33 print(
"Running in serial mode since ROOT does not support MT")
56 fname =
"time_data_t" + str(ntime) +
"_d" + str(ndim) +
".root"
60 for i
in range(ntime):
69 f =
TFile(fname,
"RECREATE")
74 for i
in range(ntime):
78 for i
in range(ntime):
79 bkg.Branch(
"vars_time" + str(i),
"std::vector<float>", x1[i])
80 sgn.Branch(
"vars_time" + str(i),
"std::vector<float>", x2[i])
91 for j
in range(ntime):
99 print(
"Generating event ... %d", i)
101 for j
in range(ntime):
113 for k
in range(ntime):
124 for j
in range(ntime):
127 for j
in range(ntime):
167rnn_types = [
"RNN",
"LSTM",
"GRU"]
168use_rnn_type = [1, 1, 1]
171 use_rnn_type = [0, 0, 0]
172 use_rnn_type[use_type] = 1
181 "TMVA_RNN_Classification",
182 "TMVA is not build with GPU or CPU multi-thread support. Cannot use TMVA Deep Learning for RNN",
185archString =
"GPU" if useGPU
else "CPU"
187writeOutputFile =
True
198inputFileName =
"time_data_t10_d30.root"
215outfileName =
"data_RNN_" + archString +
".root"
220 outputFile =
TFile.Open(outfileName,
"RECREATE")
244 "TMVAClassification",
249 DrawProgressBar=
True,
250 Transformations=
None,
252 AnalysisType=
"Classification",
253 ModelPersistence=
True,
263for i
in range(ntime):
279nTrainSig = 0.8 * nTotEvts
280nTrainBkg = 0.8 * nTotEvts
290 nTrain_Signal=nTrainSig,
291 nTrain_Background=nTrainBkg,
294 NormMode=
"NumEvents",
296 CalcCorrelations=
False,
299print(
"prepared DATA LOADER ")
309 if not use_rnn_type[i]:
312 rnn_type = rnn_types[i]
316 rnnLayout = str(rnn_type) +
"|10|" + str(ninput) +
"|" + str(ntime) +
"|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR"
319 trainingString1 =
"LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=" + str(batchSize)
320 trainingString1 +=
",TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=" + str(maxepochs)
321 trainingString1 +=
"Optimizer=ADAM,DropConfig=0.0+0.+0.+0."
329 rnnName =
"TMVA_" + str(rnn_type)
336 ErrorStrategy=
"CROSSENTROPY",
338 WeightInitialization=
"XAVIERUNIFORM",
341 InputLayout=str(ntime) +
"|" + str(ninput),
343 TrainingStrategy=trainingString1,
344 Architecture=archString
353 "LearningRate=1e-3,Momentum=0.0,Repetitions=1,"
354 "ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,"
355 "WeightDecay=1e-4,Regularization=None,MaxEpochs=20"
356 "DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:"
367 ErrorStrategy=
"CROSSENTROPY",
369 WeightInitialization=
"XAVIER",
371 InputLayout=
"1|1|" + str(ntime * ninput),
372 Layout=
"DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR",
373 TrainingStrategy=trainingString1
385 modelName =
"model_" + rnn_types[i] +
".h5"
386 trainedModelName =
"trained_" + modelName
387 print(
"Building recurrent keras model using a", rnn_types[i],
"layer")
395 from tensorflow.keras.layers import Input, Dense, Dropout, Flatten, SimpleRNN, GRU, LSTM, Reshape, BatchNormalization
398 model.add(Reshape((10, 30), input_shape=(10 * 30,)))
400 if rnn_types[i] ==
"LSTM":
402 elif rnn_types[i] ==
"GRU":
410 model.compile(loss=
"binary_crossentropy", optimizer=
Adam(learning_rate=0.001), weighted_metrics=[
"accuracy"])
413 print(
"saved recurrent model", modelName)
417 print(
"Error creating Keras recurrent model file - Skip using Keras")
420 print(
"Booking Keras model ", rnn_types[i])
424 "PyKeras_" + rnn_types[i],
428 FilenameModel=modelName,
429 FilenameTrainedModel=
"trained_" + modelName,
432 GpuOptions=
"allow_growth=True",
437if not useKeras
or not useTMVA_BDT:
456 BaggedSampleFraction=0.5,
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
This is the main MVA steering class.