Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rs101_limitexample.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Limits: number counting experiment with uncertainty on both the background rate and signal efficiency.

The usage of a Confidence Interval Calculator to set a limit on the signal is illustrated

RooWorkspace() contents
variables
---------
(b,gSigBkg,gSigEff,obs,ratioBkgEff,ratioSigEff,s)
p.d.f.s
-------
RooGaussian::bkgConstraint[ x=gSigBkg mean=ratioBkgEff sigma=0.2 ] = 1
RooPoisson::countingModel[ x=obs mean=countingModel_2 ] = 0.0325554
RooProdPdf::modelWithConstraints[ countingModel * sigConstraint * bkgConstraint ] = 0.0325554
RooGaussian::sigConstraint[ x=gSigEff mean=ratioSigEff sigma=0.05 ] = 1
functions
--------
RooAddition::countingModel_2[ countingModel_2_[s_x_ratioSigEff] + countingModel_2_[b_x_ratioBkgEff] ] = 150
RooProduct::countingModel_2_[b_x_ratioBkgEff][ b * ratioBkgEff ] = 100
RooProduct::countingModel_2_[s_x_ratioSigEff][ s * ratioSigEff ] = 50
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (sigConstraint,bkgConstraint)
[#1] INFO:Minimization -- The global observables are not defined , normalize constraints with respect to the parameters (ratioSigEff,ratioBkgEff)
[#1] INFO:Fitting -- RooAbsPdf::fitTo(modelWithConstraints) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx2
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_modelWithConstraints_exampleData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:ObjectHandling -- RooWorkspace::import() importing dataset exampleData
[#1] INFO:InputArguments -- The deprecated RooFit::CloneData(1) option passed to createNLL() is ignored.
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (sigConstraint,bkgConstraint)
[#1] INFO:Minimization -- The following global observables have been defined and their values are taken from the model: (gSigEff,gSigBkg)
[#1] INFO:Fitting -- RooAbsPdf::fitTo(modelWithConstraints) fixing normalization set for coefficient determination to observables in data
[#0] PROGRESS:Minimization -- ProfileLikelihoodCalcultor::DoGLobalFit - find MLE
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_modelWithConstraints_exampleData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#0] PROGRESS:Minimization -- ProfileLikelihoodCalcultor::DoMinimizeNLL - using Minuit2 / Migrad with strategy 1
[#1] INFO:Minimization --
RooFitResult: minimized FCN value: 0.689753, estimated distance to minimum: 2.26046e-16
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0
Floating Parameter FinalValue +/- Error
-------------------- --------------------------
ratioBkgEff 1.0000e+00 +/- 1.99e-01
ratioSigEff 1.0000e+00 +/- 5.00e-02
s 6.0000e+01 +/- 2.32e+01
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[s]) Creating instance of MINUIT
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_modelWithConstraints_exampleData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[s]) determining minimum likelihood for current configurations w.r.t all observable
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[s]) minimum found at (s=60)
.
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[s]) Creating instance of MINUIT
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_modelWithConstraints_exampleData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[s]) determining minimum likelihood for current configurations w.r.t all observable
[#0] ERROR:InputArguments -- RooArgSet::checkForDup: ERROR argument with name s is already in this set
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[s]) minimum found at (s=60.0341)
..........................................................................................................................................................................................................
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (obs)
Parameters of Interest: RooArgSet:: = (s)
Nuisance Parameters: RooArgSet:: = (ratioSigEff,ratioBkgEff)
Global Observables: RooArgSet:: = (gSigEff,gSigBkg)
PDF: RooProdPdf::modelWithConstraints[ countingModel * sigConstraint * bkgConstraint ] = 0.0036613
FeldmanCousins: ntoys per point: adaptive
FeldmanCousins: nEvents per toy will not fluctuate, will always be 1
FeldmanCousins: Model has nuisance parameters, will do profile construction
FeldmanCousins: # points to test = 100
NeymanConstruction: Prog: 1/100 total MC = 80 this test stat = 3.21178
s=0.6 ratioSigEff=0.999975 ratioBkgEff=1.43644 [-inf, 4.68588] in interval = 1
NeymanConstruction: Prog: 2/100 total MC = 80 this test stat = 3.08184
s=1.8 ratioSigEff=1.00018 ratioBkgEff=1.42694 [-inf, 3.7189] in interval = 1
NeymanConstruction: Prog: 3/100 total MC = 80 this test stat = 2.95515
s=3 ratioSigEff=1.00055 ratioBkgEff=1.41769 [-inf, 3.91249] in interval = 1
NeymanConstruction: Prog: 4/100 total MC = 80 this test stat = 2.83091
s=4.2 ratioSigEff=1.00106 ratioBkgEff=1.40849 [-inf, 3.65947] in interval = 1
NeymanConstruction: Prog: 5/100 total MC = 80 this test stat = 2.7092
s=5.4 ratioSigEff=1.00133 ratioBkgEff=1.39955 [-inf, 3.10323] in interval = 1
NeymanConstruction: Prog: 6/100 total MC = 80 this test stat = 2.59009
s=6.6 ratioSigEff=1.00159 ratioBkgEff=1.3906 [-inf, 2.97611] in interval = 1
NeymanConstruction: Prog: 7/100 total MC = 240 this test stat = 2.47431
s=7.8 ratioSigEff=1.00102 ratioBkgEff=1.38084 [-inf, 3.25381] in interval = 1
NeymanConstruction: Prog: 8/100 total MC = 80 this test stat = 2.36072
s=9 ratioSigEff=1.00134 ratioBkgEff=1.37175 [-inf, 2.92353] in interval = 1
NeymanConstruction: Prog: 9/100 total MC = 80 this test stat = 2.24982
s=10.2 ratioSigEff=1.00166 ratioBkgEff=1.36272 [-inf, 3.4069] in interval = 1
NeymanConstruction: Prog: 10/100 total MC = 80 this test stat = 2.14164
s=11.4 ratioSigEff=1.00196 ratioBkgEff=1.35374 [-inf, 3.07011] in interval = 1
NeymanConstruction: Prog: 11/100 total MC = 80 this test stat = 2.03623
s=12.6 ratioSigEff=1.00273 ratioBkgEff=1.34405 [-inf, 3.24614] in interval = 1
NeymanConstruction: Prog: 12/100 total MC = 80 this test stat = 1.93333
s=13.8 ratioSigEff=1.00294 ratioBkgEff=1.33528 [-inf, 2.4475] in interval = 1
NeymanConstruction: Prog: 13/100 total MC = 80 this test stat = 1.83331
s=15 ratioSigEff=1.0023 ratioBkgEff=1.32684 [-inf, 2.70017] in interval = 1
NeymanConstruction: Prog: 14/100 total MC = 80 this test stat = 1.73555
s=16.2 ratioSigEff=1.00257 ratioBkgEff=1.31792 [-inf, 2.77026] in interval = 1
NeymanConstruction: Prog: 15/100 total MC = 80 this test stat = 1.64101
s=17.4 ratioSigEff=1.00283 ratioBkgEff=1.30904 [-inf, 2.84104] in interval = 1
NeymanConstruction: Prog: 16/100 total MC = 80 this test stat = 1.54913
s=18.6 ratioSigEff=1.00364 ratioBkgEff=1.2991 [-inf, 2.44366] in interval = 1
NeymanConstruction: Prog: 17/100 total MC = 80 this test stat = 1.45967
s=19.8 ratioSigEff=1.0038 ratioBkgEff=1.29046 [-inf, 2.51046] in interval = 1
NeymanConstruction: Prog: 18/100 total MC = 80 this test stat = 1.3729
s=21 ratioSigEff=1.00395 ratioBkgEff=1.28178 [-inf, 2.3088] in interval = 1
NeymanConstruction: Prog: 19/100 total MC = 80 this test stat = 1.28897
s=22.2 ratioSigEff=1.00408 ratioBkgEff=1.27309 [-inf, 2.28612] in interval = 1
NeymanConstruction: Prog: 20/100 total MC = 80 this test stat = 1.20763
s=23.4 ratioSigEff=1.0042 ratioBkgEff=1.26436 [-inf, 2.0941] in interval = 1
NeymanConstruction: Prog: 21/100 total MC = 80 this test stat = 1.12898
s=24.6 ratioSigEff=1.00431 ratioBkgEff=1.25562 [-inf, 2.07266] in interval = 1
NeymanConstruction: Prog: 22/100 total MC = 80 this test stat = 1.05305
s=25.8 ratioSigEff=1.0044 ratioBkgEff=1.24687 [-inf, 2.4819] in interval = 1
NeymanConstruction: Prog: 23/100 total MC = 80 this test stat = 0.979804
s=27 ratioSigEff=1.00448 ratioBkgEff=1.2381 [-inf, 1.94868] in interval = 1
NeymanConstruction: Prog: 24/100 total MC = 80 this test stat = 0.909232
s=28.2 ratioSigEff=1.00454 ratioBkgEff=1.22932 [-inf, 2.09127] in interval = 1
NeymanConstruction: Prog: 25/100 total MC = 80 this test stat = 0.841264
s=29.4 ratioSigEff=1.00408 ratioBkgEff=1.22097 [-inf, 1.9082] in interval = 1
NeymanConstruction: Prog: 26/100 total MC = 80 this test stat = 0.776027
s=30.6 ratioSigEff=1.00408 ratioBkgEff=1.21214 [-inf, 2.04865] in interval = 1
NeymanConstruction: Prog: 27/100 total MC = 80 this test stat = 0.713453
s=31.8 ratioSigEff=1.00406 ratioBkgEff=1.2033 [-inf, 1.4258] in interval = 1
NeymanConstruction: Prog: 28/100 total MC = 80 this test stat = 0.653398
s=33 ratioSigEff=1.00403 ratioBkgEff=1.19446 [-inf, 1.92614] in interval = 1
NeymanConstruction: Prog: 29/100 total MC = 80 this test stat = 0.596234
s=34.2 ratioSigEff=1.00399 ratioBkgEff=1.18562 [-inf, 1.53064] in interval = 1
NeymanConstruction: Prog: 30/100 total MC = 80 this test stat = 0.541678
s=35.4 ratioSigEff=1.00393 ratioBkgEff=1.17679 [-inf, 1.65725] in interval = 1
NeymanConstruction: Prog: 31/100 total MC = 80 this test stat = 0.489749
s=36.6 ratioSigEff=1.00386 ratioBkgEff=1.16795 [-inf, 1.42567] in interval = 1
NeymanConstruction: Prog: 32/100 total MC = 80 this test stat = 0.440357
s=37.8 ratioSigEff=1.00378 ratioBkgEff=1.15913 [-inf, 1.40855] in interval = 1
NeymanConstruction: Prog: 33/100 total MC = 80 this test stat = 0.393811
s=39 ratioSigEff=1.00369 ratioBkgEff=1.15032 [-inf, 1.2593] in interval = 1
NeymanConstruction: Prog: 34/100 total MC = 80 this test stat = 0.349798
s=40.2 ratioSigEff=1.00358 ratioBkgEff=1.14152 [-inf, 1.30825] in interval = 1
NeymanConstruction: Prog: 35/100 total MC = 80 this test stat = 0.30842
s=41.4 ratioSigEff=1.00347 ratioBkgEff=1.13274 [-inf, 0.874179] in interval = 1
NeymanConstruction: Prog: 36/100 total MC = 80 this test stat = 0.269673
s=42.6 ratioSigEff=1.00334 ratioBkgEff=1.12397 [-inf, 1.14949] in interval = 1
NeymanConstruction: Prog: 37/100 total MC = 80 this test stat = 0.233551
s=43.8 ratioSigEff=1.00319 ratioBkgEff=1.11574 [-inf, 1.07403] in interval = 1
NeymanConstruction: Prog: 38/100 total MC = 80 this test stat = 0.200042
s=45 ratioSigEff=1.00303 ratioBkgEff=1.10705 [-inf, 1.30848] in interval = 1
NeymanConstruction: Prog: 39/100 total MC = 80 this test stat = 0.169154
s=46.2 ratioSigEff=1.00285 ratioBkgEff=1.09838 [-inf, 0.987229] in interval = 1
NeymanConstruction: Prog: 40/100 total MC = 80 this test stat = 0.140876
s=47.4 ratioSigEff=1.00267 ratioBkgEff=1.08972 [-inf, 0.917557] in interval = 1
NeymanConstruction: Prog: 41/100 total MC = 80 this test stat = 0.115202
s=48.6 ratioSigEff=1.00247 ratioBkgEff=1.08109 [-inf, 0.850481] in interval = 1
NeymanConstruction: Prog: 42/100 total MC = 80 this test stat = 0.0921253
s=49.8 ratioSigEff=1.00226 ratioBkgEff=1.07247 [-inf, 0.891152] in interval = 1
NeymanConstruction: Prog: 43/100 total MC = 80 this test stat = 0.0716406
s=51 ratioSigEff=1.00204 ratioBkgEff=1.06387 [-inf, 1.04631] in interval = 1
NeymanConstruction: Prog: 44/100 total MC = 80 this test stat = 0.0537413
s=52.2 ratioSigEff=1.00181 ratioBkgEff=1.05529 [-inf, 0.574131] in interval = 1
NeymanConstruction: Prog: 45/100 total MC = 80 this test stat = 0.0384208
s=53.4 ratioSigEff=1.00156 ratioBkgEff=1.04672 [-inf, 0.749926] in interval = 1
NeymanConstruction: Prog: 46/100 total MC = 80 this test stat = 0.0256726
s=54.6 ratioSigEff=1.00131 ratioBkgEff=1.03818 [-inf, 0.839739] in interval = 1
NeymanConstruction: Prog: 47/100 total MC = 80 this test stat = 0.0154896
s=55.8 ratioSigEff=1.00104 ratioBkgEff=1.02966 [-inf, 0.715031] in interval = 1
NeymanConstruction: Prog: 48/100 total MC = 80 this test stat = 0.00786498
s=57 ratioSigEff=1.00075 ratioBkgEff=1.02116 [-inf, 0.574092] in interval = 1
NeymanConstruction: Prog: 49/100 total MC = 80 this test stat = 0.00303984
s=58.2 ratioSigEff=1.00152 ratioBkgEff=1.01164 [-inf, 0.731975] in interval = 1
NeymanConstruction: Prog: 50/100 total MC = 80 this test stat = 0.000296144
s=59.4 ratioSigEff=1.00057 ratioBkgEff=1.0038 [-inf, 0.692058] in interval = 1
NeymanConstruction: Prog: 51/100 total MC = 80 this test stat = 0.000277433
s=60.6 ratioSigEff=0.999598 ratioBkgEff=0.995997 [-inf, 0.645915] in interval = 1
NeymanConstruction: Prog: 52/100 total MC = 80 this test stat = 0.00297545
s=61.8 ratioSigEff=0.998613 ratioBkgEff=0.988241 [-inf, 0.513395] in interval = 1
NeymanConstruction: Prog: 53/100 total MC = 80 this test stat = 0.00784733
s=63 ratioSigEff=0.999173 ratioBkgEff=0.978981 [-inf, 0.477501] in interval = 1
NeymanConstruction: Prog: 54/100 total MC = 80 this test stat = 0.0154172
s=64.2 ratioSigEff=0.998822 ratioBkgEff=0.970614 [-inf, 0.721422] in interval = 1
NeymanConstruction: Prog: 55/100 total MC = 80 this test stat = 0.0254769
s=65.4 ratioSigEff=0.998461 ratioBkgEff=0.962271 [-inf, 0.678264] in interval = 1
NeymanConstruction: Prog: 56/100 total MC = 80 this test stat = 0.0380399
s=66.6 ratioSigEff=0.998087 ratioBkgEff=0.953952 [-inf, 0.636603] in interval = 1
NeymanConstruction: Prog: 57/100 total MC = 80 this test stat = 0.0530874
s=67.8 ratioSigEff=0.997703 ratioBkgEff=0.945657 [-inf, 0.596425] in interval = 1
NeymanConstruction: Prog: 58/100 total MC = 80 this test stat = 0.0706058
s=69 ratioSigEff=0.997308 ratioBkgEff=0.937388 [-inf, 0.70275] in interval = 1
NeymanConstruction: Prog: 59/100 total MC = 80 this test stat = 0.0905894
s=70.2 ratioSigEff=0.996902 ratioBkgEff=0.929144 [-inf, 0.93255] in interval = 1
NeymanConstruction: Prog: 60/100 total MC = 80 this test stat = 0.11303
s=71.4 ratioSigEff=0.996485 ratioBkgEff=0.920926 [-inf, 1.06482] in interval = 1
NeymanConstruction: Prog: 61/100 total MC = 80 this test stat = 0.137918
s=72.6 ratioSigEff=0.996057 ratioBkgEff=0.912734 [-inf, 0.780337] in interval = 1
NeymanConstruction: Prog: 62/100 total MC = 80 this test stat = 0.165246
s=73.8 ratioSigEff=0.995619 ratioBkgEff=0.904568 [-inf, 0.684448] in interval = 1
NeymanConstruction: Prog: 63/100 total MC = 80 this test stat = 0.195001
s=75 ratioSigEff=0.995169 ratioBkgEff=0.89643 [-inf, 1.03027] in interval = 1
NeymanConstruction: Prog: 64/100 total MC = 80 this test stat = 0.227176
s=76.2 ratioSigEff=0.99471 ratioBkgEff=0.888318 [-inf, 0.978263] in interval = 1
NeymanConstruction: Prog: 65/100 total MC = 80 this test stat = 0.261776
s=77.4 ratioSigEff=0.99424 ratioBkgEff=0.880234 [-inf, 1.11256] in interval = 1
NeymanConstruction: Prog: 66/100 total MC = 80 this test stat = 0.298772
s=78.6 ratioSigEff=0.993759 ratioBkgEff=0.872179 [-inf, 1.18776] in interval = 1
NeymanConstruction: Prog: 67/100 total MC = 80 this test stat = 0.338144
s=79.8 ratioSigEff=0.993269 ratioBkgEff=0.864151 [-inf, 1.48101] in interval = 1
NeymanConstruction: Prog: 68/100 total MC = 80 this test stat = 0.379914
s=81 ratioSigEff=0.992768 ratioBkgEff=0.856152 [-inf, 1.56755] in interval = 1
NeymanConstruction: Prog: 69/100 total MC = 80 this test stat = 0.424071
s=82.2 ratioSigEff=0.992257 ratioBkgEff=0.848182 [-inf, 1.21708] in interval = 1
NeymanConstruction: Prog: 70/100 total MC = 80 this test stat = 0.470561
s=83.4 ratioSigEff=0.991736 ratioBkgEff=0.840241 [-inf, 1.43809] in interval = 1
NeymanConstruction: Prog: 71/100 total MC = 80 this test stat = 0.519388
s=84.6 ratioSigEff=0.991205 ratioBkgEff=0.83233 [-inf, 1.84094] in interval = 1
NeymanConstruction: Prog: 72/100 total MC = 80 this test stat = 0.570571
s=85.8 ratioSigEff=0.990664 ratioBkgEff=0.824449 [-inf, 1.31514] in interval = 1
NeymanConstruction: Prog: 73/100 total MC = 80 this test stat = 0.624119
s=87 ratioSigEff=0.990113 ratioBkgEff=0.816598 [-inf, 1.18918] in interval = 1
NeymanConstruction: Prog: 74/100 total MC = 80 this test stat = 0.679954
s=88.2 ratioSigEff=0.989553 ratioBkgEff=0.808777 [-inf, 1.33503] in interval = 1
NeymanConstruction: Prog: 75/100 total MC = 80 this test stat = 0.738105
s=89.4 ratioSigEff=0.988983 ratioBkgEff=0.800988 [-inf, 1.56456] in interval = 1
NeymanConstruction: Prog: 76/100 total MC = 80 this test stat = 0.798548
s=90.6 ratioSigEff=0.988403 ratioBkgEff=0.79323 [-inf, 1.49965] in interval = 1
NeymanConstruction: Prog: 77/100 total MC = 80 this test stat = 0.861306
s=91.8 ratioSigEff=0.987814 ratioBkgEff=0.785503 [-inf, 1.66275] in interval = 1
NeymanConstruction: Prog: 78/100 total MC = 80 this test stat = 0.926319
s=93 ratioSigEff=0.987216 ratioBkgEff=0.777809 [-inf, 1.44643] in interval = 1
NeymanConstruction: Prog: 79/100 total MC = 80 this test stat = 0.993583
s=94.2 ratioSigEff=0.986608 ratioBkgEff=0.770146 [-inf, 2.19051] in interval = 1
NeymanConstruction: Prog: 80/100 total MC = 80 this test stat = 1.06308
s=95.4 ratioSigEff=0.985991 ratioBkgEff=0.762516 [-inf, 1.54054] in interval = 1
NeymanConstruction: Prog: 81/100 total MC = 80 this test stat = 1.13458
s=96.6 ratioSigEff=0.985365 ratioBkgEff=0.754919 [-inf, 1.86615] in interval = 1
NeymanConstruction: Prog: 82/100 total MC = 80 this test stat = 1.20859
s=97.8 ratioSigEff=0.98473 ratioBkgEff=0.747355 [-inf, 2.40993] in interval = 1
NeymanConstruction: Prog: 83/100 total MC = 80 this test stat = 1.28501
s=99 ratioSigEff=0.984086 ratioBkgEff=0.739824 [-inf, 2.32724] in interval = 1
NeymanConstruction: Prog: 84/100 total MC = 80 this test stat = 1.36342
s=100.2 ratioSigEff=0.983433 ratioBkgEff=0.732327 [-inf, 2.43281] in interval = 1
NeymanConstruction: Prog: 85/100 total MC = 80 this test stat = 1.44405
s=101.4 ratioSigEff=0.982771 ratioBkgEff=0.724864 [-inf, 2.44403] in interval = 1
NeymanConstruction: Prog: 86/100 total MC = 80 this test stat = 1.52687
s=102.6 ratioSigEff=0.982101 ratioBkgEff=0.717436 [-inf, 2.09032] in interval = 1
NeymanConstruction: Prog: 87/100 total MC = 80 this test stat = 1.61182
s=103.8 ratioSigEff=0.981422 ratioBkgEff=0.710041 [-inf, 2.76135] in interval = 1
NeymanConstruction: Prog: 88/100 total MC = 80 this test stat = 1.69896
s=105 ratioSigEff=0.980734 ratioBkgEff=0.702682 [-inf, 2.38331] in interval = 1
NeymanConstruction: Prog: 89/100 total MC = 80 this test stat = 1.78823
s=106.2 ratioSigEff=0.980038 ratioBkgEff=0.695358 [-inf, 2.39444] in interval = 1
NeymanConstruction: Prog: 90/100 total MC = 80 this test stat = 1.87929
s=107.4 ratioSigEff=0.979333 ratioBkgEff=0.688069 [-inf, 2.89798] in interval = 1
NeymanConstruction: Prog: 91/100 total MC = 80 this test stat = 1.97313
s=108.6 ratioSigEff=0.97862 ratioBkgEff=0.680815 [-inf, 3.1204] in interval = 1
NeymanConstruction: Prog: 92/100 total MC = 80 this test stat = 2.06825
s=109.8 ratioSigEff=0.977383 ratioBkgEff=0.67064 [-inf, 3.13169] in interval = 1
NeymanConstruction: Prog: 93/100 total MC = 80 this test stat = 2.16592
s=111 ratioSigEff=0.976625 ratioBkgEff=0.663285 [-inf, 2.93195] in interval = 1
NeymanConstruction: Prog: 94/100 total MC = 80 this test stat = 2.26567
s=112.2 ratioSigEff=0.975857 ratioBkgEff=0.655961 [-inf, 2.54424] in interval = 1
NeymanConstruction: Prog: 95/100 total MC = 80 this test stat = 2.36747
s=113.4 ratioSigEff=0.975049 ratioBkgEff=0.648488 [-inf, 3.05911] in interval = 1
NeymanConstruction: Prog: 96/100 total MC = 80 this test stat = 2.47112
s=114.6 ratioSigEff=0.97426 ratioBkgEff=0.641205 [-inf, 2.96555] in interval = 1
NeymanConstruction: Prog: 97/100 total MC = 80 this test stat = 2.57725
s=115.8 ratioSigEff=0.973462 ratioBkgEff=0.633952 [-inf, 3.5205] in interval = 1
NeymanConstruction: Prog: 98/100 total MC = 240 this test stat = 2.68512
s=117 ratioSigEff=0.972655 ratioBkgEff=0.626728 [-inf, 3.19934] in interval = 1
NeymanConstruction: Prog: 99/100 total MC = 80 this test stat = 2.79507
s=118.2 ratioSigEff=0.971839 ratioBkgEff=0.619534 [-inf, 3.77433] in interval = 1
NeymanConstruction: Prog: 100/100 total MC = 80 this test stat = 2.90706
s=119.4 ratioSigEff=0.971014 ratioBkgEff=0.61237 [-inf, 3.66884] in interval = 1
[#1] INFO:Eval -- 100 points in interval
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (sigConstraint,bkgConstraint)
[#1] INFO:Minimization -- The global observables are not defined , normalize constraints with respect to the parameters (b,ratioBkgEff,ratioSigEff,s)
[#1] INFO:Fitting -- RooAbsPdf::fitTo(modelWithConstraints) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_modelWithConstraints_exampleData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (sigConstraint,bkgConstraint)
[#1] INFO:Minimization -- The following global observables have been defined and their values are taken from the model: (gSigEff,gSigBkg)
[#1] INFO:Fitting -- RooAbsPdf::fitTo(modelWithConstraints) fixing normalization set for coefficient determination to observables in data
Metropolis-Hastings progress: ....................................................................................................
[#1] INFO:Eval -- Proposal acceptance rate: 48.15%
[#1] INFO:Eval -- Number of steps in chain: 9630
Profile lower limit on s = 13.9497
Profile upper limit on s = 107.95
FC lower limit on s = 0.6
FC upper limit on s = 119.4
MCMC lower limit on s = 19.1684
MCMC upper limit on s = 103.159
MCMC Actual confidence level: 0.949915
plotting the chain data - nentries = 9630
plotting the scanned points used in the frequentist construction - npoints = 100
Real time 0:00:10, CP time 10.240
#include "RooProfileLL.h"
#include "RooAbsPdf.h"
#include "RooRealVar.h"
#include "RooPlot.h"
#include "RooDataSet.h"
#include "TTree.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TStopwatch.h"
#include "RooFitResult.h"
#include "TGraph2D.h"
#include <cassert>
// use this order for safety on library loading
using namespace RooFit;
using namespace RooStats;
{
// --------------------------------------
// An example of setting a limit in a number counting experiment with uncertainty on background and signal
// to time the macro
t.Start();
// --------------------------------------
// The Model building stage
// --------------------------------------
RooWorkspace wspace{};
wspace.factory("Poisson::countingModel(obs[150,0,300], "
"sum(s[50,0,120]*ratioSigEff[1.,0,3.],b[100]*ratioBkgEff[1.,0.,3.]))"); // counting model
// wspace.factory("Gaussian::sigConstraint(ratioSigEff,1,0.05)"); // 5% signal efficiency uncertainty
// wspace.factory("Gaussian::bkgConstraint(ratioBkgEff,1,0.1)"); // 10% background efficiency uncertainty
wspace.factory("Gaussian::sigConstraint(gSigEff[1,0,3],ratioSigEff,0.05)"); // 5% signal efficiency uncertainty
wspace.factory("Gaussian::bkgConstraint(gSigBkg[1,0,3],ratioBkgEff,0.2)"); // 10% background efficiency uncertainty
wspace.factory("PROD::modelWithConstraints(countingModel,sigConstraint,bkgConstraint)"); // product of terms
wspace.Print();
RooAbsPdf *modelWithConstraints = wspace.pdf("modelWithConstraints"); // get the model
RooRealVar *obs = wspace.var("obs"); // get the observable
RooRealVar *s = wspace.var("s"); // get the signal we care about
wspace.var("b"); // get the background and set it to a constant. Uncertainty included in ratioBkgEff
RooRealVar *ratioSigEff = wspace.var("ratioSigEff"); // get uncertain parameter to constrain
RooRealVar *ratioBkgEff = wspace.var("ratioBkgEff"); // get uncertain parameter to constrain
RooArgSet constrainedParams(*ratioSigEff,
*ratioBkgEff); // need to constrain these in the fit (should change default behavior)
RooRealVar *gSigEff = wspace.var("gSigEff"); // global observables for signal efficiency
RooRealVar *gSigBkg = wspace.var("gSigBkg"); // global obs for background efficiency
gSigEff->setConstant();
gSigBkg->setConstant();
// Create an example dataset with 160 observed events
obs->setVal(160.);
RooDataSet dataOrig{"exampleData", "exampleData", *obs};
dataOrig.add(*obs);
RooArgSet all(*s, *ratioBkgEff, *ratioSigEff);
// not necessary
modelWithConstraints->fitTo(dataOrig, Constrain({*ratioSigEff, *ratioBkgEff}), PrintLevel(-1));
// Now let's make some confidence intervals for s, our parameter of interest
RooArgSet paramOfInterest(*s);
ModelConfig modelConfig(&wspace);
modelConfig.SetPdf(*modelWithConstraints);
modelConfig.SetParametersOfInterest(paramOfInterest);
modelConfig.SetNuisanceParameters(constrainedParams);
modelConfig.SetObservables(*obs);
modelConfig.SetGlobalObservables(RooArgSet(*gSigEff, *gSigBkg));
modelConfig.SetName("ModelConfig");
wspace.import(modelConfig);
wspace.import(dataOrig);
wspace.SetName("w");
// wspace.writeToFile("rs101_ws.root");
// Make sure we reference the data in the workspace from now on
RooDataSet &data = static_cast<RooDataSet &>(*wspace.data(dataOrig.GetName()));
// First, let's use a Calculator based on the Profile Likelihood Ratio
// ProfileLikelihoodCalculator plc(data, *modelWithConstraints, paramOfInterest);
ProfileLikelihoodCalculator plc(data, modelConfig);
plc.SetTestSize(.05);
std::unique_ptr<LikelihoodInterval> lrinterval{static_cast<LikelihoodInterval*>(plc.GetInterval())};
// Let's make a plot
auto dataCanvas = new TCanvas("dataCanvas");
dataCanvas->Divide(2, 1);
dataCanvas->cd(1);
LikelihoodIntervalPlot plotInt(lrinterval.get());
plotInt.SetTitle("Profile Likelihood Ratio and Posterior for S");
plotInt.Draw();
// Second, use a Calculator based on the Feldman Cousins technique
FeldmanCousins fc(data, modelConfig);
fc.UseAdaptiveSampling(true);
fc.FluctuateNumDataEntries(false); // number counting analysis: dataset always has 1 entry with N events observed
fc.SetNBins(100); // number of points to test per parameter
fc.SetTestSize(.05);
// fc.SaveBeltToFile(true); // optional
std::unique_ptr<PointSetInterval> fcint{static_cast<PointSetInterval*>(fc.GetInterval())};
std::unique_ptr<RooFitResult> fit{modelWithConstraints->fitTo(data, Save(true), PrintLevel(-1))};
// Third, use a Calculator based on Markov Chain monte carlo
// Before configuring the calculator, let's make a ProposalFunction
// that will achieve a high acceptance rate
ph.SetVariables((RooArgSet &)fit->floatParsFinal());
ph.SetCovMatrix(fit->covarianceMatrix());
ph.SetCacheSize(100);
MCMCCalculator mc(data, modelConfig);
mc.SetNumIters(20000); // steps to propose in the chain
mc.SetTestSize(.05); // 95% CL
mc.SetNumBurnInSteps(40); // ignore first N steps in chain as "burn in"
mc.SetProposalFunction(*pdfProp);
mc.SetLeftSideTailFraction(0.5); // find a "central" interval
std::unique_ptr<MCMCInterval> mcInt{static_cast<MCMCInterval *>(mc.GetInterval())};
// Get Lower and Upper limits from Profile Calculator
std::cout << "Profile lower limit on s = " << lrinterval->LowerLimit(*s) << std::endl;
std::cout << "Profile upper limit on s = " << lrinterval->UpperLimit(*s) << std::endl;
// Get Lower and Upper limits from FeldmanCousins with profile construction
if (fcint) {
double fcul = fcint->UpperLimit(*s);
double fcll = fcint->LowerLimit(*s);
std::cout << "FC lower limit on s = " << fcll << std::endl;
std::cout << "FC upper limit on s = " << fcul << std::endl;
auto fcllLine = new TLine(fcll, 0, fcll, 1);
auto fculLine = new TLine(fcul, 0, fcul, 1);
fcllLine->SetLineColor(kRed);
fculLine->SetLineColor(kRed);
fcllLine->Draw("same");
fculLine->Draw("same");
dataCanvas->Update();
}
// Plot MCMC interval and print some statistics
MCMCIntervalPlot mcPlot(*mcInt);
mcPlot.SetLineColor(kMagenta);
mcPlot.SetLineWidth(2);
mcPlot.Draw("same");
double mcul = mcInt->UpperLimit(*s);
double mcll = mcInt->LowerLimit(*s);
std::cout << "MCMC lower limit on s = " << mcll << std::endl;
std::cout << "MCMC upper limit on s = " << mcul << std::endl;
std::cout << "MCMC Actual confidence level: " << mcInt->GetActualConfidenceLevel() << std::endl;
// 3-d plot of the parameter points
dataCanvas->cd(2);
// also plot the points in the markov chain
std::unique_ptr<RooDataSet> chainData{mcInt->GetChainAsDataSet()};
assert(chainData);
std::cout << "plotting the chain data - nentries = " << chainData->numEntries() << std::endl;
TTree *chain = RooStats::GetAsTTree("chainTreeData", "chainTreeData", *chainData);
assert(chain);
chain->SetMarkerStyle(6);
chain->Draw("s:ratioSigEff:ratioBkgEff", "nll_MarkovChain_local_", "box"); // 3-d box proportional to posterior
// the points used in the profile construction
RooDataSet *parScanData = (RooDataSet *)fc.GetPointsToScan();
assert(parScanData);
std::cout << "plotting the scanned points used in the frequentist construction - npoints = "
<< parScanData->numEntries() << std::endl;
// getting the tree and drawing it -crashes (very strange....);
// TTree* parameterScan = RooStats::GetAsTTree("parScanTreeData","parScanTreeData",*parScanData);
// assert(parameterScan);
// parameterScan->Draw("s:ratioSigEff:ratioBkgEff","","goff");
auto gr = new TGraph2D(parScanData->numEntries());
for (int ievt = 0; ievt < parScanData->numEntries(); ++ievt) {
const RooArgSet *evt = parScanData->get(ievt);
double x = evt->getRealValue("ratioBkgEff");
double y = evt->getRealValue("ratioSigEff");
double z = evt->getRealValue("s");
gr->SetPoint(ievt, x, y, z);
// std::cout << ievt << " " << x << " " << y << " " << z << std::endl;
}
gr->Draw("P SAME");
// print timing info
t.Stop();
t.Print();
}
#define b(i)
Definition RSha256.hxx:100
@ kRed
Definition Rtypes.h:66
@ kMagenta
Definition Rtypes.h:66
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
double getRealValue(const char *name, double defVal=0.0, bool verbose=false) const
Get value of a RooAbsReal stored in set with given name.
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
Abstract interface for all probability density functions.
Definition RooAbsPdf.h:40
RooFit::OwningPtr< RooFitResult > fitTo(RooAbsData &data, CmdArgs_t const &... cmdArgs)
Fit PDF to given dataset.
Definition RooAbsPdf.h:157
void setConstant(bool value=true)
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:55
Container class to hold unbinned data.
Definition RooDataSet.h:57
const RooArgSet * get(Int_t index) const override
Return RooArgSet with coordinates of event 'index'.
Variable that can be changed from the outside.
Definition RooRealVar.h:37
void setVal(double value) override
Set value of variable to 'value'.
The FeldmanCousins class (like the Feldman-Cousins technique) is essentially a specific configuration...
This class provides simple and straightforward utilities to plot a LikelihoodInterval object.
LikelihoodInterval is a concrete implementation of the RooStats::ConfInterval interface.
Bayesian Calculator estimating an interval or a credible region using the Markov-Chain Monte Carlo me...
This class provides simple and straightforward utilities to plot a MCMCInterval object.
MCMCInterval is a concrete implementation of the RooStats::ConfInterval interface.
virtual double LowerLimit(RooRealVar &param)
get the lowest value of param that is within the confidence interval
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition ModelConfig.h:35
PointSetInterval is a concrete implementation of the ConfInterval interface.
The ProfileLikelihoodCalculator is a concrete implementation of CombinedCalculator (the interface cla...
ProposalFunction is an interface for all proposal functions that would be used with a Markov Chain Mo...
virtual void SetCovMatrix(const TMatrixDSym &covMatrix)
set the covariance matrix to use for a multi-variate Gaussian proposal
virtual ProposalFunction * GetProposalFunction()
Get the ProposalFunction that we've been designing.
virtual void SetVariables(RooArgList &vars)
virtual void SetCacheSize(Int_t size)
virtual void SetUpdateProposalParameters(bool updateParams)
Persistable container for RooFit projects.
RooFactoryWSTool & factory()
Return instance to factory tool.
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition TAttMarker.h:38
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition TAttMarker.h:40
The Canvas class.
Definition TCanvas.h:23
Graphics object made of three arrays X, Y and Z with the same number of points each.
Definition TGraph2D.h:41
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
Definition TGraph.cxx:2325
void Draw(Option_t *chopt="") override
Draw this graph with its current attributes.
Definition TGraph.cxx:814
Use the TLine constructor to create a simple line.
Definition TLine.h:22
void Print(Option_t *option="") const override
Print TNamed name and title.
Definition TNamed.cxx:128
Stopwatch class.
Definition TStopwatch.h:28
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
void Stop()
Stop the stopwatch.
void Print(Option_t *option="") const override
Print the real and cpu time passed between the start and stop events.
A TTree represents a columnar dataset.
Definition TTree.h:79
void Draw(Option_t *opt) override
Default Draw method for all objects.
Definition TTree.h:431
RooCmdArg Constrain(const RooArgSet &params)
RooCmdArg Save(bool flag=true)
RooCmdArg PrintLevel(Int_t code)
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
TGraphErrors * gr
Definition legend1.C:25
fit(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition JSONIO.h:26
Namespace for the RooStats classes.
Definition Asimov.h:19
TTree * GetAsTTree(TString name, TString desc, const RooDataSet &data)
Create a TTree with the given name and description. All RooRealVars in the RooDataSet are represented...
Author
Kyle Cranmer

Definition in file rs101_limitexample.C.