Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
ApplicationRegressionPyTorch.py
Go to the documentation of this file.
1#!/usr/bin/env python
2## \file
3## \ingroup tutorial_tmva_pytorch
4## \notebook -nodraw
5## This tutorial shows how to apply a trained model to new data (regression).
6##
7## \macro_code
8##
9## \date 2020
10## \author Anirudh Dagar <anirudhdagar6@gmail.com> - IIT, Roorkee
11
12
13# PyTorch has to be imported before ROOT to avoid crashes because of clashing
14# std::regexp symbols that are exported by cppyy.
15# See also: https://github.com/wlav/cppyy/issues/227
16import torch
17
18from ROOT import TMVA, TFile, TString, gROOT
19from array import array
20from subprocess import call
21from os.path import isfile
22
23
24# Setup TMVA
27reader = TMVA.Reader("Color:!Silent")
28
29
30# Load data
31data = TFile.Open(str(gROOT.GetTutorialDir()) + "/tmva/data/tmva_reg_example.root")
32tree = data.Get('TreeR')
33
34branches = {}
35for branch in tree.GetListOfBranches():
36 branchName = branch.GetName()
37 branches[branchName] = array('f', [-999])
38 tree.SetBranchAddress(branchName, branches[branchName])
39 if branchName != 'fvalue':
40 reader.AddVariable(branchName, branches[branchName])
41
42
43# Book methods
44reader.BookMVA('PyTorch', TString('dataset/weights/TMVARegression_PyTorch.weights.xml'))
45
46
47# Define predict function
48def predict(model, test_X, batch_size=32):
49 # Set to eval mode
51
52 test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
53 test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
54
55 predictions = []
56 with torch.no_grad():
57 for i, data in enumerate(test_loader):
58 X = data[0]
59 outputs = model(X)
60 predictions.append(outputs)
61 preds = torch.cat(predictions)
62
63 return preds.numpy()
64
65load_model_custom_objects = {"optimizer": None, "criterion": None, "train_func": None, "predict_func": predict}
66
67
68# Print some example regressions
69print('Some example regressions:')
70for i in range(20):
72 print('True/MVA value: {}/{}'.format(branches['fvalue'][0],reader.EvaluateMVA('PyTorch')))
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
The Reader class serves to use the MVAs in a specific analysis context.
Definition Reader.h:64
Basic string class.
Definition TString.h:139