class
TMVA_SOFIE_GNN_Parser.MLPGraphNetwork
TMVA_SOFIE_GNN_Parser.get_dynamic_graph_data_dict (
NODE_FEATURE_SIZE=2,
EDGE_FEATURE_SIZE=2,
GLOBAL_FEATURE_SIZE=1)
TMVA_SOFIE_GNN_Parser.get_fix_graph_data_dict (num_nodes,
num_edges,
NODE_FEATURE_SIZE=2,
EDGE_FEATURE_SIZE=2,
GLOBAL_FEATURE_SIZE=1)
TMVA_SOFIE_GNN_Parser.make_mlp_model ()
TMVA_SOFIE_GNN_Parser.printMemory (s="")
TMVA_SOFIE_GNN_Parser.CoreGraphData =
get_fix_graph_data_dict(
num_max_nodes,
num_max_edges, 2*
LATENT_SIZE, 2*
LATENT_SIZE, 2*
LATENT_SIZE)
list
TMVA_SOFIE_GNN_Parser.dataset = []
TMVA_SOFIE_GNN_Parser.DecodeGraphData =
get_fix_graph_data_dict(
num_max_nodes,
num_max_edges,
LATENT_SIZE,
LATENT_SIZE,
LATENT_SIZE)
TMVA_SOFIE_GNN_Parser.decoder = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._decoder._network,
DecodeGraphData,
filename = "decoder")
TMVA_SOFIE_GNN_Parser.edge_data = ROOT.std.vector['float'](
num_max_edges*
edge_size)
int TMVA_SOFIE_GNN_Parser.edge_size = 4
TMVA_SOFIE_GNN_Parser.encoder = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._encoder._network,
GraphData,
filename = "encoder")
TMVA_SOFIE_GNN_Parser.end = time.time()
TMVA_SOFIE_GNN_Parser.ep_model =
EncodeProcessDecode()
TMVA_SOFIE_GNN_Parser.fileOut = ROOT.TFile.Open("graph_data.root","RECREATE")
bool TMVA_SOFIE_GNN_Parser.firstEvent = True
TMVA_SOFIE_GNN_Parser.global_data = ROOT.std.vector['float'](
global_size)
int TMVA_SOFIE_GNN_Parser.global_size = 1
TMVA_SOFIE_GNN_Parser.GraphData =
get_fix_graph_data_dict(
num_max_nodes,
num_max_edges,
node_size,
edge_size,
global_size)
TMVA_SOFIE_GNN_Parser.graphData =
get_dynamic_graph_data_dict(
node_size,
edge_size,
global_size)
TMVA_SOFIE_GNN_Parser.h1 = ROOT.TH1D("h1","GraphNet nodes
output",40,1,0)
TMVA_SOFIE_GNN_Parser.h2 = ROOT.TH1D("h2","GraphNet edges
output",40,1,0)
TMVA_SOFIE_GNN_Parser.h3 = ROOT.TH1D("h3","GraphNet
global output",40,1,0)
TMVA_SOFIE_GNN_Parser.input_core_graph_data = utils_tf.data_dicts_to_graphs_tuple([
CoreGraphData])
TMVA_SOFIE_GNN_Parser.input_graph_data = utils_tf.data_dicts_to_graphs_tuple([
GraphData])
int TMVA_SOFIE_GNN_Parser.LATENT_SIZE = 100
TMVA_SOFIE_GNN_Parser.node_data = ROOT.std.vector['float'](
num_max_nodes*
node_size)
int TMVA_SOFIE_GNN_Parser.node_size = 4
TMVA_SOFIE_GNN_Parser.num_edges =
graphData['edges'].shape[0]
int TMVA_SOFIE_GNN_Parser.NUM_LAYERS = 4
int TMVA_SOFIE_GNN_Parser.num_max_edges = 300
int TMVA_SOFIE_GNN_Parser.num_max_nodes = 100
int TMVA_SOFIE_GNN_Parser.numevts = 100
TMVA_SOFIE_GNN_Parser.outgnn = ROOT.std.vector['float'](3)
TMVA_SOFIE_GNN_Parser.output_edges =
output_gnn[-1].edges.numpy()
TMVA_SOFIE_GNN_Parser.output_globals =
output_gnn[-1].globals.numpy()
TMVA_SOFIE_GNN_Parser.output_gn =
ep_model(
input_graph_data,
processing_steps)
TMVA_SOFIE_GNN_Parser.output_gnn =
ep_model(
dataset[0],
processing_steps)
TMVA_SOFIE_GNN_Parser.output_nodes =
output_gnn[-1].nodes.numpy()
TMVA_SOFIE_GNN_Parser.output_transform = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._output_transform._network,
DecodeGraphData,
filename = "output_transform")
int TMVA_SOFIE_GNN_Parser.processing_steps = 5
TMVA_SOFIE_GNN_Parser.receivers = ROOT.std.vector['
int'](
num_max_edges)
TMVA_SOFIE_GNN_Parser.s_edges =
graphData['edges'].
size
TMVA_SOFIE_GNN_Parser.s_nodes =
graphData['nodes'].
size
TMVA_SOFIE_GNN_Parser.senders = ROOT.std.vector['
int'](
num_max_edges)
TMVA_SOFIE_GNN_Parser.start = time.time()
TMVA_SOFIE_GNN_Parser.tf_graph_data = utils_tf.data_dicts_to_graphs_tuple([
graphData])
TMVA_SOFIE_GNN_Parser.tmp = ROOT.std.vector['float'](
graphData['nodes'].
reshape((
graphData['nodes'].
size)))
TMVA_SOFIE_GNN_Parser.tree = ROOT.TTree("gdata","GNN
data")
bool TMVA_SOFIE_GNN_Parser.verbose = False