Running with nthreads = 4
--- RNNClassification : Using input file: time_data_t10_d30.root
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sgn of type Signal with 2000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg of type Background with 2000 events
number of variables is 300
vars_time0[0]
vars_time0[1]
vars_time0[2]
vars_time0[3]
vars_time0[4]
vars_time0[5]
vars_time0[6]
vars_time0[7]
vars_time0[8]
vars_time0[9]
vars_time0[10]
vars_time0[11]
vars_time0[12]
vars_time0[13]
vars_time0[14]
vars_time0[15]
vars_time0[16]
vars_time0[17]
vars_time0[18]
vars_time0[19]
vars_time0[20]
vars_time0[21]
vars_time0[22]
vars_time0[23]
vars_time0[24]
vars_time0[25]
vars_time0[26]
vars_time0[27]
vars_time0[28]
vars_time0[29]
vars_time1[0]
vars_time1[1]
vars_time1[2]
vars_time1[3]
vars_time1[4]
vars_time1[5]
vars_time1[6]
vars_time1[7]
vars_time1[8]
vars_time1[9]
vars_time1[10]
vars_time1[11]
vars_time1[12]
vars_time1[13]
vars_time1[14]
vars_time1[15]
vars_time1[16]
vars_time1[17]
vars_time1[18]
vars_time1[19]
vars_time1[20]
vars_time1[21]
vars_time1[22]
vars_time1[23]
vars_time1[24]
vars_time1[25]
vars_time1[26]
vars_time1[27]
vars_time1[28]
vars_time1[29]
vars_time2[0]
vars_time2[1]
vars_time2[2]
vars_time2[3]
vars_time2[4]
vars_time2[5]
vars_time2[6]
vars_time2[7]
vars_time2[8]
vars_time2[9]
vars_time2[10]
vars_time2[11]
vars_time2[12]
vars_time2[13]
vars_time2[14]
vars_time2[15]
vars_time2[16]
vars_time2[17]
vars_time2[18]
vars_time2[19]
vars_time2[20]
vars_time2[21]
vars_time2[22]
vars_time2[23]
vars_time2[24]
vars_time2[25]
vars_time2[26]
vars_time2[27]
vars_time2[28]
vars_time2[29]
vars_time3[0]
vars_time3[1]
vars_time3[2]
vars_time3[3]
vars_time3[4]
vars_time3[5]
vars_time3[6]
vars_time3[7]
vars_time3[8]
vars_time3[9]
vars_time3[10]
vars_time3[11]
vars_time3[12]
vars_time3[13]
vars_time3[14]
vars_time3[15]
vars_time3[16]
vars_time3[17]
vars_time3[18]
vars_time3[19]
vars_time3[20]
vars_time3[21]
vars_time3[22]
vars_time3[23]
vars_time3[24]
vars_time3[25]
vars_time3[26]
vars_time3[27]
vars_time3[28]
vars_time3[29]
vars_time4[0]
vars_time4[1]
vars_time4[2]
vars_time4[3]
vars_time4[4]
vars_time4[5]
vars_time4[6]
vars_time4[7]
vars_time4[8]
vars_time4[9]
vars_time4[10]
vars_time4[11]
vars_time4[12]
vars_time4[13]
vars_time4[14]
vars_time4[15]
vars_time4[16]
vars_time4[17]
vars_time4[18]
vars_time4[19]
vars_time4[20]
vars_time4[21]
vars_time4[22]
vars_time4[23]
vars_time4[24]
vars_time4[25]
vars_time4[26]
vars_time4[27]
vars_time4[28]
vars_time4[29]
vars_time5[0]
vars_time5[1]
vars_time5[2]
vars_time5[3]
vars_time5[4]
vars_time5[5]
vars_time5[6]
vars_time5[7]
vars_time5[8]
vars_time5[9]
vars_time5[10]
vars_time5[11]
vars_time5[12]
vars_time5[13]
vars_time5[14]
vars_time5[15]
vars_time5[16]
vars_time5[17]
vars_time5[18]
vars_time5[19]
vars_time5[20]
vars_time5[21]
vars_time5[22]
vars_time5[23]
vars_time5[24]
vars_time5[25]
vars_time5[26]
vars_time5[27]
vars_time5[28]
vars_time5[29]
vars_time6[0]
vars_time6[1]
vars_time6[2]
vars_time6[3]
vars_time6[4]
vars_time6[5]
vars_time6[6]
vars_time6[7]
vars_time6[8]
vars_time6[9]
vars_time6[10]
vars_time6[11]
vars_time6[12]
vars_time6[13]
vars_time6[14]
vars_time6[15]
vars_time6[16]
vars_time6[17]
vars_time6[18]
vars_time6[19]
vars_time6[20]
vars_time6[21]
vars_time6[22]
vars_time6[23]
vars_time6[24]
vars_time6[25]
vars_time6[26]
vars_time6[27]
vars_time6[28]
vars_time6[29]
vars_time7[0]
vars_time7[1]
vars_time7[2]
vars_time7[3]
vars_time7[4]
vars_time7[5]
vars_time7[6]
vars_time7[7]
vars_time7[8]
vars_time7[9]
vars_time7[10]
vars_time7[11]
vars_time7[12]
vars_time7[13]
vars_time7[14]
vars_time7[15]
vars_time7[16]
vars_time7[17]
vars_time7[18]
vars_time7[19]
vars_time7[20]
vars_time7[21]
vars_time7[22]
vars_time7[23]
vars_time7[24]
vars_time7[25]
vars_time7[26]
vars_time7[27]
vars_time7[28]
vars_time7[29]
vars_time8[0]
vars_time8[1]
vars_time8[2]
vars_time8[3]
vars_time8[4]
vars_time8[5]
vars_time8[6]
vars_time8[7]
vars_time8[8]
vars_time8[9]
vars_time8[10]
vars_time8[11]
vars_time8[12]
vars_time8[13]
vars_time8[14]
vars_time8[15]
vars_time8[16]
vars_time8[17]
vars_time8[18]
vars_time8[19]
vars_time8[20]
vars_time8[21]
vars_time8[22]
vars_time8[23]
vars_time8[24]
vars_time8[25]
vars_time8[26]
vars_time8[27]
vars_time8[28]
vars_time8[29]
vars_time9[0]
vars_time9[1]
vars_time9[2]
vars_time9[3]
vars_time9[4]
vars_time9[5]
vars_time9[6]
vars_time9[7]
vars_time9[8]
vars_time9[9]
vars_time9[10]
vars_time9[11]
vars_time9[12]
vars_time9[13]
vars_time9[14]
vars_time9[15]
vars_time9[16]
vars_time9[17]
vars_time9[18]
vars_time9[19]
vars_time9[20]
vars_time9[21]
vars_time9[22]
vars_time9[23]
vars_time9[24]
vars_time9[25]
vars_time9[26]
vars_time9[27]
vars_time9[28]
vars_time9[29]
prepared DATA LOADER
Factory : Booking method: ␛[1mTMVA_LSTM␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=10Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=10Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "10|30" [The Layout of the input]
: Layout: "LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
: RandomSeed: "1234" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "0.2" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=10Optimizer=ADAM,DropConfig=0.0+0.+0.+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_DNN␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|1|300" [The Layout of the input]
: Layout: "DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mBDTG␛[0m
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sgn
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 1600
: Signal -- testing events : 400
: Signal -- training and testing events: 2000
: Background -- training events : 1600
: Background -- testing events : 400
: Background -- training and testing events: 2000
:
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: TMVA_LSTM for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 10, 1, 30 ) Batch size = 100 Loss function = C
Layer 0 LSTM Layer: (NInput = 30, NState = 10, NTime = 10 ) Output = ( 100 , 10 , 10 )
Layer 1 RESHAPE Layer Input = ( 1 , 10 , 10 ) Output = ( 1 , 100 , 100 )
Layer 2 DENSE Layer: ( Input = 100 , Width = 64 ) Output = ( 1 , 100 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.71511
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.698592 0.699001 0.0621401 0.00687294 45234.9 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.688563 0.687198 0.0596127 0.00681916 47354.3 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.676594 0.680766 0.0598109 0.00680088 47160.9 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.66565 0.680242 0.0613699 0.00702604 46003.4 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.647734 0.652661 0.0620375 0.00843629 46640.8 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.614368 0.617047 0.0660202 0.0068266 42234.3 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.587476 0.600996 0.0602655 0.00709318 47017 0
: 8 | 0.566147 0.605564 0.060531 0.0071242 46810.6 1
: 9 | 0.548129 0.60133 0.060117 0.00694781 47019.7 2
: 10 Minimum Test error found - save the configuration
: 10 | 0.533742 0.57279 0.0585965 0.00677535 48242.9 0
:
: Elapsed time for training with 3200 events: 0.623 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.0349 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_DNN for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 1, 1, 300 ) Batch size = 256 Loss function = C
Layer 0 DENSE Layer: ( Input = 300 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 1 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 2 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 256 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.788302
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.72701 0.687172 0.0165554 0.0017513 172925 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.689285 0.678861 0.01623 0.00168074 175954 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.681309 0.666229 0.0158914 0.00174491 180964 0
: 4 | 0.668207 0.676515 0.0159437 0.00149064 177126 1
: 5 | 0.666602 0.670975 0.0156885 0.00147415 180100 2
: 6 | 0.668135 0.679659 0.0154404 0.0014308 182732 3
: 7 | 0.670871 0.685886 0.0144126 0.00133719 195787 4
: 8 Minimum Test error found - save the configuration
: 8 | 0.66277 0.661045 0.0145084 0.00149284 196687 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.662688 0.652884 0.014478 0.00155092 198034 0
: 10 | 0.660689 0.673369 0.0147039 0.00140397 192482 1
: 11 | 0.654085 0.661199 0.0150438 0.00139784 187601 2
: 12 | 0.646766 0.659014 0.015675 0.00151179 180751 3
: 13 | 0.645717 0.686002 0.0156338 0.00146235 180645 4
: 14 | 0.661608 0.690102 0.0148587 0.00141046 190359 5
: 15 Minimum Test error found - save the configuration
: 15 | 0.644105 0.646647 0.0154206 0.00169928 186571 0
: 16 Minimum Test error found - save the configuration
: 16 | 0.629204 0.63978 0.0153573 0.00149245 184639 0
: 17 | 0.6278 0.646296 0.0149902 0.00141113 188526 1
: 18 Minimum Test error found - save the configuration
: 18 | 0.637776 0.632998 0.0155707 0.001574 182900 0
: 19 | 0.665808 0.648097 0.0149281 0.00137571 188896 1
: 20 | 0.667094 0.642059 0.0151038 0.00132331 185770 2
:
: Elapsed time for training with 3200 events: 0.311 sec
: Evaluate deep neural network on CPU using batches with size = 256
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.00889 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.class.C␛[0m
Factory : Training finished
:
Factory : Train method: BDTG for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ BDTG ] :␛[0m
:
: ␛[1m--- Short description:␛[0m
:
: Boosted Decision Trees are a collection of individual decision
: trees which form a multivariate classifier by (weighted) majority
: vote of the individual trees. Consecutive decision trees are
: trained using the original training data set with re-weighted
: events. By default, the AdaBoost method is employed, which gives
: events that were misclassified in the previous tree a larger
: weight in the training of the following tree.
:
: Decision trees are a sequence of binary splits of the data sample
: using a single discriminant variable at a time. A test event
: ending up after the sequence of left-right splits in a final
: ("leaf") node is classified as either signal or background
: depending on the majority type of training events in that node.
:
: ␛[1m--- Performance optimisation:␛[0m
:
: By the nature of the binary splits performed on the individual
: variables, decision trees do not deal well with linear correlations
: between variables (they need to approximate the linear split in
: the two dimensional space by a sequence of splits on the two
: variables individually). Hence decorrelation could be useful
: to optimise the BDT performance.
:
: ␛[1m--- Performance tuning via configuration options:␛[0m
:
: The two most important parameters in the configuration are the
: minimal number of events requested by a leaf node as percentage of the
: number of training events (option "MinNodeSize" replacing the actual number
: of events "nEventsMin" as given in earlier versions
: If this number is too large, detailed features
: in the parameter space are hard to be modelled. If it is too small,
: the risk to overtrain rises and boosting seems to be less effective
: typical values from our current experience for best performance
: are between 0.5(%) and 10(%)
:
: The default minimal number is currently set to
: max(20, (N_training_events / N_variables^2 / 10))
: and can be changed by the user.
:
: The other crucial parameter, the pruning strength ("PruneStrength"),
: is also related to overtraining. It is a regularisation parameter
: that is used when determining after the training which splits
: are considered statistically insignificant and are removed. The
: user is advised to carefully watch the BDT screen output for
: the comparison between efficiencies obtained on the training and
: the independent test sample. They should be equal within statistical
: errors, in order to minimize statistical fluctuations in different samples.
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
BDTG : #events: (reweighted) sig: 1600 bkg: 1600
: #events: (unweighted) sig: 1600 bkg: 1600
: Training 100 Decision Trees ... patience please
: Elapsed time for training with 3200 events: 0.746 sec
BDTG : [dataset] : Evaluation of BDTG on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.00956 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_BDTG.class.C␛[0m
: data_RNN_CPU.root:/dataset/Method_BDT/BDTG
Factory : Training finished
:
: Ranking input variables (method specific)...
: No variable ranking supplied by classifier: TMVA_LSTM
: No variable ranking supplied by classifier: TMVA_DNN
BDTG : Ranking result (top variable is best ranked)
: --------------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------------
: 1 : vars_time9 : 2.115e-02
: 2 : vars_time7 : 1.838e-02
: 3 : vars_time7 : 1.804e-02
: 4 : vars_time7 : 1.799e-02
: 5 : vars_time9 : 1.791e-02
: 6 : vars_time8 : 1.763e-02
: 7 : vars_time6 : 1.738e-02
: 8 : vars_time8 : 1.735e-02
: 9 : vars_time9 : 1.724e-02
: 10 : vars_time6 : 1.631e-02
: 11 : vars_time8 : 1.606e-02
: 12 : vars_time6 : 1.571e-02
: 13 : vars_time7 : 1.549e-02
: 14 : vars_time9 : 1.539e-02
: 15 : vars_time9 : 1.513e-02
: 16 : vars_time9 : 1.506e-02
: 17 : vars_time8 : 1.494e-02
: 18 : vars_time6 : 1.481e-02
: 19 : vars_time0 : 1.460e-02
: 20 : vars_time9 : 1.425e-02
: 21 : vars_time7 : 1.401e-02
: 22 : vars_time5 : 1.388e-02
: 23 : vars_time7 : 1.370e-02
: 24 : vars_time8 : 1.370e-02
: 25 : vars_time5 : 1.368e-02
: 26 : vars_time9 : 1.339e-02
: 27 : vars_time6 : 1.291e-02
: 28 : vars_time6 : 1.264e-02
: 29 : vars_time1 : 1.219e-02
: 30 : vars_time6 : 1.199e-02
: 31 : vars_time9 : 1.183e-02
: 32 : vars_time0 : 1.148e-02
: 33 : vars_time7 : 1.139e-02
: 34 : vars_time7 : 1.138e-02
: 35 : vars_time9 : 1.134e-02
: 36 : vars_time8 : 1.131e-02
: 37 : vars_time8 : 1.099e-02
: 38 : vars_time0 : 1.093e-02
: 39 : vars_time0 : 1.082e-02
: 40 : vars_time8 : 1.073e-02
: 41 : vars_time8 : 1.061e-02
: 42 : vars_time9 : 1.034e-02
: 43 : vars_time8 : 1.033e-02
: 44 : vars_time8 : 9.716e-03
: 45 : vars_time9 : 9.687e-03
: 46 : vars_time5 : 9.648e-03
: 47 : vars_time7 : 9.548e-03
: 48 : vars_time9 : 9.536e-03
: 49 : vars_time7 : 9.283e-03
: 50 : vars_time5 : 9.191e-03
: 51 : vars_time8 : 9.088e-03
: 52 : vars_time8 : 8.839e-03
: 53 : vars_time5 : 8.839e-03
: 54 : vars_time0 : 8.586e-03
: 55 : vars_time7 : 8.316e-03
: 56 : vars_time9 : 8.016e-03
: 57 : vars_time8 : 7.804e-03
: 58 : vars_time8 : 7.568e-03
: 59 : vars_time9 : 7.537e-03
: 60 : vars_time4 : 7.412e-03
: 61 : vars_time5 : 7.341e-03
: 62 : vars_time5 : 7.324e-03
: 63 : vars_time8 : 7.300e-03
: 64 : vars_time8 : 7.092e-03
: 65 : vars_time0 : 7.005e-03
: 66 : vars_time5 : 6.669e-03
: 67 : vars_time2 : 6.576e-03
: 68 : vars_time4 : 6.543e-03
: 69 : vars_time9 : 6.512e-03
: 70 : vars_time0 : 6.396e-03
: 71 : vars_time5 : 6.336e-03
: 72 : vars_time2 : 6.166e-03
: 73 : vars_time9 : 6.063e-03
: 74 : vars_time0 : 5.968e-03
: 75 : vars_time1 : 5.925e-03
: 76 : vars_time9 : 5.780e-03
: 77 : vars_time5 : 5.666e-03
: 78 : vars_time6 : 5.554e-03
: 79 : vars_time1 : 5.512e-03
: 80 : vars_time7 : 5.482e-03
: 81 : vars_time3 : 5.480e-03
: 82 : vars_time0 : 5.391e-03
: 83 : vars_time8 : 5.111e-03
: 84 : vars_time0 : 5.092e-03
: 85 : vars_time4 : 5.052e-03
: 86 : vars_time4 : 5.042e-03
: 87 : vars_time9 : 4.981e-03
: 88 : vars_time3 : 4.929e-03
: 89 : vars_time7 : 4.788e-03
: 90 : vars_time4 : 4.774e-03
: 91 : vars_time6 : 4.724e-03
: 92 : vars_time2 : 4.631e-03
: 93 : vars_time3 : 4.510e-03
: 94 : vars_time0 : 4.493e-03
: 95 : vars_time3 : 4.384e-03
: 96 : vars_time7 : 4.280e-03
: 97 : vars_time7 : 4.245e-03
: 98 : vars_time1 : 4.163e-03
: 99 : vars_time1 : 4.080e-03
: 100 : vars_time5 : 4.021e-03
: 101 : vars_time9 : 3.834e-03
: 102 : vars_time7 : 3.767e-03
: 103 : vars_time9 : 3.706e-03
: 104 : vars_time4 : 3.616e-03
: 105 : vars_time5 : 3.284e-03
: 106 : vars_time3 : 2.880e-03
: 107 : vars_time7 : 2.561e-03
: 108 : vars_time0 : 0.000e+00
: 109 : vars_time0 : 0.000e+00
: 110 : vars_time0 : 0.000e+00
: 111 : vars_time0 : 0.000e+00
: 112 : vars_time0 : 0.000e+00
: 113 : vars_time0 : 0.000e+00
: 114 : vars_time0 : 0.000e+00
: 115 : vars_time0 : 0.000e+00
: 116 : vars_time0 : 0.000e+00
: 117 : vars_time0 : 0.000e+00
: 118 : vars_time0 : 0.000e+00
: 119 : vars_time0 : 0.000e+00
: 120 : vars_time0 : 0.000e+00
: 121 : vars_time0 : 0.000e+00
: 122 : vars_time0 : 0.000e+00
: 123 : vars_time0 : 0.000e+00
: 124 : vars_time0 : 0.000e+00
: 125 : vars_time0 : 0.000e+00
: 126 : vars_time0 : 0.000e+00
: 127 : vars_time1 : 0.000e+00
: 128 : vars_time1 : 0.000e+00
: 129 : vars_time1 : 0.000e+00
: 130 : vars_time1 : 0.000e+00
: 131 : vars_time1 : 0.000e+00
: 132 : vars_time1 : 0.000e+00
: 133 : vars_time1 : 0.000e+00
: 134 : vars_time1 : 0.000e+00
: 135 : vars_time1 : 0.000e+00
: 136 : vars_time1 : 0.000e+00
: 137 : vars_time1 : 0.000e+00
: 138 : vars_time1 : 0.000e+00
: 139 : vars_time1 : 0.000e+00
: 140 : vars_time1 : 0.000e+00
: 141 : vars_time1 : 0.000e+00
: 142 : vars_time1 : 0.000e+00
: 143 : vars_time1 : 0.000e+00
: 144 : vars_time1 : 0.000e+00
: 145 : vars_time1 : 0.000e+00
: 146 : vars_time1 : 0.000e+00
: 147 : vars_time1 : 0.000e+00
: 148 : vars_time1 : 0.000e+00
: 149 : vars_time1 : 0.000e+00
: 150 : vars_time1 : 0.000e+00
: 151 : vars_time1 : 0.000e+00
: 152 : vars_time2 : 0.000e+00
: 153 : vars_time2 : 0.000e+00
: 154 : vars_time2 : 0.000e+00
: 155 : vars_time2 : 0.000e+00
: 156 : vars_time2 : 0.000e+00
: 157 : vars_time2 : 0.000e+00
: 158 : vars_time2 : 0.000e+00
: 159 : vars_time2 : 0.000e+00
: 160 : vars_time2 : 0.000e+00
: 161 : vars_time2 : 0.000e+00
: 162 : vars_time2 : 0.000e+00
: 163 : vars_time2 : 0.000e+00
: 164 : vars_time2 : 0.000e+00
: 165 : vars_time2 : 0.000e+00
: 166 : vars_time2 : 0.000e+00
: 167 : vars_time2 : 0.000e+00
: 168 : vars_time2 : 0.000e+00
: 169 : vars_time2 : 0.000e+00
: 170 : vars_time2 : 0.000e+00
: 171 : vars_time2 : 0.000e+00
: 172 : vars_time2 : 0.000e+00
: 173 : vars_time2 : 0.000e+00
: 174 : vars_time2 : 0.000e+00
: 175 : vars_time2 : 0.000e+00
: 176 : vars_time2 : 0.000e+00
: 177 : vars_time2 : 0.000e+00
: 178 : vars_time2 : 0.000e+00
: 179 : vars_time3 : 0.000e+00
: 180 : vars_time3 : 0.000e+00
: 181 : vars_time3 : 0.000e+00
: 182 : vars_time3 : 0.000e+00
: 183 : vars_time3 : 0.000e+00
: 184 : vars_time3 : 0.000e+00
: 185 : vars_time3 : 0.000e+00
: 186 : vars_time3 : 0.000e+00
: 187 : vars_time3 : 0.000e+00
: 188 : vars_time3 : 0.000e+00
: 189 : vars_time3 : 0.000e+00
: 190 : vars_time3 : 0.000e+00
: 191 : vars_time3 : 0.000e+00
: 192 : vars_time3 : 0.000e+00
: 193 : vars_time3 : 0.000e+00
: 194 : vars_time3 : 0.000e+00
: 195 : vars_time3 : 0.000e+00
: 196 : vars_time3 : 0.000e+00
: 197 : vars_time3 : 0.000e+00
: 198 : vars_time3 : 0.000e+00
: 199 : vars_time3 : 0.000e+00
: 200 : vars_time3 : 0.000e+00
: 201 : vars_time3 : 0.000e+00
: 202 : vars_time3 : 0.000e+00
: 203 : vars_time3 : 0.000e+00
: 204 : vars_time4 : 0.000e+00
: 205 : vars_time4 : 0.000e+00
: 206 : vars_time4 : 0.000e+00
: 207 : vars_time4 : 0.000e+00
: 208 : vars_time4 : 0.000e+00
: 209 : vars_time4 : 0.000e+00
: 210 : vars_time4 : 0.000e+00
: 211 : vars_time4 : 0.000e+00
: 212 : vars_time4 : 0.000e+00
: 213 : vars_time4 : 0.000e+00
: 214 : vars_time4 : 0.000e+00
: 215 : vars_time4 : 0.000e+00
: 216 : vars_time4 : 0.000e+00
: 217 : vars_time4 : 0.000e+00
: 218 : vars_time4 : 0.000e+00
: 219 : vars_time4 : 0.000e+00
: 220 : vars_time4 : 0.000e+00
: 221 : vars_time4 : 0.000e+00
: 222 : vars_time4 : 0.000e+00
: 223 : vars_time4 : 0.000e+00
: 224 : vars_time4 : 0.000e+00
: 225 : vars_time4 : 0.000e+00
: 226 : vars_time4 : 0.000e+00
: 227 : vars_time4 : 0.000e+00
: 228 : vars_time5 : 0.000e+00
: 229 : vars_time5 : 0.000e+00
: 230 : vars_time5 : 0.000e+00
: 231 : vars_time5 : 0.000e+00
: 232 : vars_time5 : 0.000e+00
: 233 : vars_time5 : 0.000e+00
: 234 : vars_time5 : 0.000e+00
: 235 : vars_time5 : 0.000e+00
: 236 : vars_time5 : 0.000e+00
: 237 : vars_time5 : 0.000e+00
: 238 : vars_time5 : 0.000e+00
: 239 : vars_time5 : 0.000e+00
: 240 : vars_time5 : 0.000e+00
: 241 : vars_time5 : 0.000e+00
: 242 : vars_time5 : 0.000e+00
: 243 : vars_time5 : 0.000e+00
: 244 : vars_time5 : 0.000e+00
: 245 : vars_time5 : 0.000e+00
: 246 : vars_time6 : 0.000e+00
: 247 : vars_time6 : 0.000e+00
: 248 : vars_time6 : 0.000e+00
: 249 : vars_time6 : 0.000e+00
: 250 : vars_time6 : 0.000e+00
: 251 : vars_time6 : 0.000e+00
: 252 : vars_time6 : 0.000e+00
: 253 : vars_time6 : 0.000e+00
: 254 : vars_time6 : 0.000e+00
: 255 : vars_time6 : 0.000e+00
: 256 : vars_time6 : 0.000e+00
: 257 : vars_time6 : 0.000e+00
: 258 : vars_time6 : 0.000e+00
: 259 : vars_time6 : 0.000e+00
: 260 : vars_time6 : 0.000e+00
: 261 : vars_time6 : 0.000e+00
: 262 : vars_time6 : 0.000e+00
: 263 : vars_time6 : 0.000e+00
: 264 : vars_time6 : 0.000e+00
: 265 : vars_time6 : 0.000e+00
: 266 : vars_time6 : 0.000e+00
: 267 : vars_time7 : 0.000e+00
: 268 : vars_time7 : 0.000e+00
: 269 : vars_time7 : 0.000e+00
: 270 : vars_time7 : 0.000e+00
: 271 : vars_time7 : 0.000e+00
: 272 : vars_time7 : 0.000e+00
: 273 : vars_time7 : 0.000e+00
: 274 : vars_time7 : 0.000e+00
: 275 : vars_time7 : 0.000e+00
: 276 : vars_time7 : 0.000e+00
: 277 : vars_time7 : 0.000e+00
: 278 : vars_time7 : 0.000e+00
: 279 : vars_time7 : 0.000e+00
: 280 : vars_time8 : 0.000e+00
: 281 : vars_time8 : 0.000e+00
: 282 : vars_time8 : 0.000e+00
: 283 : vars_time8 : 0.000e+00
: 284 : vars_time8 : 0.000e+00
: 285 : vars_time8 : 0.000e+00
: 286 : vars_time8 : 0.000e+00
: 287 : vars_time8 : 0.000e+00
: 288 : vars_time8 : 0.000e+00
: 289 : vars_time8 : 0.000e+00
: 290 : vars_time8 : 0.000e+00
: 291 : vars_time8 : 0.000e+00
: 292 : vars_time9 : 0.000e+00
: 293 : vars_time9 : 0.000e+00
: 294 : vars_time9 : 0.000e+00
: 295 : vars_time9 : 0.000e+00
: 296 : vars_time9 : 0.000e+00
: 297 : vars_time9 : 0.000e+00
: 298 : vars_time9 : 0.000e+00
: 299 : vars_time9 : 0.000e+00
: 300 : vars_time9 : 0.000e+00
: --------------------------------------------
TH1.Print Name = TrainingHistory_TMVA_LSTM_trainingError, Entries= 0, Total sum= 6.227
TH1.Print Name = TrainingHistory_TMVA_LSTM_valError, Entries= 0, Total sum= 6.3976
TH1.Print Name = TrainingHistory_TMVA_DNN_trainingError, Entries= 0, Total sum= 13.2375
TH1.Print Name = TrainingHistory_TMVA_DNN_valError, Entries= 0, Total sum= 13.2848
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
nthreads = 4
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: TMVA_LSTM for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00856 sec
Factory : Test method: TMVA_DNN for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00216 sec
Factory : Test method: BDTG for Classification performance
:
BDTG : [dataset] : Evaluation of BDTG on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00226 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: TMVA_LSTM
:
TMVA_LSTM : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN
:
TMVA_DNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: BDTG
:
BDTG : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDTG : 0.827
: dataset TMVA_LSTM : 0.774
: dataset TMVA_DNN : 0.682
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDTG : 0.145 (0.235) 0.485 (0.635) 0.788 (0.864)
: dataset TMVA_LSTM : 0.115 (0.118) 0.430 (0.415) 0.697 (0.702)
: dataset TMVA_DNN : 0.075 (0.028) 0.275 (0.253) 0.545 (0.561)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 800 events
:
Dataset:dataset : Created tree 'TrainTree' with 3200 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m