Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
MultivariateGaussianTest.py File Reference

Detailed Description

View in nbviewer Open in SWAN
Comparison of MCMC and PLC in a multi-variate gaussian problem

This tutorial produces an N-dimensional multivariate Gaussian with a non-trivial covariance matrix. By default N=4 (called "dim").

A subset of these are considered parameters of interest. This problem is tractable analytically.

We use this mainly as a test of Markov Chain Monte Carlo and we compare the result to the profile likelihood ratio.

We use the proposal helper to create a customized proposal function for this problem.

For N=4 and 2 parameters of interest it takes about 10-20 seconds and the acceptance rate is 37%

[#1] INFO:Fitting -- RooAbsPdf::fitTo(mvg_over_mvg_Int[x0,x1,x2,x3]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx512
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_mvg_over_mvg_Int[x0,x1,x2,x3]_mvgData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
Minuit2Minimizer: Minimize with max-calls 2000 convergence for edm < 1 strategy 1
Minuit2Minimizer : Valid minimum - status = 0
FVAL = 706.560063684865781
Edm = 9.79361278577427602e-06
Nfcn = 68
mu_x0 = 0.180728 +/- 0.17298 (limited)
mu_x1 = 0.207351 +/- 0.172978 (limited)
mu_x2 = -0.0159412 +/- 0.172984 (limited)
mu_x3 = 0.12343 +/- 0.172982 (limited)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(mvg_over_mvg_Int[x0,x1,x2,x3]) fixing normalization set for coefficient determination to observables in data
Metropolis-Hastings progress: ....................................................................................................
[#1] INFO:Eval -- Proposal acceptance rate: 37.1%
[#1] INFO:Eval -- Number of steps in chain: 3710
[#1] INFO:InputArguments -- The deprecated RooFit::CloneData(1) option passed to createNLL() is ignored.
[#1] INFO:Fitting -- RooAbsPdf::fitTo(mvg_over_mvg_Int[x0,x1,x2,x3]) fixing normalization set for coefficient determination to observables in data
[#0] PROGRESS:Minimization -- ProfileLikelihoodCalcultor::DoGLobalFit - find MLE
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_mvg_over_mvg_Int[x0,x1,x2,x3]_mvgData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#0] PROGRESS:Minimization -- ProfileLikelihoodCalcultor::DoMinimizeNLL - using Minuit2 / Migrad with strategy 1
[#1] INFO:Minimization --
RooFitResult: minimized FCN value: 706.56, estimated distance to minimum: 3.96149e-12
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0
Floating Parameter FinalValue +/- Error
-------------------- --------------------------
mu_x0 1.8118e-01 +/- 1.73e-01
mu_x1 2.0792e-01 +/- 1.73e-01
mu_x2 -1.6067e-02 +/- 1.73e-01
mu_x3 1.2371e-01 +/- 1.73e-01
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[mu_x1,mu_x0]) Creating instance of MINUIT
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_mvg_over_mvg_Int[x0,x1,x2,x3]_mvgData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[mu_x1,mu_x0]) determining minimum likelihood for current configurations w.r.t all observable
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[mu_x1,mu_x0]) minimum found at (mu_x0=0.181184, mu_x1=0.207918)
..[#1] INFO:Minimization -- LikelihoodInterval - Finding the contour of mu_x1 ( 1 ) and mu_x0 ( 0 )
MCMC interval on p0: [-0.19999999999999996, 0.6000000000000001]
MCMC interval on p1: [-0.28, 0.6000000000000001]
Real time 0:00:01, CP time 1.500
import ROOT
dim = 4
nPOI = 2
# let's time this challenging example
xVec = []
muVec = []
poi = set()
# make the observable and means
for i in range(dim):
name = "x{}".format(i)
x = ROOT.RooRealVar(name, name, 0, -3, 3)
mu_name = "mu_x{}".format(i)
mu_x = ROOT.RooRealVar(mu_name, mu_name, 0, -2, 2)
# put them into the list of parameters of interest
for i in range(nPOI):
poi.add(muVec[i])
# make a covariance matrix that is all 1's
cov = ROOT.TMatrixDSym(dim)
for i in range(dim):
for j in range(dim):
if i == j:
cov[i, j] = 3.0
else:
cov[i, j] = 1.0
# now make the multivariate Gaussian
mvg = ROOT.RooMultiVarGaussian("mvg", "mvg", xVec, muVec, cov)
# --------------------
# make a toy dataset
data = mvg.generate(xVec, 100)
# now create the model config for this problem
modelConfig = ROOT.RooStats.ModelConfig(w)
# -------------------------------------------------------
# Setup calculators
# MCMC
# we want to setup an efficient proposal function
# using the covariance matrix from a fit to the data
fit = mvg.fitTo(data, Save=True)
# now create the calculator
mc = ROOT.RooStats.MCMCCalculator(data, modelConfig)
mcInt = mc.GetInterval()
poiList = mcInt.GetAxes()
# now setup the profile likelihood calculator
plInt = plc.GetInterval()
# make some plots
plPlot.Draw("same")
if len(poiList) == 1:
p = poiList.at(0)
print("MCMC interval: [{}, {}]".format(mcInt.LowerLimit(p), mcInt.UpperLimit(p)))
if len(poiList) == 2:
p0 = poiList.at(0)
p1 = poiList.at(1)
scatter = ROOT.TCanvas()
print("MCMC interval on p0: [{}, {}]".format(mcInt.LowerLimit(p0), mcInt.UpperLimit(p0)))
print("MCMC interval on p1: [{}, {}]".format(mcInt.LowerLimit(p1), mcInt.UpperLimit(p1)))
# MCMC interval on p0: [-0.2, 0.6]
# MCMC interval on p1: [-0.2, 0.6]
scatter.SaveAs("MultivariateGaussianTest_scatter.png")
c1.SaveAs("MultivariateGaussianTest_plot.png")
# TODO: The MCMCCalculator has to be destructed first. Otherwise, we can get
# segmentation faults depending on the destruction order, which is random in
# Python. Probably the issue is that some object has a non-owning pointer to
# another object, which it uses in its destructor. This should be fixed either
# in the design of RooStats in C++, or with phythonizations.
del mc
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
Date
July 2022
Authors
Artem Busorgin, Kevin Belasco and Kyle Cranmer (C++ version)

Definition in file MultivariateGaussianTest.py.