Running with nthreads = 4
--- RNNClassification : Using input file: time_data_t10_d30.root
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sgn of type Signal with 2000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg of type Background with 2000 events
number of variables is 300
vars_time0[0],vars_time0[1],vars_time0[2],vars_time0[3],vars_time0[4],vars_time0[5],vars_time0[6],vars_time0[7],vars_time0[8],vars_time0[9],vars_time0[10],vars_time0[11],vars_time0[12],vars_time0[13],vars_time0[14],vars_time0[15],vars_time0[16],vars_time0[17],vars_time0[18],vars_time0[19],vars_time0[20],vars_time0[21],vars_time0[22],vars_time0[23],vars_time0[24],vars_time0[25],vars_time0[26],vars_time0[27],vars_time0[28],vars_time0[29],vars_time1[0],vars_time1[1],vars_time1[2],vars_time1[3],vars_time1[4],vars_time1[5],vars_time1[6],vars_time1[7],vars_time1[8],vars_time1[9],vars_time1[10],vars_time1[11],vars_time1[12],vars_time1[13],vars_time1[14],vars_time1[15],vars_time1[16],vars_time1[17],vars_time1[18],vars_time1[19],vars_time1[20],vars_time1[21],vars_time1[22],vars_time1[23],vars_time1[24],vars_time1[25],vars_time1[26],vars_time1[27],vars_time1[28],vars_time1[29],vars_time2[0],vars_time2[1],vars_time2[2],vars_time2[3],vars_time2[4],vars_time2[5],vars_time2[6],vars_time2[7],vars_time2[8],vars_time2[9],vars_time2[10],vars_time2[11],vars_time2[12],vars_time2[13],vars_time2[14],vars_time2[15],vars_time2[16],vars_time2[17],vars_time2[18],vars_time2[19],vars_time2[20],vars_time2[21],vars_time2[22],vars_time2[23],vars_time2[24],vars_time2[25],vars_time2[26],vars_time2[27],vars_time2[28],vars_time2[29],vars_time3[0],vars_time3[1],vars_time3[2],vars_time3[3],vars_time3[4],vars_time3[5],vars_time3[6],vars_time3[7],vars_time3[8],vars_time3[9],vars_time3[10],vars_time3[11],vars_time3[12],vars_time3[13],vars_time3[14],vars_time3[15],vars_time3[16],vars_time3[17],vars_time3[18],vars_time3[19],vars_time3[20],vars_time3[21],vars_time3[22],vars_time3[23],vars_time3[24],vars_time3[25],vars_time3[26],vars_time3[27],vars_time3[28],vars_time3[29],vars_time4[0],vars_time4[1],vars_time4[2],vars_time4[3],vars_time4[4],vars_time4[5],vars_time4[6],vars_time4[7],vars_time4[8],vars_time4[9],vars_time4[10],vars_time4[11],vars_time4[12],vars_time4[13],vars_time4[14],vars_time4[15],vars_time4[16],vars_time4[17],vars_time4[18],vars_time4[19],vars_time4[20],vars_time4[21],vars_time4[22],vars_time4[23],vars_time4[24],vars_time4[25],vars_time4[26],vars_time4[27],vars_time4[28],vars_time4[29],vars_time5[0],vars_time5[1],vars_time5[2],vars_time5[3],vars_time5[4],vars_time5[5],vars_time5[6],vars_time5[7],vars_time5[8],vars_time5[9],vars_time5[10],vars_time5[11],vars_time5[12],vars_time5[13],vars_time5[14],vars_time5[15],vars_time5[16],vars_time5[17],vars_time5[18],vars_time5[19],vars_time5[20],vars_time5[21],vars_time5[22],vars_time5[23],vars_time5[24],vars_time5[25],vars_time5[26],vars_time5[27],vars_time5[28],vars_time5[29],vars_time6[0],vars_time6[1],vars_time6[2],vars_time6[3],vars_time6[4],vars_time6[5],vars_time6[6],vars_time6[7],vars_time6[8],vars_time6[9],vars_time6[10],vars_time6[11],vars_time6[12],vars_time6[13],vars_time6[14],vars_time6[15],vars_time6[16],vars_time6[17],vars_time6[18],vars_time6[19],vars_time6[20],vars_time6[21],vars_time6[22],vars_time6[23],vars_time6[24],vars_time6[25],vars_time6[26],vars_time6[27],vars_time6[28],vars_time6[29],vars_time7[0],vars_time7[1],vars_time7[2],vars_time7[3],vars_time7[4],vars_time7[5],vars_time7[6],vars_time7[7],vars_time7[8],vars_time7[9],vars_time7[10],vars_time7[11],vars_time7[12],vars_time7[13],vars_time7[14],vars_time7[15],vars_time7[16],vars_time7[17],vars_time7[18],vars_time7[19],vars_time7[20],vars_time7[21],vars_time7[22],vars_time7[23],vars_time7[24],vars_time7[25],vars_time7[26],vars_time7[27],vars_time7[28],vars_time7[29],vars_time8[0],vars_time8[1],vars_time8[2],vars_time8[3],vars_time8[4],vars_time8[5],vars_time8[6],vars_time8[7],vars_time8[8],vars_time8[9],vars_time8[10],vars_time8[11],vars_time8[12],vars_time8[13],vars_time8[14],vars_time8[15],vars_time8[16],vars_time8[17],vars_time8[18],vars_time8[19],vars_time8[20],vars_time8[21],vars_time8[22],vars_time8[23],vars_time8[24],vars_time8[25],vars_time8[26],vars_time8[27],vars_time8[28],vars_time8[29],vars_time9[0],vars_time9[1],vars_time9[2],vars_time9[3],vars_time9[4],vars_time9[5],vars_time9[6],vars_time9[7],vars_time9[8],vars_time9[9],vars_time9[10],vars_time9[11],vars_time9[12],vars_time9[13],vars_time9[14],vars_time9[15],vars_time9[16],vars_time9[17],vars_time9[18],vars_time9[19],vars_time9[20],vars_time9[21],vars_time9[22],vars_time9[23],vars_time9[24],vars_time9[25],vars_time9[26],vars_time9[27],vars_time9[28],vars_time9[29],
prepared DATA LOADER
Factory : Booking method: ␛[1mTMVA_LSTM␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "10|30" [The Layout of the input]
: Layout: "LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
: RandomSeed: "1234" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "0.2" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_DNN␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|1|300" [The Layout of the input]
: Layout: "DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mBDTG␛[0m
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sgn
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 1600
: Signal -- testing events : 400
: Signal -- training and testing events: 2000
: Background -- training events : 1600
: Background -- testing events : 400
: Background -- training and testing events: 2000
:
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: TMVA_LSTM for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 10, 1, 30 ) Batch size = 100 Loss function = C
Layer 0 LSTM Layer: (NInput = 30, NState = 10, NTime = 10 ) Output = ( 100 , 10 , 10 )
Layer 1 RESHAPE Layer Input = ( 1 , 10 , 10 ) Output = ( 1 , 100 , 100 )
Layer 2 DENSE Layer: ( Input = 100 , Width = 64 ) Output = ( 1 , 100 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.71511
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.698592 0.699001 0.061062 0.00698444 46229.9 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.688563 0.687198 0.0599826 0.00678409 46993.8 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.676594 0.680766 0.0591647 0.00676814 47713 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.66565 0.680242 0.0591607 0.00682246 47766.3 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.647734 0.652661 0.0594522 0.00680203 47483.3 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.614368 0.617047 0.0596093 0.00669556 47246.7 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.587476 0.600996 0.0590848 0.00670045 47724.2 0
: 8 | 0.566147 0.605564 0.0592527 0.00673515 47603.2 1
: 9 | 0.548129 0.60133 0.0583775 0.00666909 48348 2
: 10 Minimum Test error found - save the configuration
: 10 | 0.533742 0.57279 0.0587348 0.0067862 48124.5 0
: 11 | 0.52008 0.588963 0.0588928 0.00660425 47811.6 1
: 12 | 0.509488 0.580566 0.0586441 0.00656985 48008.4 2
: 13 Minimum Test error found - save the configuration
: 13 | 0.495222 0.558593 0.0593217 0.0068401 47635.8 0
: 14 | 0.485716 0.571477 0.058915 0.00664134 47825.2 1
: 15 | 0.472426 0.569843 0.0586864 0.00662826 48023.2 2
: 16 Minimum Test error found - save the configuration
: 16 | 0.468082 0.54727 0.0589762 0.00673138 47851.6 0
: 17 Minimum Test error found - save the configuration
: 17 | 0.455897 0.538974 0.0595626 0.00687662 47451 0
: 18 Minimum Test error found - save the configuration
: 18 | 0.451073 0.530431 0.0591369 0.00667362 47652.3 0
: 19 | 0.446586 0.539315 0.0584714 0.00657349 48171.5 1
: 20 Minimum Test error found - save the configuration
: 20 | 0.438924 0.521546 0.0590839 0.0066537 47682.4 0
:
: Elapsed time for training with 3200 events: 1.2 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.036 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_DNN for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 1, 1, 300 ) Batch size = 256 Loss function = C
Layer 0 DENSE Layer: ( Input = 300 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 1 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 2 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 256 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.910496
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.776647 0.688329 0.0156978 0.00172953 183272 0
: 2 | 0.707242 0.690902 0.0147318 0.00143209 192486 1
: 3 | 0.692355 0.698787 0.0146869 0.00141765 192927 2
: 4 | 0.685433 0.698314 0.0147848 0.00142217 191579 3
: 5 | 0.681304 0.693353 0.0149531 0.00137591 188551 4
: 6 Minimum Test error found - save the configuration
: 6 | 0.690697 0.687237 0.0148481 0.00161684 193482 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.690484 0.681628 0.0148157 0.00158976 193560 0
: 8 | 0.68445 0.682416 0.0149386 0.00148105 190228 1
: 9 Minimum Test error found - save the configuration
: 9 | 0.689627 0.674172 0.0150467 0.00163715 190909 0
: 10 | 0.678369 0.718838 0.0147767 0.00145311 192140 1
: 11 | 0.694014 0.682448 0.0150116 0.00146483 188975 2
: 12 | 0.683718 0.680094 0.0146741 0.00139538 192789 3
: 13 | 0.687696 0.713979 0.0147151 0.00141549 192487 4
: 14 | 0.672751 0.676314 0.0155271 0.00146945 182107 5
: 15 Minimum Test error found - save the configuration
: 15 | 0.676677 0.666673 0.0154016 0.00164181 186049 0
: 16 | 0.683236 0.681943 0.0150709 0.00140488 187326 1
: 17 | 0.688718 0.680787 0.0151991 0.00148172 186624 2
: 18 | 0.685112 0.678761 0.015111 0.00147278 187707 3
: 19 | 0.681137 0.678615 0.0145813 0.00146883 195233 4
: 20 | 0.686145 0.680104 0.0138551 0.00130462 203977 5
:
: Elapsed time for training with 3200 events: 0.302 sec
: Evaluate deep neural network on CPU using batches with size = 256
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.00902 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.class.C␛[0m
Factory : Training finished
:
Factory : Train method: BDTG for Classification
:
BDTG : #events: (reweighted) sig: 1600 bkg: 1600
: #events: (unweighted) sig: 1600 bkg: 1600
: Training 100 Decision Trees ... patience please
: Elapsed time for training with 3200 events: 0.822 sec
BDTG : [dataset] : Evaluation of BDTG on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.00963 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_BDTG.class.C␛[0m
: data_RNN_CPU.root:/dataset/Method_BDT/BDTG
Factory : Training finished
:
: Ranking input variables (method specific)...
: No variable ranking supplied by classifier: TMVA_LSTM
: No variable ranking supplied by classifier: TMVA_DNN
BDTG : Ranking result (top variable is best ranked)
: --------------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------------
: 1 : vars_time9 : 2.115e-02
: 2 : vars_time7 : 1.838e-02
: 3 : vars_time7 : 1.804e-02
: 4 : vars_time7 : 1.799e-02
: 5 : vars_time9 : 1.791e-02
: 6 : vars_time8 : 1.763e-02
: 7 : vars_time6 : 1.738e-02
: 8 : vars_time8 : 1.735e-02
: 9 : vars_time9 : 1.724e-02
: 10 : vars_time6 : 1.631e-02
: 11 : vars_time8 : 1.606e-02
: 12 : vars_time6 : 1.571e-02
: 13 : vars_time7 : 1.549e-02
: 14 : vars_time9 : 1.539e-02
: 15 : vars_time9 : 1.513e-02
: 16 : vars_time9 : 1.506e-02
: 17 : vars_time8 : 1.494e-02
: 18 : vars_time6 : 1.481e-02
: 19 : vars_time0 : 1.460e-02
: 20 : vars_time9 : 1.425e-02
: 21 : vars_time7 : 1.401e-02
: 22 : vars_time5 : 1.388e-02
: 23 : vars_time7 : 1.370e-02
: 24 : vars_time8 : 1.370e-02
: 25 : vars_time5 : 1.368e-02
: 26 : vars_time9 : 1.339e-02
: 27 : vars_time6 : 1.291e-02
: 28 : vars_time6 : 1.264e-02
: 29 : vars_time1 : 1.219e-02
: 30 : vars_time6 : 1.199e-02
: 31 : vars_time9 : 1.183e-02
: 32 : vars_time0 : 1.148e-02
: 33 : vars_time7 : 1.139e-02
: 34 : vars_time7 : 1.138e-02
: 35 : vars_time9 : 1.134e-02
: 36 : vars_time8 : 1.131e-02
: 37 : vars_time8 : 1.099e-02
: 38 : vars_time0 : 1.093e-02
: 39 : vars_time0 : 1.082e-02
: 40 : vars_time8 : 1.073e-02
: 41 : vars_time8 : 1.061e-02
: 42 : vars_time9 : 1.034e-02
: 43 : vars_time8 : 1.033e-02
: 44 : vars_time8 : 9.716e-03
: 45 : vars_time9 : 9.687e-03
: 46 : vars_time5 : 9.648e-03
: 47 : vars_time7 : 9.548e-03
: 48 : vars_time9 : 9.536e-03
: 49 : vars_time7 : 9.283e-03
: 50 : vars_time5 : 9.191e-03
: 51 : vars_time8 : 9.088e-03
: 52 : vars_time8 : 8.839e-03
: 53 : vars_time5 : 8.839e-03
: 54 : vars_time0 : 8.586e-03
: 55 : vars_time7 : 8.316e-03
: 56 : vars_time9 : 8.016e-03
: 57 : vars_time8 : 7.804e-03
: 58 : vars_time8 : 7.568e-03
: 59 : vars_time9 : 7.537e-03
: 60 : vars_time4 : 7.412e-03
: 61 : vars_time5 : 7.341e-03
: 62 : vars_time5 : 7.324e-03
: 63 : vars_time8 : 7.300e-03
: 64 : vars_time8 : 7.092e-03
: 65 : vars_time0 : 7.005e-03
: 66 : vars_time5 : 6.669e-03
: 67 : vars_time2 : 6.576e-03
: 68 : vars_time4 : 6.543e-03
: 69 : vars_time9 : 6.512e-03
: 70 : vars_time0 : 6.396e-03
: 71 : vars_time5 : 6.336e-03
: 72 : vars_time2 : 6.166e-03
: 73 : vars_time9 : 6.063e-03
: 74 : vars_time0 : 5.968e-03
: 75 : vars_time1 : 5.925e-03
: 76 : vars_time9 : 5.780e-03
: 77 : vars_time5 : 5.666e-03
: 78 : vars_time6 : 5.554e-03
: 79 : vars_time1 : 5.512e-03
: 80 : vars_time7 : 5.482e-03
: 81 : vars_time3 : 5.480e-03
: 82 : vars_time0 : 5.391e-03
: 83 : vars_time8 : 5.111e-03
: 84 : vars_time0 : 5.092e-03
: 85 : vars_time4 : 5.052e-03
: 86 : vars_time4 : 5.042e-03
: 87 : vars_time9 : 4.981e-03
: 88 : vars_time3 : 4.929e-03
: 89 : vars_time7 : 4.788e-03
: 90 : vars_time4 : 4.774e-03
: 91 : vars_time6 : 4.724e-03
: 92 : vars_time2 : 4.631e-03
: 93 : vars_time3 : 4.510e-03
: 94 : vars_time0 : 4.493e-03
: 95 : vars_time3 : 4.384e-03
: 96 : vars_time7 : 4.280e-03
: 97 : vars_time7 : 4.245e-03
: 98 : vars_time1 : 4.163e-03
: 99 : vars_time1 : 4.080e-03
: 100 : vars_time5 : 4.021e-03
: 101 : vars_time9 : 3.834e-03
: 102 : vars_time7 : 3.767e-03
: 103 : vars_time9 : 3.706e-03
: 104 : vars_time4 : 3.616e-03
: 105 : vars_time5 : 3.284e-03
: 106 : vars_time3 : 2.880e-03
: 107 : vars_time7 : 2.561e-03
: 108 : vars_time0 : 0.000e+00
: 109 : vars_time0 : 0.000e+00
: 110 : vars_time0 : 0.000e+00
: 111 : vars_time0 : 0.000e+00
: 112 : vars_time0 : 0.000e+00
: 113 : vars_time0 : 0.000e+00
: 114 : vars_time0 : 0.000e+00
: 115 : vars_time0 : 0.000e+00
: 116 : vars_time0 : 0.000e+00
: 117 : vars_time0 : 0.000e+00
: 118 : vars_time0 : 0.000e+00
: 119 : vars_time0 : 0.000e+00
: 120 : vars_time0 : 0.000e+00
: 121 : vars_time0 : 0.000e+00
: 122 : vars_time0 : 0.000e+00
: 123 : vars_time0 : 0.000e+00
: 124 : vars_time0 : 0.000e+00
: 125 : vars_time0 : 0.000e+00
: 126 : vars_time0 : 0.000e+00
: 127 : vars_time1 : 0.000e+00
: 128 : vars_time1 : 0.000e+00
: 129 : vars_time1 : 0.000e+00
: 130 : vars_time1 : 0.000e+00
: 131 : vars_time1 : 0.000e+00
: 132 : vars_time1 : 0.000e+00
: 133 : vars_time1 : 0.000e+00
: 134 : vars_time1 : 0.000e+00
: 135 : vars_time1 : 0.000e+00
: 136 : vars_time1 : 0.000e+00
: 137 : vars_time1 : 0.000e+00
: 138 : vars_time1 : 0.000e+00
: 139 : vars_time1 : 0.000e+00
: 140 : vars_time1 : 0.000e+00
: 141 : vars_time1 : 0.000e+00
: 142 : vars_time1 : 0.000e+00
: 143 : vars_time1 : 0.000e+00
: 144 : vars_time1 : 0.000e+00
: 145 : vars_time1 : 0.000e+00
: 146 : vars_time1 : 0.000e+00
: 147 : vars_time1 : 0.000e+00
: 148 : vars_time1 : 0.000e+00
: 149 : vars_time1 : 0.000e+00
: 150 : vars_time1 : 0.000e+00
: 151 : vars_time1 : 0.000e+00
: 152 : vars_time2 : 0.000e+00
: 153 : vars_time2 : 0.000e+00
: 154 : vars_time2 : 0.000e+00
: 155 : vars_time2 : 0.000e+00
: 156 : vars_time2 : 0.000e+00
: 157 : vars_time2 : 0.000e+00
: 158 : vars_time2 : 0.000e+00
: 159 : vars_time2 : 0.000e+00
: 160 : vars_time2 : 0.000e+00
: 161 : vars_time2 : 0.000e+00
: 162 : vars_time2 : 0.000e+00
: 163 : vars_time2 : 0.000e+00
: 164 : vars_time2 : 0.000e+00
: 165 : vars_time2 : 0.000e+00
: 166 : vars_time2 : 0.000e+00
: 167 : vars_time2 : 0.000e+00
: 168 : vars_time2 : 0.000e+00
: 169 : vars_time2 : 0.000e+00
: 170 : vars_time2 : 0.000e+00
: 171 : vars_time2 : 0.000e+00
: 172 : vars_time2 : 0.000e+00
: 173 : vars_time2 : 0.000e+00
: 174 : vars_time2 : 0.000e+00
: 175 : vars_time2 : 0.000e+00
: 176 : vars_time2 : 0.000e+00
: 177 : vars_time2 : 0.000e+00
: 178 : vars_time2 : 0.000e+00
: 179 : vars_time3 : 0.000e+00
: 180 : vars_time3 : 0.000e+00
: 181 : vars_time3 : 0.000e+00
: 182 : vars_time3 : 0.000e+00
: 183 : vars_time3 : 0.000e+00
: 184 : vars_time3 : 0.000e+00
: 185 : vars_time3 : 0.000e+00
: 186 : vars_time3 : 0.000e+00
: 187 : vars_time3 : 0.000e+00
: 188 : vars_time3 : 0.000e+00
: 189 : vars_time3 : 0.000e+00
: 190 : vars_time3 : 0.000e+00
: 191 : vars_time3 : 0.000e+00
: 192 : vars_time3 : 0.000e+00
: 193 : vars_time3 : 0.000e+00
: 194 : vars_time3 : 0.000e+00
: 195 : vars_time3 : 0.000e+00
: 196 : vars_time3 : 0.000e+00
: 197 : vars_time3 : 0.000e+00
: 198 : vars_time3 : 0.000e+00
: 199 : vars_time3 : 0.000e+00
: 200 : vars_time3 : 0.000e+00
: 201 : vars_time3 : 0.000e+00
: 202 : vars_time3 : 0.000e+00
: 203 : vars_time3 : 0.000e+00
: 204 : vars_time4 : 0.000e+00
: 205 : vars_time4 : 0.000e+00
: 206 : vars_time4 : 0.000e+00
: 207 : vars_time4 : 0.000e+00
: 208 : vars_time4 : 0.000e+00
: 209 : vars_time4 : 0.000e+00
: 210 : vars_time4 : 0.000e+00
: 211 : vars_time4 : 0.000e+00
: 212 : vars_time4 : 0.000e+00
: 213 : vars_time4 : 0.000e+00
: 214 : vars_time4 : 0.000e+00
: 215 : vars_time4 : 0.000e+00
: 216 : vars_time4 : 0.000e+00
: 217 : vars_time4 : 0.000e+00
: 218 : vars_time4 : 0.000e+00
: 219 : vars_time4 : 0.000e+00
: 220 : vars_time4 : 0.000e+00
: 221 : vars_time4 : 0.000e+00
: 222 : vars_time4 : 0.000e+00
: 223 : vars_time4 : 0.000e+00
: 224 : vars_time4 : 0.000e+00
: 225 : vars_time4 : 0.000e+00
: 226 : vars_time4 : 0.000e+00
: 227 : vars_time4 : 0.000e+00
: 228 : vars_time5 : 0.000e+00
: 229 : vars_time5 : 0.000e+00
: 230 : vars_time5 : 0.000e+00
: 231 : vars_time5 : 0.000e+00
: 232 : vars_time5 : 0.000e+00
: 233 : vars_time5 : 0.000e+00
: 234 : vars_time5 : 0.000e+00
: 235 : vars_time5 : 0.000e+00
: 236 : vars_time5 : 0.000e+00
: 237 : vars_time5 : 0.000e+00
: 238 : vars_time5 : 0.000e+00
: 239 : vars_time5 : 0.000e+00
: 240 : vars_time5 : 0.000e+00
: 241 : vars_time5 : 0.000e+00
: 242 : vars_time5 : 0.000e+00
: 243 : vars_time5 : 0.000e+00
: 244 : vars_time5 : 0.000e+00
: 245 : vars_time5 : 0.000e+00
: 246 : vars_time6 : 0.000e+00
: 247 : vars_time6 : 0.000e+00
: 248 : vars_time6 : 0.000e+00
: 249 : vars_time6 : 0.000e+00
: 250 : vars_time6 : 0.000e+00
: 251 : vars_time6 : 0.000e+00
: 252 : vars_time6 : 0.000e+00
: 253 : vars_time6 : 0.000e+00
: 254 : vars_time6 : 0.000e+00
: 255 : vars_time6 : 0.000e+00
: 256 : vars_time6 : 0.000e+00
: 257 : vars_time6 : 0.000e+00
: 258 : vars_time6 : 0.000e+00
: 259 : vars_time6 : 0.000e+00
: 260 : vars_time6 : 0.000e+00
: 261 : vars_time6 : 0.000e+00
: 262 : vars_time6 : 0.000e+00
: 263 : vars_time6 : 0.000e+00
: 264 : vars_time6 : 0.000e+00
: 265 : vars_time6 : 0.000e+00
: 266 : vars_time6 : 0.000e+00
: 267 : vars_time7 : 0.000e+00
: 268 : vars_time7 : 0.000e+00
: 269 : vars_time7 : 0.000e+00
: 270 : vars_time7 : 0.000e+00
: 271 : vars_time7 : 0.000e+00
: 272 : vars_time7 : 0.000e+00
: 273 : vars_time7 : 0.000e+00
: 274 : vars_time7 : 0.000e+00
: 275 : vars_time7 : 0.000e+00
: 276 : vars_time7 : 0.000e+00
: 277 : vars_time7 : 0.000e+00
: 278 : vars_time7 : 0.000e+00
: 279 : vars_time7 : 0.000e+00
: 280 : vars_time8 : 0.000e+00
: 281 : vars_time8 : 0.000e+00
: 282 : vars_time8 : 0.000e+00
: 283 : vars_time8 : 0.000e+00
: 284 : vars_time8 : 0.000e+00
: 285 : vars_time8 : 0.000e+00
: 286 : vars_time8 : 0.000e+00
: 287 : vars_time8 : 0.000e+00
: 288 : vars_time8 : 0.000e+00
: 289 : vars_time8 : 0.000e+00
: 290 : vars_time8 : 0.000e+00
: 291 : vars_time8 : 0.000e+00
: 292 : vars_time9 : 0.000e+00
: 293 : vars_time9 : 0.000e+00
: 294 : vars_time9 : 0.000e+00
: 295 : vars_time9 : 0.000e+00
: 296 : vars_time9 : 0.000e+00
: 297 : vars_time9 : 0.000e+00
: 298 : vars_time9 : 0.000e+00
: 299 : vars_time9 : 0.000e+00
: 300 : vars_time9 : 0.000e+00
: --------------------------------------------
TH1.Print Name = TrainingHistory_TMVA_LSTM_trainingError, Entries= 0, Total sum= 10.9705
TH1.Print Name = TrainingHistory_TMVA_LSTM_valError, Entries= 0, Total sum= 11.9446
TH1.Print Name = TrainingHistory_TMVA_DNN_trainingError, Entries= 0, Total sum= 13.8158
TH1.Print Name = TrainingHistory_TMVA_DNN_valError, Entries= 0, Total sum= 13.7337
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
nthreads = 4
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: TMVA_LSTM for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00872 sec
Factory : Test method: TMVA_DNN for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00218 sec
Factory : Test method: BDTG for Classification performance
:
BDTG : [dataset] : Evaluation of BDTG on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00244 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: TMVA_LSTM
:
TMVA_LSTM : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN
:
TMVA_DNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: BDTG
:
BDTG : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_LSTM : 0.829
: dataset BDTG : 0.827
: dataset TMVA_DNN : 0.563
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_LSTM : 0.195 (0.215) 0.530 (0.541) 0.788 (0.802)
: dataset BDTG : 0.145 (0.235) 0.485 (0.635) 0.788 (0.864)
: dataset TMVA_DNN : 0.020 (0.019) 0.141 (0.158) 0.398 (0.418)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 800 events
:
Dataset:dataset : Created tree 'TrainTree' with 3200 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m