This tutorial shows how to apply a trained model to new data (regression).
import torch
from ROOT import TMVA, TFile, TString, gROOT
from array import array
from subprocess import call
branches = {}
branches[branchName] = array('f', [-999])
if branchName != 'fvalue':
def predict(model, test_X, batch_size=32):
predictions = []
X = data[0]
outputs = model(X)
load_model_custom_objects = {"optimizer": None, "criterion": None, "train_func": None, "predict_func": predict}
print('Some example regressions:')
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
The Reader class serves to use the MVAs in a specific analysis context.
- Date
- 2020
- Author
- Anirudh Dagar aniru.nosp@m.dhda.nosp@m.gar6@.nosp@m.gmai.nosp@m.l.com - IIT, Roorkee
Definition in file ApplicationRegressionPyTorch.py.