==> Start TMVAMulticlassApp
: Booking "BDTG method" of type "BDT" from dataset/weights/TMVAMulticlass_BDTG.weights.xml.
: Reading weight file: dataset/weights/TMVAMulticlass_BDTG.weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "bg0"
<HEADER> DataSetInfo : [Default] : Added class "bg1"
<HEADER> DataSetInfo : [Default] : Added class "bg2"
: Booked classifier "BDTG" of type: "BDT"
: Booking "DL_CPU method" of type "DL" from dataset/weights/TMVAMulticlass_DL_CPU.weights.xml.
: Reading weight file: dataset/weights/TMVAMulticlass_DL_CPU.weights.xml
: Booked classifier "DL_CPU" of type: "DL"
TMVAMultiClassApplication: Skip DL_GPU method since it has not been trained !
TMVAMultiClassApplication: Skip FDA_GA method since it has not been trained !
: Booking "MLP method" of type "MLP" from dataset/weights/TMVAMulticlass_MLP.weights.xml.
: Reading weight file: dataset/weights/TMVAMulticlass_MLP.weights.xml
<HEADER> MLP : Building Network.
: Initializing weights
: Booked classifier "MLP" of type: "MLP"
: Booking "PDEFoam method" of type "PDEFoam" from dataset/weights/TMVAMulticlass_PDEFoam.weights.xml.
: Reading weight file: dataset/weights/TMVAMulticlass_PDEFoam.weights.xml
: Read foams from file: dataset/weights/TMVAMulticlass_PDEFoam.weights_foams.root
: Booked classifier "PDEFoam" of type: "PDEFoam"
--- TMVAMulticlassApp : Using input file: /github/home/ROOT-CI/build/tutorials/machine_learning/data/tmva_multiclass_example.root
--- Select signal sample
: Rebuilding Dataset Default
--- End of event loop: Real time 0:00:00, CP time 0.430
--- Created root file: "TMVMulticlassApp.root" containing the MVA output histograms
==> TMVAMulticlassApp is done!
#include <cstdlib>
#include <iostream>
#include <map>
#include <string>
#include <vector>
{
std::map<std::string,int> Use;
Use["MLP"] = 1;
Use["BDTG"] = 1;
Use["DL_CPU"] = 1;
Use["DL_GPU"] = 1;
Use["FDA_GA"] = 1;
Use["PDEFoam"] = 1;
std::cout << std::endl;
std::cout << "==> Start TMVAMulticlassApp" << std::endl;
for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
std::cout <<
"Method \"" <<
regMethod <<
"\" not known in TMVA under this name. Choose among the following:" << std::endl;
for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " " << std::endl;
std::cout << std::endl;
return;
}
}
}
for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
if (it->second) {
else {
std::cout << "TMVAMultiClassApplication: Skip " << methodName << " since it has not been trained !" << std::endl;
it->second = 0;
}
}
}
if (Use["MLP"])
if (Use["BDTG"])
if (Use["DL_CPU"])
if (Use["DL_GPU"])
if (Use["FDA_GA"])
if (Use["PDEFoam"])
TString fname =
gROOT->GetTutorialDir() +
"/machine_learning/data/tmva_multiclass_example.root";
}
std::cout << "ERROR: could not open data file" << std::endl;
}
std::cout <<
"--- TMVAMulticlassApp : Using input file: " <<
input->GetName() << std::endl;
std::cout << "--- Select signal sample" << std::endl;
std::cout <<
"--- Processing: " <<
theTree->GetEntries() <<
" events" << std::endl;
std::cout <<
"--- ... Processing event: " <<
ievt << std::endl;
}
if (Use["MLP"])
if (Use["BDTG"])
if (Use["DL_CPU"])
if (Use["DL_GPU"])
if (Use["FDA_GA"])
if (Use["PDEFoam"])
}
std::cout <<
"--- End of event loop: ";
sw.Print();
if (Use["MLP"])
if (Use["BDTG"])
if (Use["DL_CPU"])
if (Use["DL_GPU"])
if (Use["FDA_GA"])
if (Use["PDEFoam"])
std::cout << "--- Created root file: \"TMVMulticlassApp.root\" containing the MVA output histograms" << std::endl;
std::cout << "==> TMVAMulticlassApp is done!" << std::endl << std::endl;
}
{
for (
int i=1; i<
argc; i++) {
}
return 0;
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
R__EXTERN TSystem * gSystem
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
1-D histogram with a float per channel (see TH1 documentation)
The Reader class serves to use the MVAs in a specific analysis context.
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
A TTree represents a columnar dataset.
create variable transformations