Running with nthreads = 4
--- RNNClassification : Using input file: time_data_t10_d30.root
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sgn of type Signal with 2000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg of type Background with 2000 events
number of variables is 300
vars_time0[0],vars_time0[1],vars_time0[2],vars_time0[3],vars_time0[4],vars_time0[5],vars_time0[6],vars_time0[7],vars_time0[8],vars_time0[9],vars_time0[10],vars_time0[11],vars_time0[12],vars_time0[13],vars_time0[14],vars_time0[15],vars_time0[16],vars_time0[17],vars_time0[18],vars_time0[19],vars_time0[20],vars_time0[21],vars_time0[22],vars_time0[23],vars_time0[24],vars_time0[25],vars_time0[26],vars_time0[27],vars_time0[28],vars_time0[29],vars_time1[0],vars_time1[1],vars_time1[2],vars_time1[3],vars_time1[4],vars_time1[5],vars_time1[6],vars_time1[7],vars_time1[8],vars_time1[9],vars_time1[10],vars_time1[11],vars_time1[12],vars_time1[13],vars_time1[14],vars_time1[15],vars_time1[16],vars_time1[17],vars_time1[18],vars_time1[19],vars_time1[20],vars_time1[21],vars_time1[22],vars_time1[23],vars_time1[24],vars_time1[25],vars_time1[26],vars_time1[27],vars_time1[28],vars_time1[29],vars_time2[0],vars_time2[1],vars_time2[2],vars_time2[3],vars_time2[4],vars_time2[5],vars_time2[6],vars_time2[7],vars_time2[8],vars_time2[9],vars_time2[10],vars_time2[11],vars_time2[12],vars_time2[13],vars_time2[14],vars_time2[15],vars_time2[16],vars_time2[17],vars_time2[18],vars_time2[19],vars_time2[20],vars_time2[21],vars_time2[22],vars_time2[23],vars_time2[24],vars_time2[25],vars_time2[26],vars_time2[27],vars_time2[28],vars_time2[29],vars_time3[0],vars_time3[1],vars_time3[2],vars_time3[3],vars_time3[4],vars_time3[5],vars_time3[6],vars_time3[7],vars_time3[8],vars_time3[9],vars_time3[10],vars_time3[11],vars_time3[12],vars_time3[13],vars_time3[14],vars_time3[15],vars_time3[16],vars_time3[17],vars_time3[18],vars_time3[19],vars_time3[20],vars_time3[21],vars_time3[22],vars_time3[23],vars_time3[24],vars_time3[25],vars_time3[26],vars_time3[27],vars_time3[28],vars_time3[29],vars_time4[0],vars_time4[1],vars_time4[2],vars_time4[3],vars_time4[4],vars_time4[5],vars_time4[6],vars_time4[7],vars_time4[8],vars_time4[9],vars_time4[10],vars_time4[11],vars_time4[12],vars_time4[13],vars_time4[14],vars_time4[15],vars_time4[16],vars_time4[17],vars_time4[18],vars_time4[19],vars_time4[20],vars_time4[21],vars_time4[22],vars_time4[23],vars_time4[24],vars_time4[25],vars_time4[26],vars_time4[27],vars_time4[28],vars_time4[29],vars_time5[0],vars_time5[1],vars_time5[2],vars_time5[3],vars_time5[4],vars_time5[5],vars_time5[6],vars_time5[7],vars_time5[8],vars_time5[9],vars_time5[10],vars_time5[11],vars_time5[12],vars_time5[13],vars_time5[14],vars_time5[15],vars_time5[16],vars_time5[17],vars_time5[18],vars_time5[19],vars_time5[20],vars_time5[21],vars_time5[22],vars_time5[23],vars_time5[24],vars_time5[25],vars_time5[26],vars_time5[27],vars_time5[28],vars_time5[29],vars_time6[0],vars_time6[1],vars_time6[2],vars_time6[3],vars_time6[4],vars_time6[5],vars_time6[6],vars_time6[7],vars_time6[8],vars_time6[9],vars_time6[10],vars_time6[11],vars_time6[12],vars_time6[13],vars_time6[14],vars_time6[15],vars_time6[16],vars_time6[17],vars_time6[18],vars_time6[19],vars_time6[20],vars_time6[21],vars_time6[22],vars_time6[23],vars_time6[24],vars_time6[25],vars_time6[26],vars_time6[27],vars_time6[28],vars_time6[29],vars_time7[0],vars_time7[1],vars_time7[2],vars_time7[3],vars_time7[4],vars_time7[5],vars_time7[6],vars_time7[7],vars_time7[8],vars_time7[9],vars_time7[10],vars_time7[11],vars_time7[12],vars_time7[13],vars_time7[14],vars_time7[15],vars_time7[16],vars_time7[17],vars_time7[18],vars_time7[19],vars_time7[20],vars_time7[21],vars_time7[22],vars_time7[23],vars_time7[24],vars_time7[25],vars_time7[26],vars_time7[27],vars_time7[28],vars_time7[29],vars_time8[0],vars_time8[1],vars_time8[2],vars_time8[3],vars_time8[4],vars_time8[5],vars_time8[6],vars_time8[7],vars_time8[8],vars_time8[9],vars_time8[10],vars_time8[11],vars_time8[12],vars_time8[13],vars_time8[14],vars_time8[15],vars_time8[16],vars_time8[17],vars_time8[18],vars_time8[19],vars_time8[20],vars_time8[21],vars_time8[22],vars_time8[23],vars_time8[24],vars_time8[25],vars_time8[26],vars_time8[27],vars_time8[28],vars_time8[29],vars_time9[0],vars_time9[1],vars_time9[2],vars_time9[3],vars_time9[4],vars_time9[5],vars_time9[6],vars_time9[7],vars_time9[8],vars_time9[9],vars_time9[10],vars_time9[11],vars_time9[12],vars_time9[13],vars_time9[14],vars_time9[15],vars_time9[16],vars_time9[17],vars_time9[18],vars_time9[19],vars_time9[20],vars_time9[21],vars_time9[22],vars_time9[23],vars_time9[24],vars_time9[25],vars_time9[26],vars_time9[27],vars_time9[28],vars_time9[29],
prepared DATA LOADER
Factory : Booking method: ␛[1mTMVA_LSTM␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "10|30" [The Layout of the input]
: Layout: "LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
: RandomSeed: "1234" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "0.2" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_DNN␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|1|300" [The Layout of the input]
: Layout: "DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mBDTG␛[0m
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sgn
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 1600
: Signal -- testing events : 400
: Signal -- training and testing events: 2000
: Background -- training events : 1600
: Background -- testing events : 400
: Background -- training and testing events: 2000
:
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: TMVA_LSTM for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 10, 1, 30 ) Batch size = 100 Loss function = C
Layer 0 LSTM Layer: (NInput = 30, NState = 10, NTime = 10 ) Output = ( 100 , 10 , 10 )
Layer 1 RESHAPE Layer Input = ( 1 , 10 , 10 ) Output = ( 1 , 100 , 100 )
Layer 2 DENSE Layer: ( Input = 100 , Width = 64 ) Output = ( 1 , 100 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.722168
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.699009 0.700123 0.0761856 0.00846203 36914.8 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.686905 0.690199 0.0753261 0.0082499 37271 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.67322 0.677749 0.0756634 0.00816823 37039.7 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.65922 0.668529 0.0750575 0.00823047 37410 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.649202 0.654877 0.0754728 0.00816154 37140.9 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.634758 0.650365 0.0762018 0.00818837 36757.5 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.626148 0.645636 0.075417 0.00820436 37195.4 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.608375 0.640523 0.0756361 0.00821084 37078.1 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.59603 0.62123 0.0762905 0.0083689 36807.1 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.584641 0.614741 0.0769887 0.00846098 36481.6 0
: 11 Minimum Test error found - save the configuration
: 11 | 0.578242 0.598519 0.0754908 0.00824837 37178.9 0
: 12 | 0.567468 0.605858 0.0789333 0.00822691 35357.5 1
: 13 Minimum Test error found - save the configuration
: 13 | 0.550904 0.580577 0.0750935 0.00847629 37527.9 0
: 14 | 0.536433 0.581369 0.0749762 0.00824057 37461.2 1
: 15 Minimum Test error found - save the configuration
: 15 | 0.529466 0.5779 0.0750308 0.00841639 37529.4 0
: 16 Minimum Test error found - save the configuration
: 16 | 0.50967 0.558073 0.0754159 0.00908908 37692.2 0
: 17 Minimum Test error found - save the configuration
: 17 | 0.51188 0.553338 0.0767304 0.00835904 36565 0
: 18 Minimum Test error found - save the configuration
: 18 | 0.501594 0.543121 0.0765434 0.00847713 36728.9 0
: 19 Minimum Test error found - save the configuration
: 19 | 0.488242 0.53155 0.0786185 0.00860817 35709 0
: 20 | 0.482683 0.537483 0.0779907 0.0084774 35964.4 1
:
: Elapsed time for training with 3200 events: 1.54 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.0437 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_DNN for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 1, 1, 300 ) Batch size = 256 Loss function = C
Layer 0 DENSE Layer: ( Input = 300 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 1 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 2 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 256 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.782875
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.730699 0.714219 0.0177791 0.00186386 160852 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.686108 0.694467 0.0161711 0.00173464 177329 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.678572 0.693402 0.0161359 0.00179614 178525 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.677752 0.688406 0.0161111 0.00170371 177686 0
: 5 | 0.671235 0.69494 0.015588 0.00146435 181257 1
: 6 | 0.673669 0.695874 0.015597 0.00146177 181107 2
: 7 | 0.675539 0.690758 0.0158284 0.00169695 181156 3
: 8 Minimum Test error found - save the configuration
: 8 | 0.670089 0.685534 0.0196258 0.00245734 149110 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.676175 0.682205 0.0159315 0.00166313 179418 0
: 10 | 0.679659 0.686667 0.0154381 0.00142995 182751 1
: 11 | 0.674163 0.690308 0.0156441 0.00144671 180314 2
: 12 Minimum Test error found - save the configuration
: 12 | 0.669642 0.676568 0.0186978 0.00221426 155306 0
: 13 Minimum Test error found - save the configuration
: 13 | 0.668218 0.67443 0.0195899 0.00171068 143183 0
: 14 | 0.664288 0.684523 0.0153739 0.00142811 183569 1
: 15 | 0.654032 0.677024 0.0155659 0.00142016 180973 2
: 16 | 0.66455 0.678782 0.0156409 0.00148306 180818 3
: 17 | 0.663574 0.674666 0.0153504 0.00141693 183731 4
: 18 Minimum Test error found - save the configuration
: 18 | 0.657703 0.672028 0.01532 0.00158464 186380 0
: 19 | 0.662417 0.675014 0.015119 0.0014115 186759 1
: 20 Minimum Test error found - save the configuration
: 20 | 0.655208 0.671303 0.0158895 0.00170709 180505 0
:
: Elapsed time for training with 3200 events: 0.331 sec
: Evaluate deep neural network on CPU using batches with size = 256
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.0108 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.class.C␛[0m
Factory : Training finished
:
Factory : Train method: BDTG for Classification
:
BDTG : #events: (reweighted) sig: 1600 bkg: 1600
: #events: (unweighted) sig: 1600 bkg: 1600
: Training 100 Decision Trees ... patience please
: Elapsed time for training with 3200 events: 1 sec
BDTG : [dataset] : Evaluation of BDTG on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.0109 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_BDTG.class.C␛[0m
: data_RNN_CPU.root:/dataset/Method_BDT/BDTG
Factory : Training finished
:
: Ranking input variables (method specific)...
: No variable ranking supplied by classifier: TMVA_LSTM
: No variable ranking supplied by classifier: TMVA_DNN
BDTG : Ranking result (top variable is best ranked)
: --------------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------------
: 1 : vars_time7 : 2.322e-02
: 2 : vars_time8 : 2.266e-02
: 3 : vars_time9 : 2.127e-02
: 4 : vars_time8 : 2.117e-02
: 5 : vars_time9 : 1.958e-02
: 6 : vars_time8 : 1.931e-02
: 7 : vars_time6 : 1.783e-02
: 8 : vars_time9 : 1.761e-02
: 9 : vars_time8 : 1.678e-02
: 10 : vars_time7 : 1.639e-02
: 11 : vars_time8 : 1.574e-02
: 12 : vars_time7 : 1.544e-02
: 13 : vars_time7 : 1.483e-02
: 14 : vars_time0 : 1.480e-02
: 15 : vars_time9 : 1.429e-02
: 16 : vars_time0 : 1.424e-02
: 17 : vars_time7 : 1.406e-02
: 18 : vars_time6 : 1.405e-02
: 19 : vars_time5 : 1.384e-02
: 20 : vars_time8 : 1.381e-02
: 21 : vars_time9 : 1.346e-02
: 22 : vars_time9 : 1.343e-02
: 23 : vars_time5 : 1.328e-02
: 24 : vars_time6 : 1.263e-02
: 25 : vars_time0 : 1.212e-02
: 26 : vars_time9 : 1.188e-02
: 27 : vars_time6 : 1.183e-02
: 28 : vars_time9 : 1.165e-02
: 29 : vars_time8 : 1.132e-02
: 30 : vars_time6 : 1.126e-02
: 31 : vars_time9 : 1.109e-02
: 32 : vars_time8 : 1.077e-02
: 33 : vars_time7 : 1.074e-02
: 34 : vars_time6 : 1.066e-02
: 35 : vars_time6 : 1.063e-02
: 36 : vars_time9 : 1.053e-02
: 37 : vars_time9 : 1.044e-02
: 38 : vars_time6 : 1.037e-02
: 39 : vars_time7 : 1.025e-02
: 40 : vars_time8 : 9.992e-03
: 41 : vars_time5 : 9.747e-03
: 42 : vars_time7 : 9.536e-03
: 43 : vars_time5 : 9.282e-03
: 44 : vars_time8 : 9.162e-03
: 45 : vars_time9 : 9.110e-03
: 46 : vars_time7 : 9.099e-03
: 47 : vars_time8 : 9.096e-03
: 48 : vars_time4 : 8.936e-03
: 49 : vars_time7 : 8.828e-03
: 50 : vars_time9 : 8.805e-03
: 51 : vars_time0 : 8.753e-03
: 52 : vars_time4 : 8.554e-03
: 53 : vars_time5 : 8.244e-03
: 54 : vars_time5 : 8.148e-03
: 55 : vars_time7 : 8.128e-03
: 56 : vars_time9 : 7.778e-03
: 57 : vars_time9 : 7.535e-03
: 58 : vars_time8 : 7.488e-03
: 59 : vars_time0 : 7.255e-03
: 60 : vars_time5 : 7.206e-03
: 61 : vars_time0 : 6.914e-03
: 62 : vars_time9 : 6.756e-03
: 63 : vars_time1 : 6.723e-03
: 64 : vars_time7 : 6.635e-03
: 65 : vars_time0 : 6.504e-03
: 66 : vars_time6 : 6.453e-03
: 67 : vars_time6 : 6.438e-03
: 68 : vars_time0 : 6.196e-03
: 69 : vars_time7 : 6.181e-03
: 70 : vars_time8 : 6.120e-03
: 71 : vars_time1 : 6.112e-03
: 72 : vars_time7 : 5.949e-03
: 73 : vars_time1 : 5.941e-03
: 74 : vars_time8 : 5.939e-03
: 75 : vars_time5 : 5.896e-03
: 76 : vars_time3 : 5.832e-03
: 77 : vars_time4 : 5.812e-03
: 78 : vars_time7 : 5.803e-03
: 79 : vars_time9 : 5.778e-03
: 80 : vars_time1 : 5.657e-03
: 81 : vars_time0 : 5.655e-03
: 82 : vars_time4 : 5.615e-03
: 83 : vars_time9 : 5.510e-03
: 84 : vars_time8 : 5.424e-03
: 85 : vars_time8 : 5.320e-03
: 86 : vars_time5 : 5.211e-03
: 87 : vars_time5 : 5.161e-03
: 88 : vars_time3 : 5.124e-03
: 89 : vars_time6 : 5.100e-03
: 90 : vars_time1 : 5.062e-03
: 91 : vars_time8 : 4.968e-03
: 92 : vars_time2 : 4.898e-03
: 93 : vars_time6 : 4.712e-03
: 94 : vars_time4 : 4.699e-03
: 95 : vars_time8 : 4.691e-03
: 96 : vars_time0 : 4.676e-03
: 97 : vars_time3 : 4.592e-03
: 98 : vars_time1 : 4.560e-03
: 99 : vars_time5 : 4.527e-03
: 100 : vars_time7 : 4.178e-03
: 101 : vars_time2 : 4.170e-03
: 102 : vars_time8 : 4.071e-03
: 103 : vars_time5 : 4.053e-03
: 104 : vars_time2 : 3.954e-03
: 105 : vars_time4 : 3.904e-03
: 106 : vars_time1 : 3.800e-03
: 107 : vars_time5 : 3.620e-03
: 108 : vars_time7 : 3.115e-03
: 109 : vars_time0 : 3.053e-03
: 110 : vars_time6 : 3.011e-03
: 111 : vars_time0 : 0.000e+00
: 112 : vars_time0 : 0.000e+00
: 113 : vars_time0 : 0.000e+00
: 114 : vars_time0 : 0.000e+00
: 115 : vars_time0 : 0.000e+00
: 116 : vars_time0 : 0.000e+00
: 117 : vars_time0 : 0.000e+00
: 118 : vars_time0 : 0.000e+00
: 119 : vars_time0 : 0.000e+00
: 120 : vars_time0 : 0.000e+00
: 121 : vars_time0 : 0.000e+00
: 122 : vars_time0 : 0.000e+00
: 123 : vars_time0 : 0.000e+00
: 124 : vars_time0 : 0.000e+00
: 125 : vars_time0 : 0.000e+00
: 126 : vars_time0 : 0.000e+00
: 127 : vars_time0 : 0.000e+00
: 128 : vars_time0 : 0.000e+00
: 129 : vars_time0 : 0.000e+00
: 130 : vars_time1 : 0.000e+00
: 131 : vars_time1 : 0.000e+00
: 132 : vars_time1 : 0.000e+00
: 133 : vars_time1 : 0.000e+00
: 134 : vars_time1 : 0.000e+00
: 135 : vars_time1 : 0.000e+00
: 136 : vars_time1 : 0.000e+00
: 137 : vars_time1 : 0.000e+00
: 138 : vars_time1 : 0.000e+00
: 139 : vars_time1 : 0.000e+00
: 140 : vars_time1 : 0.000e+00
: 141 : vars_time1 : 0.000e+00
: 142 : vars_time1 : 0.000e+00
: 143 : vars_time1 : 0.000e+00
: 144 : vars_time1 : 0.000e+00
: 145 : vars_time1 : 0.000e+00
: 146 : vars_time1 : 0.000e+00
: 147 : vars_time1 : 0.000e+00
: 148 : vars_time1 : 0.000e+00
: 149 : vars_time1 : 0.000e+00
: 150 : vars_time1 : 0.000e+00
: 151 : vars_time1 : 0.000e+00
: 152 : vars_time1 : 0.000e+00
: 153 : vars_time2 : 0.000e+00
: 154 : vars_time2 : 0.000e+00
: 155 : vars_time2 : 0.000e+00
: 156 : vars_time2 : 0.000e+00
: 157 : vars_time2 : 0.000e+00
: 158 : vars_time2 : 0.000e+00
: 159 : vars_time2 : 0.000e+00
: 160 : vars_time2 : 0.000e+00
: 161 : vars_time2 : 0.000e+00
: 162 : vars_time2 : 0.000e+00
: 163 : vars_time2 : 0.000e+00
: 164 : vars_time2 : 0.000e+00
: 165 : vars_time2 : 0.000e+00
: 166 : vars_time2 : 0.000e+00
: 167 : vars_time2 : 0.000e+00
: 168 : vars_time2 : 0.000e+00
: 169 : vars_time2 : 0.000e+00
: 170 : vars_time2 : 0.000e+00
: 171 : vars_time2 : 0.000e+00
: 172 : vars_time2 : 0.000e+00
: 173 : vars_time2 : 0.000e+00
: 174 : vars_time2 : 0.000e+00
: 175 : vars_time2 : 0.000e+00
: 176 : vars_time2 : 0.000e+00
: 177 : vars_time2 : 0.000e+00
: 178 : vars_time2 : 0.000e+00
: 179 : vars_time2 : 0.000e+00
: 180 : vars_time3 : 0.000e+00
: 181 : vars_time3 : 0.000e+00
: 182 : vars_time3 : 0.000e+00
: 183 : vars_time3 : 0.000e+00
: 184 : vars_time3 : 0.000e+00
: 185 : vars_time3 : 0.000e+00
: 186 : vars_time3 : 0.000e+00
: 187 : vars_time3 : 0.000e+00
: 188 : vars_time3 : 0.000e+00
: 189 : vars_time3 : 0.000e+00
: 190 : vars_time3 : 0.000e+00
: 191 : vars_time3 : 0.000e+00
: 192 : vars_time3 : 0.000e+00
: 193 : vars_time3 : 0.000e+00
: 194 : vars_time3 : 0.000e+00
: 195 : vars_time3 : 0.000e+00
: 196 : vars_time3 : 0.000e+00
: 197 : vars_time3 : 0.000e+00
: 198 : vars_time3 : 0.000e+00
: 199 : vars_time3 : 0.000e+00
: 200 : vars_time3 : 0.000e+00
: 201 : vars_time3 : 0.000e+00
: 202 : vars_time3 : 0.000e+00
: 203 : vars_time3 : 0.000e+00
: 204 : vars_time3 : 0.000e+00
: 205 : vars_time3 : 0.000e+00
: 206 : vars_time3 : 0.000e+00
: 207 : vars_time4 : 0.000e+00
: 208 : vars_time4 : 0.000e+00
: 209 : vars_time4 : 0.000e+00
: 210 : vars_time4 : 0.000e+00
: 211 : vars_time4 : 0.000e+00
: 212 : vars_time4 : 0.000e+00
: 213 : vars_time4 : 0.000e+00
: 214 : vars_time4 : 0.000e+00
: 215 : vars_time4 : 0.000e+00
: 216 : vars_time4 : 0.000e+00
: 217 : vars_time4 : 0.000e+00
: 218 : vars_time4 : 0.000e+00
: 219 : vars_time4 : 0.000e+00
: 220 : vars_time4 : 0.000e+00
: 221 : vars_time4 : 0.000e+00
: 222 : vars_time4 : 0.000e+00
: 223 : vars_time4 : 0.000e+00
: 224 : vars_time4 : 0.000e+00
: 225 : vars_time4 : 0.000e+00
: 226 : vars_time4 : 0.000e+00
: 227 : vars_time4 : 0.000e+00
: 228 : vars_time4 : 0.000e+00
: 229 : vars_time4 : 0.000e+00
: 230 : vars_time4 : 0.000e+00
: 231 : vars_time5 : 0.000e+00
: 232 : vars_time5 : 0.000e+00
: 233 : vars_time5 : 0.000e+00
: 234 : vars_time5 : 0.000e+00
: 235 : vars_time5 : 0.000e+00
: 236 : vars_time5 : 0.000e+00
: 237 : vars_time5 : 0.000e+00
: 238 : vars_time5 : 0.000e+00
: 239 : vars_time5 : 0.000e+00
: 240 : vars_time5 : 0.000e+00
: 241 : vars_time5 : 0.000e+00
: 242 : vars_time5 : 0.000e+00
: 243 : vars_time5 : 0.000e+00
: 244 : vars_time5 : 0.000e+00
: 245 : vars_time5 : 0.000e+00
: 246 : vars_time5 : 0.000e+00
: 247 : vars_time5 : 0.000e+00
: 248 : vars_time6 : 0.000e+00
: 249 : vars_time6 : 0.000e+00
: 250 : vars_time6 : 0.000e+00
: 251 : vars_time6 : 0.000e+00
: 252 : vars_time6 : 0.000e+00
: 253 : vars_time6 : 0.000e+00
: 254 : vars_time6 : 0.000e+00
: 255 : vars_time6 : 0.000e+00
: 256 : vars_time6 : 0.000e+00
: 257 : vars_time6 : 0.000e+00
: 258 : vars_time6 : 0.000e+00
: 259 : vars_time6 : 0.000e+00
: 260 : vars_time6 : 0.000e+00
: 261 : vars_time6 : 0.000e+00
: 262 : vars_time6 : 0.000e+00
: 263 : vars_time6 : 0.000e+00
: 264 : vars_time6 : 0.000e+00
: 265 : vars_time7 : 0.000e+00
: 266 : vars_time7 : 0.000e+00
: 267 : vars_time7 : 0.000e+00
: 268 : vars_time7 : 0.000e+00
: 269 : vars_time7 : 0.000e+00
: 270 : vars_time7 : 0.000e+00
: 271 : vars_time7 : 0.000e+00
: 272 : vars_time7 : 0.000e+00
: 273 : vars_time7 : 0.000e+00
: 274 : vars_time7 : 0.000e+00
: 275 : vars_time7 : 0.000e+00
: 276 : vars_time7 : 0.000e+00
: 277 : vars_time7 : 0.000e+00
: 278 : vars_time8 : 0.000e+00
: 279 : vars_time8 : 0.000e+00
: 280 : vars_time8 : 0.000e+00
: 281 : vars_time8 : 0.000e+00
: 282 : vars_time8 : 0.000e+00
: 283 : vars_time8 : 0.000e+00
: 284 : vars_time8 : 0.000e+00
: 285 : vars_time8 : 0.000e+00
: 286 : vars_time8 : 0.000e+00
: 287 : vars_time8 : 0.000e+00
: 288 : vars_time8 : 0.000e+00
: 289 : vars_time9 : 0.000e+00
: 290 : vars_time9 : 0.000e+00
: 291 : vars_time9 : 0.000e+00
: 292 : vars_time9 : 0.000e+00
: 293 : vars_time9 : 0.000e+00
: 294 : vars_time9 : 0.000e+00
: 295 : vars_time9 : 0.000e+00
: 296 : vars_time9 : 0.000e+00
: 297 : vars_time9 : 0.000e+00
: 298 : vars_time9 : 0.000e+00
: 299 : vars_time9 : 0.000e+00
: 300 : vars_time9 : 0.000e+00
: --------------------------------------------
TH1.Print Name = TrainingHistory_TMVA_LSTM_trainingError, Entries= 0, Total sum= 11.6741
TH1.Print Name = TrainingHistory_TMVA_LSTM_valError, Entries= 0, Total sum= 12.2318
TH1.Print Name = TrainingHistory_TMVA_DNN_trainingError, Entries= 0, Total sum= 13.4533
TH1.Print Name = TrainingHistory_TMVA_DNN_valError, Entries= 0, Total sum= 13.7011
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
nthreads = 4
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: TMVA_LSTM for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.0115 sec
Factory : Test method: TMVA_DNN for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00421 sec
Factory : Test method: BDTG for Classification performance
:
BDTG : [dataset] : Evaluation of BDTG on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00217 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: TMVA_LSTM
:
TMVA_LSTM : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN
:
TMVA_DNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: BDTG
:
BDTG : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDTG : 0.853
: dataset TMVA_LSTM : 0.788
: dataset TMVA_DNN : 0.625
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDTG : 0.122 (0.295) 0.542 (0.637) 0.829 (0.897)
: dataset TMVA_LSTM : 0.105 (0.180) 0.450 (0.538) 0.742 (0.771)
: dataset TMVA_DNN : 0.018 (0.037) 0.235 (0.265) 0.493 (0.535)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 800 events
:
Dataset:dataset : Created tree 'TrainTree' with 3200 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m