Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
batch_normalization (Batch (None, 16, 16, 10) 40
Normalization)
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 15, 15, 10) 0
D)
flatten (Flatten) (None, 2250) 0
dense (Dense) (None, 256) 576256
dense_1 (Dense) (None, 2) 514
=================================================================
Total params: 577820 (2.20 MB)
Trainable params: 577800 (2.20 MB)
Non-trainable params: 20 (80.00 Byte)
_________________________________________________________________
(TString) "python3"[7]
Factory : Booking method: ␛[1mPyKeras␛[0m
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Loading Keras Model
: Loaded model from file: model_cnn.h5
(TString) "python3"[7]
Factory : Booking method: ␛[1mPyTorch␛[0m
:
: Using PyTorch - setting special configuration options
: Using PyTorch version 2
: Setup PyTorch Model for training
: Executing user initialization code from /home/sftnight/build/workspace/root-makedoc-v630/rootspi/rdoc/src/v6-30-00-patches.build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchModelCNN.pt
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.859 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.017 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = inf
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.948122 1.00482 0.180871 0.0167485 7311.6 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.698414 0.776452 0.180276 0.015878 7299.38 0
: 3 | 0.597042 0.787308 0.179327 0.0150397 7304.26 1
: 4 | 0.519872 0.822473 0.178382 0.0150342 7346.29 2
: 5 | 0.468665 0.78127 0.178576 0.0150393 7337.82 3
: 6 | 0.393402 0.790299 0.177945 0.0150635 7367.31 4
: 7 | 0.341711 0.82322 0.178965 0.015089 7322.63 5
: 8 | 0.309367 0.801251 0.179747 0.0150896 7287.86 6
:
: Elapsed time for training with 1600 events: 1.47 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0795 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = inf
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.24793 1.04997 1.43136 0.110845 908.737 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.966993 0.822313 1.41793 0.110362 917.732 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.763311 0.756113 1.44518 0.110136 898.845 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.704458 0.704082 1.43983 0.110237 902.531 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.663193 0.699287 1.41381 0.109499 920.028 0
: 6 | 0.642532 0.72242 1.41269 0.108155 919.87 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.626506 0.66879 1.42238 0.10997 914.349 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.598444 0.666088 1.42065 0.110082 915.636 0
: 9 | 0.616527 0.734973 1.41731 0.10884 917.1 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.551072 0.62025 1.41765 0.110475 918.013 0
: 11 Minimum Test error found - save the configuration
: 11 | 0.511186 0.614741 1.42343 0.11023 913.801 0
: 12 Minimum Test error found - save the configuration
: 12 | 0.493932 0.573476 1.42268 0.111541 915.233 0
: 13 Minimum Test error found - save the configuration
: 13 | 0.444827 0.561575 1.43804 0.110672 904.043 0
: 14 Minimum Test error found - save the configuration
: 14 | 0.426815 0.523543 1.42208 0.112498 916.324 0
: 15 | 0.40647 0.573553 1.43096 0.110425 908.724 1
: 16 | 0.387531 0.531282 1.44706 0.110364 897.735 2
: 17 | 0.367604 0.527106 1.42472 0.110849 913.328 3
: 18 Minimum Test error found - save the configuration
: 18 | 0.362935 0.501376 1.42752 0.111915 912.131 0
: 19 | 0.365549 0.545629 1.42576 0.114063 914.848 1
: 20 Minimum Test error found - save the configuration
: 20 | 0.335967 0.500992 1.45175 0.11253 896.047 0
:
: Elapsed time for training with 1600 events: 28.7 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.586 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyKeras for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyKeras ] :␛[0m
:
: Keras is a high-level API for the Theano and Tensorflow packages.
: This method wraps the training and predictions steps of the Keras
: Python package for TMVA, so that dataloading, preprocessing and
: evaluation can be done within the TMVA system. To use this Keras
: interface, you have to generate a model with Keras first. Then,
: this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Training Model Summary
custom objects for loading model : {'optimizer': <class 'torch.optim.adam.Adam'>, 'criterion': BCELoss(), 'train_func': <function fit at 0x7fcd6010aca0>, 'predict_func': <function predict at 0x7fcd6010adc0>}
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
batch_normalization (Batch (None, 16, 16, 10) 40
Normalization)
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 15, 15, 10) 0
D)
flatten (Flatten) (None, 2250) 0
dense (Dense) (None, 256) 576256
dense_1 (Dense) (None, 2) 514
=================================================================
Total params: 577820 (2.20 MB)
Trainable params: 577800 (2.20 MB)
Non-trainable params: 20 (80.00 Byte)
_________________________________________________________________
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
Epoch 1/20
1/13 [=>............................] - ETA: 10s - loss: 0.8633 - accuracy: 0.5200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
4/13 [========>.....................] - ETA: 0s - loss: 1.7707 - accuracy: 0.5125 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
7/13 [===============>..............] - ETA: 0s - loss: 1.4394 - accuracy: 0.5057␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 1.1871 - accuracy: 0.5164
Epoch 1: val_loss improved from inf to 0.92738, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 2s 64ms/step - loss: 1.1226 - accuracy: 0.5258 - val_loss: 0.9274 - val_accuracy: 0.4844
Epoch 2/20
1/13 [=>............................] - ETA: 0s - loss: 0.7127 - accuracy: 0.5200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6920 - accuracy: 0.5680␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6958 - accuracy: 0.5744␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.6875 - accuracy: 0.5813
Epoch 2: val_loss improved from 0.92738 to 0.69845, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 21ms/step - loss: 0.6875 - accuracy: 0.5813 - val_loss: 0.6984 - val_accuracy: 0.5188
Epoch 3/20
1/13 [=>............................] - ETA: 0s - loss: 0.6595 - accuracy: 0.7200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6587 - accuracy: 0.6480␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6544 - accuracy: 0.6511␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.6605 - accuracy: 0.6273
Epoch 3: val_loss did not improve from 0.69845
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.6605 - accuracy: 0.6273 - val_loss: 0.7029 - val_accuracy: 0.5188
Epoch 4/20
1/13 [=>............................] - ETA: 0s - loss: 0.6382 - accuracy: 0.6000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6428 - accuracy: 0.6480␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6314 - accuracy: 0.6711␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.6326 - accuracy: 0.6758
Epoch 4: val_loss improved from 0.69845 to 0.69005, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 21ms/step - loss: 0.6326 - accuracy: 0.6758 - val_loss: 0.6900 - val_accuracy: 0.5531
Epoch 5/20
1/13 [=>............................] - ETA: 0s - loss: 0.5832 - accuracy: 0.7900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.6026 - accuracy: 0.7360␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.6010 - accuracy: 0.7256␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.6033 - accuracy: 0.7191
Epoch 5: val_loss improved from 0.69005 to 0.67613, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 26ms/step - loss: 0.6017 - accuracy: 0.7320 - val_loss: 0.6761 - val_accuracy: 0.5875
Epoch 6/20
1/13 [=>............................] - ETA: 0s - loss: 0.5666 - accuracy: 0.7400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.5797 - accuracy: 0.7380␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.5778 - accuracy: 0.7211␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - ETA: 0s - loss: 0.5743 - accuracy: 0.7242
Epoch 6: val_loss did not improve from 0.67613
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.5743 - accuracy: 0.7242 - val_loss: 0.7337 - val_accuracy: 0.5375
Epoch 7/20
1/13 [=>............................] - ETA: 0s - loss: 0.5569 - accuracy: 0.7100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
5/13 [==========>...................] - ETA: 0s - loss: 0.5733 - accuracy: 0.6860␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/13 [===================>..........] - ETA: 0s - loss: 0.5842 - accuracy: 0.6656
Epoch 7: val_loss improved from 0.67613 to 0.66415, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 20ms/step - loss: 0.5754 - accuracy: 0.6891 - val_loss: 0.6642 - val_accuracy: 0.6000
Epoch 8/20
1/13 [=>............................] - ETA: 0s - loss: 0.5548 - accuracy: 0.6600␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.5175 - accuracy: 0.8033␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.5082 - accuracy: 0.8018
Epoch 8: val_loss improved from 0.66415 to 0.63773, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.5053 - accuracy: 0.8016 - val_loss: 0.6377 - val_accuracy: 0.6531
Epoch 9/20
1/13 [=>............................] - ETA: 0s - loss: 0.5014 - accuracy: 0.7700␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.4865 - accuracy: 0.7767␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.4924 - accuracy: 0.7691
Epoch 9: val_loss did not improve from 0.63773
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 15ms/step - loss: 0.4848 - accuracy: 0.7766 - val_loss: 0.6509 - val_accuracy: 0.6187
Epoch 10/20
1/13 [=>............................] - ETA: 0s - loss: 0.5102 - accuracy: 0.7200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.4974 - accuracy: 0.7333␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.4809 - accuracy: 0.7527
Epoch 10: val_loss improved from 0.63773 to 0.62047, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 33ms/step - loss: 0.4706 - accuracy: 0.7664 - val_loss: 0.6205 - val_accuracy: 0.6719
Epoch 11/20
1/13 [=>............................] - ETA: 0s - loss: 0.4873 - accuracy: 0.7900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.4178 - accuracy: 0.8367␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.4179 - accuracy: 0.8391
Epoch 11: val_loss improved from 0.62047 to 0.60246, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.4128 - accuracy: 0.8398 - val_loss: 0.6025 - val_accuracy: 0.6875
Epoch 12/20
1/13 [=>............................] - ETA: 0s - loss: 0.3588 - accuracy: 0.8800␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.3898 - accuracy: 0.8383␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.3788 - accuracy: 0.8555
Epoch 12: val_loss improved from 0.60246 to 0.59417, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.3758 - accuracy: 0.8555 - val_loss: 0.5942 - val_accuracy: 0.6938
Epoch 13/20
1/13 [=>............................] - ETA: 0s - loss: 0.3603 - accuracy: 0.8800␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.3392 - accuracy: 0.8833␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.3412 - accuracy: 0.8718
Epoch 13: val_loss did not improve from 0.59417
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 15ms/step - loss: 0.3442 - accuracy: 0.8695 - val_loss: 0.6655 - val_accuracy: 0.6469
Epoch 14/20
1/13 [=>............................] - ETA: 0s - loss: 0.3694 - accuracy: 0.8500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.3565 - accuracy: 0.8600␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.3356 - accuracy: 0.8709
Epoch 14: val_loss improved from 0.59417 to 0.57670, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 18ms/step - loss: 0.3285 - accuracy: 0.8766 - val_loss: 0.5767 - val_accuracy: 0.7250
Epoch 15/20
1/13 [=>............................] - ETA: 0s - loss: 0.2341 - accuracy: 0.9300␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.3175 - accuracy: 0.8750␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.3053 - accuracy: 0.8827
Epoch 15: val_loss improved from 0.57670 to 0.56137, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 17ms/step - loss: 0.2999 - accuracy: 0.8867 - val_loss: 0.5614 - val_accuracy: 0.7469
Epoch 16/20
1/13 [=>............................] - ETA: 0s - loss: 0.3054 - accuracy: 0.8800␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.2866 - accuracy: 0.8933␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.2754 - accuracy: 0.8982
Epoch 16: val_loss did not improve from 0.56137
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 15ms/step - loss: 0.2764 - accuracy: 0.8938 - val_loss: 0.5885 - val_accuracy: 0.7156
Epoch 17/20
1/13 [=>............................] - ETA: 0s - loss: 0.2673 - accuracy: 0.9000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.2494 - accuracy: 0.9150␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.2481 - accuracy: 0.9127
Epoch 17: val_loss did not improve from 0.56137
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 16ms/step - loss: 0.2478 - accuracy: 0.9125 - val_loss: 0.5726 - val_accuracy: 0.7188
Epoch 18/20
1/13 [=>............................] - ETA: 0s - loss: 0.2440 - accuracy: 0.8900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.2420 - accuracy: 0.9150␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.2405 - accuracy: 0.9109
Epoch 18: val_loss did not improve from 0.56137
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 14ms/step - loss: 0.2337 - accuracy: 0.9133 - val_loss: 0.6007 - val_accuracy: 0.7188
Epoch 19/20
1/13 [=>............................] - ETA: 0s - loss: 0.1799 - accuracy: 0.9300␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
6/13 [============>.................] - ETA: 0s - loss: 0.2073 - accuracy: 0.9317␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/13 [==========================>...] - ETA: 0s - loss: 0.2121 - accuracy: 0.9292
Epoch 19: val_loss did not improve from 0.56137
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 14ms/step - loss: 0.2117 - accuracy: 0.9273 - val_loss: 0.5729 - val_accuracy: 0.7406
Epoch 20/20
1/13 [=>............................] - ETA: 0s - loss: 0.1534 - accuracy: 0.9500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
7/13 [===============>..............] - ETA: 0s - loss: 0.1943 - accuracy: 0.9343␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/13 [========================>.....] - ETA: 0s - loss: 0.1948 - accuracy: 0.9345
Epoch 20: val_loss did not improve from 0.56137
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 20ms/step - loss: 0.1975 - accuracy: 0.9305 - val_loss: 0.6244 - val_accuracy: 0.7312
: Getting training history for item:0 name = 'loss'
: Getting training history for item:1 name = 'accuracy'
: Getting training history for item:2 name = 'val_loss'
: Getting training history for item:3 name = 'val_accuracy'
: Elapsed time for training with 1600 events: 6.26 sec
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.212 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyTorch for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyTorch ] :␛[0m
:
: PyTorch is a scientific computing package supporting
: automatic differentiation. This method wraps the training
: and predictions steps of the PyTorch Python package for
: TMVA, so that dataloading, preprocessing and evaluation
: can be done within the TMVA system. To use this PyTorch
: interface, you need to generatea model with PyTorch first.
: Then, this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Print Training Model Architecture
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
: Elapsed time for training with 1600 events: 31.7 sec
PyTorch : [dataset] : Evaluation of PyTorch on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.419 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.138e-02
: 2 : vars : 1.118e-02
: 3 : vars : 1.086e-02
: 4 : vars : 1.027e-02
: 5 : vars : 9.647e-03
: 6 : vars : 9.527e-03
: 7 : vars : 9.096e-03
: 8 : vars : 9.066e-03
: 9 : vars : 8.710e-03
: 10 : vars : 8.435e-03
: 11 : vars : 8.418e-03
: 12 : vars : 8.070e-03
: 13 : vars : 8.033e-03
: 14 : vars : 7.810e-03
: 15 : vars : 7.803e-03
: 16 : vars : 7.794e-03
: 17 : vars : 7.715e-03
: 18 : vars : 7.593e-03
: 19 : vars : 7.529e-03
: 20 : vars : 7.504e-03
: 21 : vars : 7.421e-03
: 22 : vars : 7.363e-03
: 23 : vars : 7.359e-03
: 24 : vars : 7.338e-03
: 25 : vars : 7.330e-03
: 26 : vars : 7.223e-03
: 27 : vars : 6.965e-03
: 28 : vars : 6.869e-03
: 29 : vars : 6.762e-03
: 30 : vars : 6.655e-03
: 31 : vars : 6.636e-03
: 32 : vars : 6.606e-03
: 33 : vars : 6.589e-03
: 34 : vars : 6.571e-03
: 35 : vars : 6.530e-03
: 36 : vars : 6.488e-03
: 37 : vars : 6.476e-03
: 38 : vars : 6.467e-03
: 39 : vars : 6.455e-03
: 40 : vars : 6.441e-03
: 41 : vars : 6.348e-03
: 42 : vars : 6.340e-03
: 43 : vars : 6.325e-03
: 44 : vars : 6.323e-03
: 45 : vars : 6.291e-03
: 46 : vars : 6.181e-03
: 47 : vars : 6.149e-03
: 48 : vars : 6.106e-03
: 49 : vars : 6.104e-03
: 50 : vars : 6.086e-03
: 51 : vars : 6.049e-03
: 52 : vars : 6.036e-03
: 53 : vars : 6.009e-03
: 54 : vars : 5.971e-03
: 55 : vars : 5.946e-03
: 56 : vars : 5.941e-03
: 57 : vars : 5.930e-03
: 58 : vars : 5.879e-03
: 59 : vars : 5.862e-03
: 60 : vars : 5.735e-03
: 61 : vars : 5.721e-03
: 62 : vars : 5.655e-03
: 63 : vars : 5.645e-03
: 64 : vars : 5.600e-03
: 65 : vars : 5.556e-03
: 66 : vars : 5.517e-03
: 67 : vars : 5.491e-03
: 68 : vars : 5.456e-03
: 69 : vars : 5.397e-03
: 70 : vars : 5.380e-03
: 71 : vars : 5.376e-03
: 72 : vars : 5.360e-03
: 73 : vars : 5.346e-03
: 74 : vars : 5.345e-03
: 75 : vars : 5.341e-03
: 76 : vars : 5.331e-03
: 77 : vars : 5.301e-03
: 78 : vars : 5.276e-03
: 79 : vars : 5.265e-03
: 80 : vars : 5.243e-03
: 81 : vars : 5.236e-03
: 82 : vars : 5.213e-03
: 83 : vars : 5.193e-03
: 84 : vars : 5.168e-03
: 85 : vars : 5.104e-03
: 86 : vars : 5.077e-03
: 87 : vars : 5.055e-03
: 88 : vars : 5.051e-03
: 89 : vars : 5.003e-03
: 90 : vars : 4.989e-03
: 91 : vars : 4.974e-03
: 92 : vars : 4.794e-03
: 93 : vars : 4.782e-03
: 94 : vars : 4.743e-03
: 95 : vars : 4.709e-03
: 96 : vars : 4.687e-03
: 97 : vars : 4.648e-03
: 98 : vars : 4.621e-03
: 99 : vars : 4.620e-03
: 100 : vars : 4.601e-03
: 101 : vars : 4.598e-03
: 102 : vars : 4.596e-03
: 103 : vars : 4.584e-03
: 104 : vars : 4.550e-03
: 105 : vars : 4.518e-03
: 106 : vars : 4.493e-03
: 107 : vars : 4.486e-03
: 108 : vars : 4.484e-03
: 109 : vars : 4.468e-03
: 110 : vars : 4.440e-03
: 111 : vars : 4.422e-03
: 112 : vars : 4.385e-03
: 113 : vars : 4.356e-03
: 114 : vars : 4.336e-03
: 115 : vars : 4.304e-03
: 116 : vars : 4.298e-03
: 117 : vars : 4.258e-03
: 118 : vars : 4.255e-03
: 119 : vars : 4.247e-03
: 120 : vars : 4.245e-03
: 121 : vars : 4.202e-03
: 122 : vars : 4.192e-03
: 123 : vars : 4.188e-03
: 124 : vars : 4.182e-03
: 125 : vars : 4.170e-03
: 126 : vars : 4.159e-03
: 127 : vars : 4.153e-03
: 128 : vars : 4.128e-03
: 129 : vars : 4.100e-03
: 130 : vars : 4.086e-03
: 131 : vars : 4.067e-03
: 132 : vars : 4.066e-03
: 133 : vars : 4.033e-03
: 134 : vars : 4.021e-03
: 135 : vars : 4.005e-03
: 136 : vars : 3.968e-03
: 137 : vars : 3.944e-03
: 138 : vars : 3.928e-03
: 139 : vars : 3.906e-03
: 140 : vars : 3.906e-03
: 141 : vars : 3.812e-03
: 142 : vars : 3.776e-03
: 143 : vars : 3.769e-03
: 144 : vars : 3.701e-03
: 145 : vars : 3.693e-03
: 146 : vars : 3.620e-03
: 147 : vars : 3.612e-03
: 148 : vars : 3.591e-03
: 149 : vars : 3.588e-03
: 150 : vars : 3.553e-03
: 151 : vars : 3.548e-03
: 152 : vars : 3.543e-03
: 153 : vars : 3.528e-03
: 154 : vars : 3.517e-03
: 155 : vars : 3.504e-03
: 156 : vars : 3.446e-03
: 157 : vars : 3.439e-03
: 158 : vars : 3.394e-03
: 159 : vars : 3.356e-03
: 160 : vars : 3.308e-03
: 161 : vars : 3.284e-03
: 162 : vars : 3.254e-03
: 163 : vars : 3.225e-03
: 164 : vars : 3.220e-03
: 165 : vars : 3.174e-03
: 166 : vars : 3.151e-03
: 167 : vars : 3.149e-03
: 168 : vars : 3.046e-03
: 169 : vars : 3.041e-03
: 170 : vars : 3.014e-03
: 171 : vars : 3.000e-03
: 172 : vars : 2.978e-03
: 173 : vars : 2.975e-03
: 174 : vars : 2.911e-03
: 175 : vars : 2.890e-03
: 176 : vars : 2.863e-03
: 177 : vars : 2.863e-03
: 178 : vars : 2.861e-03
: 179 : vars : 2.857e-03
: 180 : vars : 2.854e-03
: 181 : vars : 2.847e-03
: 182 : vars : 2.775e-03
: 183 : vars : 2.767e-03
: 184 : vars : 2.712e-03
: 185 : vars : 2.682e-03
: 186 : vars : 2.636e-03
: 187 : vars : 2.577e-03
: 188 : vars : 2.533e-03
: 189 : vars : 2.523e-03
: 190 : vars : 2.515e-03
: 191 : vars : 2.495e-03
: 192 : vars : 2.205e-03
: 193 : vars : 2.096e-03
: 194 : vars : 2.043e-03
: 195 : vars : 1.866e-03
: 196 : vars : 1.840e-03
: 197 : vars : 1.678e-03
: 198 : vars : 1.668e-03
: 199 : vars : 1.646e-03
: 200 : vars : 1.645e-03
: 201 : vars : 1.588e-03
: 202 : vars : 1.534e-03
: 203 : vars : 1.382e-03
: 204 : vars : 1.361e-03
: 205 : vars : 1.356e-03
: 206 : vars : 1.316e-03
: 207 : vars : 1.232e-03
: 208 : vars : 7.396e-04
: 209 : vars : 6.364e-04
: 210 : vars : 0.000e+00
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
: No variable ranking supplied by classifier: PyKeras
: No variable ranking supplied by classifier: PyTorch
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.27659
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 6.58709
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 12.4838
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 12.8976
TH1.Print Name = TrainingHistory_PyKeras_'accuracy', Entries= 0, Total sum= 15.8055
TH1.Print Name = TrainingHistory_PyKeras_'loss', Entries= 0, Total sum= 9.24341
TH1.Print Name = TrainingHistory_PyKeras_'val_accuracy', Entries= 0, Total sum= 12.8688
TH1.Print Name = TrainingHistory_PyKeras_'val_loss', Entries= 0, Total sum= 12.961
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00589 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0187 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.147 sec
Factory : Test method: PyKeras for Classification performance
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.167 sec
Factory : Test method: PyTorch for Classification performance
:
: Setup PyTorch Model for training
: Executing user initialization code from /home/sftnight/build/workspace/root-makedoc-v630/rootspi/rdoc/src/v6-30-00-patches.build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Reshape)
(1): RecursiveScriptModule(original_name=Conv2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=BatchNorm2d)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ReLU)
(6): RecursiveScriptModule(original_name=MaxPool2d)
(7): RecursiveScriptModule(original_name=Flatten)
(8): RecursiveScriptModule(original_name=Linear)
(9): RecursiveScriptModule(original_name=ReLU)
(10): RecursiveScriptModule(original_name=Linear)
(11): RecursiveScriptModule(original_name=Sigmoid)
)
[1, 4] train loss: 1.251
[1, 8] train loss: 0.732
[1, 12] train loss: 0.729
[1] val loss: 0.739
[2, 4] train loss: 0.697
[2, 8] train loss: 0.694
[2, 12] train loss: 0.683
[2] val loss: 0.697
[3, 4] train loss: 0.681
[3, 8] train loss: 0.668
[3, 12] train loss: 0.658
[3] val loss: 0.681
[4, 4] train loss: 0.636
[4, 8] train loss: 0.627
[4, 12] train loss: 0.629
[4] val loss: 0.679
[5, 4] train loss: 0.595
[5, 8] train loss: 0.559
[5, 12] train loss: 0.555
[5] val loss: 0.607
[6, 4] train loss: 0.510
[6, 8] train loss: 0.500
[6, 12] train loss: 0.524
[6] val loss: 0.715
[7, 4] train loss: 0.537
[7, 8] train loss: 0.436
[7, 12] train loss: 0.447
[7] val loss: 0.573
[8, 4] train loss: 0.433
[8, 8] train loss: 0.485
[8, 12] train loss: 0.557
[8] val loss: 0.596
[9, 4] train loss: 0.532
[9, 8] train loss: 0.420
[9, 12] train loss: 0.426
[9] val loss: 0.508
[10, 4] train loss: 0.403
[10, 8] train loss: 0.344
[10, 12] train loss: 0.375
[10] val loss: 0.516
[11, 4] train loss: 0.374
[11, 8] train loss: 0.515
[11, 12] train loss: 0.607
[11] val loss: 0.620
[12, 4] train loss: 0.521
[12, 8] train loss: 0.468
[12, 12] train loss: 0.485
[12] val loss: 0.626
[13, 4] train loss: 0.441
[13, 8] train loss: 0.487
[13, 12] train loss: 0.397
[13] val loss: 0.562
[14, 4] train loss: 0.388
[14, 8] train loss: 0.399
[14, 12] train loss: 0.367
[14] val loss: 0.518
[15, 4] train loss: 0.374
[15, 8] train loss: 0.326
[15, 12] train loss: 0.383
[15] val loss: 0.528
[16, 4] train loss: 0.350
[16, 8] train loss: 0.273
[16, 12] train loss: 0.310
[16] val loss: 0.511
[17, 4] train loss: 0.307
[17, 8] train loss: 0.268
[17, 12] train loss: 0.337
[17] val loss: 0.580
[18, 4] train loss: 0.304
[18, 8] train loss: 0.245
[18, 12] train loss: 0.276
[18] val loss: 0.545
[19, 4] train loss: 0.262
[19, 8] train loss: 0.239
[19, 12] train loss: 0.283
[19] val loss: 0.600
[20, 4] train loss: 0.260
[20, 8] train loss: 0.256
[20, 12] train loss: 0.264
[20] val loss: 0.593
Finished Training on 20 Epochs!
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchTrainedModelCNN.pt
PyTorch : [dataset] : Evaluation of PyTorch on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.118 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyKeras
:
PyKeras : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyTorch
:
PyTorch : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_CNN_CPU : 0.858
: dataset PyKeras : 0.850
: dataset PyTorch : 0.849
: dataset BDT : 0.768
: dataset TMVA_DNN_CPU : 0.509
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_CNN_CPU : 0.245 (0.330) 0.575 (0.713) 0.842 (0.864)
: dataset PyKeras : 0.135 (0.255) 0.605 (0.639) 0.782 (0.844)
: dataset PyTorch : 0.085 (0.245) 0.568 (0.632) 0.815 (0.812)
: dataset BDT : 0.095 (0.305) 0.445 (0.576) 0.695 (0.784)
: dataset TMVA_DNN_CPU : 0.005 (0.032) 0.095 (0.195) 0.300 (0.443)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m