Running with nthreads = 4
--- RNNClassification : Using input file: time_data_t10_d30.root
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sgn of type Signal with 2000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg of type Background with 2000 events
number of variables is 300
vars_time0[0],vars_time0[1],vars_time0[2],vars_time0[3],vars_time0[4],vars_time0[5],vars_time0[6],vars_time0[7],vars_time0[8],vars_time0[9],vars_time0[10],vars_time0[11],vars_time0[12],vars_time0[13],vars_time0[14],vars_time0[15],vars_time0[16],vars_time0[17],vars_time0[18],vars_time0[19],vars_time0[20],vars_time0[21],vars_time0[22],vars_time0[23],vars_time0[24],vars_time0[25],vars_time0[26],vars_time0[27],vars_time0[28],vars_time0[29],vars_time1[0],vars_time1[1],vars_time1[2],vars_time1[3],vars_time1[4],vars_time1[5],vars_time1[6],vars_time1[7],vars_time1[8],vars_time1[9],vars_time1[10],vars_time1[11],vars_time1[12],vars_time1[13],vars_time1[14],vars_time1[15],vars_time1[16],vars_time1[17],vars_time1[18],vars_time1[19],vars_time1[20],vars_time1[21],vars_time1[22],vars_time1[23],vars_time1[24],vars_time1[25],vars_time1[26],vars_time1[27],vars_time1[28],vars_time1[29],vars_time2[0],vars_time2[1],vars_time2[2],vars_time2[3],vars_time2[4],vars_time2[5],vars_time2[6],vars_time2[7],vars_time2[8],vars_time2[9],vars_time2[10],vars_time2[11],vars_time2[12],vars_time2[13],vars_time2[14],vars_time2[15],vars_time2[16],vars_time2[17],vars_time2[18],vars_time2[19],vars_time2[20],vars_time2[21],vars_time2[22],vars_time2[23],vars_time2[24],vars_time2[25],vars_time2[26],vars_time2[27],vars_time2[28],vars_time2[29],vars_time3[0],vars_time3[1],vars_time3[2],vars_time3[3],vars_time3[4],vars_time3[5],vars_time3[6],vars_time3[7],vars_time3[8],vars_time3[9],vars_time3[10],vars_time3[11],vars_time3[12],vars_time3[13],vars_time3[14],vars_time3[15],vars_time3[16],vars_time3[17],vars_time3[18],vars_time3[19],vars_time3[20],vars_time3[21],vars_time3[22],vars_time3[23],vars_time3[24],vars_time3[25],vars_time3[26],vars_time3[27],vars_time3[28],vars_time3[29],vars_time4[0],vars_time4[1],vars_time4[2],vars_time4[3],vars_time4[4],vars_time4[5],vars_time4[6],vars_time4[7],vars_time4[8],vars_time4[9],vars_time4[10],vars_time4[11],vars_time4[12],vars_time4[13],vars_time4[14],vars_time4[15],vars_time4[16],vars_time4[17],vars_time4[18],vars_time4[19],vars_time4[20],vars_time4[21],vars_time4[22],vars_time4[23],vars_time4[24],vars_time4[25],vars_time4[26],vars_time4[27],vars_time4[28],vars_time4[29],vars_time5[0],vars_time5[1],vars_time5[2],vars_time5[3],vars_time5[4],vars_time5[5],vars_time5[6],vars_time5[7],vars_time5[8],vars_time5[9],vars_time5[10],vars_time5[11],vars_time5[12],vars_time5[13],vars_time5[14],vars_time5[15],vars_time5[16],vars_time5[17],vars_time5[18],vars_time5[19],vars_time5[20],vars_time5[21],vars_time5[22],vars_time5[23],vars_time5[24],vars_time5[25],vars_time5[26],vars_time5[27],vars_time5[28],vars_time5[29],vars_time6[0],vars_time6[1],vars_time6[2],vars_time6[3],vars_time6[4],vars_time6[5],vars_time6[6],vars_time6[7],vars_time6[8],vars_time6[9],vars_time6[10],vars_time6[11],vars_time6[12],vars_time6[13],vars_time6[14],vars_time6[15],vars_time6[16],vars_time6[17],vars_time6[18],vars_time6[19],vars_time6[20],vars_time6[21],vars_time6[22],vars_time6[23],vars_time6[24],vars_time6[25],vars_time6[26],vars_time6[27],vars_time6[28],vars_time6[29],vars_time7[0],vars_time7[1],vars_time7[2],vars_time7[3],vars_time7[4],vars_time7[5],vars_time7[6],vars_time7[7],vars_time7[8],vars_time7[9],vars_time7[10],vars_time7[11],vars_time7[12],vars_time7[13],vars_time7[14],vars_time7[15],vars_time7[16],vars_time7[17],vars_time7[18],vars_time7[19],vars_time7[20],vars_time7[21],vars_time7[22],vars_time7[23],vars_time7[24],vars_time7[25],vars_time7[26],vars_time7[27],vars_time7[28],vars_time7[29],vars_time8[0],vars_time8[1],vars_time8[2],vars_time8[3],vars_time8[4],vars_time8[5],vars_time8[6],vars_time8[7],vars_time8[8],vars_time8[9],vars_time8[10],vars_time8[11],vars_time8[12],vars_time8[13],vars_time8[14],vars_time8[15],vars_time8[16],vars_time8[17],vars_time8[18],vars_time8[19],vars_time8[20],vars_time8[21],vars_time8[22],vars_time8[23],vars_time8[24],vars_time8[25],vars_time8[26],vars_time8[27],vars_time8[28],vars_time8[29],vars_time9[0],vars_time9[1],vars_time9[2],vars_time9[3],vars_time9[4],vars_time9[5],vars_time9[6],vars_time9[7],vars_time9[8],vars_time9[9],vars_time9[10],vars_time9[11],vars_time9[12],vars_time9[13],vars_time9[14],vars_time9[15],vars_time9[16],vars_time9[17],vars_time9[18],vars_time9[19],vars_time9[20],vars_time9[21],vars_time9[22],vars_time9[23],vars_time9[24],vars_time9[25],vars_time9[26],vars_time9[27],vars_time9[28],vars_time9[29],
prepared DATA LOADER
Factory : Booking method: ␛[1mTMVA_LSTM␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "10|30" [The Layout of the input]
: Layout: "LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
: RandomSeed: "1234" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "0.2" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_DNN␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|1|300" [The Layout of the input]
: Layout: "DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 10, 30) 0
lstm (LSTM) (None, 10, 10) 1640
flatten (Flatten) (None, 100) 0
dense (Dense) (None, 64) 6464
dense_1 (Dense) (None, 2) 130
=================================================================
Total params: 8234 (32.16 KB)
Trainable params: 8234 (32.16 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
(TString) "python3"[7]
Factory : Booking method: ␛[1mPyKeras_LSTM␛[0m
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Loading Keras Model
: Loaded model from file: model_LSTM.h5
Factory : Booking method: ␛[1mBDTG␛[0m
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sgn
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 1600
: Signal -- testing events : 400
: Signal -- training and testing events: 2000
: Background -- training events : 1600
: Background -- testing events : 400
: Background -- training and testing events: 2000
:
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: TMVA_LSTM for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 10, 1, 30 ) Batch size = 100 Loss function = C
Layer 0 LSTM Layer: (NInput = 30, NState = 10, NTime = 10 ) Output = ( 100 , 10 , 10 )
Layer 1 RESHAPE Layer Input = ( 1 , 10 , 10 ) Output = ( 1 , 100 , 100 )
Layer 2 DENSE Layer: ( Input = 100 , Width = 64 ) Output = ( 1 , 100 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.705605
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.698391 0.696978 0.601909 0.0403486 4451.88 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.688676 0.691614 0.581219 0.039566 4615.5 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.685188 0.689705 0.54945 0.039083 4898.44 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.674166 0.672658 0.536789 0.0389186 5021.38 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.666624 0.665348 0.538017 0.0388497 5008.35 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.657391 0.65012 0.537719 0.0389513 5012.36 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.645793 0.63953 0.551144 0.0388567 4880.07 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.634796 0.630618 0.528208 0.0384859 5104.93 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.62774 0.628891 0.516206 0.0386018 5234.46 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.612291 0.614589 0.505071 0.0384273 5357.41 0
: 11 Minimum Test error found - save the configuration
: 11 | 0.602156 0.601795 0.497143 0.0384884 5450.72 0
: 12 Minimum Test error found - save the configuration
: 12 | 0.576997 0.563494 0.492504 0.038368 5504.96 0
: 13 Minimum Test error found - save the configuration
: 13 | 0.54968 0.541408 0.49297 0.0383709 5499.35 0
: 14 | 0.526949 0.564732 0.490682 0.0383418 5526.82 1
: 15 Minimum Test error found - save the configuration
: 15 | 0.509996 0.525158 0.488311 0.0388483 5562.19 0
: 16 Minimum Test error found - save the configuration
: 16 | 0.491108 0.519272 0.490267 0.0384185 5532.83 0
: 17 Minimum Test error found - save the configuration
: 17 | 0.477374 0.511348 0.487438 0.038487 5568.53 0
: 18 Minimum Test error found - save the configuration
: 18 | 0.467033 0.505313 0.488442 0.0385886 5557.37 0
: 19 Minimum Test error found - save the configuration
: 19 | 0.457851 0.498678 0.485374 0.0382683 5591.52 0
: 20 | 0.442115 0.517924 0.485505 0.0381627 5588.56 1
:
: Elapsed time for training with 3200 events: 10.4 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.202 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_DNN for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 1, 1, 300 ) Batch size = 256 Loss function = C
Layer 0 DENSE Layer: ( Input = 300 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 1 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 2 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 256 , 1 ) Activation Function = Identity
: Using 2560 events for training and 640 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.883772
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.729902 0.681967 0.19329 0.0153836 14389.6 0
: 2 | 0.678996 0.689309 0.193985 0.0154214 14336.6 1
: 3 | 0.672114 0.687807 0.194189 0.0154705 14324.2 2
: 4 Minimum Test error found - save the configuration
: 4 | 0.668863 0.66473 0.193959 0.0158002 14369.2 0
: 5 | 0.666267 0.676191 0.192143 0.0149019 14443.6 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.66593 0.656147 0.19263 0.0153307 14438.9 0
: 7 | 0.659052 0.671803 0.192617 0.015226 14431.4 1
: 8 | 0.657843 0.6765 0.192544 0.0152239 14437.2 2
: 9 | 0.651457 0.672061 0.192464 0.0152097 14442.5 3
: 10 | 0.667134 0.686415 0.192499 0.0152205 14440.5 4
: 11 | 0.651223 0.661195 0.192954 0.0153863 14417.1 5
: 12 | 0.640091 0.664835 0.192592 0.015367 14444.9 6
: 13 | 0.6402 0.6619 0.192303 0.0152894 14462.1 7
: 14 Minimum Test error found - save the configuration
: 14 | 0.641625 0.655067 0.193052 0.0157556 14439.1 0
: 15 Minimum Test error found - save the configuration
: 15 | 0.639804 0.645438 0.192788 0.0156013 14448.1 0
: 16 Minimum Test error found - save the configuration
: 16 | 0.628989 0.631423 0.192682 0.0155085 14449.1 0
: 17 | 0.626161 0.635425 0.192426 0.0151693 14442.3 1
: 18 | 0.629454 0.645877 0.192374 0.0152162 14450.4 2
: 19 | 0.626621 0.643395 0.192235 0.0149851 14442.9 3
: 20 | 0.634348 0.637969 0.192234 0.0149703 14441.8 4
:
: Elapsed time for training with 3200 events: 3.87 sec
: Evaluate deep neural network on CPU using batches with size = 256
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.102 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyKeras_LSTM for Classification
:
: Split TMVA training data in 2560 training events and 640 validation events
: Training Model Summary
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 10, 30) 0
lstm (LSTM) (None, 10, 10) 1640
flatten (Flatten) (None, 100) 0
dense (Dense) (None, 64) 6464
dense_1 (Dense) (None, 2) 130
=================================================================
Total params: 8234 (32.16 KB)
Trainable params: 8234 (32.16 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
Epoch 1/20
1/26 [>.............................] - ETA: 42s - loss: 0.8413 - accuracy: 0.4600␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
9/26 [=========>....................] - ETA: 0s - loss: 0.7313 - accuracy: 0.5067 ␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
18/26 [===================>..........] - ETA: 0s - loss: 0.7172 - accuracy: 0.5083
Epoch 1: val_loss improved from inf to 0.69229, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 3s 36ms/step - loss: 0.7121 - accuracy: 0.5121 - val_loss: 0.6923 - val_accuracy: 0.5266
Epoch 2/20
1/26 [>.............................] - ETA: 0s - loss: 0.6798 - accuracy: 0.6100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.6931 - accuracy: 0.5245␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
20/26 [======================>.......] - ETA: 0s - loss: 0.6896 - accuracy: 0.5425
Epoch 2: val_loss improved from 0.69229 to 0.68344, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 9ms/step - loss: 0.6878 - accuracy: 0.5559 - val_loss: 0.6834 - val_accuracy: 0.5625
Epoch 3/20
1/26 [>.............................] - ETA: 0s - loss: 0.6646 - accuracy: 0.6700␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
10/26 [==========>...................] - ETA: 0s - loss: 0.6752 - accuracy: 0.5790␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
19/26 [====================>.........] - ETA: 0s - loss: 0.6707 - accuracy: 0.5926
Epoch 3: val_loss improved from 0.68344 to 0.65307, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 9ms/step - loss: 0.6682 - accuracy: 0.6020 - val_loss: 0.6531 - val_accuracy: 0.6438
Epoch 4/20
1/26 [>.............................] - ETA: 0s - loss: 0.6339 - accuracy: 0.6400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
10/26 [==========>...................] - ETA: 0s - loss: 0.6398 - accuracy: 0.6510␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
20/26 [======================>.......] - ETA: 0s - loss: 0.6393 - accuracy: 0.6465
Epoch 4: val_loss improved from 0.65307 to 0.61867, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.6360 - accuracy: 0.6539 - val_loss: 0.6187 - val_accuracy: 0.6719
Epoch 5/20
1/26 [>.............................] - ETA: 0s - loss: 0.6268 - accuracy: 0.6700␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.6021 - accuracy: 0.6864␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
22/26 [========================>.....] - ETA: 0s - loss: 0.5940 - accuracy: 0.6936
Epoch 5: val_loss improved from 0.61867 to 0.58730, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.5955 - accuracy: 0.6938 - val_loss: 0.5873 - val_accuracy: 0.6953
Epoch 6/20
1/26 [>.............................] - ETA: 0s - loss: 0.5851 - accuracy: 0.7000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.5705 - accuracy: 0.7100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
22/26 [========================>.....] - ETA: 0s - loss: 0.5679 - accuracy: 0.7118
Epoch 6: val_loss improved from 0.58730 to 0.55220, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.5642 - accuracy: 0.7188 - val_loss: 0.5522 - val_accuracy: 0.7359
Epoch 7/20
1/26 [>.............................] - ETA: 0s - loss: 0.4701 - accuracy: 0.7900␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/26 [==============>...............] - ETA: 0s - loss: 0.5106 - accuracy: 0.7646␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
24/26 [==========================>...] - ETA: 0s - loss: 0.5245 - accuracy: 0.7475
Epoch 7: val_loss improved from 0.55220 to 0.51530, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 7ms/step - loss: 0.5271 - accuracy: 0.7465 - val_loss: 0.5153 - val_accuracy: 0.7578
Epoch 8/20
1/26 [>.............................] - ETA: 0s - loss: 0.5601 - accuracy: 0.7400␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.5196 - accuracy: 0.7473␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
21/26 [=======================>......] - ETA: 0s - loss: 0.4989 - accuracy: 0.7657
Epoch 8: val_loss improved from 0.51530 to 0.48225, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.4936 - accuracy: 0.7680 - val_loss: 0.4823 - val_accuracy: 0.7766
Epoch 9/20
1/26 [>.............................] - ETA: 0s - loss: 0.4077 - accuracy: 0.8000␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.4499 - accuracy: 0.7864␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
22/26 [========================>.....] - ETA: 0s - loss: 0.4647 - accuracy: 0.7795
Epoch 9: val_loss improved from 0.48225 to 0.46032, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.4632 - accuracy: 0.7793 - val_loss: 0.4603 - val_accuracy: 0.7750
Epoch 10/20
1/26 [>.............................] - ETA: 0s - loss: 0.4035 - accuracy: 0.8300␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.4417 - accuracy: 0.7955␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
21/26 [=======================>......] - ETA: 0s - loss: 0.4537 - accuracy: 0.7881
Epoch 10: val_loss improved from 0.46032 to 0.45156, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.4529 - accuracy: 0.7887 - val_loss: 0.4516 - val_accuracy: 0.7812
Epoch 11/20
1/26 [>.............................] - ETA: 0s - loss: 0.3892 - accuracy: 0.8300␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.4273 - accuracy: 0.7992␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
22/26 [========================>.....] - ETA: 0s - loss: 0.4318 - accuracy: 0.7959
Epoch 11: val_loss improved from 0.45156 to 0.42664, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.4309 - accuracy: 0.7957 - val_loss: 0.4266 - val_accuracy: 0.8016
Epoch 12/20
1/26 [>.............................] - ETA: 0s - loss: 0.4166 - accuracy: 0.8100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.3986 - accuracy: 0.8225␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
23/26 [=========================>....] - ETA: 0s - loss: 0.4163 - accuracy: 0.8096
Epoch 12: val_loss did not improve from 0.42664
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 7ms/step - loss: 0.4149 - accuracy: 0.8125 - val_loss: 0.4396 - val_accuracy: 0.7953
Epoch 13/20
1/26 [>.............................] - ETA: 0s - loss: 0.5908 - accuracy: 0.7200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.4340 - accuracy: 0.8073␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
21/26 [=======================>......] - ETA: 0s - loss: 0.4118 - accuracy: 0.8190
Epoch 13: val_loss improved from 0.42664 to 0.41955, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.4129 - accuracy: 0.8180 - val_loss: 0.4195 - val_accuracy: 0.7906
Epoch 14/20
1/26 [>.............................] - ETA: 0s - loss: 0.3454 - accuracy: 0.8500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.3656 - accuracy: 0.8491␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
22/26 [========================>.....] - ETA: 0s - loss: 0.3857 - accuracy: 0.8327
Epoch 14: val_loss improved from 0.41955 to 0.40541, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.3893 - accuracy: 0.8285 - val_loss: 0.4054 - val_accuracy: 0.8047
Epoch 15/20
1/26 [>.............................] - ETA: 0s - loss: 0.4197 - accuracy: 0.8100␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.3925 - accuracy: 0.8250␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
23/26 [=========================>....] - ETA: 0s - loss: 0.3805 - accuracy: 0.8304
Epoch 15: val_loss did not improve from 0.40541
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 7ms/step - loss: 0.3807 - accuracy: 0.8316 - val_loss: 0.4136 - val_accuracy: 0.8062
Epoch 16/20
1/26 [>.............................] - ETA: 0s - loss: 0.3500 - accuracy: 0.8200␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.3650 - accuracy: 0.8318␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
21/26 [=======================>......] - ETA: 0s - loss: 0.3693 - accuracy: 0.8314
Epoch 16: val_loss did not improve from 0.40541
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 7ms/step - loss: 0.3776 - accuracy: 0.8254 - val_loss: 0.4171 - val_accuracy: 0.8000
Epoch 17/20
1/26 [>.............................] - ETA: 0s - loss: 0.3421 - accuracy: 0.8500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
11/26 [===========>..................] - ETA: 0s - loss: 0.3990 - accuracy: 0.8073␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
21/26 [=======================>......] - ETA: 0s - loss: 0.3858 - accuracy: 0.8190
Epoch 17: val_loss improved from 0.40541 to 0.39875, saving model to trained_model_LSTM.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 8ms/step - loss: 0.3728 - accuracy: 0.8277 - val_loss: 0.3988 - val_accuracy: 0.8141
Epoch 18/20
1/26 [>.............................] - ETA: 0s - loss: 0.3350 - accuracy: 0.8500␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.3534 - accuracy: 0.8475␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
23/26 [=========================>....] - ETA: 0s - loss: 0.3620 - accuracy: 0.8387
Epoch 18: val_loss did not improve from 0.39875
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 7ms/step - loss: 0.3621 - accuracy: 0.8375 - val_loss: 0.4068 - val_accuracy: 0.8000
Epoch 19/20
1/26 [>.............................] - ETA: 0s - loss: 0.3941 - accuracy: 0.7800␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
12/26 [============>.................] - ETA: 0s - loss: 0.3436 - accuracy: 0.8525␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
23/26 [=========================>....] - ETA: 0s - loss: 0.3505 - accuracy: 0.8457
Epoch 19: val_loss did not improve from 0.39875
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 7ms/step - loss: 0.3534 - accuracy: 0.8438 - val_loss: 0.4018 - val_accuracy: 0.8047
Epoch 20/20
1/26 [>.............................] - ETA: 0s - loss: 0.3333 - accuracy: 0.8800␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/26 [==============>...............] - ETA: 0s - loss: 0.3590 - accuracy: 0.8477␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
25/26 [===========================>..] - ETA: 0s - loss: 0.3510 - accuracy: 0.8460
Epoch 20: val_loss did not improve from 0.39875
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
26/26 [==============================] - 0s 6ms/step - loss: 0.3497 - accuracy: 0.8469 - val_loss: 0.4057 - val_accuracy: 0.8094
: Getting training history for item:0 name = 'loss'
: Getting training history for item:1 name = 'accuracy'
: Getting training history for item:2 name = 'val_loss'
: Getting training history for item:3 name = 'val_accuracy'
: Elapsed time for training with 3200 events: 6.41 sec
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_LSTM.h5
PyKeras_LSTM : [dataset] : Evaluation of PyKeras_LSTM on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.239 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_PyKeras_LSTM.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_PyKeras_LSTM.class.C␛[0m
Factory : Training finished
:
Factory : Train method: BDTG for Classification
:
BDTG : #events: (reweighted) sig: 1600 bkg: 1600
: #events: (unweighted) sig: 1600 bkg: 1600
: Training 100 Decision Trees ... patience please
: Elapsed time for training with 3200 events: 1.69 sec
BDTG : [dataset] : Evaluation of BDTG on training sample (3200 events)
: Elapsed time for evaluation of 3200 events: 0.0162 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_BDTG.class.C␛[0m
: data_RNN_CPU.root:/dataset/Method_BDT/BDTG
Factory : Training finished
:
: Ranking input variables (method specific)...
: No variable ranking supplied by classifier: TMVA_LSTM
: No variable ranking supplied by classifier: TMVA_DNN
: No variable ranking supplied by classifier: PyKeras_LSTM
BDTG : Ranking result (top variable is best ranked)
: --------------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------------
: 1 : vars_time9 : 2.341e-02
: 2 : vars_time8 : 2.214e-02
: 3 : vars_time8 : 2.164e-02
: 4 : vars_time6 : 2.081e-02
: 5 : vars_time9 : 2.020e-02
: 6 : vars_time7 : 1.997e-02
: 7 : vars_time6 : 1.992e-02
: 8 : vars_time8 : 1.924e-02
: 9 : vars_time9 : 1.891e-02
: 10 : vars_time6 : 1.865e-02
: 11 : vars_time7 : 1.818e-02
: 12 : vars_time9 : 1.728e-02
: 13 : vars_time8 : 1.689e-02
: 14 : vars_time9 : 1.686e-02
: 15 : vars_time7 : 1.643e-02
: 16 : vars_time5 : 1.613e-02
: 17 : vars_time7 : 1.555e-02
: 18 : vars_time7 : 1.351e-02
: 19 : vars_time6 : 1.343e-02
: 20 : vars_time7 : 1.311e-02
: 21 : vars_time8 : 1.288e-02
: 22 : vars_time0 : 1.271e-02
: 23 : vars_time7 : 1.259e-02
: 24 : vars_time7 : 1.257e-02
: 25 : vars_time9 : 1.220e-02
: 26 : vars_time7 : 1.210e-02
: 27 : vars_time8 : 1.204e-02
: 28 : vars_time8 : 1.174e-02
: 29 : vars_time6 : 1.127e-02
: 30 : vars_time6 : 1.113e-02
: 31 : vars_time9 : 1.112e-02
: 32 : vars_time9 : 1.072e-02
: 33 : vars_time1 : 1.057e-02
: 34 : vars_time5 : 1.049e-02
: 35 : vars_time9 : 1.034e-02
: 36 : vars_time6 : 1.030e-02
: 37 : vars_time5 : 1.013e-02
: 38 : vars_time8 : 1.001e-02
: 39 : vars_time6 : 9.981e-03
: 40 : vars_time0 : 9.965e-03
: 41 : vars_time5 : 9.948e-03
: 42 : vars_time0 : 9.789e-03
: 43 : vars_time6 : 9.760e-03
: 44 : vars_time5 : 9.442e-03
: 45 : vars_time8 : 9.356e-03
: 46 : vars_time9 : 9.014e-03
: 47 : vars_time0 : 8.981e-03
: 48 : vars_time8 : 8.757e-03
: 49 : vars_time1 : 8.757e-03
: 50 : vars_time0 : 8.151e-03
: 51 : vars_time7 : 8.116e-03
: 52 : vars_time0 : 7.844e-03
: 53 : vars_time1 : 7.838e-03
: 54 : vars_time4 : 7.816e-03
: 55 : vars_time9 : 7.815e-03
: 56 : vars_time9 : 7.767e-03
: 57 : vars_time7 : 7.614e-03
: 58 : vars_time7 : 7.590e-03
: 59 : vars_time0 : 7.439e-03
: 60 : vars_time9 : 7.435e-03
: 61 : vars_time1 : 7.068e-03
: 62 : vars_time9 : 7.012e-03
: 63 : vars_time6 : 6.848e-03
: 64 : vars_time7 : 6.837e-03
: 65 : vars_time0 : 6.786e-03
: 66 : vars_time5 : 6.728e-03
: 67 : vars_time7 : 6.714e-03
: 68 : vars_time9 : 6.661e-03
: 69 : vars_time9 : 6.586e-03
: 70 : vars_time5 : 6.519e-03
: 71 : vars_time9 : 6.497e-03
: 72 : vars_time2 : 6.331e-03
: 73 : vars_time8 : 6.330e-03
: 74 : vars_time1 : 6.197e-03
: 75 : vars_time8 : 6.171e-03
: 76 : vars_time5 : 5.941e-03
: 77 : vars_time7 : 5.918e-03
: 78 : vars_time6 : 5.722e-03
: 79 : vars_time4 : 5.697e-03
: 80 : vars_time8 : 5.516e-03
: 81 : vars_time3 : 5.509e-03
: 82 : vars_time7 : 5.496e-03
: 83 : vars_time0 : 5.436e-03
: 84 : vars_time2 : 5.132e-03
: 85 : vars_time1 : 5.111e-03
: 86 : vars_time6 : 5.067e-03
: 87 : vars_time8 : 5.059e-03
: 88 : vars_time8 : 5.034e-03
: 89 : vars_time6 : 4.913e-03
: 90 : vars_time1 : 4.894e-03
: 91 : vars_time2 : 4.820e-03
: 92 : vars_time9 : 4.771e-03
: 93 : vars_time0 : 4.754e-03
: 94 : vars_time5 : 4.603e-03
: 95 : vars_time1 : 4.398e-03
: 96 : vars_time2 : 4.305e-03
: 97 : vars_time8 : 3.972e-03
: 98 : vars_time8 : 3.865e-03
: 99 : vars_time5 : 3.837e-03
: 100 : vars_time1 : 3.818e-03
: 101 : vars_time4 : 3.806e-03
: 102 : vars_time1 : 3.756e-03
: 103 : vars_time3 : 3.615e-03
: 104 : vars_time7 : 3.182e-03
: 105 : vars_time1 : 2.735e-03
: 106 : vars_time3 : 1.944e-03
: 107 : vars_time1 : 1.732e-03
: 108 : vars_time0 : 0.000e+00
: 109 : vars_time0 : 0.000e+00
: 110 : vars_time0 : 0.000e+00
: 111 : vars_time0 : 0.000e+00
: 112 : vars_time0 : 0.000e+00
: 113 : vars_time0 : 0.000e+00
: 114 : vars_time0 : 0.000e+00
: 115 : vars_time0 : 0.000e+00
: 116 : vars_time0 : 0.000e+00
: 117 : vars_time0 : 0.000e+00
: 118 : vars_time0 : 0.000e+00
: 119 : vars_time0 : 0.000e+00
: 120 : vars_time0 : 0.000e+00
: 121 : vars_time0 : 0.000e+00
: 122 : vars_time0 : 0.000e+00
: 123 : vars_time0 : 0.000e+00
: 124 : vars_time0 : 0.000e+00
: 125 : vars_time0 : 0.000e+00
: 126 : vars_time0 : 0.000e+00
: 127 : vars_time0 : 0.000e+00
: 128 : vars_time1 : 0.000e+00
: 129 : vars_time1 : 0.000e+00
: 130 : vars_time1 : 0.000e+00
: 131 : vars_time1 : 0.000e+00
: 132 : vars_time1 : 0.000e+00
: 133 : vars_time1 : 0.000e+00
: 134 : vars_time1 : 0.000e+00
: 135 : vars_time1 : 0.000e+00
: 136 : vars_time1 : 0.000e+00
: 137 : vars_time1 : 0.000e+00
: 138 : vars_time1 : 0.000e+00
: 139 : vars_time1 : 0.000e+00
: 140 : vars_time1 : 0.000e+00
: 141 : vars_time1 : 0.000e+00
: 142 : vars_time1 : 0.000e+00
: 143 : vars_time1 : 0.000e+00
: 144 : vars_time1 : 0.000e+00
: 145 : vars_time1 : 0.000e+00
: 146 : vars_time2 : 0.000e+00
: 147 : vars_time2 : 0.000e+00
: 148 : vars_time2 : 0.000e+00
: 149 : vars_time2 : 0.000e+00
: 150 : vars_time2 : 0.000e+00
: 151 : vars_time2 : 0.000e+00
: 152 : vars_time2 : 0.000e+00
: 153 : vars_time2 : 0.000e+00
: 154 : vars_time2 : 0.000e+00
: 155 : vars_time2 : 0.000e+00
: 156 : vars_time2 : 0.000e+00
: 157 : vars_time2 : 0.000e+00
: 158 : vars_time2 : 0.000e+00
: 159 : vars_time2 : 0.000e+00
: 160 : vars_time2 : 0.000e+00
: 161 : vars_time2 : 0.000e+00
: 162 : vars_time2 : 0.000e+00
: 163 : vars_time2 : 0.000e+00
: 164 : vars_time2 : 0.000e+00
: 165 : vars_time2 : 0.000e+00
: 166 : vars_time2 : 0.000e+00
: 167 : vars_time2 : 0.000e+00
: 168 : vars_time2 : 0.000e+00
: 169 : vars_time2 : 0.000e+00
: 170 : vars_time2 : 0.000e+00
: 171 : vars_time2 : 0.000e+00
: 172 : vars_time3 : 0.000e+00
: 173 : vars_time3 : 0.000e+00
: 174 : vars_time3 : 0.000e+00
: 175 : vars_time3 : 0.000e+00
: 176 : vars_time3 : 0.000e+00
: 177 : vars_time3 : 0.000e+00
: 178 : vars_time3 : 0.000e+00
: 179 : vars_time3 : 0.000e+00
: 180 : vars_time3 : 0.000e+00
: 181 : vars_time3 : 0.000e+00
: 182 : vars_time3 : 0.000e+00
: 183 : vars_time3 : 0.000e+00
: 184 : vars_time3 : 0.000e+00
: 185 : vars_time3 : 0.000e+00
: 186 : vars_time3 : 0.000e+00
: 187 : vars_time3 : 0.000e+00
: 188 : vars_time3 : 0.000e+00
: 189 : vars_time3 : 0.000e+00
: 190 : vars_time3 : 0.000e+00
: 191 : vars_time3 : 0.000e+00
: 192 : vars_time3 : 0.000e+00
: 193 : vars_time3 : 0.000e+00
: 194 : vars_time3 : 0.000e+00
: 195 : vars_time3 : 0.000e+00
: 196 : vars_time3 : 0.000e+00
: 197 : vars_time3 : 0.000e+00
: 198 : vars_time3 : 0.000e+00
: 199 : vars_time4 : 0.000e+00
: 200 : vars_time4 : 0.000e+00
: 201 : vars_time4 : 0.000e+00
: 202 : vars_time4 : 0.000e+00
: 203 : vars_time4 : 0.000e+00
: 204 : vars_time4 : 0.000e+00
: 205 : vars_time4 : 0.000e+00
: 206 : vars_time4 : 0.000e+00
: 207 : vars_time4 : 0.000e+00
: 208 : vars_time4 : 0.000e+00
: 209 : vars_time4 : 0.000e+00
: 210 : vars_time4 : 0.000e+00
: 211 : vars_time4 : 0.000e+00
: 212 : vars_time4 : 0.000e+00
: 213 : vars_time4 : 0.000e+00
: 214 : vars_time4 : 0.000e+00
: 215 : vars_time4 : 0.000e+00
: 216 : vars_time4 : 0.000e+00
: 217 : vars_time4 : 0.000e+00
: 218 : vars_time4 : 0.000e+00
: 219 : vars_time4 : 0.000e+00
: 220 : vars_time4 : 0.000e+00
: 221 : vars_time4 : 0.000e+00
: 222 : vars_time4 : 0.000e+00
: 223 : vars_time4 : 0.000e+00
: 224 : vars_time4 : 0.000e+00
: 225 : vars_time4 : 0.000e+00
: 226 : vars_time5 : 0.000e+00
: 227 : vars_time5 : 0.000e+00
: 228 : vars_time5 : 0.000e+00
: 229 : vars_time5 : 0.000e+00
: 230 : vars_time5 : 0.000e+00
: 231 : vars_time5 : 0.000e+00
: 232 : vars_time5 : 0.000e+00
: 233 : vars_time5 : 0.000e+00
: 234 : vars_time5 : 0.000e+00
: 235 : vars_time5 : 0.000e+00
: 236 : vars_time5 : 0.000e+00
: 237 : vars_time5 : 0.000e+00
: 238 : vars_time5 : 0.000e+00
: 239 : vars_time5 : 0.000e+00
: 240 : vars_time5 : 0.000e+00
: 241 : vars_time5 : 0.000e+00
: 242 : vars_time5 : 0.000e+00
: 243 : vars_time5 : 0.000e+00
: 244 : vars_time5 : 0.000e+00
: 245 : vars_time5 : 0.000e+00
: 246 : vars_time6 : 0.000e+00
: 247 : vars_time6 : 0.000e+00
: 248 : vars_time6 : 0.000e+00
: 249 : vars_time6 : 0.000e+00
: 250 : vars_time6 : 0.000e+00
: 251 : vars_time6 : 0.000e+00
: 252 : vars_time6 : 0.000e+00
: 253 : vars_time6 : 0.000e+00
: 254 : vars_time6 : 0.000e+00
: 255 : vars_time6 : 0.000e+00
: 256 : vars_time6 : 0.000e+00
: 257 : vars_time6 : 0.000e+00
: 258 : vars_time6 : 0.000e+00
: 259 : vars_time6 : 0.000e+00
: 260 : vars_time6 : 0.000e+00
: 261 : vars_time6 : 0.000e+00
: 262 : vars_time6 : 0.000e+00
: 263 : vars_time7 : 0.000e+00
: 264 : vars_time7 : 0.000e+00
: 265 : vars_time7 : 0.000e+00
: 266 : vars_time7 : 0.000e+00
: 267 : vars_time7 : 0.000e+00
: 268 : vars_time7 : 0.000e+00
: 269 : vars_time7 : 0.000e+00
: 270 : vars_time7 : 0.000e+00
: 271 : vars_time7 : 0.000e+00
: 272 : vars_time7 : 0.000e+00
: 273 : vars_time7 : 0.000e+00
: 274 : vars_time7 : 0.000e+00
: 275 : vars_time7 : 0.000e+00
: 276 : vars_time8 : 0.000e+00
: 277 : vars_time8 : 0.000e+00
: 278 : vars_time8 : 0.000e+00
: 279 : vars_time8 : 0.000e+00
: 280 : vars_time8 : 0.000e+00
: 281 : vars_time8 : 0.000e+00
: 282 : vars_time8 : 0.000e+00
: 283 : vars_time8 : 0.000e+00
: 284 : vars_time8 : 0.000e+00
: 285 : vars_time8 : 0.000e+00
: 286 : vars_time8 : 0.000e+00
: 287 : vars_time8 : 0.000e+00
: 288 : vars_time8 : 0.000e+00
: 289 : vars_time9 : 0.000e+00
: 290 : vars_time9 : 0.000e+00
: 291 : vars_time9 : 0.000e+00
: 292 : vars_time9 : 0.000e+00
: 293 : vars_time9 : 0.000e+00
: 294 : vars_time9 : 0.000e+00
: 295 : vars_time9 : 0.000e+00
: 296 : vars_time9 : 0.000e+00
: 297 : vars_time9 : 0.000e+00
: 298 : vars_time9 : 0.000e+00
: 299 : vars_time9 : 0.000e+00
: 300 : vars_time9 : 0.000e+00
: --------------------------------------------
TH1.Print Name = TrainingHistory_TMVA_LSTM_trainingError, Entries= 0, Total sum= 11.6923
TH1.Print Name = TrainingHistory_TMVA_LSTM_valError, Entries= 0, Total sum= 11.9292
TH1.Print Name = TrainingHistory_TMVA_DNN_trainingError, Entries= 0, Total sum= 13.0761
TH1.Print Name = TrainingHistory_TMVA_DNN_valError, Entries= 0, Total sum= 13.2455
TH1.Print Name = TrainingHistory_PyKeras_LSTM_'accuracy', Entries= 0, Total sum= 15.0863
TH1.Print Name = TrainingHistory_PyKeras_LSTM_'loss', Entries= 0, Total sum= 9.64495
TH1.Print Name = TrainingHistory_PyKeras_LSTM_'val_accuracy', Entries= 0, Total sum= 14.9531
TH1.Print Name = TrainingHistory_PyKeras_LSTM_'val_loss', Entries= 0, Total sum= 9.83123
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_PyKeras_LSTM.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
nthreads = 4
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: TMVA_LSTM for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.0472 sec
Factory : Test method: TMVA_DNN for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 800
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.0198 sec
Factory : Test method: PyKeras_LSTM for Classification performance
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_LSTM.h5
PyKeras_LSTM : [dataset] : Evaluation of PyKeras_LSTM on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.214 sec
Factory : Test method: BDTG for Classification performance
:
BDTG : [dataset] : Evaluation of BDTG on testing sample (800 events)
: Elapsed time for evaluation of 800 events: 0.00408 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: TMVA_LSTM
:
TMVA_LSTM : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN
:
TMVA_DNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: PyKeras_LSTM
:
PyKeras_LSTM : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: BDTG
:
BDTG : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset PyKeras_LSTM : 0.881
: dataset BDTG : 0.840
: dataset TMVA_LSTM : 0.825
: dataset TMVA_DNN : 0.656
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset PyKeras_LSTM : 0.295 (0.340) 0.665 (0.718) 0.875 (0.903)
: dataset BDTG : 0.165 (0.295) 0.563 (0.677) 0.808 (0.861)
: dataset TMVA_LSTM : 0.155 (0.205) 0.485 (0.579) 0.800 (0.830)
: dataset TMVA_DNN : 0.055 (0.062) 0.235 (0.330) 0.510 (0.613)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 800 events
:
Dataset:dataset : Created tree 'TrainTree' with 3200 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m