Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
ApplicationClassificationKeras.py File Reference

Detailed Description

View in nbviewer Open in SWAN
This tutorial shows how to apply a trained model to new data.

from ROOT import TMVA, TFile, TString, gROOT
from array import array
from subprocess import call
from os.path import isfile
# Setup TMVA
reader = TMVA.Reader("Color:!Silent")
# Load data
data = TFile.Open(str(gROOT.GetTutorialDir()) + "/tmva/data/tmva_class_example.root")
signal = data.Get('TreeS')
background = data.Get('TreeB')
branches = {}
for branch in signal.GetListOfBranches():
branchName = branch.GetName()
branches[branchName] = array('f', [-999])
reader.AddVariable(branchName, branches[branchName])
signal.SetBranchAddress(branchName, branches[branchName])
background.SetBranchAddress(branchName, branches[branchName])
# Book methods
reader.BookMVA('PyKeras', TString('dataset/weights/TMVAClassification_PyKeras.weights.xml'))
# Print some example classifications
print('Some signal example classifications:')
for i in range(20):
print(reader.EvaluateMVA('PyKeras'))
print('')
print('Some background example classifications:')
for i in range(20):
print(reader.EvaluateMVA('PyKeras'))
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
The Reader class serves to use the MVAs in a specific analysis context.
Definition Reader.h:64
Basic string class.
Definition TString.h:139
Date
2017
Author
TMVA Team

Definition in file ApplicationClassificationKeras.py.