == 0) {
7074 lastx = fXaxis.GetNbins()+1;
7075 if (fDimension > 1) lasty = fYaxis.GetNbins()+1;
7076 if (fDimension > 2) lastz = fZaxis.GetNbins()+1;
7077 } else {
7079 if (fDimension > 1) {firsty = fYaxis.GetFirst(); lasty = fYaxis.GetLast();}
7080 if (fDimension > 2) {firstz = fZaxis.GetFirst(); lastz = fZaxis.GetLast();}
7081 }
7082
7083 if (all== 2) {
7084 printf(" Title = %s\n", GetTitle());
7085 printf(" NbinsX= %d, xmin= %g, xmax=%g", fXaxis.GetNbins(), fXaxis.GetXmin(), fXaxis.GetXmax());
7086 if( fDimension > 1) printf(", NbinsY= %d, ymin= %g, ymax=%g", fYaxis.GetNbins(), fYaxis.GetXmin(), fYaxis.GetXmax());
7087 if( fDimension > 2) printf(", NbinsZ= %d, zmin= %g, zmax=%g", fZaxis.GetNbins(), fZaxis.GetXmin(), fZaxis.GetXmax());
7088 printf("\n");
7089 return;
7090 }
7091
7092 Double_t w,e;
7093 Double_t x,y,z;
7094 if (fDimension == 1) {
7095 for (binx=firstx;binx<=lastx;binx++) {
7098 e = GetBinError(binx);
7099 if(fSumw2.fN) printf(" fSumw[%d]=%g, x=%g, error=%g\n",binx,w,x,e);
7100 else printf(" fSumw[%d]=%g, x=%g\n",binx,w,x);
7101 }
7102 }
7103 if (fDimension == 2) {
7104 for (biny=firsty;biny<=lasty;biny++) {
7106 for (binx=firstx;binx<=lastx;binx++) {
7107 bin = GetBin(binx,biny);
7109 w = RetrieveBinContent(bin);
7110 e = GetBinError(bin);
7111 if(fSumw2.fN) printf(" fSumw[%d][%d]=%g, x=%g, y=%g, error=%g\n",binx,biny,w,x,y,e);
7112 else printf(" fSumw[%d][%d]=%g, x=%g, y=%g\n",binx,biny,w,x,y);
7113 }
7114 }
7115 }
7116 if (fDimension == 3) {
7117 for (binz=firstz;binz<=lastz;binz++) {
7119 for (biny=firsty;biny<=lasty;biny++) {
7121 for (binx=firstx;binx<=lastx;binx++) {
7122 bin = GetBin(binx,biny,binz);
7124 w = RetrieveBinContent(bin);
7125 e = GetBinError(bin);
7126 if(fSumw2.fN) printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g, error=%g\n",binx,biny,binz,w,x,y,z,e);
7127 else printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g\n",binx,biny,binz,w,x,y,z);
7128 }
7129 }
7130 }
7131 }
7132}
7133
7134////////////////////////////////////////////////////////////////////////////////
7135/// Using the current bin info, recompute the arrays for contents and errors
7136
7137void TH1::Rebuild(Option_t *)
7138{
7139 SetBinsLength();
7140 if (fSumw2.fN) {
7142 }
7143}
7144
7145////////////////////////////////////////////////////////////////////////////////
7146/// Reset this histogram: contents, errors, etc.
7147/// \param[in] option
7148/// - if "ICE" is specified, resets only Integral, Contents and Errors.
7149/// - if "ICES" is specified, resets only Integral, Contents, Errors and Statistics
7150/// This option is used
7151/// - if "M" is specified, resets also Minimum and Maximum
7152
7154{
7155 // The option "ICE" is used when extending the histogram (in ExtendAxis, LabelInflate, etc..)
7156 // The option "ICES is used in combination with the buffer (see BufferEmpty and BufferFill)
7157
7158 TString opt = option;
7159 opt.ToUpper();
7160 fSumw2.Reset();
7161 if (fIntegral) {
7162 delete [] fIntegral;
7163 fIntegral = nullptr;
7164 }
7165
7166 if (opt.Contains("M")) {
7167 SetMinimum();
7168 SetMaximum();
7169 }
7170
7171 if (opt.Contains("ICE") && !opt.Contains("S")) return;
7172
7173 // Setting fBuffer[0] = 0 is like resetting the buffer but not deleting it
7174 // But what is the sense of calling BufferEmpty() ? For making the axes ?
7175 // BufferEmpty will update contents that later will be
7176 // reset in calling TH1D::Reset. For this we need to reset the stats afterwards
7177 // It may be needed for computing the axis limits....
7178 if (fBuffer) {BufferEmpty(); fBuffer[0] = 0;}
7179
7180 // need to reset also the statistics
7181 // (needs to be done after calling BufferEmpty() )
7182 fTsumw = 0;
7183 fTsumw2 = 0;
7184 fTsumwx = 0;
7185 fTsumwx2 = 0;
7186 fEntries = 0;
7187
7188 if (opt == "ICES") return;
7189
7190
7191 TObject *stats = fFunctions->FindObject("stats");
7192 fFunctions->Remove(stats);
7193 //special logic to support the case where the same object is
7194 //added multiple times in fFunctions.
7195 //This case happens when the same object is added with different
7196 //drawing modes
7197 TObject *obj;
7198 while ((obj = fFunctions->First())) {
7199 while(fFunctions->Remove(obj)) { }
7200 delete obj;
7201 }
7202 if(stats) fFunctions->Add(stats);
7203 fContour.Set(0);
7204}
7205
7206////////////////////////////////////////////////////////////////////////////////
7207/// Save the histogram as .csv, .tsv or .txt. In case of any other extension, fall
7208/// back to TObject::SaveAs, which saves as a .C macro (but with the file name
7209/// extension specified by the user)
7210///
7211/// The Under/Overflow bins are also exported (as first and last lines)
7212/// The fist 2 columns are the lower and upper edges of the bins
7213/// Column 3 contains the bin contents
7214/// The last column contains the error in y. If errors are not present, the column
7215/// is left empty
7216///
7217/// The result can be immediately imported into Excel, gnuplot, Python or whatever,
7218/// without the needing to install pyroot, etc.
7219///
7220/// \param filename the name of the file where to store the histogram
7221/// \param option some tuning options
7222///
7223/// The file extension defines the delimiter used:
7224/// - `.csv` : comma
7225/// - `.tsv` : tab
7226/// - `.txt` : space
7227///
7228/// If option = "title" a title line is generated. If the y-axis has a title,
7229/// this title is displayed as column 3 name, otherwise, it shows "BinContent"
7230
7231void TH1::SaveAs(const char *filename, Option_t *option) const
7232{
7233 char del = '\0';
7234 TString ext = "";
7236 TString opt = option;
7237
7238 if (filename) {
7239 if (fname.EndsWith(".csv")) {
7240 del = ',';
7241 ext = "csv";
7242 } else if (fname.EndsWith(".tsv")) {
7243 del = '\t';
7244 ext = "tsv";
7245 } else if (fname.EndsWith(".txt")) {
7246 del = ' ';
7247 ext = "txt";
7248 }
7249 }
7250 if (!del) {
7252 return;
7253 }
7254 std::ofstream out;
7255 out.open(filename, std::ios::out);
7256 if (!out.good()) {
7257 Error("SaveAs", "cannot open file: %s", filename);
7258 return;
7259 }
7260 if (opt.Contains("title")) {
7261 if (std::strcmp(GetYaxis()->GetTitle(), "") == 0) {
7262 out << "# " << "BinLowEdge" << del << "BinUpEdge" << del
7263 << "BinContent"
7264 << del << "ey" << std::endl;
7265 } else {
7266 out << "# " << "BinLowEdge" << del << "BinUpEdge" << del << GetYaxis()->GetTitle() << del << "ey" << std::endl;
7267 }
7268 }
7269 if (fSumw2.fN) {
7270 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
7271 out << GetXaxis()->GetBinLowEdge(i) << del << GetXaxis()->GetBinUpEdge(i) << del << GetBinContent(i) << del
7272 << GetBinError(i) << std::endl;
7273 }
7274 } else {
7275 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
7276 out << GetXaxis()->GetBinLowEdge(i) << del << GetXaxis()->GetBinUpEdge(i) << del << GetBinContent(i) << del
7277 << std::endl;
7278 }
7279 }
7280 out.close();
7281 Info("SaveAs", "%s file: %s has been generated", ext.Data(), filename);
7282}
7283
7284////////////////////////////////////////////////////////////////////////////////
7285/// Provide variable name for histogram for saving as primitive
7286/// Histogram pointer has by default the histogram name with an incremental suffix.
7287/// If the histogram belongs to a graph or a stack the suffix is not added because
7288/// the graph and stack objects are not aware of this new name. Same thing if
7289/// the histogram is drawn with the option COLZ because the TPaletteAxis drawn
7290/// when this option is selected, does not know this new name either.
7291
7293{
7294 thread_local Int_t storeNumber = 0;
7295
7296 TString opt = option;
7297 opt.ToLower();
7298 TString histName = GetName();
7299 // for TProfile and TH2Poly also fDirectory should be tested
7300 if (!histName.Contains("Graph") && !histName.Contains("_stack_") && !opt.Contains("colz") &&
7301 (!testfdir || !fDirectory)) {
7302 storeNumber++;
7303 histName += "__";
7304 histName += storeNumber;
7305 }
7306 if (histName.IsNull())
7307 histName = "unnamed";
7308 return gInterpreter->MapCppName(histName);
7309}
7310
7311////////////////////////////////////////////////////////////////////////////////
7312/// Save primitive as a C++ statement(s) on output stream out
7313
7314void TH1::SavePrimitive(std::ostream &out, Option_t *option /*= ""*/)
7315{
7316 // empty the buffer before if it exists
7317 if (fBuffer)
7318 BufferEmpty();
7319
7321
7324 SetName(hname);
7325
7326 out <<" \n";
7327
7328 // Check if the histogram has equidistant X bins or not. If not, we
7329 // create an array holding the bins.
7330 if (GetXaxis()->GetXbins()->fN && GetXaxis()->GetXbins()->fArray)
7331 sxaxis = SavePrimitiveVector(out, hname + "_x", GetXaxis()->GetXbins()->fN, GetXaxis()->GetXbins()->fArray);
7332 // If the histogram is 2 or 3 dimensional, check if the histogram
7333 // has equidistant Y bins or not. If not, we create an array
7334 // holding the bins.
7335 if (fDimension > 1 && GetYaxis()->GetXbins()->fN && GetYaxis()->GetXbins()->fArray)
7336 syaxis = SavePrimitiveVector(out, hname + "_y", GetYaxis()->GetXbins()->fN, GetYaxis()->GetXbins()->fArray);
7337 // IF the histogram is 3 dimensional, check if the histogram
7338 // has equidistant Z bins or not. If not, we create an array
7339 // holding the bins.
7340 if (fDimension > 2 && GetZaxis()->GetXbins()->fN && GetZaxis()->GetXbins()->fArray)
7341 szaxis = SavePrimitiveVector(out, hname + "_z", GetZaxis()->GetXbins()->fN, GetZaxis()->GetXbins()->fArray);
7342
7343 const auto old_precision{out.precision()};
7344 constexpr auto max_precision{std::numeric_limits<double>::digits10 + 1};
7345 out << std::setprecision(max_precision);
7346
7347 out << " " << ClassName() << " *" << hname << " = new " << ClassName() << "(\"" << hname << "\", \""
7348 << TString(GetTitle()).ReplaceSpecialCppChars() << "\", " << GetXaxis()->GetNbins();
7349 if (!sxaxis.IsNull())
7350 out << ", " << sxaxis << ".data()";
7351 else
7352 out << ", " << GetXaxis()->GetXmin() << ", " << GetXaxis()->GetXmax();
7353 if (fDimension > 1) {
7354 out << ", " << GetYaxis()->GetNbins();
7355 if (!syaxis.IsNull())
7356 out << ", " << syaxis << ".data()";
7357 else
7358 out << ", " << GetYaxis()->GetXmin() << ", " << GetYaxis()->GetXmax();
7359 }
7360 if (fDimension > 2) {
7361 out << ", " << GetZaxis()->GetNbins();
7362 if (!szaxis.IsNull())
7363 out << ", " << szaxis << ".data()";
7364 else
7365 out << ", " << GetZaxis()->GetXmin() << ", " << GetZaxis()->GetXmax();
7366 }
7367 out << ");\n";
7368
7370 Int_t numbins = 0, numerrors = 0;
7371
7372 std::vector<Double_t> content(fNcells), errors(save_errors ? fNcells : 0);
7373 for (Int_t bin = 0; bin < fNcells; bin++) {
7374 content[bin] = RetrieveBinContent(bin);
7375 if (content[bin])
7376 numbins++;
7377 if (save_errors) {
7378 errors[bin] = GetBinError(bin);
7379 if (errors[bin])
7380 numerrors++;
7381 }
7382 }
7383
7384 if ((numbins < 100) && (numerrors < 100)) {
7385 // in case of few non-empty bins store them as before
7386 for (Int_t bin = 0; bin < fNcells; bin++) {
7387 if (content[bin])
7388 out << " " << hname << "->SetBinContent(" << bin << "," << content[bin] << ");\n";
7389 }
7390 if (save_errors)
7391 for (Int_t bin = 0; bin < fNcells; bin++) {
7392 if (errors[bin])
7393 out << " " << hname << "->SetBinError(" << bin << "," << errors[bin] << ");\n";
7394 }
7395 } else {
7396 if (numbins > 0) {
7398 out << " for (Int_t bin = 0; bin < " << fNcells << "; bin++)\n";
7399 out << " if (" << vectname << "[bin])\n";
7400 out << " " << hname << "->SetBinContent(bin, " << vectname << "[bin]);\n";
7401 }
7402 if (numerrors > 0) {
7404 out << " for (Int_t bin = 0; bin < " << fNcells << "; bin++)\n";
7405 out << " if (" << vectname << "[bin])\n";
7406 out << " " << hname << "->SetBinError(bin, " << vectname << "[bin]);\n";
7407 }
7408 }
7409
7411 out << std::setprecision(old_precision);
7412 SetName(savedName.Data());
7413}
7414
7415////////////////////////////////////////////////////////////////////////////////
7416/// Helper function for the SavePrimitive functions from TH1
7417/// or classes derived from TH1, eg TProfile, TProfile2D.
7418
7419void TH1::SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option /*= ""*/)
7420{
7421 if (TMath::Abs(GetBarOffset()) > 1e-5)
7422 out << " " << hname << "->SetBarOffset(" << GetBarOffset() << ");\n";
7423 if (TMath::Abs(GetBarWidth() - 1) > 1e-5)
7424 out << " " << hname << "->SetBarWidth(" << GetBarWidth() << ");\n";
7425 if (fMinimum != -1111)
7426 out << " " << hname << "->SetMinimum(" << fMinimum << ");\n";
7427 if (fMaximum != -1111)
7428 out << " " << hname << "->SetMaximum(" << fMaximum << ");\n";
7429 if (fNormFactor != 0)
7430 out << " " << hname << "->SetNormFactor(" << fNormFactor << ");\n";
7431 if (fEntries != 0)
7432 out << " " << hname << "->SetEntries(" << fEntries << ");\n";
7433 if (!fDirectory)
7434 out << " " << hname << "->SetDirectory(nullptr);\n";
7435 if (TestBit(kNoStats))
7436 out << " " << hname << "->SetStats(0);\n";
7437 if (fOption.Length() != 0)
7438 out << " " << hname << "->SetOption(\n" << TString(fOption).ReplaceSpecialCppChars() << "\");\n";
7439
7440 // save contour levels
7442 if (ncontours > 0) {
7444 if (TestBit(kUserContour)) {
7445 std::vector<Double_t> levels(ncontours);
7446 for (Int_t bin = 0; bin < ncontours; bin++)
7447 levels[bin] = GetContourLevel(bin);
7449 }
7450 out << " " << hname << "->SetContour(" << ncontours;
7451 if (!vectname.IsNull())
7452 out << ", " << vectname << ".data()";
7453 out << ");\n";
7454 }
7455
7457
7458 // save attributes
7459 SaveFillAttributes(out, hname, 0, 1001);
7460 SaveLineAttributes(out, hname, 1, 1, 1);
7461 SaveMarkerAttributes(out, hname, 1, 1, 1);
7462 fXaxis.SaveAttributes(out, hname, "->GetXaxis()");
7463 fYaxis.SaveAttributes(out, hname, "->GetYaxis()");
7464 fZaxis.SaveAttributes(out, hname, "->GetZaxis()");
7465
7467}
7468
7469////////////////////////////////////////////////////////////////////////////////
7470/// Save list of functions
7471/// Also can be used by TGraph classes
7472
7473void TH1::SavePrimitiveFunctions(std::ostream &out, const char *varname, TList *lst)
7474{
7475 thread_local Int_t funcNumber = 0;
7476
7477 TObjLink *lnk = lst ? lst->FirstLink() : nullptr;
7478 while (lnk) {
7479 auto obj = lnk->GetObject();
7480 obj->SavePrimitive(out, TString::Format("nodraw #%d\n", ++funcNumber).Data());
7481 TString objvarname = obj->GetName();
7483 if (obj->InheritsFrom(TF1::Class())) {
7485 objvarname = gInterpreter->MapCppName(objvarname);
7486 out << " " << objvarname << "->SetParent(" << varname << ");\n";
7487 } else if (obj->InheritsFrom("TPaveStats")) {
7488 objvarname = "ptstats";
7489 withopt = kFALSE; // pave stats preserve own draw options
7490 out << " " << objvarname << "->SetParent(" << varname << ");\n";
7491 } else if (obj->InheritsFrom("TPolyMarker")) {
7492 objvarname = "pmarker";
7493 }
7494
7495 out << " " << varname << "->GetListOfFunctions()->Add(" << objvarname;
7496 if (withopt)
7497 out << ",\"" << TString(lnk->GetOption()).ReplaceSpecialCppChars() << "\"";
7498 out << ");\n";
7499
7500 lnk = lnk->Next();
7501 }
7502}
7503
7504////////////////////////////////////////////////////////////////////////////////
7545 }
7546}
7547
7548////////////////////////////////////////////////////////////////////////////////
7549/// For axis = 1,2 or 3 returns the mean value of the histogram along
7550/// X,Y or Z axis.
7551///
7552/// For axis = 11, 12, 13 returns the standard error of the mean value
7553/// of the histogram along X, Y or Z axis
7554///
7555/// Note that the mean value/StdDev is computed using the bins in the currently
7556/// defined range (see TAxis::SetRange). By default the range includes
7557/// all bins from 1 to nbins included, excluding underflows and overflows.
7558/// To force the underflows and overflows in the computation, one must
7559/// call the static function TH1::StatOverflows(kTRUE) before filling
7560/// the histogram.
7561///
7562/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7563/// are calculated. By default, if no range has been set, the returned mean is
7564/// the (unbinned) one calculated at fill time. If a range has been set, however,
7565/// the mean is calculated using the bins in range, as described above; THIS
7566/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7567/// the range. To ensure that the returned mean (and all other statistics) is
7568/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7569/// See TH1::GetStats.
7570///
7571/// Return mean value of this histogram along the X axis.
7572
7573Double_t TH1::GetMean(Int_t axis) const
7574{
7575 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7576 Double_t stats[kNstat];
7577 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7578 GetStats(stats);
7579 if (stats[0] == 0) return 0;
7580 if (axis<4){
7581 Int_t ax[3] = {2,4,7};
7582 return stats[ax[axis-1]]/stats[0];
7583 } else {
7584 // mean error = StdDev / sqrt( Neff )
7585 Double_t stddev = GetStdDev(axis-10);
7587 return ( neff > 0 ? stddev/TMath::Sqrt(neff) : 0. );
7588 }
7589}
7590
7591////////////////////////////////////////////////////////////////////////////////
7592/// Return standard error of mean of this histogram along the X axis.
7593///
7594/// Note that the mean value/StdDev is computed using the bins in the currently
7595/// defined range (see TAxis::SetRange). By default the range includes
7596/// all bins from 1 to nbins included, excluding underflows and overflows.
7597/// To force the underflows and overflows in the computation, one must
7598/// call the static function TH1::StatOverflows(kTRUE) before filling
7599/// the histogram.
7600///
7601/// Also note, that although the definition of standard error doesn't include the
7602/// assumption of normality, many uses of this feature implicitly assume it.
7603///
7604/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7605/// are calculated. By default, if no range has been set, the returned value is
7606/// the (unbinned) one calculated at fill time. If a range has been set, however,
7607/// the value is calculated using the bins in range, as described above; THIS
7608/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7609/// the range. To ensure that the returned value (and all other statistics) is
7610/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7611/// See TH1::GetStats.
7612
7614{
7615 return GetMean(axis+10);
7616}
7617
7618////////////////////////////////////////////////////////////////////////////////
7619/// Returns the Standard Deviation (Sigma).
7620/// The Sigma estimate is computed as
7621/// \f[
7622/// \sqrt{\frac{1}{N}(\sum(x_i-x_{mean})^2)}
7623/// \f]
7624/// For axis = 1,2 or 3 returns the Sigma value of the histogram along
7625/// X, Y or Z axis
7626/// For axis = 11, 12 or 13 returns the error of StdDev estimation along
7627/// X, Y or Z axis for Normal distribution
7628///
7629/// Note that the mean value/sigma is computed using the bins in the currently
7630/// defined range (see TAxis::SetRange). By default the range includes
7631/// all bins from 1 to nbins included, excluding underflows and overflows.
7632/// To force the underflows and overflows in the computation, one must
7633/// call the static function TH1::StatOverflows(kTRUE) before filling
7634/// the histogram.
7635///
7636/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7637/// are calculated. By default, if no range has been set, the returned standard
7638/// deviation is the (unbinned) one calculated at fill time. If a range has been
7639/// set, however, the standard deviation is calculated using the bins in range,
7640/// as described above; THIS IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use
7641/// TAxis::SetRange(0, 0) to unset the range. To ensure that the returned standard
7642/// deviation (and all other statistics) is always that of the binned data stored
7643/// in the histogram, call TH1::ResetStats. See TH1::GetStats.
7644
7645Double_t TH1::GetStdDev(Int_t axis) const
7646{
7647 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7648
7649 Double_t x, stddev2, stats[kNstat];
7650 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7651 GetStats(stats);
7652 if (stats[0] == 0) return 0;
7653 Int_t ax[3] = {2,4,7};
7654 Int_t axm = ax[axis%10 - 1];
7655 x = stats[axm]/stats[0];
7656 // for negative stddev (e.g. when having negative weights) - return stdev=0
7657 stddev2 = TMath::Max( stats[axm+1]/stats[0] -x*x, 0.0 );
7658 if (axis<10)
7659 return TMath::Sqrt(stddev2);
7660 else {
7661 // The right formula for StdDev error depends on 4th momentum (see Kendall-Stuart Vol 1 pag 243)
7662 // formula valid for only gaussian distribution ( 4-th momentum = 3 * sigma^4 )
7664 return ( neff > 0 ? TMath::Sqrt(stddev2/(2*neff) ) : 0. );
7665 }
7666}
7667
7668////////////////////////////////////////////////////////////////////////////////
7669/// Return error of standard deviation estimation for Normal distribution
7670///
7671/// Note that the mean value/StdDev is computed using the bins in the currently
7672/// defined range (see TAxis::SetRange). By default the range includes
7673/// all bins from 1 to nbins included, excluding underflows and overflows.
7674/// To force the underflows and overflows in the computation, one must
7675/// call the static function TH1::StatOverflows(kTRUE) before filling
7676/// the histogram.
7677///
7678/// Value returned is standard deviation of sample standard deviation.
7679/// Note that it is an approximated value which is valid only in the case that the
7680/// original data distribution is Normal. The correct one would require
7681/// the 4-th momentum value, which cannot be accurately estimated from a histogram since
7682/// the x-information for all entries is not kept.
7683///
7684/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7685/// are calculated. By default, if no range has been set, the returned value is
7686/// the (unbinned) one calculated at fill time. If a range has been set, however,
7687/// the value is calculated using the bins in range, as described above; THIS
7688/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7689/// the range. To ensure that the returned value (and all other statistics) is
7690/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7691/// See TH1::GetStats.
7692
7694{
7695 return GetStdDev(axis+10);
7696}
7697
7698////////////////////////////////////////////////////////////////////////////////
7699/// - For axis = 1, 2 or 3 returns skewness of the histogram along x, y or z axis.
7700/// - For axis = 11, 12 or 13 returns the approximate standard error of skewness
7701/// of the histogram along x, y or z axis
7702///
7703///Note, that since third and fourth moment are not calculated
7704///at the fill time, skewness and its standard error are computed bin by bin
7705///
7706/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7707/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7708
7710{
7711
7712 if (axis > 0 && axis <= 3){
7713
7714 Double_t mean = GetMean(axis);
7715 Double_t stddev = GetStdDev(axis);
7717
7724 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7727 if (firstBinX == 1) firstBinX = 0;
7728 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7729 }
7731 if (firstBinY == 1) firstBinY = 0;
7732 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7733 }
7735 if (firstBinZ == 1) firstBinZ = 0;
7736 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7737 }
7738 }
7739
7740 Double_t x = 0;
7741 Double_t sum=0;
7742 Double_t np=0;
7743 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7744 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7745 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7746 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7747 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7748 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7750 np+=w;
7751 sum+=w*(x-mean)*(x-mean)*(x-mean);
7752 }
7753 }
7754 }
7755 sum/=np*stddev3;
7756 return sum;
7757 }
7758 else if (axis > 10 && axis <= 13) {
7759 //compute standard error of skewness
7760 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7762 return ( neff > 0 ? TMath::Sqrt(6./neff ) : 0. );
7763 }
7764 else {
7765 Error("GetSkewness", "illegal value of parameter");
7766 return 0;
7767 }
7768}
7769
7770////////////////////////////////////////////////////////////////////////////////
7771/// - For axis =1, 2 or 3 returns kurtosis of the histogram along x, y or z axis.
7772/// Kurtosis(gaussian(0, 1)) = 0.
7773/// - For axis =11, 12 or 13 returns the approximate standard error of kurtosis
7774/// of the histogram along x, y or z axis
7775////
7776/// Note, that since third and fourth moment are not calculated
7777/// at the fill time, kurtosis and its standard error are computed bin by bin
7778///
7779/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7780/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7781
7783{
7784 if (axis > 0 && axis <= 3){
7785
7786 Double_t mean = GetMean(axis);
7787 Double_t stddev = GetStdDev(axis);
7789
7796 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7799 if (firstBinX == 1) firstBinX = 0;
7800 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7801 }
7803 if (firstBinY == 1) firstBinY = 0;
7804 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7805 }
7807 if (firstBinZ == 1) firstBinZ = 0;
7808 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7809 }
7810 }
7811
7812 Double_t x = 0;
7813 Double_t sum=0;
7814 Double_t np=0;
7815 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7816 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7817 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7818 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7819 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7820 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7822 np+=w;
7823 sum+=w*(x-mean)*(x-mean)*(x-mean)*(x-mean);
7824 }
7825 }
7826 }
7827 sum/=(np*stddev4);
7828 return sum-3;
7829
7830 } else if (axis > 10 && axis <= 13) {
7831 //compute standard error of skewness
7832 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7834 return ( neff > 0 ? TMath::Sqrt(24./neff ) : 0. );
7835 }
7836 else {
7837 Error("GetKurtosis", "illegal value of parameter");
7838 return 0;
7839 }
7840}
7841
7842////////////////////////////////////////////////////////////////////////////////
7843/// fill the array stats from the contents of this histogram
7844/// The array stats must be correctly dimensioned in the calling program.
7845///
7846/// ~~~ {.cpp}
7847/// stats[0] = sumw
7848/// stats[1] = sumw2
7849/// stats[2] = sumwx
7850/// stats[3] = sumwx2
7851/// ~~~
7852///
7853/// If no axis-subrange is specified (via TAxis::SetRange), the array stats
7854/// is simply a copy of the statistics quantities computed at filling time.
7855/// If a sub-range is specified, the function recomputes these quantities
7856/// from the bin contents in the current axis range.
7857///
7858/// IMPORTANT NOTE: This means that the returned statistics are context-dependent.
7859/// If TAxis::kAxisRange, the returned statistics are dependent on the binning;
7860/// otherwise, they are a copy of the histogram statistics computed at fill time,
7861/// which are unbinned by default (calling TH1::ResetStats forces them to use
7862/// binned statistics). You can reset TAxis::kAxisRange using TAxis::SetRange(0, 0).
7863///
7864/// Note that the mean value/StdDev is computed using the bins in the currently
7865/// defined range (see TAxis::SetRange). By default the range includes
7866/// all bins from 1 to nbins included, excluding underflows and overflows.
7867/// To force the underflows and overflows in the computation, one must
7868/// call the static function TH1::StatOverflows(kTRUE) before filling
7869/// the histogram.
7870
7871void TH1::GetStats(Double_t *stats) const
7872{
7873 if (fBuffer) ((TH1*)this)->BufferEmpty();
7874
7875 // Loop on bins (possibly including underflows/overflows)
7876 Int_t bin, binx;
7877 Double_t w,err;
7878 Double_t x;
7879 // identify the case of labels with extension of axis range
7880 // in this case the statistics in x does not make any sense
7881 Bool_t labelHist = ((const_cast<TAxis&>(fXaxis)).GetLabels() && fXaxis.CanExtend() );
7882 // fTsumw == 0 && fEntries > 0 is a special case when uses SetBinContent or calls ResetStats before
7883 if ( (fTsumw == 0 && fEntries > 0) || fXaxis.TestBit(TAxis::kAxisRange) ) {
7884 for (bin=0;bin<4;bin++) stats[bin] = 0;
7885
7888 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7890 if (firstBinX == 1) firstBinX = 0;
7891 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7892 }
7893 for (binx = firstBinX; binx <= lastBinX; binx++) {
7895 //w = TMath::Abs(RetrieveBinContent(binx));
7896 // not sure what to do here if w < 0
7898 err = TMath::Abs(GetBinError(binx));
7899 stats[0] += w;
7900 stats[1] += err*err;
7901 // statistics in x makes sense only for not labels histograms
7902 if (!labelHist) {
7903 stats[2] += w*x;
7904 stats[3] += w*x*x;
7905 }
7906 }
7907 // if (stats[0] < 0) {
7908 // // in case total is negative do something ??
7909 // stats[0] = 0;
7910 // }
7911 } else {
7912 stats[0] = fTsumw;
7913 stats[1] = fTsumw2;
7914 stats[2] = fTsumwx;
7915 stats[3] = fTsumwx2;
7916 }
7917}
7918
7919////////////////////////////////////////////////////////////////////////////////
7920/// Replace current statistics with the values in array stats
7921
7922void TH1::PutStats(Double_t *stats)
7923{
7924 fTsumw = stats[0];
7925 fTsumw2 = stats[1];
7926 fTsumwx = stats[2];
7927 fTsumwx2 = stats[3];
7928}
7929
7930////////////////////////////////////////////////////////////////////////////////
7931/// Reset the statistics including the number of entries
7932/// and replace with values calculated from bin content
7933///
7934/// The number of entries is set to the total bin content or (in case of weighted histogram)
7935/// to number of effective entries
7936///
7937/// \note By default, before calling this function, statistics are those
7938/// computed at fill time, which are unbinned. See TH1::GetStats.
7939
7940void TH1::ResetStats()
7941{
7942 Double_t stats[kNstat] = {0};
7943 fTsumw = 0;
7944 fEntries = 1; // to force re-calculation of the statistics in TH1::GetStats
7945 GetStats(stats);
7946 PutStats(stats);
7948 // use effective entries for weighted histograms: (sum_w) ^2 / sum_w2
7949 if (fSumw2.fN > 0 && fTsumw > 0 && stats[1] > 0 ) fEntries = stats[0]*stats[0]/ stats[1];
7950}
7951
7952////////////////////////////////////////////////////////////////////////////////
7953/// Return the sum of all weights
7954/// \param includeOverflow true to include under/overflows bins, false to exclude those.
7955/// \note Different from TH1::GetSumOfWeights, that always excludes those
7956
7958{
7959 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7960
7961 const Int_t start = (includeOverflow ? 0 : 1);
7962 const Int_t lastX = fXaxis.GetNbins() + (includeOverflow ? 1 : 0);
7963 const Int_t lastY = fYaxis.GetNbins() + (includeOverflow ? 1 : 0);
7964 const Int_t lastZ = fZaxis.GetNbins() + (includeOverflow ? 1 : 0);
7965 Double_t sum =0;
7966 for(auto binz = start; binz <= lastZ; binz++) {
7967 for(auto biny = start; biny <= lastY; biny++) {
7968 for(auto binx = start; binx <= lastX; binx++) {
7969 const auto bin = GetBin(binx, biny, binz);
7970 sum += RetrieveBinContent(bin);
7971 }
7972 }
7973 }
7974 return sum;
7975}
7976
7977////////////////////////////////////////////////////////////////////////////////
7978///Return integral of bin contents. Only bins in the bins range are considered.
7979///
7980/// By default the integral is computed as the sum of bin contents in the range.
7981/// if option "width" is specified, the integral is the sum of
7982/// the bin contents multiplied by the bin width in x.
7983
7985{
7987}
7988
7989////////////////////////////////////////////////////////////////////////////////
7990/// Return integral of bin contents in range [binx1,binx2].
7991///
7992/// By default the integral is computed as the sum of bin contents in the range.
7993/// if option "width" is specified, the integral is the sum of
7994/// the bin contents multiplied by the bin width in x.
7995
7997{
7998 double err = 0;
7999 return DoIntegral(binx1,binx2,0,-1,0,-1,err,option);
8000}
8001
8002////////////////////////////////////////////////////////////////////////////////
8003/// Return integral of bin contents in range [binx1,binx2] and its error.
8004///
8005/// By default the integral is computed as the sum of bin contents in the range.
8006/// if option "width" is specified, the integral is the sum of
8007/// the bin contents multiplied by the bin width in x.
8008/// the error is computed using error propagation from the bin errors assuming that
8009/// all the bins are uncorrelated
8010
8012{
8013 return DoIntegral(binx1,binx2,0,-1,0,-1,error,option,kTRUE);
8014}
8015
8016////////////////////////////////////////////////////////////////////////////////
8017/// Internal function compute integral and optionally the error between the limits
8018/// specified by the bin number values working for all histograms (1D, 2D and 3D)
8019
8021 Option_t *option, Bool_t doError) const
8022{
8023 if (fBuffer) ((TH1*)this)->BufferEmpty();
8024
8025 Int_t nx = GetNbinsX() + 2;
8026 if (binx1 < 0) binx1 = 0;
8027 if (binx2 >= nx || binx2 < binx1) binx2 = nx - 1;
8028
8029 if (GetDimension() > 1) {
8030 Int_t ny = GetNbinsY() + 2;
8031 if (biny1 < 0) biny1 = 0;
8032 if (biny2 >= ny || biny2 < biny1) biny2 = ny - 1;
8033 } else {
8034 biny1 = 0; biny2 = 0;
8035 }
8036
8037 if (GetDimension() > 2) {
8038 Int_t nz = GetNbinsZ() + 2;
8039 if (binz1 < 0) binz1 = 0;
8040 if (binz2 >= nz || binz2 < binz1) binz2 = nz - 1;
8041 } else {
8042 binz1 = 0; binz2 = 0;
8043 }
8044
8045 // - Loop on bins in specified range
8046 TString opt = option;
8047 opt.ToLower();
8049 if (opt.Contains("width")) width = kTRUE;
8050
8051
8052 Double_t dx = 1., dy = .1, dz =.1;
8053 Double_t integral = 0;
8054 Double_t igerr2 = 0;
8055 for (Int_t binx = binx1; binx <= binx2; ++binx) {
8056 if (width) dx = fXaxis.GetBinWidth(binx);
8057 for (Int_t biny = biny1; biny <= biny2; ++biny) {
8058 if (width) dy = fYaxis.GetBinWidth(biny);
8059 for (Int_t binz = binz1; binz <= binz2; ++binz) {
8060 Int_t bin = GetBin(binx, biny, binz);
8061 Double_t dv = 0.0;
8062 if (width) {
8064 dv = dx * dy * dz;
8065 integral += RetrieveBinContent(bin) * dv;
8066 } else {
8067 integral += RetrieveBinContent(bin);
8068 }
8069 if (doError) {
8070 if (width) igerr2 += GetBinErrorSqUnchecked(bin) * dv * dv;
8071 else igerr2 += GetBinErrorSqUnchecked(bin);
8072 }
8073 }
8074 }
8075 }
8076
8077 if (doError) error = TMath::Sqrt(igerr2);
8078 return integral;
8079}
8080
8081////////////////////////////////////////////////////////////////////////////////
8082/// Statistical test of compatibility in shape between
8083/// this histogram and h2, using the Anderson-Darling 2 sample test.
8084///
8085/// The AD 2 sample test formula are derived from the paper
8086/// F.W Scholz, M.A. Stephens "k-Sample Anderson-Darling Test".
8087///
8088/// The test is implemented in root in the ROOT::Math::GoFTest class
8089/// It is the same formula ( (6) in the paper), and also shown in
8090/// [this preprint](http://arxiv.org/pdf/0804.0380v1.pdf)
8091///
8092/// Binned data are considered as un-binned data
8093/// with identical observation happening in the bin center.
8094///
8095/// \param[in] h2 Pointer to 1D histogram
8096/// \param[in] option is a character string to specify options
8097/// - "D" Put out a line of "Debug" printout
8098/// - "T" Return the normalized A-D test statistic
8099///
8100/// - Note1: Underflow and overflow are not considered in the test
8101/// - Note2: The test works only for un-weighted histogram (i.e. representing counts)
8102/// - Note3: The histograms are not required to have the same X axis
8103/// - Note4: The test works only for 1-dimensional histograms
8104
8106{
8107 Double_t advalue = 0;
8109
8110 TString opt = option;
8111 opt.ToUpper();
8112 if (opt.Contains("D") ) {
8113 printf(" AndersonDarlingTest Prob = %g, AD TestStatistic = %g\n",pvalue,advalue);
8114 }
8115 if (opt.Contains("T") ) return advalue;
8116
8117 return pvalue;
8118}
8119
8120////////////////////////////////////////////////////////////////////////////////
8121/// Same function as above but returning also the test statistic value
8122
8124{
8125 if (GetDimension() != 1 || h2->GetDimension() != 1) {
8126 Error("AndersonDarlingTest","Histograms must be 1-D");
8127 return -1;
8128 }
8129
8130 // empty the buffer. Probably we could add as an unbinned test
8131 if (fBuffer) ((TH1*)this)->BufferEmpty();
8132
8133 // use the BinData class
8136
8137 ROOT::Fit::FillData(data1, this, nullptr);
8138 ROOT::Fit::FillData(data2, h2, nullptr);
8139
8140 double pvalue;
8142
8143 return pvalue;
8144}
8145
8146////////////////////////////////////////////////////////////////////////////////
8147/// Statistical test of compatibility in shape between
8148/// this histogram and h2, using Kolmogorov test.
8149/// Note that the KolmogorovTest (KS) test should in theory be used only for unbinned data
8150/// and not for binned data as in the case of the histogram (see NOTE 3 below).
8151/// So, before using this method blindly, read the NOTE 3.
8152///
8153/// Default: Ignore under- and overflow bins in comparison
8154///
8155/// \param[in] h2 histogram
8156/// \param[in] option is a character string to specify options
8157/// - "U" include Underflows in test (also for 2-dim)
8158/// - "O" include Overflows (also valid for 2-dim)
8159/// - "N" include comparison of normalizations
8160/// - "D" Put out a line of "Debug" printout
8161/// - "M" Return the Maximum Kolmogorov distance instead of prob
8162/// - "X" Run the pseudo experiments post-processor with the following procedure:
8163/// make pseudoexperiments based on random values from the parent distribution,
8164/// compare the KS distance of the pseudoexperiment to the parent
8165/// distribution, and count all the KS values above the value
8166/// obtained from the original data to Monte Carlo distribution.
8167/// The number of pseudo-experiments nEXPT is by default 1000, and
8168/// it can be changed by specifying the option as "X=number",
8169/// for example "X=10000" for 10000 toys.
8170/// The function returns the probability.
8171/// (thanks to Ben Kilminster to submit this procedure). Note that
8172/// this option "X" is much slower.
8173///
8174/// The returned function value is the probability of test
8175/// (much less than one means NOT compatible)
8176///
8177/// Code adapted by Rene Brun from original HBOOK routine HDIFF
8178///
8179/// NOTE1
8180/// A good description of the Kolmogorov test can be seen at:
8181/// http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
8182///
8183/// NOTE2
8184/// see also alternative function TH1::Chi2Test
8185/// The Kolmogorov test is assumed to give better results than Chi2Test
8186/// in case of histograms with low statistics.
8187///
8188/// NOTE3 (Jan Conrad, Fred James)
8189/// "The returned value PROB is calculated such that it will be
8190/// uniformly distributed between zero and one for compatible histograms,
8191/// provided the data are not binned (or the number of bins is very large
8192/// compared with the number of events). Users who have access to unbinned
8193/// data and wish exact confidence levels should therefore not put their data
8194/// into histograms, but should call directly TMath::KolmogorovTest. On
8195/// the other hand, since TH1 is a convenient way of collecting data and
8196/// saving space, this function has been provided. However, the values of
8197/// PROB for binned data will be shifted slightly higher than expected,
8198/// depending on the effects of the binning. For example, when comparing two
8199/// uniform distributions of 500 events in 100 bins, the values of PROB,
8200/// instead of being exactly uniformly distributed between zero and one, have
8201/// a mean value of about 0.56. We can apply a useful
8202/// rule: As long as the bin width is small compared with any significant
8203/// physical effect (for example the experimental resolution) then the binning
8204/// cannot have an important effect. Therefore, we believe that for all
8205/// practical purposes, the probability value PROB is calculated correctly
8206/// provided the user is aware that:
8207///
8208/// 1. The value of PROB should not be expected to have exactly the correct
8209/// distribution for binned data.
8210/// 2. The user is responsible for seeing to it that the bin widths are
8211/// small compared with any physical phenomena of interest.
8212/// 3. The effect of binning (if any) is always to make the value of PROB
8213/// slightly too big. That is, setting an acceptance criterion of (PROB>0.05
8214/// will assure that at most 5% of truly compatible histograms are rejected,
8215/// and usually somewhat less."
8216///
8217/// Note also that for GoF test of unbinned data ROOT provides also the class
8218/// ROOT::Math::GoFTest. The class has also method for doing one sample tests
8219/// (i.e. comparing the data with a given distribution).
8220
8222{
8223 TString opt = option;
8224 opt.ToUpper();
8225
8226 Double_t prob = 0;
8227 TH1 *h1 = (TH1*)this;
8228 if (h2 == nullptr) return 0;
8229 const TAxis *axis1 = h1->GetXaxis();
8230 const TAxis *axis2 = h2->GetXaxis();
8231 Int_t ncx1 = axis1->GetNbins();
8232 Int_t ncx2 = axis2->GetNbins();
8233
8234 // Check consistency of dimensions
8235 if (h1->GetDimension() != 1 || h2->GetDimension() != 1) {
8236 Error("KolmogorovTest","Histograms must be 1-D\n");
8237 return 0;
8238 }
8239
8240 // Check consistency in number of channels
8241 if (ncx1 != ncx2) {
8242 Error("KolmogorovTest","Histograms have different number of bins, %d and %d\n",ncx1,ncx2);
8243 return 0;
8244 }
8245
8246 // empty the buffer. Probably we could add as an unbinned test
8247 if (fBuffer) ((TH1*)this)->BufferEmpty();
8248
8249 // Check consistency in bin edges
8250 for(Int_t i = 1; i <= axis1->GetNbins() + 1; ++i) {
8251 if(!TMath::AreEqualRel(axis1->GetBinLowEdge(i), axis2->GetBinLowEdge(i), 1.E-15)) {
8252 Error("KolmogorovTest","Histograms are not consistent: they have different bin edges");
8253 return 0;
8254 }
8255 }
8256
8259 Double_t sum1 = 0, sum2 = 0;
8260 Double_t ew1, ew2, w1 = 0, w2 = 0;
8261 Int_t bin;
8262 Int_t ifirst = 1;
8263 Int_t ilast = ncx1;
8264 // integral of all bins (use underflow/overflow if option)
8265 if (opt.Contains("U")) ifirst = 0;
8266 if (opt.Contains("O")) ilast = ncx1 +1;
8267 for (bin = ifirst; bin <= ilast; bin++) {
8268 sum1 += h1->RetrieveBinContent(bin);
8269 sum2 += h2->RetrieveBinContent(bin);
8270 ew1 = h1->GetBinError(bin);
8271 ew2 = h2->GetBinError(bin);
8272 w1 += ew1*ew1;
8273 w2 += ew2*ew2;
8274 }
8275 if (sum1 == 0) {
8276 Error("KolmogorovTest","Histogram1 %s integral is zero\n",h1->GetName());
8277 return 0;
8278 }
8279 if (sum2 == 0) {
8280 Error("KolmogorovTest","Histogram2 %s integral is zero\n",h2->GetName());
8281 return 0;
8282 }
8283
8284 // calculate the effective entries.
8285 // the case when errors are zero (w1 == 0 or w2 ==0) are equivalent to
8286 // compare to a function. In that case the rescaling is done only on sqrt(esum2) or sqrt(esum1)
8287 Double_t esum1 = 0, esum2 = 0;
8288 if (w1 > 0)
8289 esum1 = sum1 * sum1 / w1;
8290 else
8291 afunc1 = kTRUE; // use later for calculating z
8292
8293 if (w2 > 0)
8294 esum2 = sum2 * sum2 / w2;
8295 else
8296 afunc2 = kTRUE; // use later for calculating z
8297
8298 if (afunc2 && afunc1) {
8299 Error("KolmogorovTest","Errors are zero for both histograms\n");
8300 return 0;
8301 }
8302
8303
8304 Double_t s1 = 1/sum1;
8305 Double_t s2 = 1/sum2;
8306
8307 // Find largest difference for Kolmogorov Test
8308 Double_t dfmax =0, rsum1 = 0, rsum2 = 0;
8309
8310 for (bin=ifirst;bin<=ilast;bin++) {
8311 rsum1 += s1*h1->RetrieveBinContent(bin);
8312 rsum2 += s2*h2->RetrieveBinContent(bin);
8314 }
8315
8316 // Get Kolmogorov probability
8317 Double_t z, prb1=0, prb2=0, prb3=0;
8318
8319 // case h1 is exact (has zero errors)
8320 if (afunc1)
8321 z = dfmax*TMath::Sqrt(esum2);
8322 // case h2 has zero errors
8323 else if (afunc2)
8324 z = dfmax*TMath::Sqrt(esum1);
8325 else
8326 // for comparison between two data sets
8328
8330
8331 // option N to combine normalization makes sense if both afunc1 and afunc2 are false
8332 if (opt.Contains("N") && !(afunc1 || afunc2 ) ) {
8333 // Combine probabilities for shape and normalization,
8334 prb1 = prob;
8337 prb2 = TMath::Prob(chi2,1);
8338 // see Eadie et al., section 11.6.2
8339 if (prob > 0 && prb2 > 0) prob *= prb2*(1-TMath::Log(prob*prb2));
8340 else prob = 0;
8341 }
8342 // X option. Run Pseudo-experiments to determine NULL distribution of the
8343 // KS distance. We can find the probability from the number of pseudo-experiment that have a
8344 // KS distance larger than the one opbserved in the data.
8345 // We use the histogram with the largest statistics as a parent distribution for the NULL.
8346 // Note if one histogram has zero errors is considered as a function. In that case we use it
8347 // as parent distribution for the toys.
8348 //
8349 Int_t nEXPT = 1000;
8350 if (opt.Contains("X")) {
8351 // get number of pseudo-experiment of specified
8352 if (opt.Contains("X=")) {
8353 int numpos = opt.Index("X=") + 2; // 2 is length of X=
8354 int numlen = 0;
8355 int len = opt.Length();
8356 while( (numpos+numlen<len) && isdigit(opt[numpos+numlen]) )
8357 numlen++;
8358 TString snum = opt(numpos,numlen);
8359 int num = atoi(snum.Data());
8360 if (num <= 0)
8361 Warning("KolmogorovTest","invalid number of toys given: %d - use 1000",num);
8362 else
8363 nEXPT = num;
8364 }
8365
8367 TH1D hparent;
8368 // we cannot have afunc1 and func2 both True
8369 if (afunc1 || esum1 > esum2 ) h1->Copy(hparent);
8370 else h2->Copy(hparent);
8371
8372 // copy h1Expt from h1 and h2. It is just needed to get the correct binning
8373
8374
8375 if (hparent.GetMinimum() < 0.0) {
8376 // we need to create a new histogram
8377 // With negative bins we can't draw random samples in a meaningful way.
8378 Warning("KolmogorovTest", "Detected bins with negative weights, these have been ignored and output might be "
8379 "skewed. Reduce number of bins for histogram?");
8380 while (hparent.GetMinimum() < 0.0) {
8381 Int_t idx = hparent.GetMinimumBin();
8382 hparent.SetBinContent(idx, 0.0);
8383 }
8384 }
8385
8386 // make nEXPT experiments (this should be a parameter)
8387 prb3 = 0;
8388 TH1D h1Expt;
8389 h1->Copy(h1Expt);
8390 TH1D h2Expt;
8391 h1->Copy(h2Expt);
8392 // loop on pseudoexperients and generate the two histograms h1Expt and h2Expt according to the
8393 // parent distribution. In case the parent distribution is not an histogram but a function randomize only one
8394 // histogram
8395 for (Int_t i=0; i < nEXPT; i++) {
8396 if (!afunc1) {
8397 h1Expt.Reset();
8398 h1Expt.FillRandom(&hparent, (Int_t)esum1);
8399 }
8400 if (!afunc2) {
8401 h2Expt.Reset();
8402 h2Expt.FillRandom(&hparent, (Int_t)esum2);
8403 }
8404 // note we cannot have both afunc1 and afunc2 to be true
8405 if (afunc1)
8406 dSEXPT = hparent.KolmogorovTest(&h2Expt,"M");
8407 else if (afunc2)
8408 dSEXPT = hparent.KolmogorovTest(&h1Expt,"M");
8409 else
8410 dSEXPT = h1Expt.KolmogorovTest(&h2Expt,"M");
8411 // count number of cases toy KS distance (TS) is larger than oberved one
8412 if (dSEXPT>dfmax) prb3 += 1.0;
8413 }
8414 // compute p-value
8415 prb3 /= (Double_t)nEXPT;
8416 }
8417
8418
8419 // debug printout
8420 if (opt.Contains("D")) {
8421 printf(" Kolmo Prob h1 = %s, sum bin content =%g effective entries =%g\n",h1->GetName(),sum1,esum1);
8422 printf(" Kolmo Prob h2 = %s, sum bin content =%g effective entries =%g\n",h2->GetName(),sum2,esum2);
8423 printf(" Kolmo Prob = %g, Max Dist = %g\n",prob,dfmax);
8424 if (opt.Contains("N"))
8425 printf(" Kolmo Prob = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
8426 if (opt.Contains("X"))
8427 printf(" Kolmo Prob = %f with %d pseudo-experiments\n",prb3,nEXPT);
8428 }
8429 // This numerical error condition should never occur:
8430 if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%s\n",h1->GetName());
8431 if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%s\n",h2->GetName());
8432
8433 if(opt.Contains("M")) return dfmax;
8434 else if(opt.Contains("X")) return prb3;
8435 else return prob;
8436}
8437
8438////////////////////////////////////////////////////////////////////////////////
8439/// Replace bin contents by the contents of array content
8440
8441void TH1::SetContent(const Double_t *content)
8442{
8443 fEntries = fNcells;
8444 fTsumw = 0;
8445 for (Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, content[i]);
8446}
8447
8448////////////////////////////////////////////////////////////////////////////////
8449/// Return contour values into array levels if pointer levels is non zero.
8450///
8451/// The function returns the number of contour levels.
8452/// see GetContourLevel to return one contour only
8453
8455{
8457 if (levels) {
8458 if (nlevels == 0) {
8459 nlevels = 20;
8461 } else {
8463 }
8464 for (Int_t level=0; level<nlevels; level++) levels[level] = fContour.fArray[level];
8465 }
8466 return nlevels;
8467}
8468
8469////////////////////////////////////////////////////////////////////////////////
8470/// Return value of contour number level.
8471/// Use GetContour to return the array of all contour levels
8472
8474{
8475 return (level >= 0 && level < fContour.fN) ? fContour.fArray[level] : 0.0;
8476}
8477
8478////////////////////////////////////////////////////////////////////////////////
8479/// Return the value of contour number "level" in Pad coordinates.
8480/// ie: if the Pad is in log scale along Z it returns le log of the contour level
8481/// value. See GetContour to return the array of all contour levels
8482
8484{
8485 if (level <0 || level >= fContour.fN) return 0;
8486 Double_t zlevel = fContour.fArray[level];
8487
8488 // In case of user defined contours and Pad in log scale along Z,
8489 // fContour.fArray doesn't contain the log of the contour whereas it does
8490 // in case of equidistant contours.
8491 if (gPad && gPad->GetLogz() && TestBit(kUserContour)) {
8492 if (zlevel <= 0) return 0;
8494 }
8495 return zlevel;
8496}
8497
8498////////////////////////////////////////////////////////////////////////////////
8499/// Set the maximum number of entries to be kept in the buffer.
8500
8501void TH1::SetBuffer(Int_t bufsize, Option_t * /*option*/)
8502{
8503 if (fBuffer) {
8504 BufferEmpty();
8505 delete [] fBuffer;
8506 fBuffer = nullptr;
8507 }
8508 if (bufsize <= 0) {
8509 fBufferSize = 0;
8510 return;
8511 }
8512 if (bufsize < 100) bufsize = 100;
8513 fBufferSize = 1 + bufsize*(fDimension+1);
8515 memset(fBuffer, 0, sizeof(Double_t)*fBufferSize);
8516}
8517
8518////////////////////////////////////////////////////////////////////////////////
8519/// Set the number and values of contour levels.
8520///
8521/// By default the number of contour levels is set to 20. The contours values
8522/// in the array "levels" should be specified in increasing order.
8523///
8524/// if argument levels = 0 or missing, equidistant contours are computed
8525
8527{
8528 Int_t level;
8530 if (nlevels <=0 ) {
8531 fContour.Set(0);
8532 return;
8533 }
8535
8536 // - Contour levels are specified
8537 if (levels) {
8539 for (level=0; level<nlevels; level++) fContour.fArray[level] = levels[level];
8540 } else {
8541 // - contour levels are computed automatically as equidistant contours
8542 Double_t zmin = GetMinimum();
8543 Double_t zmax = GetMaximum();
8544 if ((zmin == zmax) && (zmin != 0)) {
8545 zmax += 0.01*TMath::Abs(zmax);
8546 zmin -= 0.01*TMath::Abs(zmin);
8547 }
8548 Double_t dz = (zmax-zmin)/Double_t(nlevels);
8549 if (gPad && gPad->GetLogz()) {
8550 if (zmax <= 0) return;
8551 if (zmin <= 0) zmin = 0.001*zmax;
8552 zmin = TMath::Log10(zmin);
8553 zmax = TMath::Log10(zmax);
8554 dz = (zmax-zmin)/Double_t(nlevels);
8555 }
8556 for (level=0; level<nlevels; level++) {
8557 fContour.fArray[level] = zmin + dz*Double_t(level);
8558 }
8559 }
8560}
8561
8562////////////////////////////////////////////////////////////////////////////////
8563/// Set value for one contour level.
8564
8566{
8567 if (level < 0 || level >= fContour.fN) return;
8569 fContour.fArray[level] = value;
8570}
8571
8572////////////////////////////////////////////////////////////////////////////////
8573/// Return maximum value smaller than maxval of bins in the range,
8574/// unless the value has been overridden by TH1::SetMaximum,
8575/// in which case it returns that value. This happens, for example,
8576/// when the histogram is drawn and the y or z axis limits are changed
8577///
8578/// To get the maximum value of bins in the histogram regardless of
8579/// whether the value has been overridden (using TH1::SetMaximum), use
8580///
8581/// ~~~ {.cpp}
8582/// h->GetBinContent(h->GetMaximumBin())
8583/// ~~~
8584///
8585/// TH1::GetMaximumBin can be used to get the location of the maximum
8586/// value.
8587
8589{
8590 if (fMaximum != -1111) return fMaximum;
8591
8592 // empty the buffer
8593 if (fBuffer) ((TH1*)this)->BufferEmpty();
8594
8595 Int_t bin, binx, biny, binz;
8596 Int_t xfirst = fXaxis.GetFirst();
8597 Int_t xlast = fXaxis.GetLast();
8598 Int_t yfirst = fYaxis.GetFirst();
8599 Int_t ylast = fYaxis.GetLast();
8600 Int_t zfirst = fZaxis.GetFirst();
8601 Int_t zlast = fZaxis.GetLast();
8603 for (binz=zfirst;binz<=zlast;binz++) {
8604 for (biny=yfirst;biny<=ylast;biny++) {
8605 for (binx=xfirst;binx<=xlast;binx++) {
8606 bin = GetBin(binx,biny,binz);
8608 if (value > maximum && value < maxval) maximum = value;
8609 }
8610 }
8611 }
8612 return maximum;
8613}
8614
8615////////////////////////////////////////////////////////////////////////////////
8616/// Return location of bin with maximum value in the range.
8617///
8618/// TH1::GetMaximum can be used to get the maximum value.
8619
8621{
8624}
8625
8626////////////////////////////////////////////////////////////////////////////////
8627/// Return location of bin with maximum value in the range.
8628
8630{
8631 // empty the buffer
8632 if (fBuffer) ((TH1*)this)->BufferEmpty();
8633
8634 Int_t bin, binx, biny, binz;
8635 Int_t locm;
8636 Int_t xfirst = fXaxis.GetFirst();
8637 Int_t xlast = fXaxis.GetLast();
8638 Int_t yfirst = fYaxis.GetFirst();
8639 Int_t ylast = fYaxis.GetLast();
8640 Int_t zfirst = fZaxis.GetFirst();
8641 Int_t zlast = fZaxis.GetLast();
8643 locm = locmax = locmay = locmaz = 0;
8644 for (binz=zfirst;binz<=zlast;binz++) {
8645 for (biny=yfirst;biny<=ylast;biny++) {
8646 for (binx=xfirst;binx<=xlast;binx++) {
8647 bin = GetBin(binx,biny,binz);
8649 if (value > maximum) {
8650 maximum = value;
8651 locm = bin;
8652 locmax = binx;
8653 locmay = biny;
8654 locmaz = binz;
8655 }
8656 }
8657 }
8658 }
8659 return locm;
8660}
8661
8662////////////////////////////////////////////////////////////////////////////////
8663/// Return minimum value larger than minval of bins in the range,
8664/// unless the value has been overridden by TH1::SetMinimum,
8665/// in which case it returns that value. This happens, for example,
8666/// when the histogram is drawn and the y or z axis limits are changed
8667///
8668/// To get the minimum value of bins in the histogram regardless of
8669/// whether the value has been overridden (using TH1::SetMinimum), use
8670///
8671/// ~~~ {.cpp}
8672/// h->GetBinContent(h->GetMinimumBin())
8673/// ~~~
8674///
8675/// TH1::GetMinimumBin can be used to get the location of the
8676/// minimum value.
8677
8679{
8680 if (fMinimum != -1111) return fMinimum;
8681
8682 // empty the buffer
8683 if (fBuffer) ((TH1*)this)->BufferEmpty();
8684
8685 Int_t bin, binx, biny, binz;
8686 Int_t xfirst = fXaxis.GetFirst();
8687 Int_t xlast = fXaxis.GetLast();
8688 Int_t yfirst = fYaxis.GetFirst();
8689 Int_t ylast = fYaxis.GetLast();
8690 Int_t zfirst = fZaxis.GetFirst();
8691 Int_t zlast = fZaxis.GetLast();
8693 for (binz=zfirst;binz<=zlast;binz++) {
8694 for (biny=yfirst;biny<=ylast;biny++) {
8695 for (binx=xfirst;binx<=xlast;binx++) {
8696 bin = GetBin(binx,biny,binz);
8699 }
8700 }
8701 }
8702 return minimum;
8703}
8704
8705////////////////////////////////////////////////////////////////////////////////
8706/// Return location of bin with minimum value in the range.
8707
8709{
8712}
8713
8714////////////////////////////////////////////////////////////////////////////////
8715/// Return location of bin with minimum value in the range.
8716
8718{
8719 // empty the buffer
8720 if (fBuffer) ((TH1*)this)->BufferEmpty();
8721
8722 Int_t bin, binx, biny, binz;
8723 Int_t locm;
8724 Int_t xfirst = fXaxis.GetFirst();
8725 Int_t xlast = fXaxis.GetLast();
8726 Int_t yfirst = fYaxis.GetFirst();
8727 Int_t ylast = fYaxis.GetLast();
8728 Int_t zfirst = fZaxis.GetFirst();
8729 Int_t zlast = fZaxis.GetLast();
8731 locm = locmix = locmiy = locmiz = 0;
8732 for (binz=zfirst;binz<=zlast;binz++) {
8733 for (biny=yfirst;biny<=ylast;biny++) {
8734 for (binx=xfirst;binx<=xlast;binx++) {
8735 bin = GetBin(binx,biny,binz);
8737 if (value < minimum) {
8738 minimum = value;
8739 locm = bin;
8740 locmix = binx;
8741 locmiy = biny;
8742 locmiz = binz;
8743 }
8744 }
8745 }
8746 }
8747 return locm;
8748}
8749
8750///////////////////////////////////////////////////////////////////////////////
8751/// Retrieve the minimum and maximum values in the histogram
8752///
8753/// This will not return a cached value and will always search the
8754/// histogram for the min and max values. The user can condition whether
8755/// or not to call this with the GetMinimumStored() and GetMaximumStored()
8756/// methods. If the cache is empty, then the value will be -1111. Users
8757/// can then use the SetMinimum() or SetMaximum() methods to cache the results.
8758/// For example, the following recipe will make efficient use of this method
8759/// and the cached minimum and maximum values.
8760//
8761/// \code{.cpp}
8762/// Double_t currentMin = pHist->GetMinimumStored();
8763/// Double_t currentMax = pHist->GetMaximumStored();
8764/// if ((currentMin == -1111) || (currentMax == -1111)) {
8765/// pHist->GetMinimumAndMaximum(currentMin, currentMax);
8766/// pHist->SetMinimum(currentMin);
8767/// pHist->SetMaximum(currentMax);
8768/// }
8769/// \endcode
8770///
8771/// \param min reference to variable that will hold found minimum value
8772/// \param max reference to variable that will hold found maximum value
8773
8774void TH1::GetMinimumAndMaximum(Double_t& min, Double_t& max) const
8775{
8776 // empty the buffer
8777 if (fBuffer) ((TH1*)this)->BufferEmpty();
8778
8779 Int_t bin, binx, biny, binz;
8780 Int_t xfirst = fXaxis.GetFirst();
8781 Int_t xlast = fXaxis.GetLast();
8782 Int_t yfirst = fYaxis.GetFirst();
8783 Int_t ylast = fYaxis.GetLast();
8784 Int_t zfirst = fZaxis.GetFirst();
8785 Int_t zlast = fZaxis.GetLast();
8786 min=TMath::Infinity();
8787 max=-TMath::Infinity();
8789 for (binz=zfirst;binz<=zlast;binz++) {
8790 for (biny=yfirst;biny<=ylast;biny++) {
8791 for (binx=xfirst;binx<=xlast;binx++) {
8792 bin = GetBin(binx,biny,binz);
8794 if (value < min) min = value;
8795 if (value > max) max = value;
8796 }
8797 }
8798 }
8799}
8800
8801////////////////////////////////////////////////////////////////////////////////
8802/// Redefine x axis parameters.
8803///
8804/// The X axis parameters are modified.
8805/// The bins content array is resized
8806/// if errors (Sumw2) the errors array is resized
8807/// The previous bin contents are lost
8808/// To change only the axis limits, see TAxis::SetRange
8809
8811{
8812 if (GetDimension() != 1) {
8813 Error("SetBins","Operation only valid for 1-d histograms");
8814 return;
8815 }
8816 fXaxis.SetRange(0,0);
8818 fYaxis.Set(1,0,1);
8819 fZaxis.Set(1,0,1);
8820 fNcells = nx+2;
8822 if (fSumw2.fN) {
8824 }
8825}
8826
8827////////////////////////////////////////////////////////////////////////////////
8828/// Redefine x axis parameters with variable bin sizes.
8829///
8830/// The X axis parameters are modified.
8831/// The bins content array is resized
8832/// if errors (Sumw2) the errors array is resized
8833/// The previous bin contents are lost
8834/// To change only the axis limits, see TAxis::SetRange
8835/// xBins is supposed to be of length nx+1
8836
8837void TH1::SetBins(Int_t nx, const Double_t *xBins)
8838{
8839 if (GetDimension() != 1) {
8840 Error("SetBins","Operation only valid for 1-d histograms");
8841 return;
8842 }
8843 fXaxis.SetRange(0,0);
8844 fXaxis.Set(nx,xBins);
8845 fYaxis.Set(1,0,1);
8846 fZaxis.Set(1,0,1);
8847 fNcells = nx+2;
8849 if (fSumw2.fN) {
8851 }
8852}
8853
8854////////////////////////////////////////////////////////////////////////////////
8855/// Redefine x and y axis parameters.
8856///
8857/// The X and Y axis parameters are modified.
8858/// The bins content array is resized
8859/// if errors (Sumw2) the errors array is resized
8860/// The previous bin contents are lost
8861/// To change only the axis limits, see TAxis::SetRange
8862
8864{
8865 if (GetDimension() != 2) {
8866 Error("SetBins","Operation only valid for 2-D histograms");
8867 return;
8868 }
8869 fXaxis.SetRange(0,0);
8870 fYaxis.SetRange(0,0);
8873 fZaxis.Set(1,0,1);
8874 fNcells = (nx+2)*(ny+2);
8876 if (fSumw2.fN) {
8878 }
8879}
8880
8881////////////////////////////////////////////////////////////////////////////////
8882/// Redefine x and y axis parameters with variable bin sizes.
8883///
8884/// The X and Y axis parameters are modified.
8885/// The bins content array is resized
8886/// if errors (Sumw2) the errors array is resized
8887/// The previous bin contents are lost
8888/// To change only the axis limits, see TAxis::SetRange
8889/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1
8890
8891void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins)
8892{
8893 if (GetDimension() != 2) {
8894 Error("SetBins","Operation only valid for 2-D histograms");
8895 return;
8896 }
8897 fXaxis.SetRange(0,0);
8898 fYaxis.SetRange(0,0);
8899 fXaxis.Set(nx,xBins);
8900 fYaxis.Set(ny,yBins);
8901 fZaxis.Set(1,0,1);
8902 fNcells = (nx+2)*(ny+2);
8904 if (fSumw2.fN) {
8906 }
8907}
8908
8909////////////////////////////////////////////////////////////////////////////////
8910/// Redefine x, y and z axis parameters.
8911///
8912/// The X, Y and Z axis parameters are modified.
8913/// The bins content array is resized
8914/// if errors (Sumw2) the errors array is resized
8915/// The previous bin contents are lost
8916/// To change only the axis limits, see TAxis::SetRange
8917
8919{
8920 if (GetDimension() != 3) {
8921 Error("SetBins","Operation only valid for 3-D histograms");
8922 return;
8923 }
8924 fXaxis.SetRange(0,0);
8925 fYaxis.SetRange(0,0);
8926 fZaxis.SetRange(0,0);
8929 fZaxis.Set(nz,zmin,zmax);
8930 fNcells = (nx+2)*(ny+2)*(nz+2);
8932 if (fSumw2.fN) {
8934 }
8935}
8936
8937////////////////////////////////////////////////////////////////////////////////
8938/// Redefine x, y and z axis parameters with variable bin sizes.
8939///
8940/// The X, Y and Z axis parameters are modified.
8941/// The bins content array is resized
8942/// if errors (Sumw2) the errors array is resized
8943/// The previous bin contents are lost
8944/// To change only the axis limits, see TAxis::SetRange
8945/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1,
8946/// zBins is supposed to be of length nz+1
8947
8948void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins, Int_t nz, const Double_t *zBins)
8949{
8950 if (GetDimension() != 3) {
8951 Error("SetBins","Operation only valid for 3-D histograms");
8952 return;
8953 }
8954 fXaxis.SetRange(0,0);
8955 fYaxis.SetRange(0,0);
8956 fZaxis.SetRange(0,0);
8957 fXaxis.Set(nx,xBins);
8958 fYaxis.Set(ny,yBins);
8959 fZaxis.Set(nz,zBins);
8960 fNcells = (nx+2)*(ny+2)*(nz+2);
8962 if (fSumw2.fN) {
8964 }
8965}
8966
8967////////////////////////////////////////////////////////////////////////////////
8968/// By default, when a histogram is created, it is added to the list
8969/// of histogram objects in the current directory in memory.
8970/// Remove reference to this histogram from current directory and add
8971/// reference to new directory dir. dir can be 0 in which case the
8972/// histogram does not belong to any directory.
8973///
8974/// Note that the directory is not a real property of the histogram and
8975/// it will not be copied when the histogram is copied or cloned.
8976/// If the user wants to have the copied (cloned) histogram in the same
8977/// directory, he needs to set again the directory using SetDirectory to the
8978/// copied histograms
8979
8981{
8982 if (fDirectory == dir) return;
8983 if (fDirectory) fDirectory->Remove(this);
8984 fDirectory = dir;
8985 if (fDirectory) {
8987 fDirectory->Append(this);
8988 }
8989}
8990
8991////////////////////////////////////////////////////////////////////////////////
8992/// Replace bin errors by values in array error.
8993
8994void TH1::SetError(const Double_t *error)
8995{
8996 for (Int_t i = 0; i < fNcells; ++i) SetBinError(i, error[i]);
8997}
8998
8999////////////////////////////////////////////////////////////////////////////////
9000/// Change the name of this histogram
9002
9003void TH1::SetName(const char *name)
9004{
9005 // Histograms are named objects in a THashList.
9006 // We must update the hashlist if we change the name
9007 // We protect this operation
9009 if (fDirectory) fDirectory->Remove(this);
9010 fName = name;
9011 if (fDirectory) fDirectory->Append(this);
9012}
9013
9014////////////////////////////////////////////////////////////////////////////////
9015/// Change the name and title of this histogram
9016
9017void TH1::SetNameTitle(const char *name, const char *title)
9018{
9019 // Histograms are named objects in a THashList.
9020 // We must update the hashlist if we change the name
9021 SetName(name);
9022 SetTitle(title);
9023}
9024
9025////////////////////////////////////////////////////////////////////////////////
9026/// Set statistics option on/off.
9027///
9028/// By default, the statistics box is drawn.
9029/// The paint options can be selected via gStyle->SetOptStat.
9030/// This function sets/resets the kNoStats bit in the histogram object.
9031/// It has priority over the Style option.
9032
9033void TH1::SetStats(Bool_t stats)
9034{
9036 if (!stats) {
9038 //remove the "stats" object from the list of functions
9039 if (fFunctions) {
9040 TObject *obj = fFunctions->FindObject("stats");
9041 if (obj) {
9042 fFunctions->Remove(obj);
9043 delete obj;
9044 }
9045 }
9046 }
9047}
9048
9049////////////////////////////////////////////////////////////////////////////////
9050/// Create structure to store sum of squares of weights.
9051///
9052/// if histogram is already filled, the sum of squares of weights
9053/// is filled with the existing bin contents
9054///
9055/// The error per bin will be computed as sqrt(sum of squares of weight)
9056/// for each bin.
9057///
9058/// This function is automatically called when the histogram is created
9059/// if the static function TH1::SetDefaultSumw2 has been called before.
9060/// If flag = false the structure containing the sum of the square of weights
9061/// is rest and it will be empty, but it is not deleted (i.e. GetSumw2()->fN = 0)
9062
9064{
9065 if (!flag) {
9066 // clear the array if existing - do nothing otherwise
9067 if (fSumw2.fN > 0 ) fSumw2.Set(0);
9068 return;
9069 }
9070
9071 if (fSumw2.fN == fNcells) {
9072 if (!fgDefaultSumw2 )
9073 Warning("Sumw2","Sum of squares of weights structure already created");
9074 return;
9075 }
9076
9078
9079 if (fEntries > 0)
9080 for (Int_t i = 0; i < fNcells; ++i)
9082}
9083
9084////////////////////////////////////////////////////////////////////////////////
9085/// Return pointer to function with name.
9086///
9087///
9088/// Functions such as TH1::Fit store the fitted function in the list of
9089/// functions of this histogram.
9090
9091TF1 *TH1::GetFunction(const char *name) const
9092{
9093 return (TF1*)fFunctions->FindObject(name);
9094}
9095
9096////////////////////////////////////////////////////////////////////////////////
9097/// Return value of error associated to bin number bin.
9098///
9099/// if the sum of squares of weights has been defined (via Sumw2),
9100/// this function returns the sqrt(sum of w2).
9101/// otherwise it returns the sqrt(contents) for this bin.
9102
9104{
9105 if (bin < 0) bin = 0;
9106 if (bin >= fNcells) bin = fNcells-1;
9107 if (fBuffer) ((TH1*)this)->BufferEmpty();
9108 if (fSumw2.fN) return TMath::Sqrt(fSumw2.fArray[bin]);
9109
9111}
9112
9113////////////////////////////////////////////////////////////////////////////////
9114/// Return lower error associated to bin number bin.
9115///
9116/// The error will depend on the statistic option used will return
9117/// the binContent - lower interval value
9118
9120{
9121 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
9122 // in case of weighted histogram check if it is really weighted
9123 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
9124
9125 if (bin < 0) bin = 0;
9126 if (bin >= fNcells) bin = fNcells-1;
9127 if (fBuffer) ((TH1*)this)->BufferEmpty();
9128
9129 Double_t alpha = 1.- 0.682689492;
9130 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
9131
9133 Int_t n = int(c);
9134 if (n < 0) {
9135 Warning("GetBinErrorLow","Histogram has negative bin content-force usage to normal errors");
9136 ((TH1*)this)->fBinStatErrOpt = kNormal;
9137 return GetBinError(bin);
9138 }
9139
9140 if (n == 0) return 0;
9141 return c - ROOT::Math::gamma_quantile( alpha/2, n, 1.);
9142}
9143
9144////////////////////////////////////////////////////////////////////////////////
9145/// Return upper error associated to bin number bin.
9146///
9147/// The error will depend on the statistic option used will return
9148/// the binContent - upper interval value
9149
9151{
9152 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
9153 // in case of weighted histogram check if it is really weighted
9154 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
9155 if (bin < 0) bin = 0;
9156 if (bin >= fNcells) bin = fNcells-1;
9157 if (fBuffer) ((TH1*)this)->BufferEmpty();
9158
9159 Double_t alpha = 1.- 0.682689492;
9160 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
9161
9163 Int_t n = int(c);
9164 if (n < 0) {
9165 Warning("GetBinErrorUp","Histogram has negative bin content-force usage to normal errors");
9166 ((TH1*)this)->fBinStatErrOpt = kNormal;
9167 return GetBinError(bin);
9168 }
9169
9170 // for N==0 return an upper limit at 0.68 or (1-alpha)/2 ?
9171 // decide to return always (1-alpha)/2 upper interval
9172 //if (n == 0) return ROOT::Math::gamma_quantile_c(alpha,n+1,1);
9173 return ROOT::Math::gamma_quantile_c( alpha/2, n+1, 1) - c;
9174}
9175
9176//L.M. These following getters are useless and should be probably deprecated
9177////////////////////////////////////////////////////////////////////////////////
9178/// Return bin center for 1D histogram.
9179/// Better to use h1.GetXaxis()->GetBinCenter(bin)
9180
9182{
9183 if (fDimension == 1) return fXaxis.GetBinCenter(bin);
9184 Error("GetBinCenter","Invalid method for a %d-d histogram - return a NaN",fDimension);
9185 return TMath::QuietNaN();
9186}
9187
9188////////////////////////////////////////////////////////////////////////////////
9189/// Return bin lower edge for 1D histogram.
9190/// Better to use h1.GetXaxis()->GetBinLowEdge(bin)
9191
9193{
9194 if (fDimension == 1) return fXaxis.GetBinLowEdge(bin);
9195 Error("GetBinLowEdge","Invalid method for a %d-d histogram - return a NaN",fDimension);
9196 return TMath::QuietNaN();
9197}
9198
9199////////////////////////////////////////////////////////////////////////////////
9200/// Return bin width for 1D histogram.
9201/// Better to use h1.GetXaxis()->GetBinWidth(bin)
9202
9204{
9205 if (fDimension == 1) return fXaxis.GetBinWidth(bin);
9206 Error("GetBinWidth","Invalid method for a %d-d histogram - return a NaN",fDimension);
9207 return TMath::QuietNaN();
9208}
9209
9210////////////////////////////////////////////////////////////////////////////////
9211/// Fill array with center of bins for 1D histogram
9212/// Better to use h1.GetXaxis()->GetCenter(center)
9213
9214void TH1::GetCenter(Double_t *center) const
9215{
9216 if (fDimension == 1) {
9217 fXaxis.GetCenter(center);
9218 return;
9219 }
9220 Error("GetCenter","Invalid method for a %d-d histogram ",fDimension);
9221}
9222
9223////////////////////////////////////////////////////////////////////////////////
9224/// Fill array with low edge of bins for 1D histogram
9225/// Better to use h1.GetXaxis()->GetLowEdge(edge)
9226
9227void TH1::GetLowEdge(Double_t *edge) const
9228{
9229 if (fDimension == 1) {
9231 return;
9232 }
9233 Error("GetLowEdge","Invalid method for a %d-d histogram ",fDimension);
9234}
9235
9236////////////////////////////////////////////////////////////////////////////////
9237/// Set the bin Error
9238/// Note that this resets the bin eror option to be of Normal Type and for the
9239/// non-empty bin the bin error is set by default to the square root of their content.
9240/// Note that in case the user sets after calling SetBinError explicitly a new bin content (e.g. using SetBinContent)
9241/// he needs then to provide also the corresponding bin error (using SetBinError) since the bin error
9242/// will not be recalculated after setting the content and a default error = 0 will be used for those bins.
9243///
9244/// See convention for numbering bins in TH1::GetBin
9245
9246void TH1::SetBinError(Int_t bin, Double_t error)
9247{
9248 if (bin < 0 || bin>= fNcells) return;
9249 if (!fSumw2.fN) Sumw2();
9250 fSumw2.fArray[bin] = error * error;
9251 // reset the bin error option
9253}
9254
9255////////////////////////////////////////////////////////////////////////////////
9256/// Set bin content
9257/// see convention for numbering bins in TH1::GetBin
9258/// In case the bin number is greater than the number of bins and
9259/// the timedisplay option is set or CanExtendAllAxes(),
9260/// the number of bins is automatically doubled to accommodate the new bin
9261
9263{
9264 fEntries++;
9265 fTsumw = 0;
9266 if (bin < 0) return;
9267 if (bin >= fNcells-1) {
9269 while (bin >= fNcells-1) LabelsInflate();
9270 } else {
9271 if (bin == fNcells-1) UpdateBinContent(bin, content);
9272 return;
9273 }
9274 }
9276}
9277
9278////////////////////////////////////////////////////////////////////////////////
9279/// See convention for numbering bins in TH1::GetBin
9280
9282{
9283 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9284 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9285 SetBinError(GetBin(binx, biny), error);
9286}
9287
9288////////////////////////////////////////////////////////////////////////////////
9289/// See convention for numbering bins in TH1::GetBin
9290
9292{
9293 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9294 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9295 if (binz < 0 || binz > fZaxis.GetNbins() + 1) return;
9296 SetBinError(GetBin(binx, biny, binz), error);
9297}
9298
9299////////////////////////////////////////////////////////////////////////////////
9300/// This function calculates the background spectrum in this histogram.
9301/// The background is returned as a histogram.
9302///
9303/// \param[in] niter number of iterations (default value = 2)
9304/// Increasing niter make the result smoother and lower.
9305/// \param[in] option may contain one of the following options
9306/// - to set the direction parameter
9307/// "BackDecreasingWindow". By default the direction is BackIncreasingWindow
9308/// - filterOrder-order of clipping filter (default "BackOrder2")
9309/// possible values= "BackOrder4" "BackOrder6" "BackOrder8"
9310/// - "nosmoothing" - if selected, the background is not smoothed
9311/// By default the background is smoothed.
9312/// - smoothWindow - width of smoothing window, (default is "BackSmoothing3")
9313/// possible values= "BackSmoothing5" "BackSmoothing7" "BackSmoothing9"
9314/// "BackSmoothing11" "BackSmoothing13" "BackSmoothing15"
9315/// - "nocompton" - if selected the estimation of Compton edge
9316/// will be not be included (by default the compton estimation is set)
9317/// - "same" if this option is specified, the resulting background
9318/// histogram is superimposed on the picture in the current pad.
9319/// This option is given by default.
9320///
9321/// NOTE that the background is only evaluated in the current range of this histogram.
9322/// i.e., if this has a bin range (set via h->GetXaxis()->SetRange(binmin, binmax),
9323/// the returned histogram will be created with the same number of bins
9324/// as this input histogram, but only bins from binmin to binmax will be filled
9325/// with the estimated background.
9326
9328{
9329 return (TH1*)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticBackground((TH1*)0x%zx,%d,\"%s\")",
9330 (size_t)this, niter, option).Data());
9331}
9332
9333////////////////////////////////////////////////////////////////////////////////
9334/// Interface to TSpectrum::Search.
9335/// The function finds peaks in this histogram where the width is > sigma
9336/// and the peak maximum greater than threshold*maximum bin content of this.
9337/// For more details see TSpectrum::Search.
9338/// Note the difference in the default value for option compared to TSpectrum::Search
9339/// option="" by default (instead of "goff").
9340
9342{
9343 return (Int_t)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticSearch((TH1*)0x%zx,%g,\"%s\",%g)",
9344 (size_t)this, sigma, option, threshold).Data());
9345}
9346
9347////////////////////////////////////////////////////////////////////////////////
9348/// For a given transform (first parameter), fills the histogram (second parameter)
9349/// with the transform output data, specified in the third parameter
9350/// If the 2nd parameter h_output is empty, a new histogram (TH1D or TH2D) is created
9351/// and the user is responsible for deleting it.
9352///
9353/// Available options:
9354/// - "RE" - real part of the output
9355/// - "IM" - imaginary part of the output
9356/// - "MAG" - magnitude of the output
9357/// - "PH" - phase of the output
9358
9360{
9361 if (!fft || !fft->GetN() ) {
9362 ::Error("TransformHisto","Invalid FFT transform class");
9363 return nullptr;
9364 }
9365
9366 if (fft->GetNdim()>2){
9367 ::Error("TransformHisto","Only 1d and 2D transform are supported");
9368 return nullptr;
9369 }
9370 Int_t binx,biny;
9371 TString opt = option;
9372 opt.ToUpper();
9373 Int_t *n = fft->GetN();
9374 TH1 *hout=nullptr;
9375 if (h_output) {
9376 hout = h_output;
9377 }
9378 else {
9379 TString name = TString::Format("out_%s", opt.Data());
9380 if (fft->GetNdim()==1)
9381 hout = new TH1D(name, name,n[0], 0, n[0]);
9382 else if (fft->GetNdim()==2)
9383 hout = new TH2D(name, name, n[0], 0, n[0], n[1], 0, n[1]);
9384 }
9385 R__ASSERT(hout != nullptr);
9386 TString type=fft->GetType();
9387 Int_t ind[2];
9388 if (opt.Contains("RE")){
9389 if (type.Contains("2C") || type.Contains("2HC")) {
9390 Double_t re, im;
9391 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9392 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9393 ind[0] = binx-1; ind[1] = biny-1;
9394 fft->GetPointComplex(ind, re, im);
9395 hout->SetBinContent(binx, biny, re);
9396 }
9397 }
9398 } else {
9399 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9400 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9401 ind[0] = binx-1; ind[1] = biny-1;
9402 hout->SetBinContent(binx, biny, fft->GetPointReal(ind));
9403 }
9404 }
9405 }
9406 }
9407 if (opt.Contains("IM")) {
9408 if (type.Contains("2C") || type.Contains("2HC")) {
9409 Double_t re, im;
9410 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9411 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9412 ind[0] = binx-1; ind[1] = biny-1;
9413 fft->GetPointComplex(ind, re, im);
9414 hout->SetBinContent(binx, biny, im);
9415 }
9416 }
9417 } else {
9418 ::Error("TransformHisto","No complex numbers in the output");
9419 return nullptr;
9420 }
9421 }
9422 if (opt.Contains("MA")) {
9423 if (type.Contains("2C") || type.Contains("2HC")) {
9424 Double_t re, im;
9425 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9426 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9427 ind[0] = binx-1; ind[1] = biny-1;
9428 fft->GetPointComplex(ind, re, im);
9429 hout->SetBinContent(binx, biny, TMath::Sqrt(re*re + im*im));
9430 }
9431 }
9432 } else {
9433 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9434 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9435 ind[0] = binx-1; ind[1] = biny-1;
9436 hout->SetBinContent(binx, biny, TMath::Abs(fft->GetPointReal(ind)));
9437 }
9438 }
9439 }
9440 }
9441 if (opt.Contains("PH")) {
9442 if (type.Contains("2C") || type.Contains("2HC")){
9443 Double_t re, im, ph;
9444 for (binx = 1; binx<=hout->GetNbinsX(); binx++){
9445 for (biny=1; biny<=hout->GetNbinsY(); biny++){
9446 ind[0] = binx-1; ind[1] = biny-1;
9447 fft->GetPointComplex(ind, re, im);
9448 if (TMath::Abs(re) > 1e-13){
9449 ph = TMath::ATan(im/re);
9450 //find the correct quadrant
9451 if (re<0 && im<0)
9452 ph -= TMath::Pi();
9453 if (re<0 && im>=0)
9454 ph += TMath::Pi();
9455 } else {
9456 if (TMath::Abs(im) < 1e-13)
9457 ph = 0;
9458 else if (im>0)
9459 ph = TMath::Pi()*0.5;
9460 else
9461 ph = -TMath::Pi()*0.5;
9462 }
9463 hout->SetBinContent(binx, biny, ph);
9464 }
9465 }
9466 } else {
9467 printf("Pure real output, no phase");
9468 return nullptr;
9469 }
9470 }
9471
9472 return hout;
9473}
9474
9475////////////////////////////////////////////////////////////////////////////////
9476/// Print value overload
9477
9478std::string cling::printValue(TH1 *val) {
9479 std::ostringstream strm;
9480 strm << cling::printValue((TObject*)val) << " NbinsX: " << val->GetNbinsX();
9481 return strm.str();
9482}
9483
9484//______________________________________________________________________________
9485// TH1C methods
9486// TH1C : histograms with one byte per channel. Maximum bin content = 127
9487//______________________________________________________________________________
9488
9489
9490////////////////////////////////////////////////////////////////////////////////
9491/// Constructor.
9492
9493TH1C::TH1C()
9494{
9495 fDimension = 1;
9496 SetBinsLength(3);
9497 if (fgDefaultSumw2) Sumw2();
9498}
9499
9500////////////////////////////////////////////////////////////////////////////////
9501/// Create a 1-Dim histogram with fix bins of type char (one byte per channel)
9502/// (see TH1::TH1 for explanation of parameters)
9503
9504TH1C::TH1C(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9505: TH1(name,title,nbins,xlow,xup)
9506{
9507 fDimension = 1;
9509
9510 if (xlow >= xup) SetBuffer(fgBufferSize);
9511 if (fgDefaultSumw2) Sumw2();
9512}
9513
9514////////////////////////////////////////////////////////////////////////////////
9515/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9516/// (see TH1::TH1 for explanation of parameters)
9517
9518TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9519: TH1(name,title,nbins,xbins)
9520{
9521 fDimension = 1;
9523 if (fgDefaultSumw2) Sumw2();
9524}
9525
9526////////////////////////////////////////////////////////////////////////////////
9527/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9528/// (see TH1::TH1 for explanation of parameters)
9529
9530TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9531: TH1(name,title,nbins,xbins)
9532{
9533 fDimension = 1;
9535 if (fgDefaultSumw2) Sumw2();
9536}
9537
9538////////////////////////////////////////////////////////////////////////////////
9539/// Destructor.
9540
9542{
9543}
9544
9545////////////////////////////////////////////////////////////////////////////////
9546/// Copy constructor.
9547/// The list of functions is not copied. (Use Clone() if needed)
9548
9549TH1C::TH1C(const TH1C &h1c) : TH1(), TArrayC()
9550{
9551 h1c.TH1C::Copy(*this);
9552}
9553
9554////////////////////////////////////////////////////////////////////////////////
9555/// Increment bin content by 1.
9556/// Passing an out-of-range bin leads to undefined behavior
9557
9558void TH1C::AddBinContent(Int_t bin)
9559{
9560 if (fArray[bin] < 127) fArray[bin]++;
9561}
9562
9563////////////////////////////////////////////////////////////////////////////////
9564/// Increment bin content by w.
9565/// \warning The value of w is cast to `Int_t` before being added.
9566/// Passing an out-of-range bin leads to undefined behavior
9567
9569{
9570 Int_t newval = fArray[bin] + Int_t(w);
9571 if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
9572 if (newval < -127) fArray[bin] = -127;
9573 if (newval > 127) fArray[bin] = 127;
9574}
9575
9576////////////////////////////////////////////////////////////////////////////////
9577/// Copy this to newth1
9578
9579void TH1C::Copy(TObject &newth1) const
9580{
9582}
9583
9584////////////////////////////////////////////////////////////////////////////////
9585/// Reset.
9586
9588{
9591}
9592
9593////////////////////////////////////////////////////////////////////////////////
9594/// Set total number of bins including under/overflow
9595/// Reallocate bin contents array
9596
9598{
9599 if (n < 0) n = fXaxis.GetNbins() + 2;
9600 fNcells = n;
9601 TArrayC::Set(n);
9602}
9603
9604////////////////////////////////////////////////////////////////////////////////
9605/// Operator =
9606
9607TH1C& TH1C::operator=(const TH1C &h1)
9608{
9609 if (this != &h1)
9610 h1.TH1C::Copy(*this);
9611 return *this;
9612}
9613
9614////////////////////////////////////////////////////////////////////////////////
9615/// Operator *
9616
9618{
9619 TH1C hnew = h1;
9620 hnew.Scale(c1);
9621 hnew.SetDirectory(nullptr);
9622 return hnew;
9623}
9624
9625////////////////////////////////////////////////////////////////////////////////
9626/// Operator +
9627
9628TH1C operator+(const TH1C &h1, const TH1C &h2)
9629{
9630 TH1C hnew = h1;
9631 hnew.Add(&h2,1);
9632 hnew.SetDirectory(nullptr);
9633 return hnew;
9634}
9635
9636////////////////////////////////////////////////////////////////////////////////
9637/// Operator -
9638
9639TH1C operator-(const TH1C &h1, const TH1C &h2)
9640{
9641 TH1C hnew = h1;
9642 hnew.Add(&h2,-1);
9643 hnew.SetDirectory(nullptr);
9644 return hnew;
9645}
9646
9647////////////////////////////////////////////////////////////////////////////////
9648/// Operator *
9649
9650TH1C operator*(const TH1C &h1, const TH1C &h2)
9651{
9652 TH1C hnew = h1;
9653 hnew.Multiply(&h2);
9654 hnew.SetDirectory(nullptr);
9655 return hnew;
9656}
9657
9658////////////////////////////////////////////////////////////////////////////////
9659/// Operator /
9660
9661TH1C operator/(const TH1C &h1, const TH1C &h2)
9662{
9663 TH1C hnew = h1;
9664 hnew.Divide(&h2);
9665 hnew.SetDirectory(nullptr);
9666 return hnew;
9667}
9668
9669//______________________________________________________________________________
9670// TH1S methods
9671// TH1S : histograms with one short per channel. Maximum bin content = 32767
9672//______________________________________________________________________________
9673
9674
9675////////////////////////////////////////////////////////////////////////////////
9676/// Constructor.
9677
9678TH1S::TH1S()
9679{
9680 fDimension = 1;
9681 SetBinsLength(3);
9682 if (fgDefaultSumw2) Sumw2();
9683}
9684
9685////////////////////////////////////////////////////////////////////////////////
9686/// Create a 1-Dim histogram with fix bins of type short
9687/// (see TH1::TH1 for explanation of parameters)
9688
9689TH1S::TH1S(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9690: TH1(name,title,nbins,xlow,xup)
9691{
9692 fDimension = 1;
9694
9695 if (xlow >= xup) SetBuffer(fgBufferSize);
9696 if (fgDefaultSumw2) Sumw2();
9697}
9698
9699////////////////////////////////////////////////////////////////////////////////
9700/// Create a 1-Dim histogram with variable bins of type short
9701/// (see TH1::TH1 for explanation of parameters)
9702
9703TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9704: TH1(name,title,nbins,xbins)
9705{
9706 fDimension = 1;
9708 if (fgDefaultSumw2) Sumw2();
9709}
9710
9711////////////////////////////////////////////////////////////////////////////////
9712/// Create a 1-Dim histogram with variable bins of type short
9713/// (see TH1::TH1 for explanation of parameters)
9714
9715TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9716: TH1(name,title,nbins,xbins)
9717{
9718 fDimension = 1;
9720 if (fgDefaultSumw2) Sumw2();
9721}
9722
9723////////////////////////////////////////////////////////////////////////////////
9724/// Destructor.
9725
9727{
9728}
9729
9730////////////////////////////////////////////////////////////////////////////////
9731/// Copy constructor.
9732/// The list of functions is not copied. (Use Clone() if needed)
9733
9734TH1S::TH1S(const TH1S &h1s) : TH1(), TArrayS()
9735{
9736 h1s.TH1S::Copy(*this);
9737}
9738
9739////////////////////////////////////////////////////////////////////////////////
9740/// Increment bin content by 1.
9741/// Passing an out-of-range bin leads to undefined behavior
9742
9743void TH1S::AddBinContent(Int_t bin)
9744{
9745 if (fArray[bin] < 32767) fArray[bin]++;
9746}
9747
9748////////////////////////////////////////////////////////////////////////////////
9749/// Increment bin content by w.
9750/// \warning The value of w is cast to `Int_t` before being added.
9751/// Passing an out-of-range bin leads to undefined behavior
9752
9754{
9755 Int_t newval = fArray[bin] + Int_t(w);
9756 if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
9757 if (newval < -32767) fArray[bin] = -32767;
9758 if (newval > 32767) fArray[bin] = 32767;
9759}
9760
9761////////////////////////////////////////////////////////////////////////////////
9762/// Copy this to newth1
9763
9764void TH1S::Copy(TObject &newth1) const
9765{
9767}
9768
9769////////////////////////////////////////////////////////////////////////////////
9770/// Reset.
9771
9773{
9776}
9777
9778////////////////////////////////////////////////////////////////////////////////
9779/// Set total number of bins including under/overflow
9780/// Reallocate bin contents array
9781
9783{
9784 if (n < 0) n = fXaxis.GetNbins() + 2;
9785 fNcells = n;
9786 TArrayS::Set(n);
9787}
9788
9789////////////////////////////////////////////////////////////////////////////////
9790/// Operator =
9791
9792TH1S& TH1S::operator=(const TH1S &h1)
9793{
9794 if (this != &h1)
9795 h1.TH1S::Copy(*this);
9796 return *this;
9797}
9798
9799////////////////////////////////////////////////////////////////////////////////
9800/// Operator *
9801
9803{
9804 TH1S hnew = h1;
9805 hnew.Scale(c1);
9806 hnew.SetDirectory(nullptr);
9807 return hnew;
9808}
9809
9810////////////////////////////////////////////////////////////////////////////////
9811/// Operator +
9812
9813TH1S operator+(const TH1S &h1, const TH1S &h2)
9814{
9815 TH1S hnew = h1;
9816 hnew.Add(&h2,1);
9817 hnew.SetDirectory(nullptr);
9818 return hnew;
9819}
9820
9821////////////////////////////////////////////////////////////////////////////////
9822/// Operator -
9823
9824TH1S operator-(const TH1S &h1, const TH1S &h2)
9825{
9826 TH1S hnew = h1;
9827 hnew.Add(&h2,-1);
9828 hnew.SetDirectory(nullptr);
9829 return hnew;
9830}
9831
9832////////////////////////////////////////////////////////////////////////////////
9833/// Operator *
9834
9835TH1S operator*(const TH1S &h1, const TH1S &h2)
9836{
9837 TH1S hnew = h1;
9838 hnew.Multiply(&h2);
9839 hnew.SetDirectory(nullptr);
9840 return hnew;
9841}
9842
9843////////////////////////////////////////////////////////////////////////////////
9844/// Operator /
9845
9846TH1S operator/(const TH1S &h1, const TH1S &h2)
9847{
9848 TH1S hnew = h1;
9849 hnew.Divide(&h2);
9850 hnew.SetDirectory(nullptr);
9851 return hnew;
9852}
9853
9854//______________________________________________________________________________
9855// TH1I methods
9856// TH1I : histograms with one int per channel. Maximum bin content = 2147483647
9857// 2147483647 = INT_MAX
9858//______________________________________________________________________________
9859
9860
9861////////////////////////////////////////////////////////////////////////////////
9862/// Constructor.
9863
9864TH1I::TH1I()
9865{
9866 fDimension = 1;
9867 SetBinsLength(3);
9868 if (fgDefaultSumw2) Sumw2();
9869}
9870
9871////////////////////////////////////////////////////////////////////////////////
9872/// Create a 1-Dim histogram with fix bins of type integer
9873/// (see TH1::TH1 for explanation of parameters)
9874
9875TH1I::TH1I(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9876: TH1(name,title,nbins,xlow,xup)
9877{
9878 fDimension = 1;
9880
9881 if (xlow >= xup) SetBuffer(fgBufferSize);
9882 if (fgDefaultSumw2) Sumw2();
9883}
9884
9885////////////////////////////////////////////////////////////////////////////////
9886/// Create a 1-Dim histogram with variable bins of type integer
9887/// (see TH1::TH1 for explanation of parameters)
9888
9889TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9890: TH1(name,title,nbins,xbins)
9891{
9892 fDimension = 1;
9894 if (fgDefaultSumw2) Sumw2();
9895}
9896
9897////////////////////////////////////////////////////////////////////////////////
9898/// Create a 1-Dim histogram with variable bins of type integer
9899/// (see TH1::TH1 for explanation of parameters)
9900
9901TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9902: TH1(name,title,nbins,xbins)
9903{
9904 fDimension = 1;
9906 if (fgDefaultSumw2) Sumw2();
9907}
9908
9909////////////////////////////////////////////////////////////////////////////////
9910/// Destructor.
9911
9913{
9914}
9915
9916////////////////////////////////////////////////////////////////////////////////
9917/// Copy constructor.
9918/// The list of functions is not copied. (Use Clone() if needed)
9919
9920TH1I::TH1I(const TH1I &h1i) : TH1(), TArrayI()
9921{
9922 h1i.TH1I::Copy(*this);
9923}
9924
9925////////////////////////////////////////////////////////////////////////////////
9926/// Increment bin content by 1.
9927/// Passing an out-of-range bin leads to undefined behavior
9928
9929void TH1I::AddBinContent(Int_t bin)
9930{
9931 if (fArray[bin] < INT_MAX) fArray[bin]++;
9932}
9933
9934////////////////////////////////////////////////////////////////////////////////
9935/// Increment bin content by w
9936/// \warning The value of w is cast to `Long64_t` before being added.
9937/// Passing an out-of-range bin leads to undefined behavior
9938
9940{
9941 Long64_t newval = fArray[bin] + Long64_t(w);
9942 if (newval > -INT_MAX && newval < INT_MAX) {fArray[bin] = Int_t(newval); return;}
9943 if (newval < -INT_MAX) fArray[bin] = -INT_MAX;
9944 if (newval > INT_MAX) fArray[bin] = INT_MAX;
9945}
9946
9947////////////////////////////////////////////////////////////////////////////////
9948/// Copy this to newth1
9949
9950void TH1I::Copy(TObject &newth1) const
9951{
9953}
9954
9955////////////////////////////////////////////////////////////////////////////////
9956/// Reset.
9957
9959{
9962}
9963
9964////////////////////////////////////////////////////////////////////////////////
9965/// Set total number of bins including under/overflow
9966/// Reallocate bin contents array
9967
9969{
9970 if (n < 0) n = fXaxis.GetNbins() + 2;
9971 fNcells = n;
9972 TArrayI::Set(n);
9973}
9974
9975////////////////////////////////////////////////////////////////////////////////
9976/// Operator =
9977
9978TH1I& TH1I::operator=(const TH1I &h1)
9979{
9980 if (this != &h1)
9981 h1.TH1I::Copy(*this);
9982 return *this;
9983}
9984
9985
9986////////////////////////////////////////////////////////////////////////////////
9987/// Operator *
9988
9990{
9991 TH1I hnew = h1;
9992 hnew.Scale(c1);
9993 hnew.SetDirectory(nullptr);
9994 return hnew;
9995}
9996
9997////////////////////////////////////////////////////////////////////////////////
9998/// Operator +
9999
10000TH1I operator+(const TH1I &h1, const TH1I &h2)
10001{
10002 TH1I hnew = h1;
10003 hnew.Add(&h2,1);
10004 hnew.SetDirectory(nullptr);
10005 return hnew;
10006}
10007
10008////////////////////////////////////////////////////////////////////////////////
10009/// Operator -
10010
10011TH1I operator-(const TH1I &h1, const TH1I &h2)
10012{
10013 TH1I hnew = h1;
10014 hnew.Add(&h2,-1);
10015 hnew.SetDirectory(nullptr);
10016 return hnew;
10017}
10018
10019////////////////////////////////////////////////////////////////////////////////
10020/// Operator *
10021
10022TH1I operator*(const TH1I &h1, const TH1I &h2)
10023{
10024 TH1I hnew = h1;
10025 hnew.Multiply(&h2);
10026 hnew.SetDirectory(nullptr);
10027 return hnew;
10028}
10029
10030////////////////////////////////////////////////////////////////////////////////
10031/// Operator /
10032
10033TH1I operator/(const TH1I &h1, const TH1I &h2)
10034{
10035 TH1I hnew = h1;
10036 hnew.Divide(&h2);
10037 hnew.SetDirectory(nullptr);
10038 return hnew;
10039}
10040
10041//______________________________________________________________________________
10042// TH1L methods
10043// TH1L : histograms with one long64 per channel. Maximum bin content = 9223372036854775807
10044// 9223372036854775807 = LLONG_MAX
10045//______________________________________________________________________________
10046
10047
10048////////////////////////////////////////////////////////////////////////////////
10049/// Constructor.
10050
10051TH1L::TH1L()
10052{
10053 fDimension = 1;
10054 SetBinsLength(3);
10055 if (fgDefaultSumw2) Sumw2();
10056}
10057
10058////////////////////////////////////////////////////////////////////////////////
10059/// Create a 1-Dim histogram with fix bins of type long64
10060/// (see TH1::TH1 for explanation of parameters)
10061
10062TH1L::TH1L(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10063: TH1(name,title,nbins,xlow,xup)
10064{
10065 fDimension = 1;
10067
10068 if (xlow >= xup) SetBuffer(fgBufferSize);
10069 if (fgDefaultSumw2) Sumw2();
10070}
10071
10072////////////////////////////////////////////////////////////////////////////////
10073/// Create a 1-Dim histogram with variable bins of type long64
10074/// (see TH1::TH1 for explanation of parameters)
10075
10076TH1L::TH1L(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10077: TH1(name,title,nbins,xbins)
10078{
10079 fDimension = 1;
10081 if (fgDefaultSumw2) Sumw2();
10082}
10083
10084////////////////////////////////////////////////////////////////////////////////
10085/// Create a 1-Dim histogram with variable bins of type long64
10086/// (see TH1::TH1 for explanation of parameters)
10087
10088TH1L::TH1L(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10089: TH1(name,title,nbins,xbins)
10090{
10091 fDimension = 1;
10093 if (fgDefaultSumw2) Sumw2();
10094}
10095
10096////////////////////////////////////////////////////////////////////////////////
10097/// Destructor.
10098
10100{
10101}
10102
10103////////////////////////////////////////////////////////////////////////////////
10104/// Copy constructor.
10105/// The list of functions is not copied. (Use Clone() if needed)
10106
10107TH1L::TH1L(const TH1L &h1l) : TH1(), TArrayL64()
10108{
10109 h1l.TH1L::Copy(*this);
10110}
10111
10112////////////////////////////////////////////////////////////////////////////////
10113/// Increment bin content by 1.
10114/// Passing an out-of-range bin leads to undefined behavior
10115
10116void TH1L::AddBinContent(Int_t bin)
10117{
10118 if (fArray[bin] < LLONG_MAX) fArray[bin]++;
10119}
10120
10121////////////////////////////////////////////////////////////////////////////////
10122/// Increment bin content by w.
10123/// \warning The value of w is cast to `Long64_t` before being added.
10124/// Passing an out-of-range bin leads to undefined behavior
10125
10127{
10128 Long64_t newval = fArray[bin] + Long64_t(w);
10129 if (newval > -LLONG_MAX && newval < LLONG_MAX) {fArray[bin] = newval; return;}
10130 if (newval < -LLONG_MAX) fArray[bin] = -LLONG_MAX;
10131 if (newval > LLONG_MAX) fArray[bin] = LLONG_MAX;
10132}
10133
10134////////////////////////////////////////////////////////////////////////////////
10135/// Copy this to newth1
10136
10137void TH1L::Copy(TObject &newth1) const
10138{
10140}
10141
10142////////////////////////////////////////////////////////////////////////////////
10143/// Reset.
10144
10146{
10149}
10150
10151////////////////////////////////////////////////////////////////////////////////
10152/// Set total number of bins including under/overflow
10153/// Reallocate bin contents array
10154
10156{
10157 if (n < 0) n = fXaxis.GetNbins() + 2;
10158 fNcells = n;
10160}
10161
10162////////////////////////////////////////////////////////////////////////////////
10163/// Operator =
10164
10165TH1L& TH1L::operator=(const TH1L &h1)
10166{
10167 if (this != &h1)
10168 h1.TH1L::Copy(*this);
10169 return *this;
10170}
10171
10172
10173////////////////////////////////////////////////////////////////////////////////
10174/// Operator *
10175
10177{
10178 TH1L hnew = h1;
10179 hnew.Scale(c1);
10180 hnew.SetDirectory(nullptr);
10181 return hnew;
10182}
10183
10184////////////////////////////////////////////////////////////////////////////////
10185/// Operator +
10186
10187TH1L operator+(const TH1L &h1, const TH1L &h2)
10188{
10189 TH1L hnew = h1;
10190 hnew.Add(&h2,1);
10191 hnew.SetDirectory(nullptr);
10192 return hnew;
10193}
10194
10195////////////////////////////////////////////////////////////////////////////////
10196/// Operator -
10197
10198TH1L operator-(const TH1L &h1, const TH1L &h2)
10199{
10200 TH1L hnew = h1;
10201 hnew.Add(&h2,-1);
10202 hnew.SetDirectory(nullptr);
10203 return hnew;
10204}
10205
10206////////////////////////////////////////////////////////////////////////////////
10207/// Operator *
10208
10209TH1L operator*(const TH1L &h1, const TH1L &h2)
10210{
10211 TH1L hnew = h1;
10212 hnew.Multiply(&h2);
10213 hnew.SetDirectory(nullptr);
10214 return hnew;
10215}
10216
10217////////////////////////////////////////////////////////////////////////////////
10218/// Operator /
10219
10220TH1L operator/(const TH1L &h1, const TH1L &h2)
10221{
10222 TH1L hnew = h1;
10223 hnew.Divide(&h2);
10224 hnew.SetDirectory(nullptr);
10225 return hnew;
10226}
10227
10228//______________________________________________________________________________
10229// TH1F methods
10230// TH1F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216
10231//______________________________________________________________________________
10232
10233
10234////////////////////////////////////////////////////////////////////////////////
10235/// Constructor.
10236
10237TH1F::TH1F()
10238{
10239 fDimension = 1;
10240 SetBinsLength(3);
10241 if (fgDefaultSumw2) Sumw2();
10242}
10243
10244////////////////////////////////////////////////////////////////////////////////
10245/// Create a 1-Dim histogram with fix bins of type float
10246/// (see TH1::TH1 for explanation of parameters)
10247
10248TH1F::TH1F(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10249: TH1(name,title,nbins,xlow,xup)
10250{
10251 fDimension = 1;
10253
10254 if (xlow >= xup) SetBuffer(fgBufferSize);
10255 if (fgDefaultSumw2) Sumw2();
10256}
10257
10258////////////////////////////////////////////////////////////////////////////////
10259/// Create a 1-Dim histogram with variable bins of type float
10260/// (see TH1::TH1 for explanation of parameters)
10261
10262TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10263: TH1(name,title,nbins,xbins)
10264{
10265 fDimension = 1;
10267 if (fgDefaultSumw2) Sumw2();
10268}
10269
10270////////////////////////////////////////////////////////////////////////////////
10271/// Create a 1-Dim histogram with variable bins of type float
10272/// (see TH1::TH1 for explanation of parameters)
10273
10274TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10275: TH1(name,title,nbins,xbins)
10276{
10277 fDimension = 1;
10279 if (fgDefaultSumw2) Sumw2();
10280}
10281
10282////////////////////////////////////////////////////////////////////////////////
10283/// Create a histogram from a TVectorF
10284/// by default the histogram name is "TVectorF" and title = ""
10285
10286TH1F::TH1F(const TVectorF &v)
10287: TH1("TVectorF","",v.GetNrows(),0,v.GetNrows())
10288{
10290 fDimension = 1;
10291 Int_t ivlow = v.GetLwb();
10292 for (Int_t i=0;i<fNcells-2;i++) {
10293 SetBinContent(i+1,v(i+ivlow));
10294 }
10296 if (fgDefaultSumw2) Sumw2();
10297}
10298
10299////////////////////////////////////////////////////////////////////////////////
10300/// Copy Constructor.
10301/// The list of functions is not copied. (Use Clone() if needed)
10302
10303TH1F::TH1F(const TH1F &h1f) : TH1(), TArrayF()
10304{
10305 h1f.TH1F::Copy(*this);
10306}
10307
10308////////////////////////////////////////////////////////////////////////////////
10309/// Destructor.
10310
10312{
10313}
10314
10315////////////////////////////////////////////////////////////////////////////////
10316/// Copy this to newth1.
10317
10318void TH1F::Copy(TObject &newth1) const
10319{
10321}
10322
10323////////////////////////////////////////////////////////////////////////////////
10324/// Reset.
10325
10327{
10330}
10331
10332////////////////////////////////////////////////////////////////////////////////
10333/// Set total number of bins including under/overflow
10334/// Reallocate bin contents array
10335
10337{
10338 if (n < 0) n = fXaxis.GetNbins() + 2;
10339 fNcells = n;
10340 TArrayF::Set(n);
10341}
10342
10343////////////////////////////////////////////////////////////////////////////////
10344/// Operator =
10345
10347{
10348 if (this != &h1f)
10349 h1f.TH1F::Copy(*this);
10350 return *this;
10351}
10352
10353////////////////////////////////////////////////////////////////////////////////
10354/// Operator *
10355
10357{
10358 TH1F hnew = h1;
10359 hnew.Scale(c1);
10360 hnew.SetDirectory(nullptr);
10361 return hnew;
10362}
10363
10364////////////////////////////////////////////////////////////////////////////////
10365/// Operator +
10366
10367TH1F operator+(const TH1F &h1, const TH1F &h2)
10368{
10369 TH1F hnew = h1;
10370 hnew.Add(&h2,1);
10371 hnew.SetDirectory(nullptr);
10372 return hnew;
10373}
10374
10375////////////////////////////////////////////////////////////////////////////////
10376/// Operator -
10377
10378TH1F operator-(const TH1F &h1, const TH1F &h2)
10379{
10380 TH1F hnew = h1;
10381 hnew.Add(&h2,-1);
10382 hnew.SetDirectory(nullptr);
10383 return hnew;
10384}
10385
10386////////////////////////////////////////////////////////////////////////////////
10387/// Operator *
10388
10389TH1F operator*(const TH1F &h1, const TH1F &h2)
10390{
10391 TH1F hnew = h1;
10392 hnew.Multiply(&h2);
10393 hnew.SetDirectory(nullptr);
10394 return hnew;
10395}
10396
10397////////////////////////////////////////////////////////////////////////////////
10398/// Operator /
10399
10400TH1F operator/(const TH1F &h1, const TH1F &h2)
10401{
10402 TH1F hnew = h1;
10403 hnew.Divide(&h2);
10404 hnew.SetDirectory(nullptr);
10405 return hnew;
10406}
10407
10408//______________________________________________________________________________
10409// TH1D methods
10410// TH1D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992
10411//______________________________________________________________________________
10412
10413
10414////////////////////////////////////////////////////////////////////////////////
10415/// Constructor.
10416
10417TH1D::TH1D()
10418{
10419 fDimension = 1;
10420 SetBinsLength(3);
10421 if (fgDefaultSumw2) Sumw2();
10422}
10423
10424////////////////////////////////////////////////////////////////////////////////
10425/// Create a 1-Dim histogram with fix bins of type double
10426/// (see TH1::TH1 for explanation of parameters)
10427
10428TH1D::TH1D(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10429: TH1(name,title,nbins,xlow,xup)
10430{
10431 fDimension = 1;
10433
10434 if (xlow >= xup) SetBuffer(fgBufferSize);
10435 if (fgDefaultSumw2) Sumw2();
10436}
10437
10438////////////////////////////////////////////////////////////////////////////////
10439/// Create a 1-Dim histogram with variable bins of type double
10440/// (see TH1::TH1 for explanation of parameters)
10441
10442TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10443: TH1(name,title,nbins,xbins)
10444{
10445 fDimension = 1;
10447 if (fgDefaultSumw2) Sumw2();
10448}
10449
10450////////////////////////////////////////////////////////////////////////////////
10451/// Create a 1-Dim histogram with variable bins of type double
10452/// (see TH1::TH1 for explanation of parameters)
10453
10454TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10455: TH1(name,title,nbins,xbins)
10456{
10457 fDimension = 1;
10459 if (fgDefaultSumw2) Sumw2();
10460}
10461
10462////////////////////////////////////////////////////////////////////////////////
10463/// Create a histogram from a TVectorD
10464/// by default the histogram name is "TVectorD" and title = ""
10465
10466TH1D::TH1D(const TVectorD &v)
10467: TH1("TVectorD","",v.GetNrows(),0,v.GetNrows())
10468{
10470 fDimension = 1;
10471 Int_t ivlow = v.GetLwb();
10472 for (Int_t i=0;i<fNcells-2;i++) {
10473 SetBinContent(i+1,v(i+ivlow));
10474 }
10476 if (fgDefaultSumw2) Sumw2();
10477}
10478
10479////////////////////////////////////////////////////////////////////////////////
10480/// Destructor.
10481
10483{
10484}
10485
10486////////////////////////////////////////////////////////////////////////////////
10487/// Constructor.
10488
10489TH1D::TH1D(const TH1D &h1d) : TH1(), TArrayD()
10490{
10491 // intentially call virtual method to warn if TProfile is copying
10492 h1d.Copy(*this);
10493}
10494
10495////////////////////////////////////////////////////////////////////////////////
10496/// Copy this to newth1
10497
10498void TH1D::Copy(TObject &newth1) const
10499{
10501}
10502
10503////////////////////////////////////////////////////////////////////////////////
10504/// Reset.
10505
10507{
10510}
10511
10512////////////////////////////////////////////////////////////////////////////////
10513/// Set total number of bins including under/overflow
10514/// Reallocate bin contents array
10515
10517{
10518 if (n < 0) n = fXaxis.GetNbins() + 2;
10519 fNcells = n;
10520 TArrayD::Set(n);
10521}
10522
10523////////////////////////////////////////////////////////////////////////////////
10524/// Operator =
10525
10527{
10528 // intentially call virtual method to warn if TProfile is copying
10529 if (this != &h1d)
10530 h1d.Copy(*this);
10531 return *this;
10532}
10533
10534////////////////////////////////////////////////////////////////////////////////
10535/// Operator *
10536
10538{
10539 TH1D hnew = h1;
10540 hnew.Scale(c1);
10541 hnew.SetDirectory(nullptr);
10542 return hnew;
10543}
10544
10545////////////////////////////////////////////////////////////////////////////////
10546/// Operator +
10547
10548TH1D operator+(const TH1D &h1, const TH1D &h2)
10549{
10550 TH1D hnew = h1;
10551 hnew.Add(&h2,1);
10552 hnew.SetDirectory(nullptr);
10553 return hnew;
10554}
10555
10556////////////////////////////////////////////////////////////////////////////////
10557/// Operator -
10558
10559TH1D operator-(const TH1D &h1, const TH1D &h2)
10560{
10561 TH1D hnew = h1;
10562 hnew.Add(&h2,-1);
10563 hnew.SetDirectory(nullptr);
10564 return hnew;
10565}
10566
10567////////////////////////////////////////////////////////////////////////////////
10568/// Operator *
10569
10570TH1D operator*(const TH1D &h1, const TH1D &h2)
10571{
10572 TH1D hnew = h1;
10573 hnew.Multiply(&h2);
10574 hnew.SetDirectory(nullptr);
10575 return hnew;
10576}
10577
10578////////////////////////////////////////////////////////////////////////////////
10579/// Operator /
10580
10581TH1D operator/(const TH1D &h1, const TH1D &h2)
10582{
10583 TH1D hnew = h1;
10584 hnew.Divide(&h2);
10585 hnew.SetDirectory(nullptr);
10586 return hnew;
10587}
10588
10589////////////////////////////////////////////////////////////////////////////////
10590///return pointer to histogram with name
10591///hid if id >=0
10592///h_id if id <0
10593
10594TH1 *R__H(Int_t hid)
10595{
10596 TString hname;
10597 if(hid >= 0) hname.Form("h%d",hid);
10598 else hname.Form("h_%d",hid);
10599 return (TH1*)gDirectory->Get(hname);
10600}
10601
10602////////////////////////////////////////////////////////////////////////////////
10603///return pointer to histogram with name hname
10604
10605TH1 *R__H(const char * hname)
10606{
10607 return (TH1*)gDirectory->Get(hname);
10608}
10609
10610
10611/// \fn void TH1::SetBarOffset(Float_t offset)
10612/// Set the bar offset as fraction of the bin width for drawing mode "B".
10613/// This shifts bars to the right on the x axis, and helps to draw bars next to each other.
10614/// \see THistPainter, SetBarWidth()
10615
10616/// \fn void TH1::SetBarWidth(Float_t width)
10617/// Set the width of bars as fraction of the bin width for drawing mode "B".
10618/// This allows for making bars narrower than the bin width. With SetBarOffset(), this helps to draw multiple bars next to each other.
10619/// \see THistPainter, SetBarOffset()
#define b(i)
Definition RSha256.hxx:100
#define c(i)
Definition RSha256.hxx:101
#define a(i)
Definition RSha256.hxx:99
#define s1(x)
Definition RSha256.hxx:91
#define h(i)
Definition RSha256.hxx:106
#define e(i)
Definition RSha256.hxx:103
short Style_t
Style number (short)
Definition RtypesCore.h:96
bool Bool_t
Boolean (0=false, 1=true) (bool)
Definition RtypesCore.h:77
int Int_t
Signed integer 4 bytes (int)
Definition RtypesCore.h:59
short Color_t
Color number (short)
Definition RtypesCore.h:99
short Version_t
Class version identifier (short)
Definition RtypesCore.h:79
char Char_t
Character 1 byte (char)
Definition RtypesCore.h:51
float Float_t
Float 4 bytes (float)
Definition RtypesCore.h:71
short Short_t
Signed Short integer 2 bytes (short)
Definition RtypesCore.h:53
constexpr Bool_t kFALSE
Definition RtypesCore.h:108
double Double_t
Double 8 bytes.
Definition RtypesCore.h:73
long long Long64_t
Portable signed long integer 8 bytes.
Definition RtypesCore.h:83
constexpr Bool_t kTRUE
Definition RtypesCore.h:107
const char Option_t
Option string (const char)
Definition RtypesCore.h:80
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define gDirectory
Definition TDirectory.h:385
R__EXTERN TEnv * gEnv
Definition TEnv.h:170
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
Definition TError.h:125
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t option
Option_t Option_t SetLineWidth
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t SetFillStyle
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t del
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t SetLineColor
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t SetFillColor
Option_t Option_t SetMarkerStyle
Option_t Option_t width
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char y1
char name[80]
Definition TGX11.cxx:110
static bool IsEquidistantBinning(const TAxis &axis)
Test if the binning is equidistant.
Definition TH1.cxx:5893
void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
Least square linear fit without weights.
Definition TH1.cxx:4839
void H1InitGaus()
Compute Initial values of parameters for a gaussian.
Definition TH1.cxx:4674
void H1InitExpo()
Compute Initial values of parameters for an exponential.
Definition TH1.cxx:4730
TH1C operator+(const TH1C &h1, const TH1C &h2)
Operator +.
Definition TH1.cxx:9626
TH1C operator-(const TH1C &h1, const TH1C &h2)
Operator -.
Definition TH1.cxx:9637
TH1C operator/(const TH1C &h1, const TH1C &h2)
Operator /.
Definition TH1.cxx:9659
void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
Extracted from CERN Program library routine DSEQN.
Definition TH1.cxx:4885
static Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon=0.00000001)
Test if two double are almost equal.
Definition TH1.cxx:5876
static Bool_t AlmostInteger(Double_t a, Double_t epsilon=0.00000001)
Test if a double is almost an integer.
Definition TH1.cxx:5884
TF1 * gF1
Definition TH1.cxx:584
TH1 * R__H(Int_t hid)
return pointer to histogram with name hid if id >=0 h_id if id <0
Definition TH1.cxx:10592
TH1C operator*(Double_t c1, const TH1C &h1)
Operator *.
Definition TH1.cxx:9615
void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a)
Least squares lpolynomial fitting without weights.
Definition TH1.cxx:4780
void H1InitPolynom()
Compute Initial values of parameters for a polynom.
Definition TH1.cxx:4750
float xmin
int nentries
float ymin
float xmax
float ymax
#define gInterpreter
Int_t gDebug
Global variable setting the debug level. Set to 0 to disable, increase it in steps of 1 to increase t...
Definition TROOT.cxx:627
R__EXTERN TVirtualMutex * gROOTMutex
Definition TROOT.h:63
#define gROOT
Definition TROOT.h:411
R__EXTERN TRandom * gRandom
Definition TRandom.h:62
void Printf(const char *fmt,...)
Formats a string in a circular formatting buffer and prints the string.
Definition TString.cxx:2509
R__EXTERN TStyle * gStyle
Definition TStyle.h:442
#define R__LOCKGUARD(mutex)
#define gPad
#define R__WRITE_LOCKGUARD(mutex)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition BinData.h:52
class describing the range in the coordinates it supports multiple range in a coordinate.
Definition DataRange.h:35
void AndersonDarling2SamplesTest(Double_t &pvalue, Double_t &testStat) const
Performs the Anderson-Darling 2-Sample Test.
Definition GoFTest.cxx:646
const_iterator begin() const
const_iterator end() const
Array of chars or bytes (8 bits per element).
Definition TArrayC.h:27
Char_t * fArray
Definition TArrayC.h:30
void Reset(Char_t val=0)
Definition TArrayC.h:47
void Set(Int_t n) override
Set size of this array to n chars.
Definition TArrayC.cxx:104
Array of doubles (64 bits per element).
Definition TArrayD.h:27
Double_t * fArray
Definition TArrayD.h:30
void Streamer(TBuffer &) override
Stream a TArrayD object.
Definition TArrayD.cxx:148
void Copy(TArrayD &array) const
Definition TArrayD.h:42
void Set(Int_t n) override
Set size of this array to n doubles.
Definition TArrayD.cxx:105
const Double_t * GetArray() const
Definition TArrayD.h:43
void Reset()
Definition TArrayD.h:47
Array of floats (32 bits per element).
Definition TArrayF.h:27
void Reset()
Definition TArrayF.h:47
void Set(Int_t n) override
Set size of this array to n floats.
Definition TArrayF.cxx:104
Array of integers (32 bits per element).
Definition TArrayI.h:27
Int_t * fArray
Definition TArrayI.h:30
void Set(Int_t n) override
Set size of this array to n ints.
Definition TArrayI.cxx:104
void Reset()
Definition TArrayI.h:47
Array of long64s (64 bits per element).
Definition TArrayL64.h:27
Long64_t * fArray
Definition TArrayL64.h:30
void Set(Int_t n) override
Set size of this array to n long64s.
void Reset()
Definition TArrayL64.h:47
Array of shorts (16 bits per element).
Definition TArrayS.h:27
void Set(Int_t n) override
Set size of this array to n shorts.
Definition TArrayS.cxx:104
void Reset()
Definition TArrayS.h:47
Short_t * fArray
Definition TArrayS.h:30
Abstract array base class.
Definition TArray.h:31
Int_t fN
Definition TArray.h:38
virtual void Set(Int_t n)=0
virtual Color_t GetTitleColor() const
Definition TAttAxis.h:47
virtual Color_t GetLabelColor() const
Definition TAttAxis.h:39
virtual Int_t GetNdivisions() const
Definition TAttAxis.h:37
virtual Color_t GetAxisColor() const
Definition TAttAxis.h:38
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition TAttAxis.cxx:279
virtual Style_t GetTitleFont() const
Definition TAttAxis.h:48
virtual Float_t GetLabelOffset() const
Definition TAttAxis.h:41
virtual void SetAxisColor(Color_t color=1, Float_t alpha=1.)
Set color of the line axis and tick marks.
Definition TAttAxis.cxx:141
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels.
Definition TAttAxis.cxx:184
virtual Style_t GetLabelFont() const
Definition TAttAxis.h:40
virtual void SetTitleFont(Style_t font=62)
Set the title font.
Definition TAttAxis.cxx:308
virtual void SetLabelOffset(Float_t offset=0.005)
Set distance between the axis and the labels.
Definition TAttAxis.cxx:172
virtual void SetLabelFont(Style_t font=62)
Set labels' font.
Definition TAttAxis.cxx:161
virtual void SetTitleSize(Float_t size=0.04)
Set size of axis title.
Definition TAttAxis.cxx:290
virtual void SetTitleColor(Color_t color=1)
Set color of axis title.
Definition TAttAxis.cxx:299
virtual Float_t GetTitleSize() const
Definition TAttAxis.h:45
virtual Float_t GetLabelSize() const
Definition TAttAxis.h:42
virtual Float_t GetTickLength() const
Definition TAttAxis.h:46
virtual void ResetAttAxis(Option_t *option="")
Reset axis attributes.
Definition TAttAxis.cxx:78
virtual Float_t GetTitleOffset() const
Definition TAttAxis.h:44
virtual void SetTickLength(Float_t length=0.03)
Set tick mark length.
Definition TAttAxis.cxx:265
virtual void SetNdivisions(Int_t n=510, Bool_t optim=kTRUE)
Set the number of divisions for this axis.
Definition TAttAxis.cxx:214
virtual void SetLabelColor(Color_t color=1, Float_t alpha=1.)
Set color of labels.
Definition TAttAxis.cxx:151
virtual void Streamer(TBuffer &)
virtual Color_t GetFillColor() const
Return the fill area color.
Definition TAttFill.h:31
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
Definition TAttFill.cxx:206
virtual Style_t GetFillStyle() const
Return the fill area style.
Definition TAttFill.h:32
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
Definition TAttFill.cxx:238
virtual void Streamer(TBuffer &)
virtual Color_t GetLineColor() const
Return the line color.
Definition TAttLine.h:35
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
Definition TAttLine.h:44
virtual Width_t GetLineWidth() const
Return the line width.
Definition TAttLine.h:37
virtual Style_t GetLineStyle() const
Return the line style.
Definition TAttLine.h:36
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
Definition TAttLine.cxx:176
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
Definition TAttLine.cxx:274
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual Style_t GetMarkerStyle() const
Return the marker style.
Definition TAttMarker.h:33
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition TAttMarker.h:39
virtual Color_t GetMarkerColor() const
Return the marker color.
Definition TAttMarker.h:32
virtual Size_t GetMarkerSize() const
Return the marker size.
Definition TAttMarker.h:34
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition TAttMarker.h:41
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
virtual void Streamer(TBuffer &)
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
Definition TAttMarker.h:46
Class to manage histogram axis.
Definition TAxis.h:32
virtual void GetCenter(Double_t *center) const
Return an array with the center of all bins.
Definition TAxis.cxx:557
virtual Bool_t GetTimeDisplay() const
Definition TAxis.h:133
Bool_t IsAlphanumeric() const
Definition TAxis.h:90
const char * GetTitle() const override
Returns title of object.
Definition TAxis.h:137
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition TAxis.cxx:481
Bool_t CanExtend() const
Definition TAxis.h:88
virtual void SetParent(TObject *obj)
Definition TAxis.h:169
const TArrayD * GetXbins() const
Definition TAxis.h:138
void SetCanExtend(Bool_t canExtend)
Definition TAxis.h:92
void Copy(TObject &axis) const override
Copy axis structure to another axis.
Definition TAxis.cxx:210
Double_t GetXmax() const
Definition TAxis.h:142
@ kLabelsUp
Definition TAxis.h:75
@ kLabelsDown
Definition TAxis.h:74
@ kLabelsHori
Definition TAxis.h:72
@ kAxisRange
Definition TAxis.h:66
@ kLabelsVert
Definition TAxis.h:73
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
Definition TAxis.cxx:292
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition TAxis.cxx:521
virtual void SetTimeDisplay(Int_t value)
Definition TAxis.h:173
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
Definition TAxis.cxx:783
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x
Definition TAxis.cxx:421
void SaveAttributes(std::ostream &out, const char *name, const char *subname) override
Save axis attributes as C++ statement(s) on output stream out.
Definition TAxis.cxx:714
Int_t GetLast() const
Return last bin on the axis i.e.
Definition TAxis.cxx:472
virtual void SetLimits(Double_t xmin, Double_t xmax)
Definition TAxis.h:166
Double_t GetXmin() const
Definition TAxis.h:141
void Streamer(TBuffer &) override
Stream an object of class TAxis.
Definition TAxis.cxx:1208
Int_t GetNbins() const
Definition TAxis.h:127
virtual void GetLowEdge(Double_t *edge) const
Return an array with the low edge of all bins.
Definition TAxis.cxx:566
virtual void SetRange(Int_t first=0, Int_t last=0)
Set the viewing range for the axis using bin numbers.
Definition TAxis.cxx:1045
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Definition TAxis.cxx:545
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
Definition TAxis.cxx:531
Int_t GetFirst() const
Return first bin on the axis i.e.
Definition TAxis.cxx:461
THashList * GetLabels() const
Definition TAxis.h:123
Using a TBrowser one can browse all ROOT objects.
Definition TBrowser.h:37
Buffer base class used for serializing objects.
Definition TBuffer.h:43
void * New(ENewType defConstructor=kClassNew, Bool_t quiet=kFALSE) const
Return a pointer to a newly allocated object of this class.
Definition TClass.cxx:5017
ROOT::NewFunc_t GetNew() const
Return the wrapper around new ThisClass().
Definition TClass.cxx:7552
Collection abstract base class.
Definition TCollection.h:65
virtual bool UseRWLock(Bool_t enable=true)
Set this collection to use a RW lock upon access, making it thread safe.
TObject * Clone(const char *newname="") const override
Make a clone of an collection using the Streamer facility.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
Describe directory structure in memory.
Definition TDirectory.h:45
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
virtual Int_t GetValue(const char *name, Int_t dflt) const
Returns the integer value for a resource.
Definition TEnv.cxx:490
1-Dim function class
Definition TF1.h:182
static void RejectPoint(Bool_t reject=kTRUE)
Static function to set the global flag to reject points the fgRejectPoint global flag is tested by al...
Definition TF1.cxx:3699
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function Note that this histogram is managed ...
Definition TF1.cxx:1611
static TClass * Class()
virtual Int_t GetNpar() const
Definition TF1.h:461
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition TF1.cxx:2556
virtual void InitArgs(const Double_t *x, const Double_t *params)
Initialize parameters addresses.
Definition TF1.cxx:2507
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
Definition TF1.cxx:2306
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=nullptr)
Evaluate function with given coordinates and parameters.
Definition TF1.cxx:1475
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set lower and upper limits for parameter ipar.
Definition TF1.cxx:3538
static Bool_t RejectedPoint()
See TF1::RejectPoint above.
Definition TF1.cxx:3708
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition TF1.cxx:1446
virtual void SetParameter(Int_t param, Double_t value)
Definition TF1.h:623
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
Definition TF1.h:582
A 2-Dim function with parameters.
Definition TF2.h:29
A 3-Dim function with parameters.
Definition TF3.h:28
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
1-D histogram with a byte per channel (see TH1 documentation)
Definition TH1.h:715
~TH1C() override
Destructor.
Definition TH1.cxx:9539
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9595
TH1C & operator=(const TH1C &h1)
Operator =.
Definition TH1.cxx:9605
TH1C()
Constructor.
Definition TH1.cxx:9491
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9577
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9556
void Reset(Option_t *option="") override
Reset.
Definition TH1.cxx:9585
1-D histogram with a double per channel (see TH1 documentation)
Definition TH1.h:927
~TH1D() override
Destructor.
Definition TH1.cxx:10480
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10514
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10496
TH1D()
Constructor.
Definition TH1.cxx:10415
TH1D & operator=(const TH1D &h1)
Operator =.
Definition TH1.cxx:10524
1-D histogram with a float per channel (see TH1 documentation)
Definition TH1.h:879
Double_t RetrieveBinContent(Int_t bin) const override
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
Definition TH1.h:913
TH1F & operator=(const TH1F &h1)
Operator =.
Definition TH1.cxx:10344
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10316
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10334
~TH1F() override
Destructor.
Definition TH1.cxx:10309
TH1F()
Constructor.
Definition TH1.cxx:10235
1-D histogram with an int per channel (see TH1 documentation)
Definition TH1.h:797
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9966
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9927
~TH1I() override
Destructor.
Definition TH1.cxx:9910
TH1I()
Constructor.
Definition TH1.cxx:9862
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9948
TH1I & operator=(const TH1I &h1)
Operator =.
Definition TH1.cxx:9976
1-D histogram with a long64 per channel (see TH1 documentation)
Definition TH1.h:838
TH1L & operator=(const TH1L &h1)
Operator =.
Definition TH1.cxx:10163
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:10114
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10153
~TH1L() override
Destructor.
Definition TH1.cxx:10097
TH1L()
Constructor.
Definition TH1.cxx:10049
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10135
1-D histogram with a short per channel (see TH1 documentation)
Definition TH1.h:756
TH1S & operator=(const TH1S &h1)
Operator =.
Definition TH1.cxx:9790
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9762
TH1S()
Constructor.
Definition TH1.cxx:9676
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9780
~TH1S() override
Destructor.
Definition TH1.cxx:9724
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9741
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:109
~TH1() override
Histogram default destructor.
Definition TH1.cxx:630
virtual void SetError(const Double_t *error)
Replace bin errors by values in array error.
Definition TH1.cxx:8992
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
Definition TH1.cxx:8978
virtual void FitPanel()
Display a panel with all histogram fit options.
Definition TH1.cxx:4272
Double_t * fBuffer
[fBufferSize] entry buffer
Definition TH1.h:169
virtual Int_t AutoP2FindLimits(Double_t min, Double_t max)
Buffer-based estimate of the histogram range using the power of 2 algorithm.
Definition TH1.cxx:1312
virtual Double_t GetEffectiveEntries() const
Number of effective entries of the histogram.
Definition TH1.cxx:4436
char * GetObjectInfo(Int_t px, Int_t py) const override
Redefines TObject::GetObjectInfo.
Definition TH1.cxx:4490
virtual void Smooth(Int_t ntimes=1, Option_t *option="")
Smooth bin contents of this histogram.
Definition TH1.cxx:6927
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition TH1.cxx:9179
virtual void Rebuild(Option_t *option="")
Using the current bin info, recompute the arrays for contents and errors.
Definition TH1.cxx:7135
virtual void SetBarOffset(Float_t offset=0.25)
Set the bar offset as fraction of the bin width for drawing mode "B".
Definition TH1.h:613
static Bool_t fgStatOverflows
! Flag to use under/overflows in statistics
Definition TH1.h:178
virtual Int_t FindLastBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find last bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold i...
Definition TH1.cxx:3785
TAxis * GetZaxis()
Definition TH1.h:574
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a line.
Definition TH1.cxx:2805
virtual Bool_t Multiply(TF1 *f1, Double_t c1=1)
Performs the operation:
Definition TH1.cxx:6064
@ kXaxis
Definition TH1.h:123
@ kNoAxis
NOTE: Must always be 0 !!!
Definition TH1.h:122
@ kZaxis
Definition TH1.h:125
@ kYaxis
Definition TH1.h:124
Int_t fNcells
Number of bins(1D), cells (2D) +U/Overflows.
Definition TH1.h:150
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition TH1.cxx:7869
virtual void Normalize(Option_t *option="")
Normalize a histogram to its integral or to its maximum.
Definition TH1.cxx:6226
void Copy(TObject &hnew) const override
Copy this histogram structure to newth1.
Definition TH1.cxx:2653
void SetTitle(const char *title) override
Change/set the title.
Definition TH1.cxx:6766
Double_t fTsumw
Total Sum of weights.
Definition TH1.h:157
virtual Float_t GetBarWidth() const
Definition TH1.h:502
Double_t fTsumw2
Total Sum of squares of weights.
Definition TH1.h:158
static void StatOverflows(Bool_t flag=kTRUE)
if flag=kTRUE, underflows and overflows are used by the Fill functions in the computation of statisti...
Definition TH1.cxx:6973
virtual Float_t GetBarOffset() const
Definition TH1.h:501
TList * fFunctions
->Pointer to list of functions (fits and user)
Definition TH1.h:167
static Bool_t fgAddDirectory
! Flag to add histograms to the directory
Definition TH1.h:177
static TClass * Class()
static Int_t GetDefaultBufferSize()
Static function return the default buffer size for automatic histograms the parameter fgBufferSize ma...
Definition TH1.cxx:4394
virtual Double_t DoIntegral(Int_t ix1, Int_t ix2, Int_t iy1, Int_t iy2, Int_t iz1, Int_t iz2, Double_t &err, Option_t *opt, Bool_t doerr=kFALSE) const
Internal function compute integral and optionally the error between the limits specified by the bin n...
Definition TH1.cxx:8018
Double_t fTsumwx2
Total Sum of weight*X*X.
Definition TH1.h:160
virtual Double_t GetStdDev(Int_t axis=1) const
Returns the Standard Deviation (Sigma).
Definition TH1.cxx:7643
TH1()
Histogram default constructor.
Definition TH1.cxx:602
static TH1 * TransformHisto(TVirtualFFT *fft, TH1 *h_output, Option_t *option)
For a given transform (first parameter), fills the histogram (second parameter) with the transform ou...
Definition TH1.cxx:9357
void UseCurrentStyle() override
Copy current attributes from/to current style.
Definition TH1.cxx:7505
virtual void LabelsOption(Option_t *option="h", Option_t *axis="X")
Sort bins with labels or set option(s) to draw axis with labels.
Definition TH1.cxx:5397
virtual Int_t GetNbinsY() const
Definition TH1.h:543
Short_t fBarOffset
(1000*offset) for bar charts or legos
Definition TH1.h:154
virtual Double_t Chi2TestX(const TH1 *h2, Double_t &chi2, Int_t &ndf, Int_t &igood, Option_t *option="UU", Double_t *res=nullptr) const
The computation routine of the Chisquare test.
Definition TH1.cxx:2038
static bool CheckBinLimits(const TAxis *a1, const TAxis *a2)
Check bin limits.
Definition TH1.cxx:1510
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition TH1.cxx:9101
static Int_t FitOptionsMake(Option_t *option, Foption_t &Foption)
Decode string choptin and fill fitOption structure.
Definition TH1.cxx:4665
virtual Int_t GetNbinsZ() const
Definition TH1.h:544
virtual Double_t GetNormFactor() const
Definition TH1.h:546
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
Definition TH1.cxx:7571
virtual Double_t GetSkewness(Int_t axis=1) const
Definition TH1.cxx:7707
virtual void ClearUnderflowAndOverflow()
Remove all the content from the underflow and overflow bins, without changing the number of entries A...
Definition TH1.cxx:2488
virtual void FillRandom(TF1 *f1, Int_t ntimes=5000, TRandom *rng=nullptr)
Definition TH1.cxx:3510
virtual Double_t GetContourLevelPad(Int_t level) const
Return the value of contour number "level" in Pad coordinates.
Definition TH1.cxx:8481
virtual TH1 * DrawNormalized(Option_t *option="", Double_t norm=1) const
Draw a normalized copy of this histogram.
Definition TH1.cxx:3126
@ kNeutral
Adapt to the global flag.
Definition TH1.h:133
virtual Int_t GetDimension() const
Definition TH1.h:528
void Streamer(TBuffer &) override
Stream a class object.
Definition TH1.cxx:6981
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition TH1.cxx:1263
Double_t GetSumOfAllWeights(const bool includeOverflow) const
Return the sum of all weights.
Definition TH1.cxx:7955
@ kIsAverage
Bin contents are average (used by Add)
Definition TH1.h:410
@ kUserContour
User specified contour levels.
Definition TH1.h:405
@ kNoStats
Don't draw stats box.
Definition TH1.h:404
@ kAutoBinPTwo
different than 1.
Definition TH1.h:413
@ kIsNotW
Histogram is forced to be not weighted even when the histogram is filled with weighted.
Definition TH1.h:411
@ kIsHighlight
bit set if histo is highlight
Definition TH1.h:414
virtual void SetContourLevel(Int_t level, Double_t value)
Set value for one contour level.
Definition TH1.cxx:8563
virtual Bool_t CanExtendAllAxes() const
Returns true if all axes are extendable.
Definition TH1.cxx:6684
TDirectory * fDirectory
! Pointer to directory holding this histogram
Definition TH1.h:170
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition TH1.cxx:7151
void SetNameTitle(const char *name, const char *title) override
Change the name and title of this histogram.
Definition TH1.cxx:9015
TAxis * GetXaxis()
Definition TH1.h:572
virtual void GetBinXYZ(Int_t binglobal, Int_t &binx, Int_t &biny, Int_t &binz) const
Return binx, biny, binz corresponding to the global bin number globalbin see TH1::GetBin function abo...
Definition TH1.cxx:4987
TH1 * GetCumulative(Bool_t forward=kTRUE, const char *suffix="_cumulative") const
Return a pointer to a histogram containing the cumulative content.
Definition TH1.cxx:2598
static Double_t AutoP2GetPower2(Double_t x, Bool_t next=kTRUE)
Auxiliary function to get the power of 2 next (larger) or previous (smaller) a given x.
Definition TH1.cxx:1277
virtual Int_t GetNcells() const
Definition TH1.h:545
virtual Int_t ShowPeaks(Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
Interface to TSpectrum::Search.
Definition TH1.cxx:9339
static Bool_t RecomputeAxisLimits(TAxis &destAxis, const TAxis &anAxis)
Finds new limits for the axis for the Merge function.
Definition TH1.cxx:5923
virtual Double_t GetSumOfWeights() const
Return the sum of weights across all bins excluding under/overflows.
Definition TH1.h:560
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition TH1.cxx:7920
TVirtualHistPainter * GetPainter(Option_t *option="")
Return pointer to painter.
Definition TH1.cxx:4499
TObject * FindObject(const char *name) const override
Search object named name in the list of functions.
Definition TH1.cxx:3845
void Print(Option_t *option="") const override
Print some global quantities for this histogram.
Definition TH1.cxx:7057
static Bool_t GetDefaultSumw2()
Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
Definition TH1.cxx:4403
virtual Int_t FindFirstBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find first bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold ...
Definition TH1.cxx:3722
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
Definition TH1.cxx:3886
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition TH1.cxx:4974
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
Definition TH1.cxx:8586
virtual Int_t GetNbinsX() const
Definition TH1.h:542
virtual void SetMaximum(Double_t maximum=-1111)
Definition TH1.h:653
virtual TH1 * FFT(TH1 *h_output, Option_t *option)
This function allows to do discrete Fourier transforms of TH1 and TH2.
Definition TH1.cxx:3266
virtual void LabelsInflate(Option_t *axis="X")
Double the number of bins for axis.
Definition TH1.cxx:5330
virtual TH1 * ShowBackground(Int_t niter=20, Option_t *option="same")
This function calculates the background spectrum in this histogram.
Definition TH1.cxx:9325
static Bool_t SameLimitsAndNBins(const TAxis &axis1, const TAxis &axis2)
Same limits and bins.
Definition TH1.cxx:5913
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:813
Double_t fMaximum
Maximum value for plotting.
Definition TH1.h:161
Int_t fBufferSize
fBuffer size
Definition TH1.h:168
TString ProvideSaveName(Option_t *option, Bool_t testfdir=kFALSE)
Provide variable name for histogram for saving as primitive Histogram pointer has by default the hist...
Definition TH1.cxx:7290
virtual Double_t IntegralAndError(Int_t binx1, Int_t binx2, Double_t &err, Option_t *option="") const
Return integral of bin contents in range [binx1,binx2] and its error.
Definition TH1.cxx:8009
Int_t fDimension
! Histogram dimension (1, 2 or 3 dim)
Definition TH1.h:171
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition TH1.cxx:9244
EBinErrorOpt fBinStatErrOpt
Option for bin statistical errors.
Definition TH1.h:174
static Int_t fgBufferSize
! Default buffer size for automatic histograms
Definition TH1.h:176
virtual void SetBinsLength(Int_t=-1)
Definition TH1.h:629
Double_t fNormFactor
Normalization factor.
Definition TH1.h:163
@ kFullyConsistent
Definition TH1.h:139
@ kDifferentNumberOfBins
Definition TH1.h:143
@ kDifferentDimensions
Definition TH1.h:144
@ kDifferentBinLimits
Definition TH1.h:141
@ kDifferentAxisLimits
Definition TH1.h:142
@ kDifferentLabels
Definition TH1.h:140
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition TH1.cxx:3326
TAxis * GetYaxis()
Definition TH1.h:573
TArrayD fContour
Array to display contour levels.
Definition TH1.h:164
virtual Double_t GetBinErrorLow(Int_t bin) const
Return lower error associated to bin number bin.
Definition TH1.cxx:9117
void Browse(TBrowser *b) override
Browse the Histogram object.
Definition TH1.cxx:749
virtual void SetContent(const Double_t *content)
Replace bin contents by the contents of array content.
Definition TH1.cxx:8439
void Draw(Option_t *option="") override
Draw this histogram with options.
Definition TH1.cxx:3048
virtual void SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option="")
Helper function for the SavePrimitive functions from TH1 or classes derived from TH1,...
Definition TH1.cxx:7417
Short_t fBarWidth
(1000*width) for bar charts or legos
Definition TH1.h:155
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
Definition TH1.h:706
Int_t AxisChoice(Option_t *axis) const
Choose an axis according to "axis".
Definition Haxis.cxx:14
virtual void SetMinimum(Double_t minimum=-1111)
Definition TH1.h:654
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
Definition TH1.cxx:5229
void SavePrimitive(std::ostream &out, Option_t *option="") override
Save primitive as a C++ statement(s) on output stream out.
Definition TH1.cxx:7312
static bool CheckBinLabels(const TAxis *a1, const TAxis *a2)
Check that axis have same labels.
Definition TH1.cxx:1537
virtual Double_t Interpolate(Double_t x) const
Given a point x, approximates the value via linear interpolation based on the two nearest bin centers...
Definition TH1.cxx:5130
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
Definition TH1.cxx:6751
virtual void SetBuffer(Int_t bufsize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
Definition TH1.cxx:8499
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
Definition TH1.cxx:5197
UInt_t GetAxisLabelStatus() const
Internal function used in TH1::Fill to see which axis is full alphanumeric, i.e.
Definition TH1.cxx:6723
Double_t * fIntegral
! Integral of bins used by GetRandom
Definition TH1.h:172
Double_t fMinimum
Minimum value for plotting.
Definition TH1.h:162
virtual Double_t Integral(Option_t *option="") const
Return integral of bin contents.
Definition TH1.cxx:7982
static void SetDefaultBufferSize(Int_t bufsize=1000)
Static function to set the default buffer size for automatic histograms.
Definition TH1.cxx:6741
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition TH1.cxx:9260
virtual void DirectoryAutoAdd(TDirectory *)
Perform the automatic addition of the histogram to the given directory.
Definition TH1.cxx:2783
virtual void GetLowEdge(Double_t *edge) const
Fill array with low edge of bins for 1D histogram Better to use h1.GetXaxis()->GetLowEdge(edge)
Definition TH1.cxx:9225
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
Definition TH1.cxx:9190
void Build()
Creates histogram basic data structure.
Definition TH1.cxx:758
virtual Double_t GetEntries() const
Return the current number of entries.
Definition TH1.cxx:4411
virtual Double_t RetrieveBinContent(Int_t bin) const =0
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
virtual TF1 * GetFunction(const char *name) const
Return pointer to function with name.
Definition TH1.cxx:9089
virtual TH1 * Rebin(Int_t ngroup=2, const char *newname="", const Double_t *xbins=nullptr)
Rebin this histogram.
Definition TH1.cxx:6323
virtual Int_t BufferFill(Double_t x, Double_t w)
accumulate arguments in buffer.
Definition TH1.cxx:1475
virtual Double_t GetBinWithContent(Double_t c, Int_t &binx, Int_t firstx=0, Int_t lastx=0, Double_t maxdiff=0) const
Compute first binx in the range [firstx,lastx] for which diff = abs(bin_content-c) <= maxdiff.
Definition TH1.cxx:5101
virtual UInt_t SetCanExtend(UInt_t extendBitMask)
Make the histogram axes extendable / not extendable according to the bit mask returns the previous bi...
Definition TH1.cxx:6697
TList * GetListOfFunctions() const
Definition TH1.h:489
void SetName(const char *name) override
Change the name of this histogram.
Definition TH1.cxx:9001
virtual TH1 * DrawCopy(Option_t *option="", const char *name_postfix="_copy") const
Copy this histogram and Draw in the current pad.
Definition TH1.cxx:3095
virtual Double_t GetRandom(TRandom *rng=nullptr, Option_t *option="") const
Return a random number distributed according the histogram bin contents.
Definition TH1.cxx:5024
Bool_t IsEmpty() const
Check if a histogram is empty (this is a protected method used mainly by TH1Merger )
Definition TH1.cxx:5179
virtual Double_t GetMeanError(Int_t axis=1) const
Return standard error of mean of this histogram along the X axis.
Definition TH1.cxx:7611
void Paint(Option_t *option="") override
Control routine to paint any kind of histograms.
Definition TH1.cxx:6254
virtual Double_t AndersonDarlingTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using the Anderson-Darling ...
Definition TH1.cxx:8103
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculated from bin cont...
Definition TH1.cxx:7938
virtual void SetBinErrorOption(EBinErrorOpt type)
Definition TH1.h:630
virtual void DrawPanel()
Display a panel with all histogram drawing options.
Definition TH1.cxx:3157
virtual Double_t Chisquare(TF1 *f1, Option_t *option="") const
Compute and return the chisquare of this histogram with respect to a function The chisquare is comput...
Definition TH1.cxx:2467
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=nullptr) const
test for comparing weighted and unweighted histograms.
Definition TH1.cxx:1979
virtual void DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Internal method to fill histogram content from a vector called directly by TH1::BufferEmpty.
Definition TH1.cxx:3455
virtual void GetMinimumAndMaximum(Double_t &min, Double_t &max) const
Retrieve the minimum and maximum values in the histogram.
Definition TH1.cxx:8772
@ kNstat
Size of statistics data (up to TProfile3D)
Definition TH1.h:423
virtual Int_t GetMaximumBin() const
Return location of bin with maximum value in the range.
Definition TH1.cxx:8618
static Int_t AutoP2GetBins(Int_t n)
Auxiliary function to get the next power of 2 integer value larger then n.
Definition TH1.cxx:1290
Double_t fEntries
Number of entries.
Definition TH1.h:156
virtual Long64_t Merge(TCollection *list)
Definition TH1.h:593
virtual void SetColors(Color_t linecolor=-1, Color_t markercolor=-1, Color_t fillcolor=-1)
Shortcut to set the three histogram colors with a single call.
Definition TH1.cxx:4455
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
Definition TH1.cxx:3222
virtual Double_t * GetIntegral()
Return a pointer to the array of bins integral.
Definition TH1.cxx:2568
TAxis fZaxis
Z axis descriptor.
Definition TH1.h:153
EStatOverflows fStatOverflows
Per object flag to use under/overflows in statistics.
Definition TH1.h:175
TClass * IsA() const override
Definition TH1.h:694
virtual void FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Fill this histogram with an array x and weights w.
Definition TH1.cxx:3429
static bool CheckEqualAxes(const TAxis *a1, const TAxis *a2)
Check that the axis are the same.
Definition TH1.cxx:1580
@ kPoisson2
Errors from Poisson interval at 95% CL (~ 2 sigma)
Definition TH1.h:117
@ kNormal
Errors with Normal (Wald) approximation: errorUp=errorLow= sqrt(N)
Definition TH1.h:115
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:5076
virtual Int_t GetContour(Double_t *levels=nullptr)
Return contour values into array levels if pointer levels is non zero.
Definition TH1.cxx:8452
TAxis fXaxis
X axis descriptor.
Definition TH1.h:151
virtual Bool_t IsHighlight() const
Definition TH1.h:586
virtual void ExtendAxis(Double_t x, TAxis *axis)
Histogram is resized along axis such that x is in the axis range.
Definition TH1.cxx:6552
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
Definition TH1.cxx:9201
TArrayD fSumw2
Array of sum of squares of weights.
Definition TH1.h:165
TH1 * GetAsymmetry(TH1 *h2, Double_t c2=1, Double_t dc2=0)
Return a histogram containing the asymmetry of this histogram with h2, where the asymmetry is defined...
Definition TH1.cxx:4327
virtual Double_t GetContourLevel(Int_t level) const
Return value of contour number level.
Definition TH1.cxx:8471
virtual void SetContour(Int_t nlevels, const Double_t *levels=nullptr)
Set the number and values of contour levels.
Definition TH1.cxx:8524
virtual void SetHighlight(Bool_t set=kTRUE)
Set highlight (enable/disable) mode for the histogram by default highlight mode is disable.
Definition TH1.cxx:4470
virtual Double_t GetBinErrorUp(Int_t bin) const
Return upper error associated to bin number bin.
Definition TH1.cxx:9148
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
Definition TH1.cxx:6652
virtual Int_t GetMinimumBin() const
Return location of bin with minimum value in the range.
Definition TH1.cxx:8706
virtual Double_t ComputeIntegral(Bool_t onlyPositive=false, Option_t *option="")
Compute integral (normalized cumulative sum of bins) w/o under/overflows The result is stored in fInt...
Definition TH1.cxx:2513
virtual Int_t GetSumw2N() const
Definition TH1.h:563
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3660
Bool_t GetStatOverflowsBehaviour() const
Definition TH1.h:392
void SaveAs(const char *filename="hist", Option_t *option="") const override
Save the histogram as .csv, .tsv or .txt.
Definition TH1.cxx:7229
virtual Int_t GetQuantiles(Int_t n, Double_t *xp, const Double_t *p=nullptr)
Compute Quantiles for this histogram.
Definition TH1.cxx:4603
virtual void AddBinContent(Int_t bin)=0
Increment bin content by 1.
TObject * Clone(const char *newname="") const override
Make a complete copy of the underlying object.
Definition TH1.cxx:2734
virtual Double_t GetStdDevError(Int_t axis=1) const
Return error of standard deviation estimation for Normal distribution.
Definition TH1.cxx:7691
virtual Bool_t Divide(TF1 *f1, Double_t c1=1)
Performs the operation: this = this/(c1*f1) if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:2822
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
Return minimum value larger than minval of bins in the range, unless the value has been overridden by...
Definition TH1.cxx:8676
int LoggedInconsistency(const char *name, const TH1 *h1, const TH1 *h2, bool useMerge=false) const
Definition TH1.cxx:870
static bool CheckConsistentSubAxes(const TAxis *a1, Int_t firstBin1, Int_t lastBin1, const TAxis *a2, Int_t firstBin2=0, Int_t lastBin2=0)
Check that two sub axis are the same.
Definition TH1.cxx:1609
static Int_t CheckConsistency(const TH1 *h1, const TH1 *h2)
Check histogram compatibility.
Definition TH1.cxx:1648
void RecursiveRemove(TObject *obj) override
Recursively remove object from the list of functions.
Definition TH1.cxx:6624
TAxis fYaxis
Y axis descriptor.
Definition TH1.h:152
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using Kolmogorov test.
Definition TH1.cxx:8219
static void SmoothArray(Int_t NN, Double_t *XX, Int_t ntimes=1)
Smooth array xx, translation of Hbook routine hsmoof.F.
Definition TH1.cxx:6816
virtual void GetCenter(Double_t *center) const
Fill array with center of bins for 1D histogram Better to use h1.GetXaxis()->GetCenter(center)
Definition TH1.cxx:9212
TVirtualHistPainter * fPainter
! Pointer to histogram painter
Definition TH1.h:173
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
Definition TH1.cxx:8808
virtual Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3693
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition TH1.cxx:9061
virtual void SetEntries(Double_t n)
Definition TH1.h:640
virtual Bool_t FindNewAxisLimits(const TAxis *axis, const Double_t point, Double_t &newMin, Double_t &newMax)
finds new limits for the axis so that point is within the range and the limits are compatible with th...
Definition TH1.cxx:6508
static bool CheckAxisLimits(const TAxis *a1, const TAxis *a2)
Check that the axis limits of the histograms are the same.
Definition TH1.cxx:1566
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
Definition TH1.cxx:741
static Bool_t fgDefaultSumw2
! Flag to call TH1::Sumw2 automatically at histogram creation time
Definition TH1.h:179
static void SavePrimitiveFunctions(std::ostream &out, const char *varname, TList *lst)
Save list of functions Also can be used by TGraph classes.
Definition TH1.cxx:7471
virtual void UpdateBinContent(Int_t bin, Double_t content)=0
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
Double_t fTsumwx
Total Sum of weight*X.
Definition TH1.h:159
virtual void LabelsDeflate(Option_t *axis="X")
Reduce the number of bins for the axis passed in the option to the number of bins having a label.
Definition TH1.cxx:5260
TString fOption
Histogram options.
Definition TH1.h:166
virtual void Eval(TF1 *f1, Option_t *option="")
Evaluate function f1 at the center of bins of this histogram.
Definition TH1.cxx:3174
virtual void SetBarWidth(Float_t width=0.5)
Set the width of bars as fraction of the bin width for drawing mode "B".
Definition TH1.h:614
virtual Int_t BufferEmpty(Int_t action=0)
Fill histogram with all entries in the buffer.
Definition TH1.cxx:1383
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition TH1.cxx:9031
virtual Double_t GetKurtosis(Int_t axis=1) const
Definition TH1.cxx:7780
2-D histogram with a double per channel (see TH1 documentation)
Definition TH2.h:400
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
THashList implements a hybrid collection class consisting of a hash table and a list to store TObject...
Definition THashList.h:34
void Clear(Option_t *option="") override
Remove all objects from the list.
A doubly linked list.
Definition TList.h:38
void Streamer(TBuffer &) override
Stream all objects in the collection to or from the I/O buffer.
Definition TList.cxx:1190
TObject * FindObject(const char *name) const override
Find an object in this list using its name.
Definition TList.cxx:575
void RecursiveRemove(TObject *obj) override
Remove object from this collection and recursively remove the object from all other objects (and coll...
Definition TList.cxx:761
void Add(TObject *obj) override
Definition TList.h:81
TObject * Remove(TObject *obj) override
Remove object from the list.
Definition TList.cxx:819
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
Definition TList.cxx:656
void Delete(Option_t *option="") override
Remove all objects from the list AND delete all heap based objects.
Definition TList.cxx:467
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
Definition TList.cxx:354
The TNamed class is the base class for all named ROOT classes.
Definition TNamed.h:29
void Copy(TObject &named) const override
Copy this to obj.
Definition TNamed.cxx:93
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:173
const char * GetName() const override
Returns name of object.
Definition TNamed.h:49
void Streamer(TBuffer &) override
Stream an object of class TObject.
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:50
TString fTitle
Definition TNamed.h:33
TString fName
Definition TNamed.h:32
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition TNamed.cxx:149
Mother of all ROOT objects.
Definition TObject.h:41
virtual const char * GetName() const
Returns name of object.
Definition TObject.cxx:457
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition TObject.h:202
virtual UInt_t GetUniqueID() const
Return the unique object id.
Definition TObject.cxx:475
static TString SavePrimitiveVector(std::ostream &out, const char *prefix, Int_t len, Double_t *arr, Bool_t empty_line=kFALSE)
Save array in the output stream "out" as vector.
Definition TObject.cxx:788
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:226
virtual void UseCurrentStyle()
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyl...
Definition TObject.cxx:885
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition TObject.cxx:1057
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
Definition TObject.cxx:203
virtual void SaveAs(const char *filename="", Option_t *option="") const
Save this object in the file specified by filename.
Definition TObject.cxx:705
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition TObject.cxx:864
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition TObject.cxx:543
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition TObject.cxx:1071
virtual void SetUniqueID(UInt_t uid)
Set the unique object id.
Definition TObject.cxx:875
static void SavePrimitiveDraw(std::ostream &out, const char *variable_name, Option_t *option=nullptr)
Save invocation of primitive Draw() method Skipped if option contains "nodraw" string.
Definition TObject.cxx:822
void ResetBit(UInt_t f)
Definition TObject.h:201
@ kCanDelete
if object in a list can be deleted
Definition TObject.h:68
@ kInvalidObject
if object ctor succeeded but object should not be used
Definition TObject.h:78
@ kMustCleanup
if object destructor must call RecursiveRemove()
Definition TObject.h:70
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition TObject.cxx:1045
Longptr_t ExecPlugin(int nargs)
Int_t LoadPlugin()
Load the plugin library for this handler.
static TClass * Class()
This is the base class for the ROOT Random number generators.
Definition TRandom.h:27
Double_t Rndm() override
Machine independent random number generator.
Definition TRandom.cxx:558
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
Definition TRandom.cxx:460
virtual ULong64_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
Definition TRandom.cxx:403
Basic string class.
Definition TString.h:138
Ssiz_t Length() const
Definition TString.h:425
void ToLower()
Change string to lower-case.
Definition TString.cxx:1189
TString & ReplaceSpecialCppChars()
Find special characters which are typically used in printf() calls and replace them by appropriate es...
Definition TString.cxx:1121
const char * Data() const
Definition TString.h:384
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition TString.h:712
@ kIgnoreCase
Definition TString.h:285
void ToUpper()
Change string to upper case.
Definition TString.cxx:1202
Bool_t IsNull() const
Definition TString.h:422
virtual void Streamer(TBuffer &)
Stream a string object.
Definition TString.cxx:1418
TString & Append(const char *cs)
Definition TString.h:580
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2384
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition TString.h:640
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition TString.h:659
Int_t GetOptStat() const
Definition TStyle.h:247
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Definition TStyle.cxx:1641
void SetHistFillColor(Color_t color=1)
Definition TStyle.h:383
Color_t GetHistLineColor() const
Definition TStyle.h:235
Bool_t IsReading() const
Definition TStyle.h:300
Float_t GetBarOffset() const
Definition TStyle.h:184
void SetHistLineStyle(Style_t styl=0)
Definition TStyle.h:386
Style_t GetHistFillStyle() const
Definition TStyle.h:236
Color_t GetHistFillColor() const
Definition TStyle.h:234
Float_t GetBarWidth() const
Definition TStyle.h:185
Bool_t GetCanvasPreferGL() const
Definition TStyle.h:189
void SetHistLineColor(Color_t color=1)
Definition TStyle.h:384
void SetBarOffset(Float_t baroff=0.5)
Definition TStyle.h:339
Style_t GetHistLineStyle() const
Definition TStyle.h:237
void SetBarWidth(Float_t barwidth=0.5)
Definition TStyle.h:340
void SetHistFillStyle(Style_t styl=0)
Definition TStyle.h:385
Width_t GetHistLineWidth() const
Definition TStyle.h:238
Int_t GetOptFit() const
Definition TStyle.h:246
void SetHistLineWidth(Width_t width=1)
Definition TStyle.h:387
TVectorT.
Definition TVectorT.h:29
TVirtualFFT is an interface class for Fast Fourier Transforms.
Definition TVirtualFFT.h:88
static TVirtualFFT * FFT(Int_t ndim, Int_t *n, Option_t *option)
Returns a pointer to the FFT of requested size and type.
static TVirtualFFT * SineCosine(Int_t ndim, Int_t *n, Int_t *r2rkind, Option_t *option)
Returns a pointer to a sine or cosine transform of requested size and kind.
Abstract Base Class for Fitting.
static TVirtualFitter * GetFitter()
static: return the current Fitter
Abstract interface to a histogram painter.
virtual void DrawPanel()=0
Int_t DistancetoPrimitive(Int_t px, Int_t py) override=0
Computes distance from point (px,py) to the object.
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override=0
Execute action corresponding to an event at (px,py).
virtual void SetHighlight()=0
static TVirtualHistPainter * HistPainter(TH1 *obj)
Static function returning a pointer to the current histogram painter.
void Paint(Option_t *option="") override=0
This method must be overridden if a class wants to paint itself.
double gamma_quantile_c(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the upper tail of the gamma distribution (gamm...
double gamma_quantile(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the lower tail of the gamma distribution (gamm...
const Double_t sigma
Double_t y[n]
Definition legend1.C:17
return c1
Definition legend1.C:41
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
TH1F * h1
Definition legend1.C:5
TF1 * f1
Definition legend1.C:11
return c2
Definition legend2.C:14
R__ALWAYS_INLINE bool HasBeenDeleted(const TObject *obj)
Check if the TObject's memory has been deleted.
Definition TObject.h:405
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
Definition HFitImpl.cxx:977
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, EChisquareType type)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
Definition HFitImpl.cxx:685
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.
R__EXTERN TVirtualRWMutex * gCoreMutex
Bool_t IsNaN(Double_t x)
Definition TMath.h:903
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
Definition TMath.h:704
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Definition TMathBase.h:251
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
Definition TMath.cxx:637
Double_t Median(Long64_t n, const T *a, const Double_t *w=nullptr, Long64_t *work=nullptr)
Same as RMS.
Definition TMath.h:1359
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
Definition TMath.h:913
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
Definition TMath.h:691
Double_t ATan(Double_t)
Returns the principal value of the arc tangent of x, expressed in radians.
Definition TMath.h:651
Double_t Ceil(Double_t x)
Rounds x upward, returning the smallest integral value that is not less than x.
Definition TMath.h:679
T MinElement(Long64_t n, const T *a)
Returns minimum of array a of length n.
Definition TMath.h:971
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Definition TMath.h:767
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:673
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Definition TMathBase.h:199
constexpr Double_t Pi()
Definition TMath.h:40
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Definition TMath.h:429
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Comparing floating points.
Definition TMath.h:421
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
Definition TMath.cxx:679
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
Definition TMathBase.h:432
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Binary search in an array of n values to locate value.
Definition TMathBase.h:348
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Definition TMath.h:773
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:124
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
Definition TMath.h:928
th1 Draw()
TMarker m
Definition textangle.C:8
TLine l
Definition textangle.C:4
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2339