7from graph_nets 
import utils_tf
 
   33    print(s,
"memory:",memoryUse,
"(MB)")
 
 
   64      snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
 
 
   70  def __init__(self, name="MLPGraphIndependent"):
 
   73        edge_model_fn = 
lambda: 
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
 
   74        node_model_fn = 
lambda: 
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
 
   75        global_model_fn = 
lambda: 
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True))
 
 
 
   85            edge_model_fn=make_mlp_model,
 
   86            node_model_fn=make_mlp_model,
 
   87            global_model_fn=make_mlp_model)
 
 
 
   96               name="EncodeProcessDecode"):
 
 
  103  def __call__(self, input_op, num_processing_steps):
 
  107    for _ 
in range(num_processing_steps):
 
  109      latent = self.
_core(core_input)
 
 
 
  139output_gn = 
ep_model(input_graph_data, processing_steps)
 
  179tree.Branch(
"node_data", 
"std::vector<float>" , node_data)
 
  180tree.Branch(
"edge_data", 
"std::vector<float>" ,  edge_data)
 
  181tree.Branch(
"global_data", 
"std::vector<float>" ,  global_data)
 
  182tree.Branch(
"receivers", 
"std::vector<int>" ,  receivers)
 
  183tree.Branch(
"senders", 
"std::vector<int>" ,  senders)
 
  186print(
"\n\nSaving data in a ROOT File:")
 
  191for i 
in range(0,numevts):
 
  193    s_nodes = graphData[
'nodes'].size
 
  194    s_edges = graphData[
'edges'].size
 
  195    num_edges = graphData[
'edges'].shape[0]
 
  207    if (i < 1 
and verbose) :
 
  208      print(
"Nodes - shape:",
int(
node_data.size()/node_size),node_size,
"data: ",node_data)
 
  209      print(
"Edges - shape:",num_edges, edge_size,
"data: ", edge_data)
 
  210      print(
"Globals : ",global_data)
 
  211      print(
"Receivers : ",receivers)
 
  212      print(
"Senders   : ",senders)
 
  229for tf_graph_data 
in dataset:
 
  230    output_gnn = 
ep_model(tf_graph_data, processing_steps)
 
  234    outgnn[0] = 
np.mean(output_nodes)
 
  235    outgnn[1] = 
np.mean(output_edges)
 
  236    outgnn[2] = 
np.mean(output_globals)
 
  240    if (firstEvent 
and verbose) :
 
  241      print(
"Output of first event")
 
  250print(
"time to evaluate events",end-start)
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
__init__(self, name="EncodeProcessDecode")
 
__call__(self, input_op, num_processing_steps)
 
__init__(self, name="MLPGraphIndependent")
 
__init__(self, name="MLPGraphNetwork")
 
get_dynamic_graph_data_dict(NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1)
 
get_fix_graph_data_dict(num_nodes, num_edges, NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1)