As input data is used a toy-MC sample consisting of four Gaussian-distributed and linearly correlated input variables with category (eta) dependent properties.
For this example, only Fisher and Likelihood are used. Run via:
The output file "TMVACC.root" can be analysed with the use of dedicated macros (simply say: root -l <macro.C>), which can be conveniently invoked through a GUI that will appear at the end of the run of this macro.
==> Start TMVAClassificationCategory
--- TMVAClassificationCategory: Accessing /home/sftnight/build/workspace/root-makedoc-v632/rootspi/rdoc/src/v6-32-00-patches/tutorials/tmva/data/toy_sigbkg_categ_offset.root
<HEADER> DataSetInfo : [dataset] : Added class "Signal"
: Add Tree TreeS of type Signal with 10000 events
<HEADER> DataSetInfo : [dataset] : Added class "Background"
: Add Tree TreeB of type Background with 10000 events
<HEADER> Factory : Booking method: Fisher
:
<HEADER> Factory : Booking method: Likelihood
:
<HEADER> Factory : Booking method: FisherCat
:
: Adding sub-classifier: Fisher::Category_Fisher_1
<HEADER> DataSetInfo : [Category_Fisher_1_dsi] : Added class "Signal"
<HEADER> DataSetInfo : [Category_Fisher_1_dsi] : Added class "Background"
: Adding sub-classifier: Fisher::Category_Fisher_2
<HEADER> DataSetInfo : [Category_Fisher_2_dsi] : Added class "Signal"
<HEADER> DataSetInfo : [Category_Fisher_2_dsi] : Added class "Background"
<HEADER> Factory : Booking method: LikelihoodCat
:
: Adding sub-classifier: Likelihood::Category_Likelihood_1
<HEADER> DataSetInfo : [Category_Likelihood_1_dsi] : Added class "Signal"
<HEADER> DataSetInfo : [Category_Likelihood_1_dsi] : Added class "Background"
: Adding sub-classifier: Likelihood::Category_Likelihood_2
<HEADER> DataSetInfo : [Category_Likelihood_2_dsi] : Added class "Signal"
<HEADER> DataSetInfo : [Category_Likelihood_2_dsi] : Added class "Background"
<HEADER> Factory : Train all methods
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree TreeB
<HEADER> DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 5000
: Signal -- testing events : 5000
: Signal -- training and testing events: 10000
: Background -- training events : 5000
: Background -- testing events : 5000
: Background -- training and testing events: 10000
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.368 +0.378 +0.391
: var2: +0.368 +1.000 +0.388 +0.386
: var3: +0.378 +0.388 +1.000 +0.389
: var4: +0.391 +0.386 +0.389 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.365 +0.376 +0.381
: var2: +0.365 +1.000 +0.382 +0.387
: var3: +0.376 +0.382 +1.000 +0.376
: var4: +0.381 +0.387 +0.376 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [dataset] :
:
<HEADER> Factory : Train method: Fisher for Classification
:
<HEADER> Fisher : Results for Fisher coefficients:
: -----------------------
: Variable: Coefficient:
: -----------------------
: var1: -0.053
: var2: -0.014
: var3: +0.096
: var4: +0.216
: (offset): -0.023
: -----------------------
: Elapsed time for training with 10000 events: 0.00329 sec
<HEADER> Fisher : [dataset] : Evaluation of Fisher on training sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00323 sec
: Creating xml weight file: dataset/weights/TMVAClassificationCategory_Fisher.weights.xml
: Creating standalone class: dataset/weights/TMVAClassificationCategory_Fisher.class.C
<HEADER> Factory : Training finished
:
<HEADER> Factory : Train method: Likelihood for Classification
:
: Filling reference histograms
: Building PDF out of reference histograms
: Elapsed time for training with 10000 events: 0.0519 sec
<HEADER> Likelihood : [dataset] : Evaluation of Likelihood on training sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00981 sec
: Creating xml weight file: dataset/weights/TMVAClassificationCategory_Likelihood.weights.xml
: Creating standalone class: dataset/weights/TMVAClassificationCategory_Likelihood.class.C
: TMVACC.root:/dataset/Method_Likelihood/Likelihood
<HEADER> Factory : Training finished
:
<HEADER> Factory : Train method: FisherCat for Classification
:
: Train all sub-classifiers for Classification ...
: Rebuilding Dataset Category_Fisher_1_dsi
: Building event vectors for type 2 Signal
: Dataset[Category_Fisher_1_dsi] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[Category_Fisher_1_dsi] : create input formulas for tree TreeB
<HEADER> DataSetFactory : [Category_Fisher_1_dsi] : Number of events in input trees
: Dataset[Category_Fisher_1_dsi] : Signal requirement: "abs(eta)<=1.3"
: Dataset[Category_Fisher_1_dsi] : Signal -- number of events passed: 5123 / sum of weights: 5123
: Dataset[Category_Fisher_1_dsi] : Signal -- efficiency : 0.5123
: Dataset[Category_Fisher_1_dsi] : Background requirement: "abs(eta)<=1.3"
: Dataset[Category_Fisher_1_dsi] : Background -- number of events passed: 5134 / sum of weights: 5134
: Dataset[Category_Fisher_1_dsi] : Background -- efficiency : 0.5134
: Dataset[Category_Fisher_1_dsi] : you have opted for scaling the number of requested training/testing events
: to be scaled by the preselection efficiency
: ( 0 * 0.5123 preselection efficiency)
: Dataset[Category_Fisher_1_dsi] : you have opted for scaling the number of requested training/testing events
: to be scaled by the preselection efficiency
: ( 0 * 0.5134 preselection efficiency)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 2561
: Signal -- testing events : 2561
: Signal -- training and testing events: 5122
: Dataset[Category_Fisher_1_dsi] : Signal -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.5123
: Background -- training events : 2567
: Background -- testing events : 2567
: Background -- training and testing events: 5134
: Dataset[Category_Fisher_1_dsi] : Background -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.5134
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.017 +0.004 +0.001
: var2: -0.017 +1.000 -0.019 -0.003
: var3: +0.004 -0.019 +1.000 -0.012
: var4: +0.001 -0.003 -0.012 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.019 -0.022 +0.003
: var2: -0.019 +1.000 -0.018 +0.004
: var3: -0.022 -0.018 +1.000 +0.004
: var4: +0.003 +0.004 +0.004 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [Category_Fisher_1_dsi] :
:
: Train method: Category_Fisher_1 for Classification
<HEADER> Category_Fisher_1 : Results for Fisher coefficients:
: -----------------------
: Variable: Coefficient:
: -----------------------
: var1: +0.105
: var2: +0.152
: var3: +0.247
: var4: +0.375
: (offset): +0.648
: -----------------------
: Elapsed time for training with 5128 events: 0.00163 sec
<HEADER> Category_Fisher_1 : [Category_Fisher_1_dsi] : Evaluation of Category_Fisher_1 on training sample (5128 events)
: Elapsed time for evaluation of 5128 events: 0.00233 sec
: Training finished
: Rebuilding Dataset Category_Fisher_2_dsi
: Building event vectors for type 2 Signal
: Dataset[Category_Fisher_2_dsi] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[Category_Fisher_2_dsi] : create input formulas for tree TreeB
<HEADER> DataSetFactory : [Category_Fisher_2_dsi] : Number of events in input trees
: Dataset[Category_Fisher_2_dsi] : Signal requirement: "abs(eta)>1.3"
: Dataset[Category_Fisher_2_dsi] : Signal -- number of events passed: 4877 / sum of weights: 4877
: Dataset[Category_Fisher_2_dsi] : Signal -- efficiency : 0.4877
: Dataset[Category_Fisher_2_dsi] : Background requirement: "abs(eta)>1.3"
: Dataset[Category_Fisher_2_dsi] : Background -- number of events passed: 4866 / sum of weights: 4866
: Dataset[Category_Fisher_2_dsi] : Background -- efficiency : 0.4866
: Dataset[Category_Fisher_2_dsi] : you have opted for scaling the number of requested training/testing events
: to be scaled by the preselection efficiency
: ( 0 * 0.4877 preselection efficiency)
: Dataset[Category_Fisher_2_dsi] : you have opted for scaling the number of requested training/testing events
: to be scaled by the preselection efficiency
: ( 0 * 0.4866 preselection efficiency)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 2438
: Signal -- testing events : 2438
: Signal -- training and testing events: 4876
: Dataset[Category_Fisher_2_dsi] : Signal -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.4877
: Background -- training events : 2433
: Background -- testing events : 2433
: Background -- training and testing events: 4866
: Dataset[Category_Fisher_2_dsi] : Background -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.4866
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.005 +0.002 -0.039
: var2: -0.005 +1.000 +0.011 -0.004
: var3: +0.002 +0.011 +1.000 -0.021
: var4: -0.039 -0.004 -0.021 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.007 +0.009 +0.008
: var2: -0.007 +1.000 -0.020 +0.013
: var3: +0.009 -0.020 +1.000 +0.007
: var4: +0.008 +0.013 +0.007 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [Category_Fisher_2_dsi] :
:
: Train method: Category_Fisher_2 for Classification
<HEADER> Category_Fisher_2 : Results for Fisher coefficients:
: -----------------------
: Variable: Coefficient:
: -----------------------
: var1: +0.107
: var2: +0.148
: var3: +0.251
: var4: +0.372
: (offset): -0.751
: -----------------------
: Elapsed time for training with 4871 events: 0.00152 sec
<HEADER> Category_Fisher_2 : [Category_Fisher_2_dsi] : Evaluation of Category_Fisher_2 on training sample (4871 events)
: Elapsed time for evaluation of 4871 events: 0.00218 sec
: Training finished
: Begin ranking of input variables...
<HEADER> Category_Fisher_1 : Ranking result (top variable is best ranked)
: -------------------------------
: Rank : Variable : Discr. power
: -------------------------------
: 1 : var4 : 2.205e-01
: 2 : var3 : 1.054e-01
: 3 : var2 : 4.114e-02
: 4 : var1 : 1.987e-02
: -------------------------------
<HEADER> Category_Fisher_2 : Ranking result (top variable is best ranked)
: -------------------------------
: Rank : Variable : Discr. power
: -------------------------------
: 1 : var4 : 2.153e-01
: 2 : var3 : 1.105e-01
: 3 : var2 : 4.289e-02
: 4 : var1 : 1.986e-02
: -------------------------------
: Elapsed time for training with 10000 events: 0.0409 sec
<HEADER> Category_Fisher_1 : [Category_Fisher_1_dsi] : Evaluation of Category_Fisher_1 on training sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00342 sec
<HEADER> Category_Fisher_2 : [Category_Fisher_2_dsi] : Evaluation of Category_Fisher_2 on training sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0027 sec
: Creating xml weight file: dataset/weights/TMVAClassificationCategory_FisherCat.weights.xml
<HEADER> Factory : Training finished
:
<HEADER> Factory : Train method: LikelihoodCat for Classification
:
: Train all sub-classifiers for Classification ...
: Rebuilding Dataset Category_Likelihood_1_dsi
: Building event vectors for type 2 Signal
: Dataset[Category_Likelihood_1_dsi] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[Category_Likelihood_1_dsi] : create input formulas for tree TreeB
<HEADER> DataSetFactory : [Category_Likelihood_1_dsi] : Number of events in input trees
: Dataset[Category_Likelihood_1_dsi] : Signal requirement: "abs(eta)<=1.3"
: Dataset[Category_Likelihood_1_dsi] : Signal -- number of events passed: 5123 / sum of weights: 5123
: Dataset[Category_Likelihood_1_dsi] : Signal -- efficiency : 0.5123
: Dataset[Category_Likelihood_1_dsi] : Background requirement: "abs(eta)<=1.3"
: Dataset[Category_Likelihood_1_dsi] : Background -- number of events passed: 5134 / sum of weights: 5134
: Dataset[Category_Likelihood_1_dsi] : Background -- efficiency : 0.5134
: Dataset[Category_Likelihood_1_dsi] : you have opted for scaling the number of requested training/testing events
: to be scaled by the preselection efficiency
: ( 0 * 0.5123 preselection efficiency)
: Dataset[Category_Likelihood_1_dsi] : you have opted for scaling the number of requested training/testing events
: to be scaled by the preselection efficiency
: ( 0 * 0.5134 preselection efficiency)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 2561
: Signal -- testing events : 2561
: Signal -- training and testing events: 5122
: Dataset[Category_Likelihood_1_dsi] : Signal -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.5123
: Background -- training events : 2567
: Background -- testing events : 2567
: Background -- training and testing events: 5134
: Dataset[Category_Likelihood_1_dsi] : Background -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.5134
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.017 +0.004 +0.001
: var2: -0.017 +1.000 -0.019 -0.003
: var3: +0.004 -0.019 +1.000 -0.012
: var4: +0.001 -0.003 -0.012 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.019 -0.022 +0.003
: var2: -0.019 +1.000 -0.018 +0.004
: var3: -0.022 -0.018 +1.000 +0.004
: var4: +0.003 +0.004 +0.004 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [Category_Likelihood_1_dsi] :
:
: Train method: Category_Likelihood_1 for Classification
: Filling reference histograms
: Building PDF out of reference histograms
: Elapsed time for training with 5128 events: 0.0287 sec
<HEADER> Category_Likelihood_1 : [Category_Likelihood_1_dsi] : Evaluation of Category_Likelihood_1 on training sample (5128 events)
: Elapsed time for evaluation of 5128 events: 0.00585 sec
: TMVACC.root:/dataset/Method_Category/LikelihoodCat/Method_Likelihood/Category_Likelihood_1
: Training finished
: Rebuilding Dataset Category_Likelihood_2_dsi
: Building event vectors for type 2 Signal
: Dataset[Category_Likelihood_2_dsi] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[Category_Likelihood_2_dsi] : create input formulas for tree TreeB
<HEADER> DataSetFactory : [Category_Likelihood_2_dsi] : Number of events in input trees
: Dataset[Category_Likelihood_2_dsi] : Signal requirement: "abs(eta)>1.3"
: Dataset[Category_Likelihood_2_dsi] : Signal -- number of events passed: 4877 / sum of weights: 4877
: Dataset[Category_Likelihood_2_dsi] : Signal -- efficiency : 0.4877
: Dataset[Category_Likelihood_2_dsi] : Background requirement: "abs(eta)>1.3"
: Dataset[Category_Likelihood_2_dsi] : Background -- number of events passed: 4866 / sum of weights: 4866
: Dataset[Category_Likelihood_2_dsi] : Background -- efficiency : 0.4866
: Dataset[Category_Likelihood_2_dsi] : you have opted for scaling the number of requested training/testing events
: to be scaled by the preselection efficiency
: ( 0 * 0.4877 preselection efficiency)
: Dataset[Category_Likelihood_2_dsi] : you have opted for scaling the number of requested training/testing events
: to be scaled by the preselection efficiency
: ( 0 * 0.4866 preselection efficiency)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 2438
: Signal -- testing events : 2438
: Signal -- training and testing events: 4876
: Dataset[Category_Likelihood_2_dsi] : Signal -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.4877
: Background -- training events : 2433
: Background -- testing events : 2433
: Background -- training and testing events: 4866
: Dataset[Category_Likelihood_2_dsi] : Background -- due to the preselection a scaling factor has been applied to the numbers of requested events: 0.4866
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.005 +0.002 -0.039
: var2: -0.005 +1.000 +0.011 -0.004
: var3: +0.002 +0.011 +1.000 -0.021
: var4: -0.039 -0.004 -0.021 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.007 +0.009 +0.008
: var2: -0.007 +1.000 -0.020 +0.013
: var3: +0.009 -0.020 +1.000 +0.007
: var4: +0.008 +0.013 +0.007 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [Category_Likelihood_2_dsi] :
:
: Train method: Category_Likelihood_2 for Classification
: Filling reference histograms
: Building PDF out of reference histograms
: Elapsed time for training with 4871 events: 0.0273 sec
<HEADER> Category_Likelihood_2 : [Category_Likelihood_2_dsi] : Evaluation of Category_Likelihood_2 on training sample (4871 events)
: Elapsed time for evaluation of 4871 events: 0.00562 sec
: TMVACC.root:/dataset/Method_Category/LikelihoodCat/Method_Likelihood/Category_Likelihood_2
: Training finished
: Begin ranking of input variables...
<HEADER> Category_Likelihood_1 : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Delta Separation
: -----------------------------------
: 1 : var4 : 1.108e-01
: 2 : var3 : 2.434e-02
: 3 : var1 : 1.781e-02
: 4 : var2 : 1.380e-02
: -----------------------------------
<HEADER> Category_Likelihood_2 : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Delta Separation
: -----------------------------------
: 1 : var4 : 1.353e-01
: 2 : var3 : 6.016e-02
: 3 : var2 : 1.277e-02
: 4 : var1 : 5.885e-03
: -----------------------------------
: Elapsed time for training with 10000 events: 0.251 sec
<HEADER> Category_Likelihood_1 : [Category_Likelihood_1_dsi] : Evaluation of Category_Likelihood_1 on training sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0104 sec
<HEADER> Category_Likelihood_2 : [Category_Likelihood_2_dsi] : Evaluation of Category_Likelihood_2 on training sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00971 sec
: Creating xml weight file: dataset/weights/TMVAClassificationCategory_LikelihoodCat.weights.xml
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> Fisher : Ranking result (top variable is best ranked)
: -------------------------------
: Rank : Variable : Discr. power
: -------------------------------
: 1 : var4 : 1.446e-01
: 2 : var3 : 7.153e-02
: 3 : var2 : 2.447e-02
: 4 : var1 : 1.243e-02
: -------------------------------
<HEADER> Likelihood : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Delta Separation
: -----------------------------------
: 1 : var4 : 1.148e-01
: 2 : var3 : 5.071e-02
: 3 : var2 : 2.758e-02
: 4 : var1 : 1.990e-02
: -----------------------------------
: No variable ranking supplied by classifier: FisherCat
: No variable ranking supplied by classifier: LikelihoodCat
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: dataset/weights/TMVAClassificationCategory_Fisher.weights.xml
: Reading weight file: dataset/weights/TMVAClassificationCategory_Likelihood.weights.xml
: Reading weight file: dataset/weights/TMVAClassificationCategory_FisherCat.weights.xml
: Recreating sub-classifiers from XML-file
<HEADER> DataSetInfo : [Category_Fisher_1_dsi] : Added class "Signal"
<HEADER> DataSetInfo : [Category_Fisher_1_dsi] : Added class "Background"
<HEADER> DataSetInfo : [Category_Fisher_2_dsi] : Added class "Signal"
<HEADER> DataSetInfo : [Category_Fisher_2_dsi] : Added class "Background"
: Reading weight file: dataset/weights/TMVAClassificationCategory_LikelihoodCat.weights.xml
: Recreating sub-classifiers from XML-file
<HEADER> DataSetInfo : [Category_Likelihood_1_dsi] : Added class "Signal"
<HEADER> DataSetInfo : [Category_Likelihood_1_dsi] : Added class "Background"
<HEADER> DataSetInfo : [Category_Likelihood_2_dsi] : Added class "Signal"
<HEADER> DataSetInfo : [Category_Likelihood_2_dsi] : Added class "Background"
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: Fisher for Classification performance
:
<HEADER> Fisher : [dataset] : Evaluation of Fisher on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00388 sec
<HEADER> Factory : Test method: Likelihood for Classification performance
:
<HEADER> Likelihood : [dataset] : Evaluation of Likelihood on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00953 sec
<HEADER> Factory : Test method: FisherCat for Classification performance
:
<HEADER> Category_Fisher_1 : [Category_Fisher_1_dsi] : Evaluation of Category_Fisher_1 on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00279 sec
<HEADER> Category_Fisher_2 : [Category_Fisher_2_dsi] : Evaluation of Category_Fisher_2 on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00267 sec
<HEADER> Factory : Test method: LikelihoodCat for Classification performance
:
<HEADER> Category_Likelihood_1 : [Category_Likelihood_1_dsi] : Evaluation of Category_Likelihood_1 on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00938 sec
<HEADER> Category_Likelihood_2 : [Category_Likelihood_2_dsi] : Evaluation of Category_Likelihood_2 on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00941 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: Fisher
:
<HEADER> Fisher : [dataset] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_Fisher : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.014081 1.2910 [ -5.3119 4.5609 ]
: var2: -0.014399 1.3299 [ -4.7537 4.6723 ]
: var3: -0.027971 1.3779 [ -5.2892 4.7007 ]
: var4: 0.12966 1.4883 [ -5.1002 4.9767 ]
: -----------------------------------------------------------
<HEADER> Factory : Evaluate classifier: Likelihood
:
<HEADER> Likelihood : [dataset] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_Likelihood : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.014081 1.2910 [ -5.3119 4.5609 ]
: var2: -0.014399 1.3299 [ -4.7537 4.6723 ]
: var3: -0.027971 1.3779 [ -5.2892 4.7007 ]
: var4: 0.12966 1.4883 [ -5.1002 4.9767 ]
: -----------------------------------------------------------
<HEADER> Factory : Evaluate classifier: FisherCat
:
<HEADER> FisherCat : [dataset] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_FisherCat : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.014081 1.2910 [ -5.3119 4.5609 ]
: var2: -0.014399 1.3299 [ -4.7537 4.6723 ]
: var3: -0.027971 1.3779 [ -5.2892 4.7007 ]
: var4: 0.12966 1.4883 [ -5.1002 4.9767 ]
: -----------------------------------------------------------
<HEADER> Factory : Evaluate classifier: LikelihoodCat
:
<HEADER> LikelihoodCat : [dataset] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_LikelihoodCat : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.014081 1.2910 [ -5.3119 4.5609 ]
: var2: -0.014399 1.3299 [ -4.7537 4.6723 ]
: var3: -0.027971 1.3779 [ -5.2892 4.7007 ]
: var4: 0.12966 1.4883 [ -5.1002 4.9767 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset FisherCat : 0.914
: dataset LikelihoodCat : 0.913
: dataset Fisher : 0.808
: dataset Likelihood : 0.769
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset FisherCat : 0.352 (0.360) 0.743 (0.739) 0.919 (0.916)
: dataset LikelihoodCat : 0.349 (0.353) 0.739 (0.735) 0.919 (0.917)
: dataset Fisher : 0.184 (0.185) 0.471 (0.486) 0.746 (0.742)
: dataset Likelihood : 0.211 (0.242) 0.447 (0.454) 0.610 (0.608)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:dataset : Created tree 'TestTree' with 10000 events
:
<HEADER> Dataset:dataset : Created tree 'TrainTree' with 10000 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
==> Wrote root file: TMVACC.root
==> TMVAClassificationCategory is done!