7from graph_nets
import utils_tf
33 print(s,
"memory:",memoryUse,
"(MB)")
64 snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
70 def __init__(self, name="MLPGraphIndependent"):
73 edge_model_fn =
lambda:
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
74 node_model_fn =
lambda:
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
75 global_model_fn =
lambda:
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True))
85 edge_model_fn=make_mlp_model,
86 node_model_fn=make_mlp_model,
87 global_model_fn=make_mlp_model)
96 name="EncodeProcessDecode"):
103 def __call__(self, input_op, num_processing_steps):
107 for _
in range(num_processing_steps):
109 latent = self.
_core(core_input)
139output_gn =
ep_model(input_graph_data, processing_steps)
179tree.Branch(
"node_data",
"std::vector<float>" , node_data)
180tree.Branch(
"edge_data",
"std::vector<float>" , edge_data)
181tree.Branch(
"global_data",
"std::vector<float>" , global_data)
182tree.Branch(
"receivers",
"std::vector<int>" , receivers)
183tree.Branch(
"senders",
"std::vector<int>" , senders)
186print(
"\n\nSaving data in a ROOT File:")
191for i
in range(0,numevts):
193 s_nodes = graphData[
'nodes'].size
194 s_edges = graphData[
'edges'].size
195 num_edges = graphData[
'edges'].shape[0]
207 if (i < 1
and verbose) :
208 print(
"Nodes - shape:",
int(
node_data.size()/node_size),node_size,
"data: ",node_data)
209 print(
"Edges - shape:",num_edges, edge_size,
"data: ", edge_data)
210 print(
"Globals : ",global_data)
211 print(
"Receivers : ",receivers)
212 print(
"Senders : ",senders)
229for tf_graph_data
in dataset:
230 output_gnn =
ep_model(tf_graph_data, processing_steps)
234 outgnn[0] =
np.mean(output_nodes)
235 outgnn[1] =
np.mean(output_edges)
236 outgnn[2] =
np.mean(output_globals)
240 if (firstEvent
and verbose) :
241 print(
"Output of first event")
250print(
"time to evaluate events",end-start)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
__init__(self, name="EncodeProcessDecode")
__call__(self, input_op, num_processing_steps)
__init__(self, name="MLPGraphIndependent")
__init__(self, name="MLPGraphNetwork")
get_dynamic_graph_data_dict(NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1)
get_fix_graph_data_dict(num_nodes, num_edges, NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1)