Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TMVA_SOFIE_Models.py File Reference

Detailed Description

View in nbviewer Open in SWAN
Example of inference with SOFIE using a set of models trained with Keras.

This tutorial shows how to store several models in a single header file and the weights in a ROOT binary file. The models are then evaluated using the RDataFrame First, generate the input model by running TMVA_Higgs_Classification.C.

This tutorial parses the input model and runs the inference using ROOT's JITing capability.

import os
import numpy as np
import ROOT
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
## generate and train Keras models with different architectures
def CreateModel(nlayers = 4, nunits = 64):
model = Sequential()
model.add(Dense(nunits, activation='relu',input_dim=7))
for i in range(1,nlayers) :
model.add(Dense(nunits, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss = 'binary_crossentropy', optimizer = Adam(learning_rate = 0.001), weighted_metrics = ['accuracy'])
return model
def PrepareData() :
#get the input data
inputFile = str(ROOT.gROOT.GetTutorialDir()) + "/machine_learning/data/Higgs_data.root"
df1 = ROOT.RDataFrame("sig_tree", inputFile)
sigData = df1.AsNumpy(columns=['m_jj', 'm_jjj', 'm_lv', 'm_jlv', 'm_bb', 'm_wbb', 'm_wwbb'])
#print(sigData)
# stack all the 7 numpy array in a single array (nevents x nvars)
data_sig_size = xsig.shape[0]
print("size of data", data_sig_size)
# make SOFIE inference on background data
df2 = ROOT.RDataFrame("bkg_tree", inputFile)
bkgData = df2.AsNumpy(columns=['m_jj', 'm_jjj', 'm_lv', 'm_jlv', 'm_bb', 'm_wbb', 'm_wwbb'])
data_bkg_size = xbkg.shape[0]
ysig = np.ones(data_sig_size)
ybkg = np.zeros(data_bkg_size)
inputs_data = np.concatenate((xsig,xbkg),axis=0)
inputs_targets = np.concatenate((ysig,ybkg),axis=0)
#split data in training and test data
x_train, x_test, y_train, y_test = train_test_split(
inputs_data, inputs_targets, test_size=0.50, random_state=1234)
return x_train, y_train, x_test, y_test
def TrainModel(model, x, y, name) :
model.fit(x,y,epochs=10,batch_size=50)
modelFile = name + '.h5'
model.save(modelFile)
return modelFile
### run the models
x_train, y_train, x_test, y_test = PrepareData()
## create models and train them
model1 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_4L_50')
model2 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_4L_200')
model3 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_2L_500')
#evaluate with SOFIE the 3 trained models
def GenerateModelCode(modelFile, generatedHeaderFile):
print("Generating inference code for the Keras model from ",modelFile,"in the header ", generatedHeaderFile)
#Generating inference code using a ROOT binary file
# add option to append to the same file the generated headers (pass True for append flag)
model.OutputGenerated(generatedHeaderFile, True)
#model.PrintGenerated()
return generatedHeaderFile
generatedHeaderFile = "Higgs_Model.hxx"
#need to remove existing header file since we are appending on same one
if (os.path.exists(generatedHeaderFile)):
weightFile = "Higgs_Model.root"
print("removing existing files", generatedHeaderFile,weightFile)
os.remove(generatedHeaderFile)
os.remove(weightFile)
GenerateModelCode(model1, generatedHeaderFile)
GenerateModelCode(model2, generatedHeaderFile)
GenerateModelCode(model3, generatedHeaderFile)
#compile the generated code
ROOT.gInterpreter.Declare('#include "' + generatedHeaderFile + '"')
#run the inference on the test data
session1 = ROOT.TMVA_SOFIE_Higgs_Model_4L_50.Session("Higgs_Model.root")
session2 = ROOT.TMVA_SOFIE_Higgs_Model_4L_200.Session("Higgs_Model.root")
session3 = ROOT.TMVA_SOFIE_Higgs_Model_2L_500.Session("Higgs_Model.root")
hs1 = ROOT.TH1D("hs1","Signal result 4L 50",100,0,1)
hs2 = ROOT.TH1D("hs2","Signal result 4L 200",100,0,1)
hs3 = ROOT.TH1D("hs3","Signal result 2L 500",100,0,1)
hb1 = ROOT.TH1D("hb1","Background result 4L 50",100,0,1)
hb2 = ROOT.TH1D("hb2","Background result 4L 200",100,0,1)
hb3 = ROOT.TH1D("hb3","Background result 2L 500",100,0,1)
def EvalModel(session, x) :
result = session.infer(x)
return result[0]
for i in range(0,x_test.shape[0]):
result1 = EvalModel(session1, x_test[i,:])
result2 = EvalModel(session2, x_test[i,:])
result3 = EvalModel(session3, x_test[i,:])
if (y_test[i] == 1) :
hs1.Fill(result1)
hs2.Fill(result2)
hs3.Fill(result3)
else:
hb1.Fill(result1)
hb2.Fill(result2)
hb3.Fill(result3)
def PlotHistos(hs,hb):
hb.SetLineColor("kBlue")
hb.Draw("same")
PlotHistos(hs1,hb1)
PlotHistos(hs2,hb2)
PlotHistos(hs3,hb3)
## draw also ROC curves
def GetContent(h) :
x = ROOT.std.vector['float'](n)
w = ROOT.std.vector['float'](n)
for i in range(0,n):
x[i] = h.GetBinCenter(i+1)
w[i] = h.GetBinContent(i+1)
return x,w
def MakeROCCurve(hs, hb) :
xs,ws = GetContent(hs)
xb,wb = GetContent(hb)
roc = ROOT.TMVA.ROCCurve(xs,xb,ws,wb)
print("ROC integral for ",hs.GetName(), roc.GetROCIntegral())
curve = roc.GetROCCurve()
return roc,curve
r1,curve1 = MakeROCCurve(hs1,hb1)
r2,curve2 = MakeROCCurve(hs2,hb2)
r3,curve3 = MakeROCCurve(hs3,hb3)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
size of data 10000
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense (Dense) │ (None, 64) │ 512 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_3 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_4 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 13,057 (51.00 KB)
Trainable params: 13,057 (51.00 KB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2:00␛[0m 607ms/step - accuracy: 0.5800 - loss: 0.6904␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 55/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 935us/step - accuracy: 0.5283 - loss: 0.6890 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m113/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 901us/step - accuracy: 0.5487 - loss: 0.6815␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m175/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 869us/step - accuracy: 0.5605 - loss: 0.6764␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m1s␛[0m 922us/step - accuracy: 0.5639 - loss: 0.6750
Epoch 2/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.5600 - loss: 0.6653␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 825us/step - accuracy: 0.6275 - loss: 0.6435␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m124/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 823us/step - accuracy: 0.6311 - loss: 0.6418␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m183/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 834us/step - accuracy: 0.6326 - loss: 0.6414␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 886us/step - accuracy: 0.6331 - loss: 0.6413
Epoch 3/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.5200 - loss: 0.7125␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 841us/step - accuracy: 0.6336 - loss: 0.6342␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m123/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 829us/step - accuracy: 0.6423 - loss: 0.6299␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m185/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 822us/step - accuracy: 0.6439 - loss: 0.6286␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 876us/step - accuracy: 0.6443 - loss: 0.6284
Epoch 4/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6400 - loss: 0.6385␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 838us/step - accuracy: 0.6595 - loss: 0.6123␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m121/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 844us/step - accuracy: 0.6585 - loss: 0.6143␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m179/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 850us/step - accuracy: 0.6582 - loss: 0.6153␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 899us/step - accuracy: 0.6582 - loss: 0.6155
Epoch 5/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.5000 - loss: 0.7034␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 841us/step - accuracy: 0.6558 - loss: 0.6227␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m120/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 850us/step - accuracy: 0.6638 - loss: 0.6166␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m179/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 849us/step - accuracy: 0.6663 - loss: 0.6143␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 896us/step - accuracy: 0.6667 - loss: 0.6138
Epoch 6/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7000 - loss: 0.5488␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 64/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 797us/step - accuracy: 0.6636 - loss: 0.5990␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m127/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 798us/step - accuracy: 0.6658 - loss: 0.6013␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m190/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 798us/step - accuracy: 0.6666 - loss: 0.6026␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 847us/step - accuracy: 0.6668 - loss: 0.6028
Epoch 7/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.5400 - loss: 0.6616␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 64/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 801us/step - accuracy: 0.6640 - loss: 0.6092␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m123/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 826us/step - accuracy: 0.6664 - loss: 0.6080␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m183/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 832us/step - accuracy: 0.6677 - loss: 0.6068␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 884us/step - accuracy: 0.6681 - loss: 0.6064
Epoch 8/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6200 - loss: 0.6427␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 839us/step - accuracy: 0.6742 - loss: 0.6023␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m122/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 833us/step - accuracy: 0.6754 - loss: 0.6008␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m182/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 834us/step - accuracy: 0.6760 - loss: 0.6000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 887us/step - accuracy: 0.6759 - loss: 0.5999
Epoch 9/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7200 - loss: 0.6031␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 59/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 875us/step - accuracy: 0.6757 - loss: 0.5939␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m117/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 872us/step - accuracy: 0.6754 - loss: 0.5948␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m178/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 858us/step - accuracy: 0.6736 - loss: 0.5952␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 904us/step - accuracy: 0.6734 - loss: 0.5952
Epoch 10/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6200 - loss: 0.6384␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 861us/step - accuracy: 0.6561 - loss: 0.6112␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m119/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 858us/step - accuracy: 0.6671 - loss: 0.6004␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m180/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 845us/step - accuracy: 0.6700 - loss: 0.5973␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 896us/step - accuracy: 0.6706 - loss: 0.5968
Model: "sequential_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense_5 (Dense) │ (None, 64) │ 512 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_6 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_7 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_8 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_9 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 13,057 (51.00 KB)
Trainable params: 13,057 (51.00 KB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m1:56␛[0m 584ms/step - accuracy: 0.5000 - loss: 0.6919␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 58/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 890us/step - accuracy: 0.5352 - loss: 0.6832 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m113/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 902us/step - accuracy: 0.5477 - loss: 0.6796␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m173/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 879us/step - accuracy: 0.5557 - loss: 0.6768␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m1s␛[0m 930us/step - accuracy: 0.5574 - loss: 0.6760
Epoch 2/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.5800 - loss: 0.6514␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 827us/step - accuracy: 0.6292 - loss: 0.6471␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m123/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 827us/step - accuracy: 0.6291 - loss: 0.6473␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m185/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 822us/step - accuracy: 0.6292 - loss: 0.6465␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 876us/step - accuracy: 0.6292 - loss: 0.6464
Epoch 3/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.7000 - loss: 0.5980␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 63/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 815us/step - accuracy: 0.6551 - loss: 0.6244␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m124/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 819us/step - accuracy: 0.6487 - loss: 0.6295␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m186/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 819us/step - accuracy: 0.6465 - loss: 0.6307␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 868us/step - accuracy: 0.6464 - loss: 0.6306
Epoch 4/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7000 - loss: 0.5682␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 66/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 776us/step - accuracy: 0.6549 - loss: 0.6180␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m131/200␛[0m ␛[32m━━━━━━━━━━━━━␛[0m␛[37m━━━━━━━␛[0m ␛[1m0s␛[0m 774us/step - accuracy: 0.6539 - loss: 0.6200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m196/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 776us/step - accuracy: 0.6539 - loss: 0.6211␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 831us/step - accuracy: 0.6539 - loss: 0.6211
Epoch 5/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 13ms/step - accuracy: 0.6400 - loss: 0.6673␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 63/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 813us/step - accuracy: 0.6799 - loss: 0.6076␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m126/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 806us/step - accuracy: 0.6722 - loss: 0.6089␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m193/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 788us/step - accuracy: 0.6673 - loss: 0.6118␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 840us/step - accuracy: 0.6668 - loss: 0.6121
Epoch 6/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7200 - loss: 0.5812␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 65/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 786us/step - accuracy: 0.6516 - loss: 0.6167␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m130/200␛[0m ␛[32m━━━━━━━━━━━━━␛[0m␛[37m━━━━━━━␛[0m ␛[1m0s␛[0m 780us/step - accuracy: 0.6561 - loss: 0.6132␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m195/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 778us/step - accuracy: 0.6573 - loss: 0.6129␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 831us/step - accuracy: 0.6573 - loss: 0.6129
Epoch 7/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6800 - loss: 0.6460␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 65/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 790us/step - accuracy: 0.6685 - loss: 0.6117␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m129/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 791us/step - accuracy: 0.6675 - loss: 0.6108␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m193/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━␛[0m␛[37m━␛[0m ␛[1m0s␛[0m 789us/step - accuracy: 0.6674 - loss: 0.6104␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 841us/step - accuracy: 0.6674 - loss: 0.6103
Epoch 8/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6200 - loss: 0.6108␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 63/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 816us/step - accuracy: 0.6808 - loss: 0.6007␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m126/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 807us/step - accuracy: 0.6780 - loss: 0.5998␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m189/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 805us/step - accuracy: 0.6751 - loss: 0.6006␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 857us/step - accuracy: 0.6748 - loss: 0.6007
Epoch 9/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6600 - loss: 0.5771␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 836us/step - accuracy: 0.6815 - loss: 0.5917␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m121/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 835us/step - accuracy: 0.6764 - loss: 0.5985␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m181/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 837us/step - accuracy: 0.6765 - loss: 0.5979␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 887us/step - accuracy: 0.6761 - loss: 0.5981
Epoch 10/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6400 - loss: 0.5861␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 835us/step - accuracy: 0.6861 - loss: 0.5812␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m119/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 852us/step - accuracy: 0.6851 - loss: 0.5833␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m178/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 853us/step - accuracy: 0.6846 - loss: 0.5848␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 903us/step - accuracy: 0.6841 - loss: 0.5855
Model: "sequential_2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense_10 (Dense) │ (None, 64) │ 512 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_11 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_12 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_13 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_14 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 13,057 (51.00 KB)
Trainable params: 13,057 (51.00 KB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m1:50␛[0m 553ms/step - accuracy: 0.4600 - loss: 0.7016␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 55/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 935us/step - accuracy: 0.5138 - loss: 0.6873 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m111/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 914us/step - accuracy: 0.5387 - loss: 0.6808␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m171/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 888us/step - accuracy: 0.5524 - loss: 0.6769␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m1s␛[0m 926us/step - accuracy: 0.5573 - loss: 0.6753
Epoch 2/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6200 - loss: 0.6477␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 827us/step - accuracy: 0.6224 - loss: 0.6500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m123/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 828us/step - accuracy: 0.6248 - loss: 0.6480␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m185/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 825us/step - accuracy: 0.6267 - loss: 0.6464␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 877us/step - accuracy: 0.6271 - loss: 0.6461
Epoch 3/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6400 - loss: 0.6527␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 824us/step - accuracy: 0.6356 - loss: 0.6377␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m123/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 827us/step - accuracy: 0.6394 - loss: 0.6344␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m183/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 832us/step - accuracy: 0.6419 - loss: 0.6331␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 885us/step - accuracy: 0.6422 - loss: 0.6330
Epoch 4/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6800 - loss: 0.6028␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 838us/step - accuracy: 0.6521 - loss: 0.6255␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m121/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 840us/step - accuracy: 0.6511 - loss: 0.6268␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m181/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 839us/step - accuracy: 0.6507 - loss: 0.6273␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 892us/step - accuracy: 0.6508 - loss: 0.6275
Epoch 5/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7000 - loss: 0.5844␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 841us/step - accuracy: 0.6698 - loss: 0.6160␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m120/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 846us/step - accuracy: 0.6693 - loss: 0.6151␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m178/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 853us/step - accuracy: 0.6668 - loss: 0.6164␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 899us/step - accuracy: 0.6657 - loss: 0.6169
Epoch 6/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6800 - loss: 0.6040␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 820us/step - accuracy: 0.6651 - loss: 0.6131␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m125/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 813us/step - accuracy: 0.6634 - loss: 0.6132␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m187/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 815us/step - accuracy: 0.6646 - loss: 0.6125␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 867us/step - accuracy: 0.6647 - loss: 0.6125
Epoch 7/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6800 - loss: 0.5673␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 64/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 802us/step - accuracy: 0.6447 - loss: 0.6229␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m127/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 801us/step - accuracy: 0.6520 - loss: 0.6190␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m188/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 807us/step - accuracy: 0.6567 - loss: 0.6155␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 860us/step - accuracy: 0.6573 - loss: 0.6151
Epoch 8/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6200 - loss: 0.6521␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 63/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 808us/step - accuracy: 0.6837 - loss: 0.5957␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m125/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 808us/step - accuracy: 0.6779 - loss: 0.5994␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m187/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 811us/step - accuracy: 0.6759 - loss: 0.6009␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 863us/step - accuracy: 0.6756 - loss: 0.6011
Epoch 9/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7000 - loss: 0.5661␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 822us/step - accuracy: 0.6740 - loss: 0.6010␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m124/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 820us/step - accuracy: 0.6702 - loss: 0.6034␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m185/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 825us/step - accuracy: 0.6716 - loss: 0.6018␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 879us/step - accuracy: 0.6715 - loss: 0.6017
Epoch 10/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6200 - loss: 0.6164␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 837us/step - accuracy: 0.6832 - loss: 0.5924␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m122/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 831us/step - accuracy: 0.6823 - loss: 0.5940␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m184/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 825us/step - accuracy: 0.6817 - loss: 0.5944␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 879us/step - accuracy: 0.6816 - loss: 0.5944
TF/Keras Version: 2.20.0
Author
Lorenzo Moneta

Definition in file TMVA_SOFIE_Models.py.