This tutorial shows how to do multiclass classification in TMVA with neural networks trained with keras.
from ROOT import TMVA, TFile, TTree, TCut, gROOT
'!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=multiclass')
if not isfile(
'tmva_example_multiple_background.root'):
print(createDataMacro)
data =
TFile.Open(
'tmva_example_multiple_background.root')
'SplitMode=Random:NormMode=NumEvents:!V')
model.compile(loss=
'categorical_crossentropy', optimizer=
SGD(learning_rate=0.01), weighted_metrics=[
'accuracy',])
'!H:!V:Fisher:VarTransform=D,G')
'H:!V:VarTransform=D,G:FilenameModel=modelMultiClass.h5:FilenameTrainedModel=trainedModelMultiClass.h5:NumEpochs=20:BatchSize=32')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A specialized string object used for TTree selections.
This is the main MVA steering class.
- Date
- 2017
- Author
- TMVA Team
Definition in file MulticlassKeras.py.