Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
IntervalExamples.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Example showing confidence intervals with four techniques.

An example that shows confidence intervals with four techniques. The model is a Normal Gaussian G(x|mu,sigma) with 100 samples of x. The answer is known analytically, so this is a good example to validate the RooStats tools.

  • expected interval is [-0.162917, 0.229075]
  • plc interval is [-0.162917, 0.229075]
  • fc interval is [-0.17 , 0.23] // stepsize is 0.01
  • bc interval is [-0.162918, 0.229076]
  • mcmc interval is [-0.166999, 0.230224]
[#0] WARNING:InputArguments -- The parameter 'sigma' with range [-inf, inf] of the RooGaussian 'normal' exceeds the safe range of (0, inf). Advise to limit its range.
RooDataSet::normalData[x] = 100 entries
[#1] INFO:InputArguments -- The deprecated RooFit::CloneData(1) option passed to createNLL() is ignored.
[#1] INFO:Fitting -- RooAbsPdf::fitTo(normal_over_normal_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx2
[#0] PROGRESS:Minimization -- ProfileLikelihoodCalcultor::DoGLobalFit - find MLE
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_normal_over_normal_Int[x]_normalData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#0] PROGRESS:Minimization -- ProfileLikelihoodCalcultor::DoMinimizeNLL - using Minuit2 / with strategy 1
[#1] INFO:Minimization --
RooFitResult: minimized FCN value: 144.292, estimated distance to minimum: 1.7357e-15
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0
Floating Parameter FinalValue +/- Error
-------------------- --------------------------
mu 3.3079e-02 +/- 9.98e-02
=== Using the following for Example G(x|mu,1) ===
Observables: RooArgSet:: = (x)
Parameters of Interest: RooArgSet:: = (mu)
PDF: RooGaussian::normal[ x=x mean=mu sigma=sigma ] = 0.999453
FeldmanCousins: ntoys per point: adaptive
FeldmanCousins: nEvents per toy will not fluctuate, will always be 100
FeldmanCousins: Model has no nuisance parameters
FeldmanCousins: # points to test = 100
NeymanConstruction: Prog: 1/100 total MC = 78 this test stat = 52.3345
mu=-0.99 [-inf, 1.44394] in interval = 0
NeymanConstruction: Prog: 2/100 total MC = 78 this test stat = 50.3084
mu=-0.97 [-inf, 1.79333] in interval = 0
NeymanConstruction: Prog: 3/100 total MC = 78 this test stat = 48.3222
mu=-0.95 [-inf, 2.15157] in interval = 0
NeymanConstruction: Prog: 4/100 total MC = 78 this test stat = 46.3758
mu=-0.93 [-inf, 1.35751] in interval = 0
NeymanConstruction: Prog: 5/100 total MC = 78 this test stat = 44.4699
mu=-0.91 [-inf, 3.34994] in interval = 0
NeymanConstruction: Prog: 6/100 total MC = 78 this test stat = 42.6037
mu=-0.89 [-inf, 2.51372] in interval = 0
NeymanConstruction: Prog: 7/100 total MC = 78 this test stat = 40.7776
mu=-0.87 [-inf, 2.23515] in interval = 0
NeymanConstruction: Prog: 8/100 total MC = 78 this test stat = 38.9914
mu=-0.85 [-inf, 1.58856] in interval = 0
NeymanConstruction: Prog: 9/100 total MC = 78 this test stat = 37.2453
mu=-0.83 [-inf, 1.815] in interval = 0
NeymanConstruction: Prog: 10/100 total MC = 78 this test stat = 35.5391
mu=-0.81 [-inf, 2.60213] in interval = 0
NeymanConstruction: Prog: 11/100 total MC = 78 this test stat = 33.873
mu=-0.79 [-inf, 1.83579] in interval = 0
NeymanConstruction: Prog: 12/100 total MC = 78 this test stat = 32.2468
mu=-0.77 [-inf, 1.80677] in interval = 0
NeymanConstruction: Prog: 13/100 total MC = 78 this test stat = 30.6606
mu=-0.75 [-inf, 2.46798] in interval = 0
NeymanConstruction: Prog: 14/100 total MC = 78 this test stat = 29.1145
mu=-0.73 [-inf, 1.76469] in interval = 0
NeymanConstruction: Prog: 15/100 total MC = 78 this test stat = 27.6083
mu=-0.71 [-inf, 2.10923] in interval = 0
NeymanConstruction: Prog: 16/100 total MC = 78 this test stat = 26.1422
mu=-0.69 [-inf, 1.96364] in interval = 0
NeymanConstruction: Prog: 17/100 total MC = 78 this test stat = 24.716
mu=-0.67 [-inf, 2.46737] in interval = 0
NeymanConstruction: Prog: 18/100 total MC = 78 this test stat = 23.3298
mu=-0.65 [-inf, 2.22208] in interval = 0
NeymanConstruction: Prog: 19/100 total MC = 78 this test stat = 21.9837
mu=-0.63 [-inf, 1.92004] in interval = 0
NeymanConstruction: Prog: 20/100 total MC = 78 this test stat = 20.6774
mu=-0.61 [-inf, 2.09449] in interval = 0
NeymanConstruction: Prog: 21/100 total MC = 78 this test stat = 19.4114
mu=-0.59 [-inf, 2.82549] in interval = 0
NeymanConstruction: Prog: 22/100 total MC = 78 this test stat = 18.1852
mu=-0.57 [-inf, 2.44483] in interval = 0
NeymanConstruction: Prog: 23/100 total MC = 78 this test stat = 16.9991
mu=-0.55 [-inf, 1.47648] in interval = 0
NeymanConstruction: Prog: 24/100 total MC = 78 this test stat = 15.8529
mu=-0.53 [-inf, 1.64253] in interval = 0
NeymanConstruction: Prog: 25/100 total MC = 78 this test stat = 14.7467
mu=-0.51 [-inf, 3.23375] in interval = 0
NeymanConstruction: Prog: 26/100 total MC = 78 this test stat = 13.6806
mu=-0.49 [-inf, 1.36352] in interval = 0
NeymanConstruction: Prog: 27/100 total MC = 78 this test stat = 12.6544
mu=-0.47 [-inf, 2.24046] in interval = 0
NeymanConstruction: Prog: 28/100 total MC = 78 this test stat = 11.6683
mu=-0.45 [-inf, 1.99249] in interval = 0
NeymanConstruction: Prog: 29/100 total MC = 78 this test stat = 10.7221
mu=-0.43 [-inf, 2.54633] in interval = 0
NeymanConstruction: Prog: 30/100 total MC = 78 this test stat = 9.81595
mu=-0.41 [-inf, 2.19145] in interval = 0
NeymanConstruction: Prog: 31/100 total MC = 78 this test stat = 8.94979
mu=-0.39 [-inf, 2.25083] in interval = 0
NeymanConstruction: Prog: 32/100 total MC = 78 this test stat = 8.12363
mu=-0.37 [-inf, 2.63436] in interval = 0
NeymanConstruction: Prog: 33/100 total MC = 78 this test stat = 7.33748
mu=-0.35 [-inf, 1.7752] in interval = 0
NeymanConstruction: Prog: 34/100 total MC = 78 this test stat = 6.59132
mu=-0.33 [-inf, 2.63173] in interval = 0
NeymanConstruction: Prog: 35/100 total MC = 78 this test stat = 5.88516
mu=-0.31 [-inf, 2.2561] in interval = 0
NeymanConstruction: Prog: 36/100 total MC = 78 this test stat = 5.219
mu=-0.29 [-inf, 2.0388] in interval = 0
NeymanConstruction: Prog: 37/100 total MC = 234 this test stat = 4.59284
mu=-0.27 [-inf, 1.92574] in interval = 0
NeymanConstruction: Prog: 38/100 total MC = 78 this test stat = 4.00668
mu=-0.25 [-inf, 2.51905] in interval = 0
NeymanConstruction: Prog: 39/100 total MC = 234 this test stat = 3.46053
mu=-0.23 [-inf, 2.20004] in interval = 0
NeymanConstruction: Prog: 40/100 total MC = 234 this test stat = 2.95437
mu=-0.21 [-inf, 1.49924] in interval = 0
NeymanConstruction: Prog: 41/100 total MC = 234 this test stat = 2.48821
mu=-0.19 [-inf, 1.88454] in interval = 0
NeymanConstruction: Prog: 42/100 total MC = 78 this test stat = 2.06205
mu=-0.17 [-inf, 2.92073] in interval = 1
NeymanConstruction: Prog: 43/100 total MC = 234 this test stat = 1.6759
mu=-0.15 [-inf, 2.19199] in interval = 1
NeymanConstruction: Prog: 44/100 total MC = 78 this test stat = 1.32974
mu=-0.13 [-inf, 1.94832] in interval = 1
NeymanConstruction: Prog: 45/100 total MC = 78 this test stat = 1.02358
mu=-0.11 [-inf, 2.16863] in interval = 1
NeymanConstruction: Prog: 46/100 total MC = 78 this test stat = 0.757266
mu=-0.09 [-inf, 1.46141] in interval = 1
NeymanConstruction: Prog: 47/100 total MC = 78 this test stat = 0.531219
mu=-0.07 [-inf, 4.11006] in interval = 1
NeymanConstruction: Prog: 48/100 total MC = 78 this test stat = 0.345097
mu=-0.05 [-inf, 2.11338] in interval = 1
NeymanConstruction: Prog: 49/100 total MC = 78 this test stat = 0.198947
mu=-0.03 [-inf, 2.38127] in interval = 1
NeymanConstruction: Prog: 50/100 total MC = 78 this test stat = 0.09279
mu=-0.01 [-inf, 3.0189] in interval = 1
NeymanConstruction: Prog: 51/100 total MC = 78 this test stat = 0.026632
mu=0.01 [-inf, 2.23423] in interval = 1
NeymanConstruction: Prog: 52/100 total MC = 78 this test stat = 0.000474009
mu=0.03 [-inf, 2.54313] in interval = 1
NeymanConstruction: Prog: 53/100 total MC = 78 this test stat = 0.014316
mu=0.05 [-inf, 1.52484] in interval = 1
NeymanConstruction: Prog: 54/100 total MC = 78 this test stat = 0.0681571
mu=0.07 [-inf, 2.72021] in interval = 1
NeymanConstruction: Prog: 55/100 total MC = 78 this test stat = 0.161992
mu=0.09 [-inf, 3.26474] in interval = 1
NeymanConstruction: Prog: 56/100 total MC = 78 this test stat = 0.2958
mu=0.11 [-inf, 2.81134] in interval = 1
NeymanConstruction: Prog: 57/100 total MC = 78 this test stat = 0.469534
mu=0.13 [-inf, 2.59127] in interval = 1
NeymanConstruction: Prog: 58/100 total MC = 78 this test stat = 0.683526
mu=0.15 [-inf, 2.60194] in interval = 1
NeymanConstruction: Prog: 59/100 total MC = 78 this test stat = 0.937368
mu=0.17 [-inf, 1.94974] in interval = 1
NeymanConstruction: Prog: 60/100 total MC = 78 this test stat = 1.23121
mu=0.19 [-inf, 1.73838] in interval = 1
NeymanConstruction: Prog: 61/100 total MC = 702 this test stat = 1.56505
mu=0.21 [-inf, 1.73023] in interval = 1
NeymanConstruction: Prog: 62/100 total MC = 78 this test stat = 1.93888
mu=0.23 [-inf, 3.06401] in interval = 1
NeymanConstruction: Prog: 63/100 total MC = 234 this test stat = 2.35273
mu=0.25 [-inf, 1.63166] in interval = 0
NeymanConstruction: Prog: 64/100 total MC = 234 this test stat = 2.80658
mu=0.27 [-inf, 1.83441] in interval = 0
NeymanConstruction: Prog: 65/100 total MC = 234 this test stat = 3.30042
mu=0.29 [-inf, 2.06725] in interval = 0
NeymanConstruction: Prog: 66/100 total MC = 78 this test stat = 3.83426
mu=0.31 [-inf, 2.10484] in interval = 0
NeymanConstruction: Prog: 67/100 total MC = 78 this test stat = 4.4081
mu=0.33 [-inf, 2.1714] in interval = 0
NeymanConstruction: Prog: 68/100 total MC = 78 this test stat = 5.02195
mu=0.35 [-inf, 2.77418] in interval = 0
NeymanConstruction: Prog: 69/100 total MC = 78 this test stat = 5.67579
mu=0.37 [-inf, 2.39797] in interval = 0
NeymanConstruction: Prog: 70/100 total MC = 78 this test stat = 6.36963
mu=0.39 [-inf, 1.83585] in interval = 0
NeymanConstruction: Prog: 71/100 total MC = 78 this test stat = 7.10347
mu=0.41 [-inf, 1.92776] in interval = 0
NeymanConstruction: Prog: 72/100 total MC = 78 this test stat = 7.87731
mu=0.43 [-inf, 1.62512] in interval = 0
NeymanConstruction: Prog: 73/100 total MC = 78 this test stat = 8.69116
mu=0.45 [-inf, 1.5721] in interval = 0
NeymanConstruction: Prog: 74/100 total MC = 78 this test stat = 9.545
mu=0.47 [-inf, 1.9811] in interval = 0
NeymanConstruction: Prog: 75/100 total MC = 78 this test stat = 10.4388
mu=0.49 [-inf, 3.71619] in interval = 0
NeymanConstruction: Prog: 76/100 total MC = 78 this test stat = 11.3727
mu=0.51 [-inf, 2.09734] in interval = 0
NeymanConstruction: Prog: 77/100 total MC = 78 this test stat = 12.3465
mu=0.53 [-inf, 1.61789] in interval = 0
NeymanConstruction: Prog: 78/100 total MC = 78 this test stat = 13.3604
mu=0.55 [-inf, 1.75937] in interval = 0
NeymanConstruction: Prog: 79/100 total MC = 78 this test stat = 14.4142
mu=0.57 [-inf, 2.16051] in interval = 0
NeymanConstruction: Prog: 80/100 total MC = 78 this test stat = 15.5081
mu=0.59 [-inf, 2.48971] in interval = 0
NeymanConstruction: Prog: 81/100 total MC = 78 this test stat = 16.6419
mu=0.61 [-inf, 2.15114] in interval = 0
NeymanConstruction: Prog: 82/100 total MC = 78 this test stat = 17.8157
mu=0.63 [-inf, 2.63832] in interval = 0
NeymanConstruction: Prog: 83/100 total MC = 78 this test stat = 19.0296
mu=0.65 [-inf, 2.12006] in interval = 0
NeymanConstruction: Prog: 84/100 total MC = 78 this test stat = 20.2834
mu=0.67 [-inf, 1.70414] in interval = 0
NeymanConstruction: Prog: 85/100 total MC = 78 this test stat = 21.5773
mu=0.69 [-inf, 2.54958] in interval = 0
NeymanConstruction: Prog: 86/100 total MC = 78 this test stat = 22.9111
mu=0.71 [-inf, 2.27992] in interval = 0
NeymanConstruction: Prog: 87/100 total MC = 78 this test stat = 24.2849
mu=0.73 [-inf, 2.99068] in interval = 0
NeymanConstruction: Prog: 88/100 total MC = 78 this test stat = 25.6988
mu=0.75 [-inf, 1.60655] in interval = 0
NeymanConstruction: Prog: 89/100 total MC = 78 this test stat = 27.1526
mu=0.77 [-inf, 1.61728] in interval = 0
NeymanConstruction: Prog: 90/100 total MC = 78 this test stat = 28.6465
mu=0.79 [-inf, 1.92571] in interval = 0
NeymanConstruction: Prog: 91/100 total MC = 78 this test stat = 30.1803
mu=0.81 [-inf, 1.69221] in interval = 0
NeymanConstruction: Prog: 92/100 total MC = 78 this test stat = 31.7542
mu=0.83 [-inf, 3.26227] in interval = 0
NeymanConstruction: Prog: 93/100 total MC = 78 this test stat = 33.368
mu=0.85 [-inf, 1.75583] in interval = 0
NeymanConstruction: Prog: 94/100 total MC = 78 this test stat = 35.0218
mu=0.87 [-inf, 2.54103] in interval = 0
NeymanConstruction: Prog: 95/100 total MC = 78 this test stat = 36.7157
mu=0.89 [-inf, 2.267] in interval = 0
NeymanConstruction: Prog: 96/100 total MC = 78 this test stat = 38.4495
mu=0.91 [-inf, 2.31167] in interval = 0
NeymanConstruction: Prog: 97/100 total MC = 78 this test stat = 40.2234
mu=0.93 [-inf, 2.24794] in interval = 0
NeymanConstruction: Prog: 98/100 total MC = 78 this test stat = 42.0372
mu=0.95 [-inf, 1.29779] in interval = 0
NeymanConstruction: Prog: 99/100 total MC = 78 this test stat = 43.891
mu=0.97 [-inf, 2.00008] in interval = 0
NeymanConstruction: Prog: 100/100 total MC = 78 this test stat = 45.7849
mu=0.99 [-inf, 1.56062] in interval = 0
[#1] INFO:Eval -- 21 points in interval
[#1] INFO:Fitting -- RooAbsPdf::fitTo(normal_over_normal_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Eval -- BayesianCalculator::GetPosteriorFunction : nll value 190.077 poi value = 0.99
[#1] INFO:Eval -- BayesianCalculator::GetPosteriorFunction : minimum of NLL vs POI for POI = 0.033079 min NLL = 144.292
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (prior)
[#1] INFO:Minimization -- The following global observables have been defined and their values are taken from the model: ()
[#1] INFO:Fitting -- RooAbsPdf::fitTo(product_normal_prior) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Eval -- BayesianCalculator: Compute interval using RooFit: posteriorPdf + createCdf + RooBrentRootFinder
[#1] INFO:Eval -- BayesianCalculator::GetInterval - found a valid interval : [-0.95 , 0.95 ]
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (prior)
[#1] INFO:Minimization -- The following global observables have been defined and their values are taken from the model: ()
[#1] INFO:Fitting -- RooAbsPdf::fitTo(product_normal_prior) fixing normalization set for coefficient determination to observables in data
Metropolis-Hastings progress: ....................................................................................................
[#1] INFO:Eval -- Proposal acceptance rate: 16.013%
[#1] INFO:Eval -- Number of steps in chain: 16013
expected interval is [-0.162917, 0.229075]
plc interval is [-0.162917, 0.229075]
fc interval is [-0.17 , 0.23]
bc interval is [-0.95, 0.95]
mc interval is [-0.166999, 0.230224]
is mu=0 in the interval? 1
.
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[mu]) Creating instance of MINUIT
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_normal_over_normal_Int[x]_normalData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[mu]) determining minimum likelihood for current configurations w.r.t all observable
[#0] ERROR:InputArguments -- RooArgSet::checkForDup: ERROR argument with name mu is already in this set
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[mu]) minimum found at (mu=0.033079)
..........................................................................................................................................................................................................Real time 0:00:03, CP time 3.960
#include "RooRandom.h"
#include "RooDataSet.h"
#include "RooRealVar.h"
#include "RooConstVar.h"
#include "RooAddition.h"
#include "RooDataHist.h"
#include "RooPoisson.h"
#include "RooPlot.h"
#include "TCanvas.h"
#include "TTree.h"
#include "TStyle.h"
#include "TMath.h"
#include "Math/DistFunc.h"
#include "TH1F.h"
#include "TMarker.h"
#include "TStopwatch.h"
#include <iostream>
// use this order for safety on library loading
using namespace RooFit;
using namespace RooStats;
{
// Time this macro
t.Start();
// set RooFit random seed for reproducible results
// make a simple model via the workspace factory
RooWorkspace *wspace = new RooWorkspace();
wspace->factory("Gaussian::normal(x[-10,10],mu[-1,1],sigma[1])");
wspace->defineSet("poi", "mu");
wspace->defineSet("obs", "x");
// specify components of model for statistical tools
ModelConfig *modelConfig = new ModelConfig("Example G(x|mu,1)");
modelConfig->SetWorkspace(*wspace);
modelConfig->SetPdf(*wspace->pdf("normal"));
modelConfig->SetParametersOfInterest(*wspace->set("poi"));
modelConfig->SetObservables(*wspace->set("obs"));
// create a toy dataset
std::unique_ptr<RooDataSet> data{wspace->pdf("normal")->generate(*wspace->set("obs"), 100)};
data->Print();
// for convenience later on
RooRealVar *x = wspace->var("x");
RooRealVar *mu = wspace->var("mu");
// set confidence level
double confidenceLevel = 0.95;
// example use profile likelihood calculator
ProfileLikelihoodCalculator plc(*data, *modelConfig);
plc.SetConfidenceLevel(confidenceLevel);
LikelihoodInterval *plInt = plc.GetInterval();
// example use of Feldman-Cousins
FeldmanCousins fc(*data, *modelConfig);
fc.SetConfidenceLevel(confidenceLevel);
fc.SetNBins(100); // number of points to test per parameter
fc.UseAdaptiveSampling(true); // make it go faster
// Here, we consider only ensembles with 100 events
// The PDF could be extended and this could be removed
fc.FluctuateNumDataEntries(false);
// Proof
// ProofConfig pc(*wspace, 4, "workers=4", kFALSE); // proof-lite
// ProofConfig pc(w, 8, "localhost"); // proof cluster at "localhost"
// ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
// toymcsampler->SetProofConfig(&pc); // enable proof
PointSetInterval *interval = (PointSetInterval *)fc.GetInterval();
// example use of BayesianCalculator
// now we also need to specify a prior in the ModelConfig
wspace->factory("Uniform::prior(mu)");
modelConfig->SetPriorPdf(*wspace->pdf("prior"));
// example usage of BayesianCalculator
BayesianCalculator bc(*data, *modelConfig);
bc.SetConfidenceLevel(confidenceLevel);
SimpleInterval *bcInt = bc.GetInterval();
// example use of MCMCInterval
MCMCCalculator mc(*data, *modelConfig);
mc.SetConfidenceLevel(confidenceLevel);
// special options
mc.SetNumBins(200); // bins used internally for representing posterior
mc.SetNumBurnInSteps(500); // first N steps to be ignored as burn-in
mc.SetNumIters(100000); // how long to run chain
mc.SetLeftSideTailFraction(0.5); // for central interval
MCMCInterval *mcInt = mc.GetInterval();
// for this example we know the expected intervals
double expectedLL =
data->mean(*x) + ROOT::Math::normal_quantile((1 - confidenceLevel) / 2, 1) / sqrt(data->numEntries());
double expectedUL =
data->mean(*x) + ROOT::Math::normal_quantile_c((1 - confidenceLevel) / 2, 1) / sqrt(data->numEntries());
// Use the intervals
std::cout << "expected interval is [" << expectedLL << ", " << expectedUL << "]" << endl;
cout << "plc interval is [" << plInt->LowerLimit(*mu) << ", " << plInt->UpperLimit(*mu) << "]" << endl;
std::cout << "fc interval is [" << interval->LowerLimit(*mu) << " , " << interval->UpperLimit(*mu) << "]" << endl;
cout << "bc interval is [" << bcInt->LowerLimit() << ", " << bcInt->UpperLimit() << "]" << endl;
cout << "mc interval is [" << mcInt->LowerLimit(*mu) << ", " << mcInt->UpperLimit(*mu) << "]" << endl;
mu->setVal(0);
cout << "is mu=0 in the interval? " << plInt->IsInInterval(RooArgSet(*mu)) << endl;
// make a reasonable style
// some plots
TCanvas *canvas = new TCanvas("canvas");
canvas->Divide(2, 2);
// plot the data
canvas->cd(1);
RooPlot *frame = x->frame();
data->plotOn(frame);
data->statOn(frame);
frame->Draw();
// plot the profile likelihood
canvas->cd(2);
// plot the MCMC interval
canvas->cd(3);
MCMCIntervalPlot *mcPlot = new MCMCIntervalPlot(*mcInt);
mcPlot->SetLineColor(kGreen);
mcPlot->SetLineWidth(2);
mcPlot->Draw();
canvas->cd(4);
RooPlot *bcPlot = bc.GetPosteriorPlot();
bcPlot->Draw();
canvas->Update();
t.Stop();
t.Print();
}
@ kGreen
Definition Rtypes.h:66
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
R__EXTERN TStyle * gStyle
Definition TStyle.h:433
RooFit::OwningPtr< RooDataSet > generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={})
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,...
Definition RooAbsPdf.h:57
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:55
Plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:45
static RooPlot * frame(const RooAbsRealLValue &var, double xmin, double xmax, Int_t nBins)
Create a new frame for a given variable in x.
Definition RooPlot.cxx:225
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
Definition RooPlot.cxx:637
static TRandom * randomGenerator()
Return a pointer to a singleton random-number generator implementation.
Definition RooRandom.cxx:48
Variable that can be changed from the outside.
Definition RooRealVar.h:37
void setVal(double value) override
Set value of variable to 'value'.
BayesianCalculator is a concrete implementation of IntervalCalculator, providing the computation of a...
The FeldmanCousins class (like the Feldman-Cousins technique) is essentially a specific configuration...
This class provides simple and straightforward utilities to plot a LikelihoodInterval object.
LikelihoodInterval is a concrete implementation of the RooStats::ConfInterval interface.
double UpperLimit(const RooRealVar &param)
return the upper bound of the interval on a given parameter
double LowerLimit(const RooRealVar &param)
return the lower bound of the interval on a given parameter
bool IsInInterval(const RooArgSet &) const override
check if given point is in the interval
Bayesian Calculator estimating an interval or a credible region using the Markov-Chain Monte Carlo me...
This class provides simple and straightforward utilities to plot a MCMCInterval object.
void SetLineColor(Color_t color)
void Draw(const Option_t *options=nullptr) override
void SetLineWidth(Int_t width)
MCMCInterval is a concrete implementation of the RooStats::ConfInterval interface.
virtual double UpperLimit(RooRealVar &param)
get the highest value of param that is within the confidence interval
virtual double LowerLimit(RooRealVar &param)
get the lowest value of param that is within the confidence interval
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition ModelConfig.h:35
virtual void SetObservables(const RooArgSet &set)
Specify the observables.
virtual void SetPriorPdf(const RooAbsPdf &pdf)
Set the Prior Pdf, add to the workspace if not already there.
Definition ModelConfig.h:95
virtual void SetWorkspace(RooWorkspace &ws)
Definition ModelConfig.h:71
virtual void SetParametersOfInterest(const RooArgSet &set)
Specify parameters of interest.
virtual void SetPdf(const RooAbsPdf &pdf)
Set the Pdf, add to the workspace if not already there.
Definition ModelConfig.h:88
PointSetInterval is a concrete implementation of the ConfInterval interface.
double UpperLimit(RooRealVar &param)
return upper limit on a given parameter
double LowerLimit(RooRealVar &param)
return lower limit on a given parameter
The ProfileLikelihoodCalculator is a concrete implementation of CombinedCalculator (the interface cla...
SimpleInterval is a concrete implementation of the ConfInterval interface.
virtual double UpperLimit()
return the interval upper limit
virtual double LowerLimit()
return the interval lower limit
Persistable container for RooFit projects.
RooAbsPdf * pdf(RooStringView name) const
Retrieve p.d.f (RooAbsPdf) with given name. A null pointer is returned if not found.
const RooArgSet * set(RooStringView name)
Return pointer to previously defined named set with given nmame If no such set is found a null pointe...
RooFactoryWSTool & factory()
Return instance to factory tool.
RooRealVar * var(RooStringView name) const
Retrieve real-valued variable (RooRealVar) with given name. A null pointer is returned if not found.
bool defineSet(const char *name, const RooArgSet &aset, bool importMissing=false)
Define a named RooArgSet with given constituents.
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
Definition TAttFill.h:37
The Canvas class.
Definition TCanvas.h:23
TVirtualPad * cd(Int_t subpadnumber=0) override
Set current canvas & pad.
Definition TCanvas.cxx:716
void Update() override
Update canvas pad buffers.
Definition TCanvas.cxx:2476
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
Definition TObject.cxx:274
void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0) override
Automatic pad generation by division.
Definition TPad.cxx:1153
virtual void SetSeed(ULong_t seed=0)
Set the random generator seed.
Definition TRandom.cxx:615
Stopwatch class.
Definition TStopwatch.h:28
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
void Stop()
Stop the stopwatch.
void Print(Option_t *option="") const override
Print the real and cpu time passed between the start and stop events.
void SetPadBorderMode(Int_t mode=1)
Definition TStyle.h:354
void SetFrameFillColor(Color_t color=1)
Definition TStyle.h:369
void SetCanvasColor(Color_t color=19)
Definition TStyle.h:341
void SetCanvasBorderMode(Int_t mode=1)
Definition TStyle.h:343
void SetTitleFillColor(Color_t color=1)
Definition TStyle.h:401
void SetStatColor(Color_t color=19)
Definition TStyle.h:387
void SetPadColor(Color_t color=19)
Definition TStyle.h:352
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
Double_t x[n]
Definition legend1.C:17
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition JSONIO.h:26
Namespace for the RooStats classes.
Definition Asimov.h:19
Author
Kyle Cranmer

Definition in file IntervalExamples.C.