Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TMVA_SOFIE_Models.py File Reference

Detailed Description

View in nbviewer Open in SWAN
Example of inference with SOFIE using a set of models trained with Keras.

This tutorial shows how to store several models in a single header file and the weights in a ROOT binary file. The models are then evaluated using the RDataFrame First, generate the input model by running TMVA_Higgs_Classification.C.

This tutorial parses the input model and runs the inference using ROOT's JITing capability.

import os
import numpy as np
import ROOT
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
## generate and train Keras models with different architectures
def CreateModel(nlayers = 4, nunits = 64):
model = Sequential()
model.add(Dense(nunits, activation='relu',input_dim=7))
for i in range(1,nlayers) :
model.add(Dense(nunits, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss = 'binary_crossentropy', optimizer = Adam(learning_rate = 0.001), weighted_metrics = ['accuracy'])
return model
def PrepareData() :
#get the input data
inputFile = str(ROOT.gROOT.GetTutorialDir()) + "/machine_learning/data/Higgs_data.root"
df1 = ROOT.RDataFrame("sig_tree", inputFile)
sigData = df1.AsNumpy(columns=['m_jj', 'm_jjj', 'm_lv', 'm_jlv', 'm_bb', 'm_wbb', 'm_wwbb'])
#print(sigData)
# stack all the 7 numpy array in a single array (nevents x nvars)
data_sig_size = xsig.shape[0]
print("size of data", data_sig_size)
# make SOFIE inference on background data
df2 = ROOT.RDataFrame("bkg_tree", inputFile)
bkgData = df2.AsNumpy(columns=['m_jj', 'm_jjj', 'm_lv', 'm_jlv', 'm_bb', 'm_wbb', 'm_wwbb'])
data_bkg_size = xbkg.shape[0]
ysig = np.ones(data_sig_size)
ybkg = np.zeros(data_bkg_size)
inputs_data = np.concatenate((xsig,xbkg),axis=0)
inputs_targets = np.concatenate((ysig,ybkg),axis=0)
#split data in training and test data
x_train, x_test, y_train, y_test = train_test_split(
inputs_data, inputs_targets, test_size=0.50, random_state=1234)
return x_train, y_train, x_test, y_test
def TrainModel(model, x, y, name) :
model.fit(x,y,epochs=10,batch_size=50)
modelFile = name + '.h5'
model.save(modelFile)
return modelFile
### run the models
x_train, y_train, x_test, y_test = PrepareData()
## create models and train them
model1 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_4L_50')
model2 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_4L_200')
model3 = TrainModel(CreateModel(4,64),x_train, y_train, 'Higgs_Model_2L_500')
#evaluate with SOFIE the 3 trained models
def GenerateModelCode(modelFile, generatedHeaderFile):
print("Generating inference code for the Keras model from ",modelFile,"in the header ", generatedHeaderFile)
#Generating inference code using a ROOT binary file
# add option to append to the same file the generated headers (pass True for append flag)
model.OutputGenerated(generatedHeaderFile, True)
#model.PrintGenerated()
return generatedHeaderFile
generatedHeaderFile = "Higgs_Model.hxx"
#need to remove existing header file since we are appending on same one
if (os.path.exists(generatedHeaderFile)):
weightFile = "Higgs_Model.root"
print("removing existing files", generatedHeaderFile,weightFile)
os.remove(generatedHeaderFile)
os.remove(weightFile)
GenerateModelCode(model1, generatedHeaderFile)
GenerateModelCode(model2, generatedHeaderFile)
GenerateModelCode(model3, generatedHeaderFile)
#compile the generated code
ROOT.gInterpreter.Declare('#include "' + generatedHeaderFile + '"')
#run the inference on the test data
session1 = ROOT.TMVA_SOFIE_Higgs_Model_4L_50.Session("Higgs_Model.root")
session2 = ROOT.TMVA_SOFIE_Higgs_Model_4L_200.Session("Higgs_Model.root")
session3 = ROOT.TMVA_SOFIE_Higgs_Model_2L_500.Session("Higgs_Model.root")
hs1 = ROOT.TH1D("hs1","Signal result 4L 50",100,0,1)
hs2 = ROOT.TH1D("hs2","Signal result 4L 200",100,0,1)
hs3 = ROOT.TH1D("hs3","Signal result 2L 500",100,0,1)
hb1 = ROOT.TH1D("hb1","Background result 4L 50",100,0,1)
hb2 = ROOT.TH1D("hb2","Background result 4L 200",100,0,1)
hb3 = ROOT.TH1D("hb3","Background result 2L 500",100,0,1)
def EvalModel(session, x) :
result = session.infer(x)
return result[0]
for i in range(0,x_test.shape[0]):
result1 = EvalModel(session1, x_test[i,:])
result2 = EvalModel(session2, x_test[i,:])
result3 = EvalModel(session3, x_test[i,:])
if (y_test[i] == 1) :
hs1.Fill(result1)
hs2.Fill(result2)
hs3.Fill(result3)
else:
hb1.Fill(result1)
hb2.Fill(result2)
hb3.Fill(result3)
def PlotHistos(hs,hb):
hb.SetLineColor("kBlue")
hb.Draw("same")
PlotHistos(hs1,hb1)
PlotHistos(hs2,hb2)
PlotHistos(hs3,hb3)
## draw also ROC curves
def GetContent(h) :
x = ROOT.std.vector['float'](n)
w = ROOT.std.vector['float'](n)
for i in range(0,n):
x[i] = h.GetBinCenter(i+1)
w[i] = h.GetBinContent(i+1)
return x,w
def MakeROCCurve(hs, hb) :
xs,ws = GetContent(hs)
xb,wb = GetContent(hb)
roc = ROOT.TMVA.ROCCurve(xs,xb,ws,wb)
print("ROC integral for ",hs.GetName(), roc.GetROCIntegral())
curve = roc.GetROCCurve()
return roc,curve
r1,curve1 = MakeROCCurve(hs1,hb1)
r2,curve2 = MakeROCCurve(hs2,hb2)
r3,curve3 = MakeROCCurve(hs3,hb3)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
size of data 10000
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense (Dense) │ (None, 64) │ 512 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_3 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_4 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 13,057 (51.00 KB)
Trainable params: 13,057 (51.00 KB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2:01␛[0m 610ms/step - accuracy: 0.5600 - loss: 0.6896␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 58/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 891us/step - accuracy: 0.5273 - loss: 0.6893 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m117/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 874us/step - accuracy: 0.5451 - loss: 0.6848␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m177/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 861us/step - accuracy: 0.5526 - loss: 0.6813␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m1s␛[0m 913us/step - accuracy: 0.5552 - loss: 0.6802
Epoch 2/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.5000 - loss: 0.7461␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 853us/step - accuracy: 0.6007 - loss: 0.6582␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m121/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 837us/step - accuracy: 0.6065 - loss: 0.6551␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m183/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 829us/step - accuracy: 0.6107 - loss: 0.6522␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 910us/step - accuracy: 0.6118 - loss: 0.6514
Epoch 3/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6400 - loss: 0.6561␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 859us/step - accuracy: 0.6398 - loss: 0.6385␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m113/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 906us/step - accuracy: 0.6418 - loss: 0.6347␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m169/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 906us/step - accuracy: 0.6417 - loss: 0.6344␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 968us/step - accuracy: 0.6415 - loss: 0.6342
Epoch 4/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.7600 - loss: 0.5824␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 859us/step - accuracy: 0.6675 - loss: 0.6247␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m118/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 863us/step - accuracy: 0.6598 - loss: 0.6248␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m177/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 858us/step - accuracy: 0.6575 - loss: 0.6243␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 907us/step - accuracy: 0.6573 - loss: 0.6237
Epoch 5/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6600 - loss: 0.5995␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 842us/step - accuracy: 0.6659 - loss: 0.6080␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m122/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 834us/step - accuracy: 0.6646 - loss: 0.6104␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m176/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 866us/step - accuracy: 0.6640 - loss: 0.6107␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 913us/step - accuracy: 0.6638 - loss: 0.6107
Epoch 6/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7400 - loss: 0.5621␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 832us/step - accuracy: 0.6738 - loss: 0.6106␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m123/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 831us/step - accuracy: 0.6704 - loss: 0.6096␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m184/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 830us/step - accuracy: 0.6691 - loss: 0.6083␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 880us/step - accuracy: 0.6690 - loss: 0.6079
Epoch 7/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6400 - loss: 0.5860␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 57/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 906us/step - accuracy: 0.6593 - loss: 0.6117␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m115/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 886us/step - accuracy: 0.6609 - loss: 0.6094␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m174/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 876us/step - accuracy: 0.6624 - loss: 0.6072␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 928us/step - accuracy: 0.6634 - loss: 0.6062
Epoch 8/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m3s␛[0m 18ms/step - accuracy: 0.7000 - loss: 0.5426␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 55/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 983us/step - accuracy: 0.7033 - loss: 0.5740␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m111/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 939us/step - accuracy: 0.6938 - loss: 0.5824␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m169/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 914us/step - accuracy: 0.6886 - loss: 0.5864␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 960us/step - accuracy: 0.6870 - loss: 0.5878
Epoch 9/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m3s␛[0m 16ms/step - accuracy: 0.8000 - loss: 0.5843␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 56/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 915us/step - accuracy: 0.6897 - loss: 0.5913␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m112/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 911us/step - accuracy: 0.6862 - loss: 0.5917␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m169/200␛[0m ␛[32m━━━━━━━━━━━━━━━━␛[0m␛[37m━━━━␛[0m ␛[1m0s␛[0m 902us/step - accuracy: 0.6838 - loss: 0.5925␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 946us/step - accuracy: 0.6829 - loss: 0.5926
Epoch 10/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.7600 - loss: 0.4736␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 59/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 866us/step - accuracy: 0.7019 - loss: 0.5707␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m115/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 882us/step - accuracy: 0.6954 - loss: 0.5787␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m174/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 871us/step - accuracy: 0.6918 - loss: 0.5820␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 917us/step - accuracy: 0.6908 - loss: 0.5828
Model: "sequential_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense_5 (Dense) │ (None, 64) │ 512 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_6 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_7 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_8 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_9 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 13,057 (51.00 KB)
Trainable params: 13,057 (51.00 KB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m1:51␛[0m 558ms/step - accuracy: 0.5200 - loss: 0.6937␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 57/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 895us/step - accuracy: 0.5318 - loss: 0.6873 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m116/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 877us/step - accuracy: 0.5517 - loss: 0.6815␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m175/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 869us/step - accuracy: 0.5628 - loss: 0.6772␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m1s␛[0m 917us/step - accuracy: 0.5665 - loss: 0.6757
Epoch 2/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7200 - loss: 0.6058␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 855us/step - accuracy: 0.6488 - loss: 0.6373␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m120/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 845us/step - accuracy: 0.6418 - loss: 0.6391␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m181/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 840us/step - accuracy: 0.6401 - loss: 0.6393␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 892us/step - accuracy: 0.6400 - loss: 0.6392
Epoch 3/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6000 - loss: 0.6752␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 832us/step - accuracy: 0.6479 - loss: 0.6302␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m122/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 837us/step - accuracy: 0.6499 - loss: 0.6297␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m182/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 840us/step - accuracy: 0.6505 - loss: 0.6301␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 890us/step - accuracy: 0.6506 - loss: 0.6299
Epoch 4/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6000 - loss: 0.6846␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 853us/step - accuracy: 0.6551 - loss: 0.6224␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m120/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 847us/step - accuracy: 0.6543 - loss: 0.6225␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m179/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 848us/step - accuracy: 0.6546 - loss: 0.6217␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 897us/step - accuracy: 0.6545 - loss: 0.6216
Epoch 5/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6600 - loss: 0.5975␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 860us/step - accuracy: 0.6531 - loss: 0.6180␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m120/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 848us/step - accuracy: 0.6567 - loss: 0.6160␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m178/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 855us/step - accuracy: 0.6589 - loss: 0.6153␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 906us/step - accuracy: 0.6594 - loss: 0.6151
Epoch 6/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6200 - loss: 0.6466␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 58/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 880us/step - accuracy: 0.6618 - loss: 0.6090␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m116/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 879us/step - accuracy: 0.6624 - loss: 0.6092␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m173/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 879us/step - accuracy: 0.6616 - loss: 0.6097␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 932us/step - accuracy: 0.6619 - loss: 0.6094
Epoch 7/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6000 - loss: 0.6222␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 59/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 868us/step - accuracy: 0.6782 - loss: 0.5945␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m116/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 880us/step - accuracy: 0.6784 - loss: 0.5956␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m173/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 881us/step - accuracy: 0.6774 - loss: 0.5962␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 925us/step - accuracy: 0.6770 - loss: 0.5963
Epoch 8/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7200 - loss: 0.5061␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 854us/step - accuracy: 0.6615 - loss: 0.5938␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m119/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 857us/step - accuracy: 0.6689 - loss: 0.5935␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m178/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 857us/step - accuracy: 0.6712 - loss: 0.5936␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 907us/step - accuracy: 0.6717 - loss: 0.5939
Epoch 9/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6400 - loss: 0.6265␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 852us/step - accuracy: 0.6799 - loss: 0.5927␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m119/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 854us/step - accuracy: 0.6814 - loss: 0.5909␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m178/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 855us/step - accuracy: 0.6821 - loss: 0.5900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 903us/step - accuracy: 0.6819 - loss: 0.5903
Epoch 10/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6600 - loss: 0.5996␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 857us/step - accuracy: 0.6867 - loss: 0.5830␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m120/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 849us/step - accuracy: 0.6829 - loss: 0.5872␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m179/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 851us/step - accuracy: 0.6814 - loss: 0.5887␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 901us/step - accuracy: 0.6813 - loss: 0.5889
Model: "sequential_2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense_10 (Dense) │ (None, 64) │ 512 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_11 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_12 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_13 (Dense) │ (None, 64) │ 4,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_14 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 13,057 (51.00 KB)
Trainable params: 13,057 (51.00 KB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m1:48␛[0m 548ms/step - accuracy: 0.4800 - loss: 0.6997␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 54/200␛[0m ␛[32m━━━━━␛[0m␛[37m━━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 959us/step - accuracy: 0.5092 - loss: 0.6853 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m110/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 928us/step - accuracy: 0.5299 - loss: 0.6819␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m170/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━␛[0m␛[37m━━━␛[0m ␛[1m0s␛[0m 898us/step - accuracy: 0.5446 - loss: 0.6775␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m1s␛[0m 942us/step - accuracy: 0.5496 - loss: 0.6761
Epoch 2/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6000 - loss: 0.6698␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 837us/step - accuracy: 0.6200 - loss: 0.6435␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m121/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 839us/step - accuracy: 0.6242 - loss: 0.6445␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m181/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 838us/step - accuracy: 0.6262 - loss: 0.6441␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 888us/step - accuracy: 0.6262 - loss: 0.6442
Epoch 3/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6800 - loss: 0.6253␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 836us/step - accuracy: 0.6394 - loss: 0.6367␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m122/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 831us/step - accuracy: 0.6419 - loss: 0.6352␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m181/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 837us/step - accuracy: 0.6424 - loss: 0.6348␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 889us/step - accuracy: 0.6423 - loss: 0.6349
Epoch 4/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6800 - loss: 0.5887␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 858us/step - accuracy: 0.6440 - loss: 0.6305␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m119/200␛[0m ␛[32m━━━━━━━━━━━␛[0m␛[37m━━━━━━━━━␛[0m ␛[1m0s␛[0m 855us/step - accuracy: 0.6484 - loss: 0.6282␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m180/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 844us/step - accuracy: 0.6510 - loss: 0.6265␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 893us/step - accuracy: 0.6512 - loss: 0.6264
Epoch 5/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.5800 - loss: 0.7279␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 829us/step - accuracy: 0.6485 - loss: 0.6256␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m121/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 844us/step - accuracy: 0.6474 - loss: 0.6254␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m180/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 847us/step - accuracy: 0.6481 - loss: 0.6247␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 896us/step - accuracy: 0.6484 - loss: 0.6243
Epoch 6/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7800 - loss: 0.5613␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 848us/step - accuracy: 0.6680 - loss: 0.6138␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m120/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 843us/step - accuracy: 0.6640 - loss: 0.6157␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m182/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 833us/step - accuracy: 0.6638 - loss: 0.6158␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 884us/step - accuracy: 0.6635 - loss: 0.6158
Epoch 7/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.6600 - loss: 0.6281␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 62/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 828us/step - accuracy: 0.6575 - loss: 0.6114␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m122/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 833us/step - accuracy: 0.6598 - loss: 0.6115␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m183/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 831us/step - accuracy: 0.6608 - loss: 0.6117␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 882us/step - accuracy: 0.6610 - loss: 0.6116
Epoch 8/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.5800 - loss: 0.6304␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 842us/step - accuracy: 0.6590 - loss: 0.6088␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m122/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 836us/step - accuracy: 0.6618 - loss: 0.6083␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m183/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 835us/step - accuracy: 0.6625 - loss: 0.6080␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 887us/step - accuracy: 0.6627 - loss: 0.6079
Epoch 9/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 11ms/step - accuracy: 0.7000 - loss: 0.5570␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 61/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 847us/step - accuracy: 0.6871 - loss: 0.5906␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m121/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 843us/step - accuracy: 0.6816 - loss: 0.5955␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m181/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 842us/step - accuracy: 0.6783 - loss: 0.5978␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 895us/step - accuracy: 0.6777 - loss: 0.5980
Epoch 10/10
␛[1m 1/200␛[0m ␛[37m━━━━━━━━━━━━━━━━━━━━␛[0m ␛[1m2s␛[0m 12ms/step - accuracy: 0.6800 - loss: 0.6003␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m 60/200␛[0m ␛[32m━━━━━━␛[0m␛[37m━━━━━━━━━━━━━━␛[0m ␛[1m0s␛[0m 850us/step - accuracy: 0.6679 - loss: 0.6023␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m120/200␛[0m ␛[32m━━━━━━━━━━━━␛[0m␛[37m━━━━━━━━␛[0m ␛[1m0s␛[0m 848us/step - accuracy: 0.6714 - loss: 0.5996␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m181/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━␛[0m␛[37m━━␛[0m ␛[1m0s␛[0m 842us/step - accuracy: 0.6715 - loss: 0.5978␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
␛[1m200/200␛[0m ␛[32m━━━━━━━━━━━━━━━━━━━━␛[0m␛[37m␛[0m ␛[1m0s␛[0m 892us/step - accuracy: 0.6715 - loss: 0.5976
TF/Keras Version: 2.20.0
Author
Lorenzo Moneta

Definition in file TMVA_SOFIE_Models.py.