Logo ROOT  
Reference Guide
TMVA_CNN_Classification.C File Reference

Detailed Description

View in nbviewer Open in SWAN TMVA Classification Example Using a Convolutional Neural Network

This is an example of using a CNN in TMVA. We do classification using a toy image data set that is generated when running the example macro

Running with nthreads = 16
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 5000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 5000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 4000
: Signal -- testing events : 1000
: Signal -- training and testing events: 5000
: Background -- training events : 4000
: Background -- testing events : 1000
: Background -- training and testing events: 5000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=20,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 4000 bkg: 4000
: #events: (unweighted) sig: 4000 bkg: 4000
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 8000 events: 7.89 sec
BDT : [dataset] : Evaluation of BDT on training sample (8000 events)
: Elapsed time for evaluation of 8000 events: 0.19 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 16
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 6400 events for training and 1600 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM Learning rate = 0.001 regularization 0 minimum error = inf
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.748783 0.776719 0.988279 0.0827993 7068.08 0
: 2 | 0.576269 0.848801 0.988782 0.0816182 7054.95 1
: 3 Minimum Test error found - save the configuration
: 3 | 0.478644 0.637096 0.998696 0.0837284 6994.79 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.41329 0.58591 1.00254 0.0826951 6957.7 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.376204 0.491052 0.992019 0.0838092 7046.83 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.35734 0.438385 0.97994 0.0828045 7133.81 0
: 7 | 0.320987 0.595953 0.988757 0.0827738 7064.15 1
: 8 | 0.294629 0.454171 0.990283 0.0824548 7049.8 2
: 9 | 0.287831 0.515986 1.00462 0.0826614 6941.72 3
: 10 Minimum Test error found - save the configuration
: 10 | 0.268617 0.437754 0.986957 0.082578 7076.68 0
: 11 | 0.264421 0.465394 0.996727 0.0819308 6996.09 1
: 12 Minimum Test error found - save the configuration
: 12 | 0.244746 0.401096 1.02442 0.0824051 6793.94 0
: 13 | 0.2335 0.419554 1.05873 0.0825301 6556.04 1
: 14 | 0.205957 0.504197 1.07585 0.0815914 6436.97 2
: 15 | 0.209297 0.59716 1.05242 0.0849379 6615.14 3
: 16 | 0.203502 0.558988 1.05004 0.0981179 6723.22 4
: 17 | 0.206452 0.68994 1.03715 0.0822104 6702 5
: 18 | 0.180122 0.542895 1.05474 0.0823246 6581.55 6
:
: Elapsed time for training with 8000 events: 18.4 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (8000 events)
: Elapsed time for evaluation of 8000 events: 0.416 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 16
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 6400 events for training and 1600 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM Learning rate = 0.001 regularization 0 minimum error = inf
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.986379 0.678332 7.1635 0.539298 966.155 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.646851 0.635468 7.08144 0.515128 974.672 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.591384 0.594111 7.06026 0.52273 978.963 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.541796 0.537508 7.14463 0.528003 967.26 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.509069 0.493752 7.08806 0.542849 977.814 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.436962 0.422728 7.12359 0.544925 972.842 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.425959 0.400201 7.15882 0.525655 964.849 0
: 8 | 0.39646 0.413087 7.16375 0.524435 963.954 1
: 9 Minimum Test error found - save the configuration
: 9 | 0.386383 0.393087 7.19644 0.541868 961.745 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.361452 0.374568 7.27911 0.537112 949.273 0
: 11 | 0.407606 0.435508 7.37425 0.524705 934.369 1
: 12 | 0.376483 0.397858 7.9295 0.521818 863.967 2
: 13 | 0.345486 0.415415 8.28979 0.533835 825.173 3
: 14 Minimum Test error found - save the configuration
: 14 | 0.342097 0.368685 8.23582 0.551723 832.889 0
: 15 | 0.339892 0.451846 8.08208 0.563782 851.256 1
: 16 | 0.335397 0.427432 8.13928 0.522979 840.303 2
: 17 Minimum Test error found - save the configuration
: 17 | 0.315325 0.353934 8.15202 0.523742 838.983 0
: 18 | 0.318112 0.375789 7.94728 0.537611 863.736 1
: 19 | 0.330806 0.405558 8.11554 0.545851 845.478 2
: 20 | 0.325954 0.402535 8.05144 0.535705 851.547 3
:
: Elapsed time for training with 8000 events: 152 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (8000 events)
: Elapsed time for evaluation of 8000 events: 2.76 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.147e-02
: 2 : vars : 1.033e-02
: 3 : vars : 1.017e-02
: 4 : vars : 1.001e-02
: 5 : vars : 9.973e-03
: 6 : vars : 9.706e-03
: 7 : vars : 9.517e-03
: 8 : vars : 9.472e-03
: 9 : vars : 9.431e-03
: 10 : vars : 9.184e-03
: 11 : vars : 9.067e-03
: 12 : vars : 8.955e-03
: 13 : vars : 8.892e-03
: 14 : vars : 8.824e-03
: 15 : vars : 8.791e-03
: 16 : vars : 8.682e-03
: 17 : vars : 8.658e-03
: 18 : vars : 8.597e-03
: 19 : vars : 8.574e-03
: 20 : vars : 8.529e-03
: 21 : vars : 8.490e-03
: 22 : vars : 8.433e-03
: 23 : vars : 8.323e-03
: 24 : vars : 8.321e-03
: 25 : vars : 8.278e-03
: 26 : vars : 7.892e-03
: 27 : vars : 7.878e-03
: 28 : vars : 7.782e-03
: 29 : vars : 7.756e-03
: 30 : vars : 7.608e-03
: 31 : vars : 7.467e-03
: 32 : vars : 7.364e-03
: 33 : vars : 7.294e-03
: 34 : vars : 7.245e-03
: 35 : vars : 7.086e-03
: 36 : vars : 7.035e-03
: 37 : vars : 7.028e-03
: 38 : vars : 6.907e-03
: 39 : vars : 6.762e-03
: 40 : vars : 6.732e-03
: 41 : vars : 6.721e-03
: 42 : vars : 6.674e-03
: 43 : vars : 6.567e-03
: 44 : vars : 6.500e-03
: 45 : vars : 6.409e-03
: 46 : vars : 6.345e-03
: 47 : vars : 6.332e-03
: 48 : vars : 6.283e-03
: 49 : vars : 6.267e-03
: 50 : vars : 6.246e-03
: 51 : vars : 6.234e-03
: 52 : vars : 6.178e-03
: 53 : vars : 6.140e-03
: 54 : vars : 6.122e-03
: 55 : vars : 6.075e-03
: 56 : vars : 6.004e-03
: 57 : vars : 5.996e-03
: 58 : vars : 5.934e-03
: 59 : vars : 5.904e-03
: 60 : vars : 5.875e-03
: 61 : vars : 5.821e-03
: 62 : vars : 5.715e-03
: 63 : vars : 5.688e-03
: 64 : vars : 5.663e-03
: 65 : vars : 5.625e-03
: 66 : vars : 5.591e-03
: 67 : vars : 5.524e-03
: 68 : vars : 5.513e-03
: 69 : vars : 5.509e-03
: 70 : vars : 5.432e-03
: 71 : vars : 5.403e-03
: 72 : vars : 5.383e-03
: 73 : vars : 5.364e-03
: 74 : vars : 5.355e-03
: 75 : vars : 5.323e-03
: 76 : vars : 5.317e-03
: 77 : vars : 5.157e-03
: 78 : vars : 5.154e-03
: 79 : vars : 5.093e-03
: 80 : vars : 5.062e-03
: 81 : vars : 5.055e-03
: 82 : vars : 5.039e-03
: 83 : vars : 4.970e-03
: 84 : vars : 4.868e-03
: 85 : vars : 4.854e-03
: 86 : vars : 4.808e-03
: 87 : vars : 4.802e-03
: 88 : vars : 4.694e-03
: 89 : vars : 4.635e-03
: 90 : vars : 4.610e-03
: 91 : vars : 4.602e-03
: 92 : vars : 4.555e-03
: 93 : vars : 4.544e-03
: 94 : vars : 4.540e-03
: 95 : vars : 4.523e-03
: 96 : vars : 4.475e-03
: 97 : vars : 4.454e-03
: 98 : vars : 4.449e-03
: 99 : vars : 4.434e-03
: 100 : vars : 4.417e-03
: 101 : vars : 4.416e-03
: 102 : vars : 4.351e-03
: 103 : vars : 4.329e-03
: 104 : vars : 4.310e-03
: 105 : vars : 4.305e-03
: 106 : vars : 4.250e-03
: 107 : vars : 4.224e-03
: 108 : vars : 4.204e-03
: 109 : vars : 4.143e-03
: 110 : vars : 4.074e-03
: 111 : vars : 4.071e-03
: 112 : vars : 4.051e-03
: 113 : vars : 4.039e-03
: 114 : vars : 4.011e-03
: 115 : vars : 3.985e-03
: 116 : vars : 3.970e-03
: 117 : vars : 3.970e-03
: 118 : vars : 3.965e-03
: 119 : vars : 3.941e-03
: 120 : vars : 3.925e-03
: 121 : vars : 3.907e-03
: 122 : vars : 3.834e-03
: 123 : vars : 3.821e-03
: 124 : vars : 3.818e-03
: 125 : vars : 3.760e-03
: 126 : vars : 3.739e-03
: 127 : vars : 3.723e-03
: 128 : vars : 3.669e-03
: 129 : vars : 3.652e-03
: 130 : vars : 3.630e-03
: 131 : vars : 3.612e-03
: 132 : vars : 3.559e-03
: 133 : vars : 3.513e-03
: 134 : vars : 3.509e-03
: 135 : vars : 3.475e-03
: 136 : vars : 3.475e-03
: 137 : vars : 3.438e-03
: 138 : vars : 3.412e-03
: 139 : vars : 3.369e-03
: 140 : vars : 3.366e-03
: 141 : vars : 3.271e-03
: 142 : vars : 3.264e-03
: 143 : vars : 3.183e-03
: 144 : vars : 3.139e-03
: 145 : vars : 3.110e-03
: 146 : vars : 3.108e-03
: 147 : vars : 2.979e-03
: 148 : vars : 2.969e-03
: 149 : vars : 2.938e-03
: 150 : vars : 2.935e-03
: 151 : vars : 2.900e-03
: 152 : vars : 2.892e-03
: 153 : vars : 2.839e-03
: 154 : vars : 2.838e-03
: 155 : vars : 2.831e-03
: 156 : vars : 2.829e-03
: 157 : vars : 2.785e-03
: 158 : vars : 2.785e-03
: 159 : vars : 2.764e-03
: 160 : vars : 2.753e-03
: 161 : vars : 2.680e-03
: 162 : vars : 2.653e-03
: 163 : vars : 2.598e-03
: 164 : vars : 2.587e-03
: 165 : vars : 2.585e-03
: 166 : vars : 2.575e-03
: 167 : vars : 2.559e-03
: 168 : vars : 2.530e-03
: 169 : vars : 2.457e-03
: 170 : vars : 2.436e-03
: 171 : vars : 2.427e-03
: 172 : vars : 2.425e-03
: 173 : vars : 2.422e-03
: 174 : vars : 2.411e-03
: 175 : vars : 2.408e-03
: 176 : vars : 2.401e-03
: 177 : vars : 2.367e-03
: 178 : vars : 2.364e-03
: 179 : vars : 2.344e-03
: 180 : vars : 2.306e-03
: 181 : vars : 2.294e-03
: 182 : vars : 2.268e-03
: 183 : vars : 2.241e-03
: 184 : vars : 2.217e-03
: 185 : vars : 2.208e-03
: 186 : vars : 2.199e-03
: 187 : vars : 2.111e-03
: 188 : vars : 2.103e-03
: 189 : vars : 2.079e-03
: 190 : vars : 2.062e-03
: 191 : vars : 2.031e-03
: 192 : vars : 2.021e-03
: 193 : vars : 1.940e-03
: 194 : vars : 1.935e-03
: 195 : vars : 1.882e-03
: 196 : vars : 1.872e-03
: 197 : vars : 1.868e-03
: 198 : vars : 1.866e-03
: 199 : vars : 1.828e-03
: 200 : vars : 1.818e-03
: 201 : vars : 1.795e-03
: 202 : vars : 1.789e-03
: 203 : vars : 1.777e-03
: 204 : vars : 1.761e-03
: 205 : vars : 1.730e-03
: 206 : vars : 1.727e-03
: 207 : vars : 1.628e-03
: 208 : vars : 1.594e-03
: 209 : vars : 1.562e-03
: 210 : vars : 1.539e-03
: 211 : vars : 1.530e-03
: 212 : vars : 1.451e-03
: 213 : vars : 1.414e-03
: 214 : vars : 1.395e-03
: 215 : vars : 1.303e-03
: 216 : vars : 1.297e-03
: 217 : vars : 1.243e-03
: 218 : vars : 1.046e-03
: 219 : vars : 1.041e-03
: 220 : vars : 8.890e-04
: 221 : vars : 8.573e-04
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 5.87059
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 9.96105
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.71985
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 8.9774
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0407 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0924 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.793 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_CNN_CPU : 0.910
: dataset TMVA_DNN_CPU : 0.890
: dataset BDT : 0.817
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_CNN_CPU : 0.355 (0.423) 0.722 (0.791) 0.915 (0.937)
: dataset TMVA_DNN_CPU : 0.215 (0.525) 0.668 (0.823) 0.888 (0.944)
: dataset BDT : 0.155 (0.273) 0.529 (0.662) 0.771 (0.876)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 2000 events
:
Dataset:dataset : Created tree 'TrainTree' with 8000 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m
/***
# TMVA Classification Example Using a Convolutional Neural Network
**/
/// Helper function to create input images data
/// we create a signal and background 2D histograms from 2d gaussians
/// with a location (means in X and Y) different for each event
/// The difference between signal and background is in the gaussian width..
/// The width for the bakground gaussian is slightly larger than the signal width by few % values
///
///
void MakeImagesTree(int n, int nh, int nw)
{
// image size (nh x nw)
const int ntot = nh * nw;
const TString fileOutName = TString::Format("images_data_%dx%d.root", nh, nw);
const int nRndmEvts = 10000; // number of events we use to fill each image
double delta_sigma = 0.1; // 5% difference in the sigma
double pixelNoise = 5;
double sX1 = 3;
double sY1 = 3;
double sX2 = sX1 + delta_sigma;
double sY2 = sY1 - delta_sigma;
auto h1 = new TH2D("h1", "h1", nh, 0, 10, nw, 0, 10);
auto h2 = new TH2D("h2", "h2", nh, 0, 10, nw, 0, 10);
auto f1 = new TF2("f1", "xygaus");
auto f2 = new TF2("f2", "xygaus");
TTree sgn("sig_tree", "signal_tree");
TTree bkg("bkg_tree", "bakground_tree");
TFile f(fileOutName, "RECREATE");
std::vector<float> x1(ntot);
std::vector<float> x2(ntot);
// create signal and background trees with a single branch
// an std::vector<float> of size nh x nw containing the image data
std::vector<float> *px1 = &x1;
std::vector<float> *px2 = &x2;
bkg.Branch("vars", "std::vector<float>", &px1);
sgn.Branch("vars", "std::vector<float>", &px2);
// std::cout << "create tree " << std::endl;
sgn.SetDirectory(&f);
bkg.SetDirectory(&f);
f1->SetParameters(1, 5, sX1, 5, sY1);
f2->SetParameters(1, 5, sX2, 5, sY2);
std::cout << "Filling ROOT tree " << std::endl;
for (int i = 0; i < n; ++i) {
if (i % 1000 == 0)
std::cout << "Generating image event ... " << i << std::endl;
h1->Reset();
h2->Reset();
// generate random means in range [3,7] to be not too much on the border
f2->SetParameter(1, gRandom->Uniform(3, 7));
f2->SetParameter(3, gRandom->Uniform(3, 7));
h1->FillRandom("f1", nRndmEvts);
h2->FillRandom("f2", nRndmEvts);
for (int k = 0; k < nh; ++k) {
for (int l = 0; l < nw; ++l) {
int m = k * nw + l;
// add some noise in each bin
x1[m] = h1->GetBinContent(k + 1, l + 1) + gRandom->Gaus(0, pixelNoise);
x2[m] = h2->GetBinContent(k + 1, l + 1) + gRandom->Gaus(0, pixelNoise);
}
}
sgn.Fill();
bkg.Fill();
}
sgn.Write();
bkg.Write();
Info("MakeImagesTree", "Signal and background tree with images data written to the file %s", f.GetName());
sgn.Print();
bkg.Print();
f.Close();
}
void TMVA_CNN_Classification(std::vector<bool> opt = {1, 1, 1, 1})
{
bool useTMVACNN = (opt.size() > 0) ? opt[0] : false;
bool useKerasCNN = (opt.size() > 1) ? opt[1] : false;
bool useTMVADNN = (opt.size() > 2) ? opt[2] : false;
bool useTMVABDT = (opt.size() > 3) ? opt[3] : false;
#ifndef R__HAS_TMVACPU
#ifndef R__HAS_TMVAGPU
Warning("TMVA_CNN_Classification",
"TMVA is not build with GPU or CPU multi-thread support. Cannot use TMVA Deep Learning for CNN");
useTMVACNN = false;
#endif
#endif
bool writeOutputFile = true;
int num_threads = 0; // use default threads
// do enable MT running
if (num_threads >= 0) {
ROOT::EnableImplicitMT(num_threads);
if (num_threads > 0) gSystem->Setenv("OMP_NUM_THREADS", TString::Format("%d",num_threads));
}
else
gSystem->Setenv("OMP_NUM_THREADS", "1");
std::cout << "Running with nthreads = " << ROOT::GetThreadPoolSize() << std::endl;
#ifdef R__HAS_PYMVA
gSystem->Setenv("KERAS_BACKEND", "tensorflow");
// for using Keras
#else
useKerasCNN = false;
#endif
TFile *outputFile = nullptr;
if (writeOutputFile)
outputFile = TFile::Open("TMVA_CNN_ClassificationOutput.root", "RECREATE");
/***
## Create TMVA Factory
Create the Factory class. Later you can choose the methods
whose performance you'd like to investigate.
The factory is the major TMVA object you have to interact with. Here is the list of parameters you need to pass
- The first argument is the base of the name of all the output
weightfiles in the directory weight/ that will be created with the
method parameters
- The second argument is the output file for the training results
- The third argument is a string option defining some general configuration for the TMVA session.
For example all TMVA output can be suppressed by removing the "!" (not) in front of the "Silent" argument in the
option string
- note that we disable any pre-transformation of the input variables and we avoid computing correlations between
input variables
***/
TMVA::Factory factory(
"TMVA_CNN_Classification", outputFile,
"!V:ROC:!Silent:Color:AnalysisType=Classification:Transformations=None:!Correlations");
/***
## Declare DataLoader(s)
The next step is to declare the DataLoader class that deals with input variables
Define the input variables that shall be used for the MVA training
note that you may also use variable expressions, which can be parsed by TTree::Draw( "expression" )]
In this case the input data consists of an image of 16x16 pixels. Each single pixel is a branch in a ROOT TTree
**/
TMVA::DataLoader *loader = new TMVA::DataLoader("dataset");
/***
## Setup Dataset(s)
Define input data file and signal and background trees
**/
int imgSize = 16 * 16;
TString inputFileName = "images_data_16x16.root";
// TString inputFileName = "/home/moneta/data/sample_images_32x32.gsoc.root";
bool fileExist = !gSystem->AccessPathName(inputFileName);
// if file does not exists create it
if (!fileExist) {
MakeImagesTree(5000, 16, 16);
}
// TString inputFileName = "tmva_class_example.root";
auto inputFile = TFile::Open(inputFileName);
if (!inputFile) {
Error("TMVA_CNN_Classification", "Error opening input file %s - exit", inputFileName.Data());
return;
}
// --- Register the training and test trees
TTree *signalTree = (TTree *)inputFile->Get("sig_tree");
TTree *backgroundTree = (TTree *)inputFile->Get("bkg_tree");
int nEventsSig = signalTree->GetEntries();
int nEventsBkg = backgroundTree->GetEntries();
// global event weights per tree (see below for setting event-wise weights)
Double_t signalWeight = 1.0;
Double_t backgroundWeight = 1.0;
// You can add an arbitrary number of signal or background trees
loader->AddSignalTree(signalTree, signalWeight);
loader->AddBackgroundTree(backgroundTree, backgroundWeight);
/// add event variables (image)
/// use new method (from ROOT 6.20 to add a variable array for all image data)
loader->AddVariablesArray("vars", imgSize);
// Set individual event weights (the variables must exist in the original TTree)
// for signal : factory->SetSignalWeightExpression ("weight1*weight2");
// for background: factory->SetBackgroundWeightExpression("weight1*weight2");
// loader->SetBackgroundWeightExpression( "weight" );
// Apply additional cuts on the signal and background samples (can be different)
TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";
// Tell the factory how to use the training and testing events
//
// If no numbers of events are given, half of the events in the tree are used
// for training, and the other half for testing:
// loader->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );
// It is possible also to specify the number of training and testing events,
// note we disable the computation of the correlation matrix of the input variables
int nTrainSig = 0.8 * nEventsSig;
int nTrainBkg = 0.8 * nEventsBkg;
// build the string options for DataLoader::PrepareTrainingAndTestTree
TString prepareOptions = TString::Format(
"nTrain_Signal=%d:nTrain_Background=%d:SplitMode=Random:SplitSeed=100:NormMode=NumEvents:!V:!CalcCorrelations",
nTrainSig, nTrainBkg);
loader->PrepareTrainingAndTestTree(mycuts, mycutb, prepareOptions);
/***
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 10000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 10000 events
**/
// signalTree->Print();
/****
# Booking Methods
Here we book the TMVA methods. We book a Boosted Decision Tree method (BDT)
**/
// Boosted Decision Trees
if (useTMVABDT) {
factory.BookMethod(loader, TMVA::Types::kBDT, "BDT",
"!V:NTrees=400:MinNodeSize=2.5%:MaxDepth=2:BoostType=AdaBoost:AdaBoostBeta=0.5:"
"UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20");
}
/**
#### Booking Deep Neural Network
Here we book the DNN of TMVA. See the example TMVA_Higgs_Classification.C for a detailed description of the
options
**/
if (useTMVADNN) {
TString layoutString(
"Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR");
// Training strategies
// one can catenate several training strings with different parameters (e.g. learning rates or regularizations
// parameters) The training string must be concatenates with the `|` delimiter
TString trainingString1("LearningRate=1e-3,Momentum=0.9,Repetitions=1,"
"ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,"
"MaxEpochs=20,WeightDecay=1e-4,Regularization=None,"
"Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.");
TString trainingStrategyString("TrainingStrategy=");
trainingStrategyString += trainingString1; // + "|" + trainingString2 + ....
// Build now the full DNN Option string
TString dnnOptions("!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:"
"WeightInitialization=XAVIER");
dnnOptions.Append(":");
dnnOptions.Append(layoutString);
dnnOptions.Append(":");
dnnOptions.Append(trainingStrategyString);
TString dnnMethodName = "TMVA_DNN_CPU";
// use GPU if available
#ifdef R__HAS_TMVAGPU
dnnOptions += ":Architecture=GPU";
dnnMethodName = "TMVA_DNN_GPU";
#elif defined(R__HAS_TMVACPU)
dnnOptions += ":Architecture=CPU";
#endif
factory.BookMethod(loader, TMVA::Types::kDL, dnnMethodName, dnnOptions);
}
/***
### Book Convolutional Neural Network in TMVA
For building a CNN one needs to define
- Input Layout : number of channels (in this case = 1) | image height | image width
- Batch Layout : batch size | number of channels | image size = (height*width)
Then one add Convolutional layers and MaxPool layers.
- For Convolutional layer the option string has to be:
- CONV | number of units | filter height | filter width | stride height | stride width | padding height | paddig
width | activation function
- note in this case we are using a filer 3x3 and padding=1 and stride=1 so we get the output dimension of the
conv layer equal to the input
- note we use after the first convolutional layer a batch normalization layer. This seems to help significatly the
convergence
- For the MaxPool layer:
- MAXPOOL | pool height | pool width | stride height | stride width
The RESHAPE layer is needed to flatten the output before the Dense layer
Note that to run the CNN is required to have CPU or GPU support
***/
if (useTMVACNN) {
TString inputLayoutString("InputLayout=1|16|16");
// Batch Layout
//TString batchLayoutString("BatchLayout=100|1|256");
TString layoutString("Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,"
"RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR");
// Training strategies.
TString trainingString1("LearningRate=1e-3,Momentum=0.9,Repetitions=1,"
"ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,"
"MaxEpochs=20,WeightDecay=1e-4,Regularization=None,"
"Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0");
TString trainingStrategyString("TrainingStrategy=");
trainingStrategyString +=
trainingString1; // + "|" + trainingString2 + "|" + trainingString3; for concatenating more training strings
// Build full CNN Options.
TString cnnOptions("!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:"
"WeightInitialization=XAVIER");
cnnOptions.Append(":");
cnnOptions.Append(inputLayoutString);
// cnnOptions.Append(":");
// cnnOptions.Append(batchLayoutString);
cnnOptions.Append(":");
cnnOptions.Append(layoutString);
cnnOptions.Append(":");
cnnOptions.Append(trainingStrategyString);
//// New DL (CNN)
TString cnnMethodName = "TMVA_CNN_CPU";
// use GPU if available
#ifdef R__HAS_TMVAGPU
cnnOptions += ":Architecture=GPU";
cnnMethodName = "TMVA_CNN_GPU";
#else
cnnOptions += ":Architecture=CPU";
cnnMethodName = "TMVA_CNN_CPU";
#endif
factory.BookMethod(loader, TMVA::Types::kDL, cnnMethodName, cnnOptions);
}
/**
### Book Convolutional Neural Network in Keras using a generated model
**/
if (useKerasCNN) {
Info("TMVA_CNN_Classification", "Building convolutional keras model");
// create python script which can be executed
// crceate 2 conv2d layer + maxpool + dense
m.AddLine("import keras");
m.AddLine("from keras.models import Sequential");
m.AddLine("from keras.optimizers import Adam");
m.AddLine(
"from keras.layers import Input, Dense, Dropout, Flatten, Conv2D, MaxPooling2D, Reshape, BatchNormalization");
m.AddLine("");
m.AddLine("model = keras.models.Sequential() ");
m.AddLine("model.add(Reshape((16, 16, 1), input_shape = (256, )))");
m.AddLine("model.add(Conv2D(10, kernel_size = (3, 3), kernel_initializer = 'glorot_normal',activation = "
"'relu', padding = 'same'))");
m.AddLine("model.add(BatchNormalization())");
m.AddLine("model.add(Conv2D(10, kernel_size = (3, 3), kernel_initializer = 'glorot_normal',activation = "
"'relu', padding = 'same'))");
// m.AddLine("model.add(BatchNormalization())");
m.AddLine("model.add(MaxPooling2D(pool_size = (2, 2), strides = (1,1))) ");
m.AddLine("model.add(Flatten())");
m.AddLine("model.add(Dense(256, activation = 'relu')) ");
m.AddLine("model.add(Dense(2, activation = 'sigmoid')) ");
m.AddLine("model.compile(loss = 'binary_crossentropy', optimizer = Adam(lr = 0.001), metrics = ['accuracy'])");
m.AddLine("model.save('model_cnn.h5')");
m.AddLine("model.summary()");
m.SaveSource("make_cnn_model.py");
// execute
gSystem->Exec("python make_cnn_model.py");
if (gSystem->AccessPathName("model_cnn.h5")) {
Warning("TMVA_CNN_Classification", "Error creating Keras model file - skip using Keras");
} else {
// book PyKeras method only if Keras model could be created
Info("TMVA_CNN_Classification", "Booking Keras CNN model");
factory.BookMethod(
loader, TMVA::Types::kPyKeras, "PyKeras",
"H:!V:VarTransform=None:FilenameModel=model_cnn.h5:"
"FilenameTrainedModel=trained_model_cnn.h5:NumEpochs=20:BatchSize=100:"
"GpuOptions=allow_growth=True"); // needed for RTX NVidia card and to avoid TF allocates all GPU memory
}
}
//// ## Train Methods
factory.TrainAllMethods();
/// ## Test and Evaluate Methods
factory.TestAllMethods();
factory.EvaluateAllMethods();
/// ## Plot ROC Curve
auto c1 = factory.GetROCCurve(loader);
c1->Draw();
// close outputfile to save output file
outputFile->Close();
}
#define f(i)
Definition: RSha256.hxx:104
static const double x2[5]
static const double x1[5]
double Double_t
Definition: RtypesCore.h:57
void Info(const char *location, const char *msgfmt,...)
void Error(const char *location, const char *msgfmt,...)
void Warning(const char *location, const char *msgfmt,...)
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
R__EXTERN TSystem * gSystem
Definition: TSystem.h:556
A specialized string object used for TTree selections.
Definition: TCut.h:25
virtual void SetParameters(const Double_t *params)
Definition: TF1.h:638
virtual void SetParameter(Int_t param, Double_t value)
Definition: TF1.h:628
A 2-Dim function with parameters.
Definition: TF2.h:29
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition: TFile.h:53
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3942
void Close(Option_t *option="") override
Close a file.
Definition: TFile.cxx:873
virtual void Reset(Option_t *option="")
Reset.
Definition: TH1.cxx:9562
virtual void FillRandom(const char *fname, Int_t ntimes=5000)
Fill histogram following distribution in function fname.
Definition: TH1.cxx:3445
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH1.cxx:4907
2-D histogram with a double per channel (see TH1 documentation)}
Definition: TH2.h:292
void AddVariablesArray(const TString &expression, int size, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating array of variables in data set info in case input tree provides an array ...
Definition: DataLoader.cxx:505
void AddSignalTree(TTree *signal, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
Definition: DataLoader.cxx:372
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
Definition: DataLoader.cxx:633
void AddBackgroundTree(TTree *background, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
Definition: DataLoader.cxx:403
This is the main MVA steering class.
Definition: Factory.h:81
static void PyInitialize()
Initialize Python interpreter.
static Tools & Instance()
Definition: Tools.cxx:74
@ kPyKeras
Definition: Types.h:105
@ kBDT
Definition: Types.h:88
Class supporting a collection of lines with C++ code.
Definition: TMacro.h:31
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:263
virtual void SetSeed(ULong_t seed=0)
Set the random generator seed.
Definition: TRandom.cxx:597
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
Definition: TRandom.cxx:635
Basic string class.
Definition: TString.h:131
const char * Data() const
Definition: TString.h:364
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition: TString.cxx:2311
virtual Int_t Exec(const char *shellcmd)
Execute a command.
Definition: TSystem.cxx:651
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition: TSystem.cxx:1291
virtual void Setenv(const char *name, const char *value)
Set environment variable.
Definition: TSystem.cxx:1642
A TTree represents a columnar dataset.
Definition: TTree.h:78
virtual Long64_t GetEntries() const
Definition: TTree.h:457
return c1
Definition: legend1.C:41
const Int_t n
Definition: legend1.C:16
TH1F * h1
Definition: legend1.C:5
TF1 * f1
Definition: legend1.C:11
void EnableImplicitMT(UInt_t numthreads=0)
Enable ROOT's implicit multi-threading for all objects and methods that provide an internal paralleli...
Definition: TROOT.cxx:526
UInt_t GetThreadPoolSize()
Returns the size of ROOT's thread pool.
Definition: TROOT.cxx:564
auto * m
Definition: textangle.C:8
auto * l
Definition: textangle.C:4
Author
Lorenzo Moneta

Definition in file TMVA_CNN_Classification.C.