from ROOT import TMVA, TFile, TTree, TCut, gROOT
from os.path import isfile
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.regularizers import l2
from keras.optimizers import SGD
'!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=multiclass')
if not isfile('tmva_example_multiple_background.root'):
createDataMacro = str(gROOT.GetTutorialDir()) + '/tmva/createData.C'
print(createDataMacro)
gROOT.ProcessLine('.L {}'.format(createDataMacro))
gROOT.ProcessLine('create_MultipleBackground(4000)')
data =
TFile.Open(
'tmva_example_multiple_background.root')
signal = data.Get('TreeS')
background0 = data.Get('TreeB0')
background1 = data.Get('TreeB1')
background2 = data.Get('TreeB2')
for branch in signal.GetListOfBranches():
dataloader.AddVariable(branch.GetName())
dataloader.AddTree(signal, 'Signal')
dataloader.AddTree(background0, 'Background_0')
dataloader.AddTree(background1, 'Background_1')
dataloader.AddTree(background2, 'Background_2')
dataloader.PrepareTrainingAndTestTree(
TCut(
''),
'SplitMode=Random:NormMode=NumEvents:!V')
model = Sequential()
model.add(Dense(32, activation='relu', W_regularizer=l2(1e-5), input_dim=4))
model.add(Dense(4, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01), metrics=['accuracy',])
model.save('model.h5')
model.summary()
factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
'!H:!V:Fisher:VarTransform=D,G')
factory.BookMethod(dataloader, TMVA.Types.kPyKeras, "PyKeras",
'H:!V:VarTransform=D,G:FilenameModel=model.h5:NumEpochs=20:BatchSize=32')
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()
A specialized string object used for TTree selections.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
This is the main MVA steering class.
static void PyInitialize()
Initialize Python interpreter.