This is an example of using a RNN in TMVA. We do classification using a toy time dependent data set that is generated when running this example macro
Running with nthreads = 16
--- RNNClassification : Using input file: time_data_t10_d30.root
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sgn of type Signal with 10000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg of type Background with 10000 events
number of variables is 300
vars_time0[0],vars_time0[1],vars_time0[2],vars_time0[3],vars_time0[4],vars_time0[5],vars_time0[6],vars_time0[7],vars_time0[8],vars_time0[9],vars_time0[10],vars_time0[11],vars_time0[12],vars_time0[13],vars_time0[14],vars_time0[15],vars_time0[16],vars_time0[17],vars_time0[18],vars_time0[19],vars_time0[20],vars_time0[21],vars_time0[22],vars_time0[23],vars_time0[24],vars_time0[25],vars_time0[26],vars_time0[27],vars_time0[28],vars_time0[29],vars_time1[0],vars_time1[1],vars_time1[2],vars_time1[3],vars_time1[4],vars_time1[5],vars_time1[6],vars_time1[7],vars_time1[8],vars_time1[9],vars_time1[10],vars_time1[11],vars_time1[12],vars_time1[13],vars_time1[14],vars_time1[15],vars_time1[16],vars_time1[17],vars_time1[18],vars_time1[19],vars_time1[20],vars_time1[21],vars_time1[22],vars_time1[23],vars_time1[24],vars_time1[25],vars_time1[26],vars_time1[27],vars_time1[28],vars_time1[29],vars_time2[0],vars_time2[1],vars_time2[2],vars_time2[3],vars_time2[4],vars_time2[5],vars_time2[6],vars_time2[7],vars_time2[8],vars_time2[9],vars_time2[10],vars_time2[11],vars_time2[12],vars_time2[13],vars_time2[14],vars_time2[15],vars_time2[16],vars_time2[17],vars_time2[18],vars_time2[19],vars_time2[20],vars_time2[21],vars_time2[22],vars_time2[23],vars_time2[24],vars_time2[25],vars_time2[26],vars_time2[27],vars_time2[28],vars_time2[29],vars_time3[0],vars_time3[1],vars_time3[2],vars_time3[3],vars_time3[4],vars_time3[5],vars_time3[6],vars_time3[7],vars_time3[8],vars_time3[9],vars_time3[10],vars_time3[11],vars_time3[12],vars_time3[13],vars_time3[14],vars_time3[15],vars_time3[16],vars_time3[17],vars_time3[18],vars_time3[19],vars_time3[20],vars_time3[21],vars_time3[22],vars_time3[23],vars_time3[24],vars_time3[25],vars_time3[26],vars_time3[27],vars_time3[28],vars_time3[29],vars_time4[0],vars_time4[1],vars_time4[2],vars_time4[3],vars_time4[4],vars_time4[5],vars_time4[6],vars_time4[7],vars_time4[8],vars_time4[9],vars_time4[10],vars_time4[11],vars_time4[12],vars_time4[13],vars_time4[14],vars_time4[15],vars_time4[16],vars_time4[17],vars_time4[18],vars_time4[19],vars_time4[20],vars_time4[21],vars_time4[22],vars_time4[23],vars_time4[24],vars_time4[25],vars_time4[26],vars_time4[27],vars_time4[28],vars_time4[29],vars_time5[0],vars_time5[1],vars_time5[2],vars_time5[3],vars_time5[4],vars_time5[5],vars_time5[6],vars_time5[7],vars_time5[8],vars_time5[9],vars_time5[10],vars_time5[11],vars_time5[12],vars_time5[13],vars_time5[14],vars_time5[15],vars_time5[16],vars_time5[17],vars_time5[18],vars_time5[19],vars_time5[20],vars_time5[21],vars_time5[22],vars_time5[23],vars_time5[24],vars_time5[25],vars_time5[26],vars_time5[27],vars_time5[28],vars_time5[29],vars_time6[0],vars_time6[1],vars_time6[2],vars_time6[3],vars_time6[4],vars_time6[5],vars_time6[6],vars_time6[7],vars_time6[8],vars_time6[9],vars_time6[10],vars_time6[11],vars_time6[12],vars_time6[13],vars_time6[14],vars_time6[15],vars_time6[16],vars_time6[17],vars_time6[18],vars_time6[19],vars_time6[20],vars_time6[21],vars_time6[22],vars_time6[23],vars_time6[24],vars_time6[25],vars_time6[26],vars_time6[27],vars_time6[28],vars_time6[29],vars_time7[0],vars_time7[1],vars_time7[2],vars_time7[3],vars_time7[4],vars_time7[5],vars_time7[6],vars_time7[7],vars_time7[8],vars_time7[9],vars_time7[10],vars_time7[11],vars_time7[12],vars_time7[13],vars_time7[14],vars_time7[15],vars_time7[16],vars_time7[17],vars_time7[18],vars_time7[19],vars_time7[20],vars_time7[21],vars_time7[22],vars_time7[23],vars_time7[24],vars_time7[25],vars_time7[26],vars_time7[27],vars_time7[28],vars_time7[29],vars_time8[0],vars_time8[1],vars_time8[2],vars_time8[3],vars_time8[4],vars_time8[5],vars_time8[6],vars_time8[7],vars_time8[8],vars_time8[9],vars_time8[10],vars_time8[11],vars_time8[12],vars_time8[13],vars_time8[14],vars_time8[15],vars_time8[16],vars_time8[17],vars_time8[18],vars_time8[19],vars_time8[20],vars_time8[21],vars_time8[22],vars_time8[23],vars_time8[24],vars_time8[25],vars_time8[26],vars_time8[27],vars_time8[28],vars_time8[29],vars_time9[0],vars_time9[1],vars_time9[2],vars_time9[3],vars_time9[4],vars_time9[5],vars_time9[6],vars_time9[7],vars_time9[8],vars_time9[9],vars_time9[10],vars_time9[11],vars_time9[12],vars_time9[13],vars_time9[14],vars_time9[15],vars_time9[16],vars_time9[17],vars_time9[18],vars_time9[19],vars_time9[20],vars_time9[21],vars_time9[22],vars_time9[23],vars_time9[24],vars_time9[25],vars_time9[26],vars_time9[27],vars_time9[28],vars_time9[29],
prepared DATA LOADER
Factory : Booking method: ␛[1mTMVA_LSTM␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIERUNIFORM:ValidationSize=0.2:RandomSeed=1234:InputLayout=10|30:Layout=LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "10|30" [The Layout of the input]
: Layout: "LSTM|10|30|10|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
: RandomSeed: "1234" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "0.2" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=20,Optimizer=ADAM,DropConfig=0.0+0.+0.+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_DNN␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:RandomSeed=0:InputLayout=1|1|300:Layout=DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|1|300" [The Layout of the input]
: Layout: "DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=10,BatchSize=256,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,MaxEpochs=20DropConfig=0.0+0.+0.+0.,Optimizer=ADAM" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mBDTG␛[0m
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sgn
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg
: Using variable vars_time0[0] from array expression vars_time0 of size 30
: Using variable vars_time1[0] from array expression vars_time1 of size 30
: Using variable vars_time2[0] from array expression vars_time2 of size 30
: Using variable vars_time3[0] from array expression vars_time3 of size 30
: Using variable vars_time4[0] from array expression vars_time4 of size 30
: Using variable vars_time5[0] from array expression vars_time5 of size 30
: Using variable vars_time6[0] from array expression vars_time6 of size 30
: Using variable vars_time7[0] from array expression vars_time7 of size 30
: Using variable vars_time8[0] from array expression vars_time8 of size 30
: Using variable vars_time9[0] from array expression vars_time9 of size 30
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 8000
: Signal -- testing events : 2000
: Signal -- training and testing events: 10000
: Background -- training events : 8000
: Background -- testing events : 2000
: Background -- training and testing events: 10000
:
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: TMVA_LSTM for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 16
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 10, 1, 30 ) Batch size = 100 Loss function = C
Layer 0 LSTM Layer: (NInput = 30, NState = 10, NTime = 10 ) Output = ( 100 , 10 , 10 )
Layer 1 RESHAPE Layer Input = ( 1 , 10 , 10 ) Output = ( 1 , 100 , 100 )
Layer 2 DENSE Layer: ( Input = 100 , Width = 64 ) Output = ( 1 , 100 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 12800 events for training and 3200 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 0.707801
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.686328 0.669759 3.43624 0.245448 4011.54 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.643957 0.612414 3.88116 0.254174 3529.1 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.582473 0.546402 4.01526 0.255354 3404.34 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.527269 0.495616 4.0534 0.247681 3363.36 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.496392 0.48033 3.83024 0.245529 3570.72 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.471075 0.461176 3.95357 0.248336 3454.57 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.446321 0.445051 3.93133 0.247515 3474.66 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.432921 0.430118 3.8521 0.242158 3545.76 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.416774 0.420344 3.99748 0.253655 3418.97 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.409407 0.415257 4.04174 0.249222 3375.06 0
: 11 Minimum Test error found - save the configuration
: 11 | 0.400817 0.414787 4.15637 0.266026 3290.2 0
: 12 Minimum Test error found - save the configuration
: 12 | 0.400121 0.410811 4.20637 0.26563 3248.12 0
: 13 | 0.39343 0.41337 4.17835 0.265183 3271.01 1
: 14 Minimum Test error found - save the configuration
: 14 | 0.39133 0.409083 4.17528 0.265922 3274.2 0
: 15 Minimum Test error found - save the configuration
: 15 | 0.390532 0.403243 4.18151 0.267669 3270.45 0
: 16 | 0.384488 0.406591 4.19517 0.267265 3258.73 1
: 17 | 0.382157 0.407245 4.19129 0.267546 3262.19 2
: 18 | 0.383176 0.4053 4.20002 0.267572 3254.97 3
: 19 | 0.378619 0.404186 4.21829 0.266385 3238.94 4
: 20 Minimum Test error found - save the configuration
: 20 | 0.376199 0.401048 4.21119 0.266907 3245.2 0
:
: Elapsed time for training with 16000 events: 81.1 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on training sample (16000 events)
: Elapsed time for evaluation of 16000 events: 1.34 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_DNN for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 16
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 1, 1, 300 ) Batch size = 256 Loss function = C
Layer 0 DENSE Layer: ( Input = 300 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 1 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 2 DENSE Layer: ( Input = 64 , Width = 64 ) Output = ( 1 , 256 , 64 ) Activation Function = Tanh
Layer 3 DENSE Layer: ( Input = 64 , Width = 1 ) Output = ( 1 , 256 , 1 ) Activation Function = Identity
: Using 12800 events for training and 3200 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 1.32484
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.725988 0.678875 0.944899 0.0876783 14932 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.676032 0.676017 0.962815 0.0895678 14657.9 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.653595 0.664794 0.951376 0.0876134 14818.9 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.660714 0.649041 0.949083 0.0876243 14858.5 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.644878 0.63218 0.942605 0.0876843 14972.2 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.646454 0.61556 0.975522 0.0904226 14461.7 0
: 7 | 0.61314 0.616759 0.961015 0.0884187 14668.9 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.609673 0.58862 0.951224 0.0882848 14833 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.598302 0.584071 0.948277 0.0876596 14873 0
: 10 | 0.589935 0.597292 0.943015 0.0871739 14956 1
: 11 | 0.607305 0.630882 0.940212 0.0872968 15007.4 2
: 12 | 0.612874 0.600343 0.94179 0.0872054 14978 3
: 13 Minimum Test error found - save the configuration
: 13 | 0.575322 0.583019 0.949807 0.0876802 14847 0
: 14 Minimum Test error found - save the configuration
: 14 | 0.564515 0.5525 0.952977 0.0875219 14789.9 0
: 15 Minimum Test error found - save the configuration
: 15 | 0.543595 0.540078 0.976373 0.0879543 14407.6 0
: 16 | 0.555833 0.589216 1.01011 0.0885313 13889.3 1
: 17 | 0.545624 0.62217 1.02883 0.0905255 13641.6 2
: 18 | 0.564894 0.551863 1.01949 0.0866738 13721.9 3
: 19 Minimum Test error found - save the configuration
: 19 | 0.52812 0.539691 1.00201 0.0870819 13990.1 0
: 20 Minimum Test error found - save the configuration
: 20 | 0.514921 0.536976 1.00385 0.0882432 13979.7 0
:
: Elapsed time for training with 16000 events: 19.4 sec
: Evaluate deep neural network on CPU using batches with size = 256
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on training sample (16000 events)
: Elapsed time for evaluation of 16000 events: 0.446 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.class.C␛[0m
Factory : Training finished
:
Factory : Train method: BDTG for Classification
:
BDTG : #events: (reweighted) sig: 8000 bkg: 8000
: #events: (unweighted) sig: 8000 bkg: 8000
: Training 100 Decision Trees ... patience please
: Elapsed time for training with 16000 events: 8.06 sec
BDTG : [dataset] : Evaluation of BDTG on training sample (16000 events)
: Elapsed time for evaluation of 16000 events: 0.0811 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_BDTG.class.C␛[0m
: data_RNN_CPU.root:/dataset/Method_BDT/BDTG
Factory : Training finished
:
: Ranking input variables (method specific)...
: No variable ranking supplied by classifier: TMVA_LSTM
: No variable ranking supplied by classifier: TMVA_DNN
BDTG : Ranking result (top variable is best ranked)
: --------------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------------
: 1 : vars_time8 : 3.225e-02
: 2 : vars_time8 : 3.064e-02
: 3 : vars_time9 : 2.995e-02
: 4 : vars_time6 : 2.926e-02
: 5 : vars_time7 : 2.918e-02
: 6 : vars_time8 : 2.821e-02
: 7 : vars_time7 : 2.819e-02
: 8 : vars_time8 : 2.773e-02
: 9 : vars_time7 : 2.710e-02
: 10 : vars_time9 : 2.700e-02
: 11 : vars_time6 : 2.644e-02
: 12 : vars_time6 : 2.586e-02
: 13 : vars_time9 : 2.358e-02
: 14 : vars_time9 : 2.358e-02
: 15 : vars_time7 : 2.352e-02
: 16 : vars_time8 : 2.234e-02
: 17 : vars_time7 : 2.193e-02
: 18 : vars_time5 : 2.172e-02
: 19 : vars_time9 : 2.165e-02
: 20 : vars_time0 : 2.122e-02
: 21 : vars_time6 : 2.094e-02
: 22 : vars_time6 : 2.074e-02
: 23 : vars_time7 : 2.071e-02
: 24 : vars_time9 : 1.981e-02
: 25 : vars_time0 : 1.943e-02
: 26 : vars_time8 : 1.935e-02
: 27 : vars_time0 : 1.893e-02
: 28 : vars_time5 : 1.891e-02
: 29 : vars_time5 : 1.806e-02
: 30 : vars_time8 : 1.760e-02
: 31 : vars_time8 : 1.526e-02
: 32 : vars_time7 : 1.510e-02
: 33 : vars_time7 : 1.460e-02
: 34 : vars_time8 : 1.429e-02
: 35 : vars_time9 : 1.399e-02
: 36 : vars_time7 : 1.399e-02
: 37 : vars_time0 : 1.340e-02
: 38 : vars_time5 : 1.188e-02
: 39 : vars_time6 : 1.185e-02
: 40 : vars_time8 : 1.153e-02
: 41 : vars_time6 : 1.099e-02
: 42 : vars_time8 : 1.049e-02
: 43 : vars_time8 : 1.004e-02
: 44 : vars_time7 : 9.945e-03
: 45 : vars_time6 : 9.459e-03
: 46 : vars_time6 : 9.345e-03
: 47 : vars_time7 : 8.840e-03
: 48 : vars_time8 : 7.822e-03
: 49 : vars_time7 : 7.702e-03
: 50 : vars_time5 : 7.149e-03
: 51 : vars_time5 : 6.768e-03
: 52 : vars_time4 : 6.348e-03
: 53 : vars_time9 : 6.313e-03
: 54 : vars_time9 : 6.226e-03
: 55 : vars_time1 : 5.886e-03
: 56 : vars_time9 : 5.656e-03
: 57 : vars_time9 : 5.360e-03
: 58 : vars_time7 : 5.105e-03
: 59 : vars_time8 : 4.809e-03
: 60 : vars_time7 : 3.990e-03
: 61 : vars_time0 : 0.000e+00
: 62 : vars_time0 : 0.000e+00
: 63 : vars_time0 : 0.000e+00
: 64 : vars_time0 : 0.000e+00
: 65 : vars_time0 : 0.000e+00
: 66 : vars_time0 : 0.000e+00
: 67 : vars_time0 : 0.000e+00
: 68 : vars_time0 : 0.000e+00
: 69 : vars_time0 : 0.000e+00
: 70 : vars_time0 : 0.000e+00
: 71 : vars_time0 : 0.000e+00
: 72 : vars_time0 : 0.000e+00
: 73 : vars_time0 : 0.000e+00
: 74 : vars_time0 : 0.000e+00
: 75 : vars_time0 : 0.000e+00
: 76 : vars_time0 : 0.000e+00
: 77 : vars_time0 : 0.000e+00
: 78 : vars_time0 : 0.000e+00
: 79 : vars_time0 : 0.000e+00
: 80 : vars_time0 : 0.000e+00
: 81 : vars_time0 : 0.000e+00
: 82 : vars_time0 : 0.000e+00
: 83 : vars_time0 : 0.000e+00
: 84 : vars_time0 : 0.000e+00
: 85 : vars_time0 : 0.000e+00
: 86 : vars_time0 : 0.000e+00
: 87 : vars_time1 : 0.000e+00
: 88 : vars_time1 : 0.000e+00
: 89 : vars_time1 : 0.000e+00
: 90 : vars_time1 : 0.000e+00
: 91 : vars_time1 : 0.000e+00
: 92 : vars_time1 : 0.000e+00
: 93 : vars_time1 : 0.000e+00
: 94 : vars_time1 : 0.000e+00
: 95 : vars_time1 : 0.000e+00
: 96 : vars_time1 : 0.000e+00
: 97 : vars_time1 : 0.000e+00
: 98 : vars_time1 : 0.000e+00
: 99 : vars_time1 : 0.000e+00
: 100 : vars_time1 : 0.000e+00
: 101 : vars_time1 : 0.000e+00
: 102 : vars_time1 : 0.000e+00
: 103 : vars_time1 : 0.000e+00
: 104 : vars_time1 : 0.000e+00
: 105 : vars_time1 : 0.000e+00
: 106 : vars_time1 : 0.000e+00
: 107 : vars_time1 : 0.000e+00
: 108 : vars_time1 : 0.000e+00
: 109 : vars_time1 : 0.000e+00
: 110 : vars_time1 : 0.000e+00
: 111 : vars_time1 : 0.000e+00
: 112 : vars_time1 : 0.000e+00
: 113 : vars_time1 : 0.000e+00
: 114 : vars_time1 : 0.000e+00
: 115 : vars_time1 : 0.000e+00
: 116 : vars_time2 : 0.000e+00
: 117 : vars_time2 : 0.000e+00
: 118 : vars_time2 : 0.000e+00
: 119 : vars_time2 : 0.000e+00
: 120 : vars_time2 : 0.000e+00
: 121 : vars_time2 : 0.000e+00
: 122 : vars_time2 : 0.000e+00
: 123 : vars_time2 : 0.000e+00
: 124 : vars_time2 : 0.000e+00
: 125 : vars_time2 : 0.000e+00
: 126 : vars_time2 : 0.000e+00
: 127 : vars_time2 : 0.000e+00
: 128 : vars_time2 : 0.000e+00
: 129 : vars_time2 : 0.000e+00
: 130 : vars_time2 : 0.000e+00
: 131 : vars_time2 : 0.000e+00
: 132 : vars_time2 : 0.000e+00
: 133 : vars_time2 : 0.000e+00
: 134 : vars_time2 : 0.000e+00
: 135 : vars_time2 : 0.000e+00
: 136 : vars_time2 : 0.000e+00
: 137 : vars_time2 : 0.000e+00
: 138 : vars_time2 : 0.000e+00
: 139 : vars_time2 : 0.000e+00
: 140 : vars_time2 : 0.000e+00
: 141 : vars_time2 : 0.000e+00
: 142 : vars_time2 : 0.000e+00
: 143 : vars_time2 : 0.000e+00
: 144 : vars_time2 : 0.000e+00
: 145 : vars_time2 : 0.000e+00
: 146 : vars_time3 : 0.000e+00
: 147 : vars_time3 : 0.000e+00
: 148 : vars_time3 : 0.000e+00
: 149 : vars_time3 : 0.000e+00
: 150 : vars_time3 : 0.000e+00
: 151 : vars_time3 : 0.000e+00
: 152 : vars_time3 : 0.000e+00
: 153 : vars_time3 : 0.000e+00
: 154 : vars_time3 : 0.000e+00
: 155 : vars_time3 : 0.000e+00
: 156 : vars_time3 : 0.000e+00
: 157 : vars_time3 : 0.000e+00
: 158 : vars_time3 : 0.000e+00
: 159 : vars_time3 : 0.000e+00
: 160 : vars_time3 : 0.000e+00
: 161 : vars_time3 : 0.000e+00
: 162 : vars_time3 : 0.000e+00
: 163 : vars_time3 : 0.000e+00
: 164 : vars_time3 : 0.000e+00
: 165 : vars_time3 : 0.000e+00
: 166 : vars_time3 : 0.000e+00
: 167 : vars_time3 : 0.000e+00
: 168 : vars_time3 : 0.000e+00
: 169 : vars_time3 : 0.000e+00
: 170 : vars_time3 : 0.000e+00
: 171 : vars_time3 : 0.000e+00
: 172 : vars_time3 : 0.000e+00
: 173 : vars_time3 : 0.000e+00
: 174 : vars_time3 : 0.000e+00
: 175 : vars_time3 : 0.000e+00
: 176 : vars_time4 : 0.000e+00
: 177 : vars_time4 : 0.000e+00
: 178 : vars_time4 : 0.000e+00
: 179 : vars_time4 : 0.000e+00
: 180 : vars_time4 : 0.000e+00
: 181 : vars_time4 : 0.000e+00
: 182 : vars_time4 : 0.000e+00
: 183 : vars_time4 : 0.000e+00
: 184 : vars_time4 : 0.000e+00
: 185 : vars_time4 : 0.000e+00
: 186 : vars_time4 : 0.000e+00
: 187 : vars_time4 : 0.000e+00
: 188 : vars_time4 : 0.000e+00
: 189 : vars_time4 : 0.000e+00
: 190 : vars_time4 : 0.000e+00
: 191 : vars_time4 : 0.000e+00
: 192 : vars_time4 : 0.000e+00
: 193 : vars_time4 : 0.000e+00
: 194 : vars_time4 : 0.000e+00
: 195 : vars_time4 : 0.000e+00
: 196 : vars_time4 : 0.000e+00
: 197 : vars_time4 : 0.000e+00
: 198 : vars_time4 : 0.000e+00
: 199 : vars_time4 : 0.000e+00
: 200 : vars_time4 : 0.000e+00
: 201 : vars_time4 : 0.000e+00
: 202 : vars_time4 : 0.000e+00
: 203 : vars_time4 : 0.000e+00
: 204 : vars_time4 : 0.000e+00
: 205 : vars_time5 : 0.000e+00
: 206 : vars_time5 : 0.000e+00
: 207 : vars_time5 : 0.000e+00
: 208 : vars_time5 : 0.000e+00
: 209 : vars_time5 : 0.000e+00
: 210 : vars_time5 : 0.000e+00
: 211 : vars_time5 : 0.000e+00
: 212 : vars_time5 : 0.000e+00
: 213 : vars_time5 : 0.000e+00
: 214 : vars_time5 : 0.000e+00
: 215 : vars_time5 : 0.000e+00
: 216 : vars_time5 : 0.000e+00
: 217 : vars_time5 : 0.000e+00
: 218 : vars_time5 : 0.000e+00
: 219 : vars_time5 : 0.000e+00
: 220 : vars_time5 : 0.000e+00
: 221 : vars_time5 : 0.000e+00
: 222 : vars_time5 : 0.000e+00
: 223 : vars_time5 : 0.000e+00
: 224 : vars_time5 : 0.000e+00
: 225 : vars_time5 : 0.000e+00
: 226 : vars_time5 : 0.000e+00
: 227 : vars_time5 : 0.000e+00
: 228 : vars_time5 : 0.000e+00
: 229 : vars_time6 : 0.000e+00
: 230 : vars_time6 : 0.000e+00
: 231 : vars_time6 : 0.000e+00
: 232 : vars_time6 : 0.000e+00
: 233 : vars_time6 : 0.000e+00
: 234 : vars_time6 : 0.000e+00
: 235 : vars_time6 : 0.000e+00
: 236 : vars_time6 : 0.000e+00
: 237 : vars_time6 : 0.000e+00
: 238 : vars_time6 : 0.000e+00
: 239 : vars_time6 : 0.000e+00
: 240 : vars_time6 : 0.000e+00
: 241 : vars_time6 : 0.000e+00
: 242 : vars_time6 : 0.000e+00
: 243 : vars_time6 : 0.000e+00
: 244 : vars_time6 : 0.000e+00
: 245 : vars_time6 : 0.000e+00
: 246 : vars_time6 : 0.000e+00
: 247 : vars_time6 : 0.000e+00
: 248 : vars_time6 : 0.000e+00
: 249 : vars_time6 : 0.000e+00
: 250 : vars_time7 : 0.000e+00
: 251 : vars_time7 : 0.000e+00
: 252 : vars_time7 : 0.000e+00
: 253 : vars_time7 : 0.000e+00
: 254 : vars_time7 : 0.000e+00
: 255 : vars_time7 : 0.000e+00
: 256 : vars_time7 : 0.000e+00
: 257 : vars_time7 : 0.000e+00
: 258 : vars_time7 : 0.000e+00
: 259 : vars_time7 : 0.000e+00
: 260 : vars_time7 : 0.000e+00
: 261 : vars_time7 : 0.000e+00
: 262 : vars_time7 : 0.000e+00
: 263 : vars_time7 : 0.000e+00
: 264 : vars_time7 : 0.000e+00
: 265 : vars_time7 : 0.000e+00
: 266 : vars_time8 : 0.000e+00
: 267 : vars_time8 : 0.000e+00
: 268 : vars_time8 : 0.000e+00
: 269 : vars_time8 : 0.000e+00
: 270 : vars_time8 : 0.000e+00
: 271 : vars_time8 : 0.000e+00
: 272 : vars_time8 : 0.000e+00
: 273 : vars_time8 : 0.000e+00
: 274 : vars_time8 : 0.000e+00
: 275 : vars_time8 : 0.000e+00
: 276 : vars_time8 : 0.000e+00
: 277 : vars_time8 : 0.000e+00
: 278 : vars_time8 : 0.000e+00
: 279 : vars_time8 : 0.000e+00
: 280 : vars_time8 : 0.000e+00
: 281 : vars_time8 : 0.000e+00
: 282 : vars_time9 : 0.000e+00
: 283 : vars_time9 : 0.000e+00
: 284 : vars_time9 : 0.000e+00
: 285 : vars_time9 : 0.000e+00
: 286 : vars_time9 : 0.000e+00
: 287 : vars_time9 : 0.000e+00
: 288 : vars_time9 : 0.000e+00
: 289 : vars_time9 : 0.000e+00
: 290 : vars_time9 : 0.000e+00
: 291 : vars_time9 : 0.000e+00
: 292 : vars_time9 : 0.000e+00
: 293 : vars_time9 : 0.000e+00
: 294 : vars_time9 : 0.000e+00
: 295 : vars_time9 : 0.000e+00
: 296 : vars_time9 : 0.000e+00
: 297 : vars_time9 : 0.000e+00
: 298 : vars_time9 : 0.000e+00
: 299 : vars_time9 : 0.000e+00
: 300 : vars_time9 : 0.000e+00
: --------------------------------------------
TH1.Print Name = TrainingHistory_TMVA_LSTM_trainingError, Entries= 0, Total sum= 8.99378
TH1.Print Name = TrainingHistory_TMVA_LSTM_valError, Entries= 0, Total sum= 9.05213
TH1.Print Name = TrainingHistory_TMVA_DNN_trainingError, Entries= 0, Total sum= 12.0317
TH1.Print Name = TrainingHistory_TMVA_DNN_valError, Entries= 0, Total sum= 12.0499
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_LSTM.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_TMVA_DNN.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_BDTG.weights.xml␛[0m
nthreads = 16
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: TMVA_LSTM for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
TMVA_LSTM : [dataset] : Evaluation of TMVA_LSTM on testing sample (4000 events)
: Elapsed time for evaluation of 4000 events: 0.307 sec
Factory : Test method: TMVA_DNN for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
TMVA_DNN : [dataset] : Evaluation of TMVA_DNN on testing sample (4000 events)
: Elapsed time for evaluation of 4000 events: 0.0939 sec
Factory : Test method: BDTG for Classification performance
:
BDTG : [dataset] : Evaluation of BDTG on testing sample (4000 events)
: Elapsed time for evaluation of 4000 events: 0.0195 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: TMVA_LSTM
:
TMVA_LSTM : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN
:
TMVA_DNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
Factory : Evaluate classifier: BDTG
:
BDTG : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 300 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_LSTM : 0.901
: dataset BDTG : 0.839
: dataset TMVA_DNN : 0.830
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_LSTM : 0.287 (0.314) 0.692 (0.713) 0.909 (0.911)
: dataset BDTG : 0.195 (0.216) 0.539 (0.591) 0.816 (0.833)
: dataset TMVA_DNN : 0.052 (0.052) 0.543 (0.523) 0.767 (0.760)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 4000 events
:
Dataset:dataset : Created tree 'TrainTree' with 16000 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m