This tutorial shows how to define and generate a keras model for use with TMVA.
num_input_nodes = 4
num_output_nodes = 2
num_hidden_layers = 1
nodes_hidden_layer = 64
l2_val = 1e-5
model.add(
Dense(nodes_hidden_layer, activation=
'relu', kernel_regularizer=
l2(l2_val), input_dim=num_input_nodes))
for k
in range(num_hidden_layers-1):
model.add(
Dense(nodes_hidden_layer, activation=
'relu', kernel_regularizer=
l2(l2_val)))
model.compile(loss=
'categorical_crossentropy', optimizer=
SGD(learning_rate=0.01), weighted_metrics=[
'accuracy',])
try:
plot_model(model, to_file=
'model.png', show_shapes=
True)
except:
print('[INFO] Failed to make model plot')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
- Date
- 2017
- Author
- TMVA Team
Definition in file GenerateModel.py.