Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.52 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0138 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 90.8789
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.909527 0.90525 0.0151875 0.00172448 89133 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.733798 0.901802 0.0151557 0.0016257 88691.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.598144 0.804592 0.0151487 0.00148507 87824.6 0
: 4 | 0.519745 0.808736 0.0143618 0.001124 90649.2 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.467145 0.778641 0.0152121 0.00178493 89371.3 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.402194 0.741087 0.0156603 0.0017786 86444.7 0
: 7 | 0.373794 0.790332 0.0149278 0.00108908 86713.2 1
: 8 | 0.310812 0.769561 0.0137224 0.00112032 95222.7 2
: 9 | 0.264105 0.800967 0.0152251 0.00138364 86695.9 3
: 10 | 0.235422 0.807243 0.014705 0.0011069 88247.8 4
:
: Elapsed time for training with 1600 events: 0.162 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00688 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 46.3799
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.08238 0.808961 0.313272 0.0215888 4114.05 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.848236 0.675176 0.315891 0.0205064 4062.5 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.72037 0.672195 0.301506 0.02023 4266.28 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.648656 0.64998 0.27788 0.0202045 4657.02 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.629056 0.645237 0.288793 0.0202417 4468.41 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.611791 0.630292 0.278182 0.0198541 4645.26 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.579505 0.612358 0.298514 0.020752 4320.24 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.548526 0.591216 0.321769 0.0211644 3991.95 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.512946 0.586398 0.320222 0.0219223 4022.8 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.483779 0.540339 0.245805 0.0199023 5312.02 0
:
: Elapsed time for training with 1600 events: 2.99 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.103 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.955e-03
: 2 : vars : 8.739e-03
: 3 : vars : 8.688e-03
: 4 : vars : 8.484e-03
: 5 : vars : 8.401e-03
: 6 : vars : 8.077e-03
: 7 : vars : 7.744e-03
: 8 : vars : 7.685e-03
: 9 : vars : 7.548e-03
: 10 : vars : 7.110e-03
: 11 : vars : 7.106e-03
: 12 : vars : 7.054e-03
: 13 : vars : 6.966e-03
: 14 : vars : 6.931e-03
: 15 : vars : 6.783e-03
: 16 : vars : 6.728e-03
: 17 : vars : 6.706e-03
: 18 : vars : 6.639e-03
: 19 : vars : 6.485e-03
: 20 : vars : 6.466e-03
: 21 : vars : 6.449e-03
: 22 : vars : 6.428e-03
: 23 : vars : 6.408e-03
: 24 : vars : 6.377e-03
: 25 : vars : 6.340e-03
: 26 : vars : 6.315e-03
: 27 : vars : 6.304e-03
: 28 : vars : 6.301e-03
: 29 : vars : 6.273e-03
: 30 : vars : 6.271e-03
: 31 : vars : 6.226e-03
: 32 : vars : 6.184e-03
: 33 : vars : 6.149e-03
: 34 : vars : 6.136e-03
: 35 : vars : 6.127e-03
: 36 : vars : 6.084e-03
: 37 : vars : 6.081e-03
: 38 : vars : 6.069e-03
: 39 : vars : 6.027e-03
: 40 : vars : 6.014e-03
: 41 : vars : 5.986e-03
: 42 : vars : 5.919e-03
: 43 : vars : 5.892e-03
: 44 : vars : 5.839e-03
: 45 : vars : 5.801e-03
: 46 : vars : 5.788e-03
: 47 : vars : 5.724e-03
: 48 : vars : 5.708e-03
: 49 : vars : 5.708e-03
: 50 : vars : 5.698e-03
: 51 : vars : 5.634e-03
: 52 : vars : 5.475e-03
: 53 : vars : 5.468e-03
: 54 : vars : 5.409e-03
: 55 : vars : 5.377e-03
: 56 : vars : 5.332e-03
: 57 : vars : 5.324e-03
: 58 : vars : 5.249e-03
: 59 : vars : 5.249e-03
: 60 : vars : 5.220e-03
: 61 : vars : 5.203e-03
: 62 : vars : 5.173e-03
: 63 : vars : 5.133e-03
: 64 : vars : 5.122e-03
: 65 : vars : 5.120e-03
: 66 : vars : 5.119e-03
: 67 : vars : 5.071e-03
: 68 : vars : 5.032e-03
: 69 : vars : 4.936e-03
: 70 : vars : 4.927e-03
: 71 : vars : 4.880e-03
: 72 : vars : 4.848e-03
: 73 : vars : 4.832e-03
: 74 : vars : 4.827e-03
: 75 : vars : 4.790e-03
: 76 : vars : 4.772e-03
: 77 : vars : 4.760e-03
: 78 : vars : 4.747e-03
: 79 : vars : 4.732e-03
: 80 : vars : 4.682e-03
: 81 : vars : 4.655e-03
: 82 : vars : 4.622e-03
: 83 : vars : 4.590e-03
: 84 : vars : 4.584e-03
: 85 : vars : 4.578e-03
: 86 : vars : 4.573e-03
: 87 : vars : 4.493e-03
: 88 : vars : 4.461e-03
: 89 : vars : 4.460e-03
: 90 : vars : 4.420e-03
: 91 : vars : 4.414e-03
: 92 : vars : 4.403e-03
: 93 : vars : 4.395e-03
: 94 : vars : 4.389e-03
: 95 : vars : 4.369e-03
: 96 : vars : 4.349e-03
: 97 : vars : 4.332e-03
: 98 : vars : 4.318e-03
: 99 : vars : 4.310e-03
: 100 : vars : 4.291e-03
: 101 : vars : 4.287e-03
: 102 : vars : 4.257e-03
: 103 : vars : 4.253e-03
: 104 : vars : 4.226e-03
: 105 : vars : 4.200e-03
: 106 : vars : 4.174e-03
: 107 : vars : 4.164e-03
: 108 : vars : 4.138e-03
: 109 : vars : 4.116e-03
: 110 : vars : 4.109e-03
: 111 : vars : 4.099e-03
: 112 : vars : 4.054e-03
: 113 : vars : 4.041e-03
: 114 : vars : 4.033e-03
: 115 : vars : 4.027e-03
: 116 : vars : 4.023e-03
: 117 : vars : 3.954e-03
: 118 : vars : 3.925e-03
: 119 : vars : 3.837e-03
: 120 : vars : 3.826e-03
: 121 : vars : 3.823e-03
: 122 : vars : 3.816e-03
: 123 : vars : 3.809e-03
: 124 : vars : 3.776e-03
: 125 : vars : 3.772e-03
: 126 : vars : 3.737e-03
: 127 : vars : 3.706e-03
: 128 : vars : 3.692e-03
: 129 : vars : 3.660e-03
: 130 : vars : 3.642e-03
: 131 : vars : 3.603e-03
: 132 : vars : 3.597e-03
: 133 : vars : 3.595e-03
: 134 : vars : 3.590e-03
: 135 : vars : 3.588e-03
: 136 : vars : 3.581e-03
: 137 : vars : 3.558e-03
: 138 : vars : 3.543e-03
: 139 : vars : 3.467e-03
: 140 : vars : 3.435e-03
: 141 : vars : 3.418e-03
: 142 : vars : 3.411e-03
: 143 : vars : 3.408e-03
: 144 : vars : 3.387e-03
: 145 : vars : 3.359e-03
: 146 : vars : 3.344e-03
: 147 : vars : 3.318e-03
: 148 : vars : 3.313e-03
: 149 : vars : 3.311e-03
: 150 : vars : 3.300e-03
: 151 : vars : 3.299e-03
: 152 : vars : 3.286e-03
: 153 : vars : 3.281e-03
: 154 : vars : 3.272e-03
: 155 : vars : 3.256e-03
: 156 : vars : 3.246e-03
: 157 : vars : 3.207e-03
: 158 : vars : 3.203e-03
: 159 : vars : 3.194e-03
: 160 : vars : 3.190e-03
: 161 : vars : 3.176e-03
: 162 : vars : 3.170e-03
: 163 : vars : 3.154e-03
: 164 : vars : 3.150e-03
: 165 : vars : 3.149e-03
: 166 : vars : 3.130e-03
: 167 : vars : 3.114e-03
: 168 : vars : 3.105e-03
: 169 : vars : 3.086e-03
: 170 : vars : 3.045e-03
: 171 : vars : 3.024e-03
: 172 : vars : 3.013e-03
: 173 : vars : 2.986e-03
: 174 : vars : 2.979e-03
: 175 : vars : 2.965e-03
: 176 : vars : 2.946e-03
: 177 : vars : 2.937e-03
: 178 : vars : 2.926e-03
: 179 : vars : 2.908e-03
: 180 : vars : 2.892e-03
: 181 : vars : 2.890e-03
: 182 : vars : 2.878e-03
: 183 : vars : 2.870e-03
: 184 : vars : 2.865e-03
: 185 : vars : 2.861e-03
: 186 : vars : 2.854e-03
: 187 : vars : 2.765e-03
: 188 : vars : 2.757e-03
: 189 : vars : 2.746e-03
: 190 : vars : 2.710e-03
: 191 : vars : 2.699e-03
: 192 : vars : 2.655e-03
: 193 : vars : 2.650e-03
: 194 : vars : 2.650e-03
: 195 : vars : 2.626e-03
: 196 : vars : 2.624e-03
: 197 : vars : 2.621e-03
: 198 : vars : 2.598e-03
: 199 : vars : 2.559e-03
: 200 : vars : 2.523e-03
: 201 : vars : 2.522e-03
: 202 : vars : 2.520e-03
: 203 : vars : 2.519e-03
: 204 : vars : 2.518e-03
: 205 : vars : 2.495e-03
: 206 : vars : 2.441e-03
: 207 : vars : 2.433e-03
: 208 : vars : 2.411e-03
: 209 : vars : 2.401e-03
: 210 : vars : 2.379e-03
: 211 : vars : 2.365e-03
: 212 : vars : 2.361e-03
: 213 : vars : 2.350e-03
: 214 : vars : 2.294e-03
: 215 : vars : 2.277e-03
: 216 : vars : 2.267e-03
: 217 : vars : 2.250e-03
: 218 : vars : 2.240e-03
: 219 : vars : 2.223e-03
: 220 : vars : 2.222e-03
: 221 : vars : 2.218e-03
: 222 : vars : 2.191e-03
: 223 : vars : 2.179e-03
: 224 : vars : 2.154e-03
: 225 : vars : 2.151e-03
: 226 : vars : 2.093e-03
: 227 : vars : 2.004e-03
: 228 : vars : 1.913e-03
: 229 : vars : 1.851e-03
: 230 : vars : 1.818e-03
: 231 : vars : 1.792e-03
: 232 : vars : 1.787e-03
: 233 : vars : 1.721e-03
: 234 : vars : 1.653e-03
: 235 : vars : 1.579e-03
: 236 : vars : 1.541e-03
: 237 : vars : 1.508e-03
: 238 : vars : 1.459e-03
: 239 : vars : 1.449e-03
: 240 : vars : 1.447e-03
: 241 : vars : 1.243e-03
: 242 : vars : 1.049e-03
: 243 : vars : 9.751e-04
: 244 : vars : 8.850e-04
: 245 : vars : 8.603e-04
: 246 : vars : 6.286e-04
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.81468
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 8.10821
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.66524
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.41215
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00363 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0012 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0288 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_CNN_CPU : 0.853
: dataset BDT : 0.730
: dataset TMVA_DNN_CPU : 0.639
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_CNN_CPU : 0.105 (0.235) 0.585 (0.697) 0.815 (0.878)
: dataset BDT : 0.065 (0.240) 0.272 (0.661) 0.629 (0.862)
: dataset TMVA_DNN_CPU : 0.022 (0.135) 0.195 (0.421) 0.515 (0.717)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m