Logo ROOT   6.16/01
Reference Guide
MethodBDT.cxx
Go to the documentation of this file.
1// Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss, Eckhard v. Toerne, Jan Therhaag
2
3/**********************************************************************************
4 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
5 * Package: TMVA *
6 * Class : MethodBDT (BDT = Boosted Decision Trees) *
7 * Web : http://tmva.sourceforge.net *
8 * *
9 * Description: *
10 * Analysis of Boosted Decision Trees *
11 * *
12 * Authors (alphabetical): *
13 * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
14 * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
15 * Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
16 * Doug Schouten <dschoute@sfu.ca> - Simon Fraser U., Canada *
17 * Jan Therhaag <jan.therhaag@cern.ch> - U. of Bonn, Germany *
18 * Eckhard v. Toerne <evt@uni-bonn.de> - U of Bonn, Germany *
19 * *
20 * Copyright (c) 2005-2011: *
21 * CERN, Switzerland *
22 * U. of Victoria, Canada *
23 * MPI-K Heidelberg, Germany *
24 * U. of Bonn, Germany *
25 * *
26 * Redistribution and use in source and binary forms, with or without *
27 * modification, are permitted according to the terms listed in LICENSE *
28 * (http://tmva.sourceforge.net/LICENSE) *
29 **********************************************************************************/
30
31/*! \class TMVA::MethodBDT
32\ingroup TMVA
33
34Analysis of Boosted Decision Trees
35
36Boosted decision trees have been successfully used in High Energy
37Physics analysis for example by the MiniBooNE experiment
38(Yang-Roe-Zhu, physics/0508045). In Boosted Decision Trees, the
39selection is done on a majority vote on the result of several decision
40trees, which are all derived from the same training sample by
41supplying different event weights during the training.
42
43### Decision trees:
44
45Successive decision nodes are used to categorize the
46events out of the sample as either signal or background. Each node
47uses only a single discriminating variable to decide if the event is
48signal-like ("goes right") or background-like ("goes left"). This
49forms a tree like structure with "baskets" at the end (leave nodes),
50and an event is classified as either signal or background according to
51whether the basket where it ends up has been classified signal or
52background during the training. Training of a decision tree is the
53process to define the "cut criteria" for each node. The training
54starts with the root node. Here one takes the full training event
55sample and selects the variable and corresponding cut value that gives
56the best separation between signal and background at this stage. Using
57this cut criterion, the sample is then divided into two subsamples, a
58signal-like (right) and a background-like (left) sample. Two new nodes
59are then created for each of the two sub-samples and they are
60constructed using the same mechanism as described for the root
61node. The devision is stopped once a certain node has reached either a
62minimum number of events, or a minimum or maximum signal purity. These
63leave nodes are then called "signal" or "background" if they contain
64more signal respective background events from the training sample.
65
66### Boosting:
67
68The idea behind adaptive boosting (AdaBoost) is, that signal events
69from the training sample, that end up in a background node
70(and vice versa) are given a larger weight than events that are in
71the correct leave node. This results in a re-weighed training event
72sample, with which then a new decision tree can be developed.
73The boosting can be applied several times (typically 100-500 times)
74and one ends up with a set of decision trees (a forest).
75Gradient boosting works more like a function expansion approach, where
76each tree corresponds to a summand. The parameters for each summand (tree)
77are determined by the minimization of a error function (binomial log-
78likelihood for classification and Huber loss for regression).
79A greedy algorithm is used, which means, that only one tree is modified
80at a time, while the other trees stay fixed.
81
82### Bagging:
83
84In this particular variant of the Boosted Decision Trees the boosting
85is not done on the basis of previous training results, but by a simple
86stochastic re-sampling of the initial training event sample.
87
88### Random Trees:
89
90Similar to the "Random Forests" from Leo Breiman and Adele Cutler, it
91uses the bagging algorithm together and bases the determination of the
92best node-split during the training on a random subset of variables only
93which is individually chosen for each split.
94
95### Analysis:
96
97Applying an individual decision tree to a test event results in a
98classification of the event as either signal or background. For the
99boosted decision tree selection, an event is successively subjected to
100the whole set of decision trees and depending on how often it is
101classified as signal, a "likelihood" estimator is constructed for the
102event being signal or background. The value of this estimator is the
103one which is then used to select the events from an event sample, and
104the cut value on this estimator defines the efficiency and purity of
105the selection.
106
107*/
108
109
110#include "TMVA/MethodBDT.h"
111#include "TMVA/Config.h"
112
113#include "TMVA/BDTEventWrapper.h"
116#include "TMVA/Configurable.h"
117#include "TMVA/CrossEntropy.h"
118#include "TMVA/DecisionTree.h"
119#include "TMVA/DataSet.h"
120#include "TMVA/GiniIndex.h"
122#include "TMVA/Interval.h"
123#include "TMVA/IMethod.h"
124#include "TMVA/LogInterval.h"
125#include "TMVA/MethodBase.h"
127#include "TMVA/MsgLogger.h"
129#include "TMVA/PDF.h"
130#include "TMVA/Ranking.h"
131#include "TMVA/Results.h"
133#include "TMVA/SdivSqrtSplusB.h"
134#include "TMVA/SeparationBase.h"
135#include "TMVA/Timer.h"
136#include "TMVA/Tools.h"
137#include "TMVA/Types.h"
138
139#include "Riostream.h"
140#include "TDirectory.h"
141#include "TRandom3.h"
142#include "TMath.h"
143#include "TMatrixTSym.h"
144#include "TObjString.h"
145#include "TGraph.h"
146
147#include <algorithm>
148#include <cmath>
149#include <fstream>
150#include <numeric>
151#include <unordered_map>
152
153using std::vector;
154using std::make_pair;
155
157
159
161
162////////////////////////////////////////////////////////////////////////////////
163/// The standard constructor for the "boosted decision trees".
164
166 const TString& methodTitle,
167 DataSetInfo& theData,
168 const TString& theOption ) :
169 TMVA::MethodBase( jobName, Types::kBDT, methodTitle, theData, theOption)
170 , fTrainSample(0)
171 , fNTrees(0)
172 , fSigToBkgFraction(0)
173 , fAdaBoostBeta(0)
174// , fTransitionPoint(0)
175 , fShrinkage(0)
176 , fBaggedBoost(kFALSE)
177 , fBaggedGradBoost(kFALSE)
178// , fSumOfWeights(0)
179 , fMinNodeEvents(0)
180 , fMinNodeSize(5)
181 , fMinNodeSizeS("5%")
182 , fNCuts(0)
183 , fUseFisherCuts(0) // don't use this initialisation, only here to make Coverity happy. Is set in DeclarOptions()
184 , fMinLinCorrForFisher(.8) // don't use this initialisation, only here to make Coverity happy. Is set in DeclarOptions()
185 , fUseExclusiveVars(0) // don't use this initialisation, only here to make Coverity happy. Is set in DeclarOptions()
186 , fUseYesNoLeaf(kFALSE)
187 , fNodePurityLimit(0)
188 , fNNodesMax(0)
189 , fMaxDepth(0)
190 , fPruneMethod(DecisionTree::kNoPruning)
191 , fPruneStrength(0)
192 , fFValidationEvents(0)
193 , fAutomatic(kFALSE)
194 , fRandomisedTrees(kFALSE)
195 , fUseNvars(0)
196 , fUsePoissonNvars(0) // don't use this initialisation, only here to make Coverity happy. Is set in Init()
197 , fUseNTrainEvents(0)
198 , fBaggedSampleFraction(0)
199 , fNoNegWeightsInTraining(kFALSE)
200 , fInverseBoostNegWeights(kFALSE)
201 , fPairNegWeightsGlobal(kFALSE)
202 , fTrainWithNegWeights(kFALSE)
203 , fDoBoostMonitor(kFALSE)
204 , fITree(0)
205 , fBoostWeight(0)
206 , fErrorFraction(0)
207 , fCss(0)
208 , fCts_sb(0)
209 , fCtb_ss(0)
210 , fCbb(0)
211 , fDoPreselection(kFALSE)
212 , fSkipNormalization(kFALSE)
213 , fHistoricBool(kFALSE)
214{
215 fMonitorNtuple = NULL;
216 fSepType = NULL;
218}
219
220////////////////////////////////////////////////////////////////////////////////
221
223 const TString& theWeightFile)
224 : TMVA::MethodBase( Types::kBDT, theData, theWeightFile)
225 , fTrainSample(0)
226 , fNTrees(0)
227 , fSigToBkgFraction(0)
228 , fAdaBoostBeta(0)
229// , fTransitionPoint(0)
230 , fShrinkage(0)
231 , fBaggedBoost(kFALSE)
232 , fBaggedGradBoost(kFALSE)
233// , fSumOfWeights(0)
234 , fMinNodeEvents(0)
235 , fMinNodeSize(5)
236 , fMinNodeSizeS("5%")
237 , fNCuts(0)
238 , fUseFisherCuts(0) // don't use this initialisation, only here to make Coverity happy. Is set in DeclarOptions()
239 , fMinLinCorrForFisher(.8) // don't use this initialisation, only here to make Coverity happy. Is set in DeclarOptions()
240 , fUseExclusiveVars(0) // don't use this initialisation, only here to make Coverity happy. Is set in DeclarOptions()
241 , fUseYesNoLeaf(kFALSE)
242 , fNodePurityLimit(0)
243 , fNNodesMax(0)
244 , fMaxDepth(0)
245 , fPruneMethod(DecisionTree::kNoPruning)
246 , fPruneStrength(0)
247 , fFValidationEvents(0)
248 , fAutomatic(kFALSE)
249 , fRandomisedTrees(kFALSE)
250 , fUseNvars(0)
251 , fUsePoissonNvars(0) // don't use this initialisation, only here to make Coverity happy. Is set in Init()
252 , fUseNTrainEvents(0)
253 , fBaggedSampleFraction(0)
254 , fNoNegWeightsInTraining(kFALSE)
255 , fInverseBoostNegWeights(kFALSE)
256 , fPairNegWeightsGlobal(kFALSE)
257 , fTrainWithNegWeights(kFALSE)
258 , fDoBoostMonitor(kFALSE)
259 , fITree(0)
260 , fBoostWeight(0)
261 , fErrorFraction(0)
262 , fCss(0)
263 , fCts_sb(0)
264 , fCtb_ss(0)
265 , fCbb(0)
266 , fDoPreselection(kFALSE)
267 , fSkipNormalization(kFALSE)
268 , fHistoricBool(kFALSE)
269{
270 fMonitorNtuple = NULL;
271 fSepType = NULL;
273 // constructor for calculating BDT-MVA using previously generated decision trees
274 // the result of the previous training (the decision trees) are read in via the
275 // weight file. Make sure the the variables correspond to the ones used in
276 // creating the "weight"-file
277}
278
279////////////////////////////////////////////////////////////////////////////////
280/// BDT can handle classification with multiple classes and regression with one regression-target.
281
283{
284 if (type == Types::kClassification && numberClasses == 2) return kTRUE;
285 if (type == Types::kMulticlass ) return kTRUE;
286 if( type == Types::kRegression && numberTargets == 1 ) return kTRUE;
287 return kFALSE;
288}
289
290////////////////////////////////////////////////////////////////////////////////
291/// Define the options (their key words). That can be set in the option string.
292///
293/// know options:
294///
295/// - nTrees number of trees in the forest to be created
296/// - BoostType the boosting type for the trees in the forest (AdaBoost e.t.c..).
297/// Known:
298/// - AdaBoost
299/// - AdaBoostR2 (Adaboost for regression)
300/// - Bagging
301/// - GradBoost
302/// - AdaBoostBeta the boosting parameter, beta, for AdaBoost
303/// - UseRandomisedTrees choose at each node splitting a random set of variables
304/// - UseNvars use UseNvars variables in randomised trees
305/// - UsePoisson Nvars use UseNvars not as fixed number but as mean of a poisson distribution
306/// - SeparationType the separation criterion applied in the node splitting.
307/// Known:
308/// - GiniIndex
309/// - MisClassificationError
310/// - CrossEntropy
311/// - SDivSqrtSPlusB
312/// - MinNodeSize: minimum percentage of training events in a leaf node (leaf criteria, stop splitting)
313/// - nCuts: the number of steps in the optimisation of the cut for a node (if < 0, then
314/// step size is determined by the events)
315/// - UseFisherCuts: use multivariate splits using the Fisher criterion
316/// - UseYesNoLeaf decide if the classification is done simply by the node type, or the S/B
317/// (from the training) in the leaf node
318/// - NodePurityLimit the minimum purity to classify a node as a signal node (used in pruning and boosting to determine
319/// misclassification error rate)
320/// - PruneMethod The Pruning method.
321/// Known:
322/// - NoPruning // switch off pruning completely
323/// - ExpectedError
324/// - CostComplexity
325/// - PruneStrength a parameter to adjust the amount of pruning. Should be large enough such that overtraining is avoided.
326/// - PruningValFraction number of events to use for optimizing pruning (only if PruneStrength < 0, i.e. automatic pruning)
327/// - NegWeightTreatment
328/// - IgnoreNegWeightsInTraining Ignore negative weight events in the training.
329/// - DecreaseBoostWeight Boost ev. with neg. weight with 1/boostweight instead of boostweight
330/// - PairNegWeightsGlobal Pair ev. with neg. and pos. weights in training sample and "annihilate" them
331/// - MaxDepth maximum depth of the decision tree allowed before further splitting is stopped
332/// - SkipNormalization Skip normalization at initialization, to keep expectation value of BDT output
333/// according to the fraction of events
334
336{
337 DeclareOptionRef(fNTrees, "NTrees", "Number of trees in the forest");
338 if (DoRegression()) {
339 DeclareOptionRef(fMaxDepth=50,"MaxDepth","Max depth of the decision tree allowed");
340 }else{
341 DeclareOptionRef(fMaxDepth=3,"MaxDepth","Max depth of the decision tree allowed");
342 }
343
344 TString tmp="5%"; if (DoRegression()) tmp="0.2%";
345 DeclareOptionRef(fMinNodeSizeS=tmp, "MinNodeSize", "Minimum percentage of training events required in a leaf node (default: Classification: 5%, Regression: 0.2%)");
346 // MinNodeSize: minimum percentage of training events in a leaf node (leaf criteria, stop splitting)
347 DeclareOptionRef(fNCuts, "nCuts", "Number of grid points in variable range used in finding optimal cut in node splitting");
348
349 DeclareOptionRef(fBoostType, "BoostType", "Boosting type for the trees in the forest (note: AdaCost is still experimental)");
350
351 AddPreDefVal(TString("AdaBoost"));
352 AddPreDefVal(TString("RealAdaBoost"));
353 AddPreDefVal(TString("AdaCost"));
354 AddPreDefVal(TString("Bagging"));
355 // AddPreDefVal(TString("RegBoost"));
356 AddPreDefVal(TString("AdaBoostR2"));
357 AddPreDefVal(TString("Grad"));
358 if (DoRegression()) {
359 fBoostType = "AdaBoostR2";
360 }else{
361 fBoostType = "AdaBoost";
362 }
363 DeclareOptionRef(fAdaBoostR2Loss="Quadratic", "AdaBoostR2Loss", "Type of Loss function in AdaBoostR2");
364 AddPreDefVal(TString("Linear"));
365 AddPreDefVal(TString("Quadratic"));
366 AddPreDefVal(TString("Exponential"));
367
368 DeclareOptionRef(fBaggedBoost=kFALSE, "UseBaggedBoost","Use only a random subsample of all events for growing the trees in each boost iteration.");
369 DeclareOptionRef(fShrinkage = 1.0, "Shrinkage", "Learning rate for BoostType=Grad algorithm");
370 DeclareOptionRef(fAdaBoostBeta=.5, "AdaBoostBeta", "Learning rate for AdaBoost algorithm");
371 DeclareOptionRef(fRandomisedTrees,"UseRandomisedTrees","Determine at each node splitting the cut variable only as the best out of a random subset of variables (like in RandomForests)");
372 DeclareOptionRef(fUseNvars,"UseNvars","Size of the subset of variables used with RandomisedTree option");
373 DeclareOptionRef(fUsePoissonNvars,"UsePoissonNvars", "Interpret \"UseNvars\" not as fixed number but as mean of a Poisson distribution in each split with RandomisedTree option");
374 DeclareOptionRef(fBaggedSampleFraction=.6,"BaggedSampleFraction","Relative size of bagged event sample to original size of the data sample (used whenever bagging is used (i.e. UseBaggedBoost, Bagging,)" );
375
376 DeclareOptionRef(fUseYesNoLeaf=kTRUE, "UseYesNoLeaf",
377 "Use Sig or Bkg categories, or the purity=S/(S+B) as classification of the leaf node -> Real-AdaBoost");
378 if (DoRegression()) {
379 fUseYesNoLeaf = kFALSE;
380 }
381
382 DeclareOptionRef(fNegWeightTreatment="InverseBoostNegWeights","NegWeightTreatment","How to treat events with negative weights in the BDT training (particular the boosting) : IgnoreInTraining; Boost With inverse boostweight; Pair events with negative and positive weights in training sample and *annihilate* them (experimental!)");
383 AddPreDefVal(TString("InverseBoostNegWeights"));
384 AddPreDefVal(TString("IgnoreNegWeightsInTraining"));
385 AddPreDefVal(TString("NoNegWeightsInTraining")); // well, let's be nice to users and keep at least this old name anyway ..
386 AddPreDefVal(TString("PairNegWeightsGlobal"));
387 AddPreDefVal(TString("Pray"));
388
389
390
391 DeclareOptionRef(fCss=1., "Css", "AdaCost: cost of true signal selected signal");
392 DeclareOptionRef(fCts_sb=1.,"Cts_sb","AdaCost: cost of true signal selected bkg");
393 DeclareOptionRef(fCtb_ss=1.,"Ctb_ss","AdaCost: cost of true bkg selected signal");
394 DeclareOptionRef(fCbb=1., "Cbb", "AdaCost: cost of true bkg selected bkg ");
395
396 DeclareOptionRef(fNodePurityLimit=0.5, "NodePurityLimit", "In boosting/pruning, nodes with purity > NodePurityLimit are signal; background otherwise.");
397
398
399 DeclareOptionRef(fSepTypeS, "SeparationType", "Separation criterion for node splitting");
400 AddPreDefVal(TString("CrossEntropy"));
401 AddPreDefVal(TString("GiniIndex"));
402 AddPreDefVal(TString("GiniIndexWithLaplace"));
403 AddPreDefVal(TString("MisClassificationError"));
404 AddPreDefVal(TString("SDivSqrtSPlusB"));
405 AddPreDefVal(TString("RegressionVariance"));
406 if (DoRegression()) {
407 fSepTypeS = "RegressionVariance";
408 }else{
409 fSepTypeS = "GiniIndex";
410 }
411
412 DeclareOptionRef(fRegressionLossFunctionBDTGS = "Huber", "RegressionLossFunctionBDTG", "Loss function for BDTG regression.");
413 AddPreDefVal(TString("Huber"));
414 AddPreDefVal(TString("AbsoluteDeviation"));
415 AddPreDefVal(TString("LeastSquares"));
416
417 DeclareOptionRef(fHuberQuantile = 0.7, "HuberQuantile", "In the Huber loss function this is the quantile that separates the core from the tails in the residuals distribution.");
418
419 DeclareOptionRef(fDoBoostMonitor=kFALSE,"DoBoostMonitor","Create control plot with ROC integral vs tree number");
420
421 DeclareOptionRef(fUseFisherCuts=kFALSE, "UseFisherCuts", "Use multivariate splits using the Fisher criterion");
422 DeclareOptionRef(fMinLinCorrForFisher=.8,"MinLinCorrForFisher", "The minimum linear correlation between two variables demanded for use in Fisher criterion in node splitting");
423 DeclareOptionRef(fUseExclusiveVars=kFALSE,"UseExclusiveVars","Variables already used in fisher criterion are not anymore analysed individually for node splitting");
424
425
426 DeclareOptionRef(fDoPreselection=kFALSE,"DoPreselection","and and apply automatic pre-selection for 100% efficient signal (bkg) cuts prior to training");
427
428
429 DeclareOptionRef(fSigToBkgFraction=1,"SigToBkgFraction","Sig to Bkg ratio used in Training (similar to NodePurityLimit, which cannot be used in real adaboost");
430
431 DeclareOptionRef(fPruneMethodS, "PruneMethod", "Note: for BDTs use small trees (e.g.MaxDepth=3) and NoPruning: Pruning: Method used for pruning (removal) of statistically insignificant branches ");
432 AddPreDefVal(TString("NoPruning"));
433 AddPreDefVal(TString("ExpectedError"));
434 AddPreDefVal(TString("CostComplexity"));
435
436 DeclareOptionRef(fPruneStrength, "PruneStrength", "Pruning strength");
437
438 DeclareOptionRef(fFValidationEvents=0.5, "PruningValFraction", "Fraction of events to use for optimizing automatic pruning.");
439
440 DeclareOptionRef(fSkipNormalization=kFALSE, "SkipNormalization", "Skip normalization at initialization, to keep expectation value of BDT output according to the fraction of events");
441
442 // deprecated options, still kept for the moment:
443 DeclareOptionRef(fMinNodeEvents=0, "nEventsMin", "deprecated: Use MinNodeSize (in % of training events) instead");
444
445 DeclareOptionRef(fBaggedGradBoost=kFALSE, "UseBaggedGrad","deprecated: Use *UseBaggedBoost* instead: Use only a random subsample of all events for growing the trees in each iteration.");
446 DeclareOptionRef(fBaggedSampleFraction, "GradBaggingFraction","deprecated: Use *BaggedSampleFraction* instead: Defines the fraction of events to be used in each iteration, e.g. when UseBaggedGrad=kTRUE. ");
447 DeclareOptionRef(fUseNTrainEvents,"UseNTrainEvents","deprecated: Use *BaggedSampleFraction* instead: Number of randomly picked training events used in randomised (and bagged) trees");
448 DeclareOptionRef(fNNodesMax,"NNodesMax","deprecated: Use MaxDepth instead to limit the tree size" );
449
450
451}
452
453////////////////////////////////////////////////////////////////////////////////
454/// Options that are used ONLY for the READER to ensure backward compatibility.
455
458
459
460 DeclareOptionRef(fHistoricBool=kTRUE, "UseWeightedTrees",
461 "Use weighted trees or simple average in classification from the forest");
462 DeclareOptionRef(fHistoricBool=kFALSE, "PruneBeforeBoost", "Flag to prune the tree before applying boosting algorithm");
463 DeclareOptionRef(fHistoricBool=kFALSE,"RenormByClass","Individually re-normalize each event class to the original size after boosting");
464
465 AddPreDefVal(TString("NegWeightTreatment"),TString("IgnoreNegWeights"));
466
467}
468
469////////////////////////////////////////////////////////////////////////////////
470/// The option string is decoded, for available options see "DeclareOptions".
471
473{
474 fSepTypeS.ToLower();
475 if (fSepTypeS == "misclassificationerror") fSepType = new MisClassificationError();
476 else if (fSepTypeS == "giniindex") fSepType = new GiniIndex();
477 else if (fSepTypeS == "giniindexwithlaplace") fSepType = new GiniIndexWithLaplace();
478 else if (fSepTypeS == "crossentropy") fSepType = new CrossEntropy();
479 else if (fSepTypeS == "sdivsqrtsplusb") fSepType = new SdivSqrtSplusB();
480 else if (fSepTypeS == "regressionvariance") fSepType = NULL;
481 else {
482 Log() << kINFO << GetOptions() << Endl;
483 Log() << kFATAL << "<ProcessOptions> unknown Separation Index option " << fSepTypeS << " called" << Endl;
484 }
485
486 if(!(fHuberQuantile >= 0.0 && fHuberQuantile <= 1.0)){
487 Log() << kINFO << GetOptions() << Endl;
488 Log() << kFATAL << "<ProcessOptions> Huber Quantile must be in range [0,1]. Value given, " << fHuberQuantile << ", does not match this criteria" << Endl;
489 }
490
491
492 fRegressionLossFunctionBDTGS.ToLower();
493 if (fRegressionLossFunctionBDTGS == "huber") fRegressionLossFunctionBDTG = new HuberLossFunctionBDT(fHuberQuantile);
494 else if (fRegressionLossFunctionBDTGS == "leastsquares") fRegressionLossFunctionBDTG = new LeastSquaresLossFunctionBDT();
495 else if (fRegressionLossFunctionBDTGS == "absolutedeviation") fRegressionLossFunctionBDTG = new AbsoluteDeviationLossFunctionBDT();
496 else {
497 Log() << kINFO << GetOptions() << Endl;
498 Log() << kFATAL << "<ProcessOptions> unknown Regression Loss Function BDT option " << fRegressionLossFunctionBDTGS << " called" << Endl;
499 }
500
501 fPruneMethodS.ToLower();
502 if (fPruneMethodS == "expectederror") fPruneMethod = DecisionTree::kExpectedErrorPruning;
503 else if (fPruneMethodS == "costcomplexity") fPruneMethod = DecisionTree::kCostComplexityPruning;
504 else if (fPruneMethodS == "nopruning") fPruneMethod = DecisionTree::kNoPruning;
505 else {
506 Log() << kINFO << GetOptions() << Endl;
507 Log() << kFATAL << "<ProcessOptions> unknown PruneMethod " << fPruneMethodS << " option called" << Endl;
508 }
509 if (fPruneStrength < 0 && (fPruneMethod != DecisionTree::kNoPruning) && fBoostType!="Grad") fAutomatic = kTRUE;
510 else fAutomatic = kFALSE;
511 if (fAutomatic && fPruneMethod==DecisionTree::kExpectedErrorPruning){
512 Log() << kFATAL
513 << "Sorry automatic pruning strength determination is not implemented yet for ExpectedErrorPruning" << Endl;
514 }
515
516
517 if (fMinNodeEvents > 0){
518 fMinNodeSize = Double_t(fMinNodeEvents*100.) / Data()->GetNTrainingEvents();
519 Log() << kWARNING << "You have explicitly set ** nEventsMin = " << fMinNodeEvents<<" ** the min absolute number \n"
520 << "of events in a leaf node. This is DEPRECATED, please use the option \n"
521 << "*MinNodeSize* giving the relative number as percentage of training \n"
522 << "events instead. \n"
523 << "nEventsMin="<<fMinNodeEvents<< "--> MinNodeSize="<<fMinNodeSize<<"%"
524 << Endl;
525 Log() << kWARNING << "Note also that explicitly setting *nEventsMin* so far OVERWRITES the option recommended \n"
526 << " *MinNodeSize* = " << fMinNodeSizeS << " option !!" << Endl ;
527 fMinNodeSizeS = Form("%F3.2",fMinNodeSize);
528
529 }else{
530 SetMinNodeSize(fMinNodeSizeS);
531 }
532
533
534 fAdaBoostR2Loss.ToLower();
535
536 if (fBoostType=="Grad") {
537 fPruneMethod = DecisionTree::kNoPruning;
538 if (fNegWeightTreatment=="InverseBoostNegWeights"){
539 Log() << kINFO << "the option NegWeightTreatment=InverseBoostNegWeights does"
540 << " not exist for BoostType=Grad" << Endl;
541 Log() << kINFO << "--> change to new default NegWeightTreatment=Pray" << Endl;
542 Log() << kDEBUG << "i.e. simply keep them as if which should work fine for Grad Boost" << Endl;
543 fNegWeightTreatment="Pray";
544 fNoNegWeightsInTraining=kFALSE;
545 }
546 } else if (fBoostType=="RealAdaBoost"){
547 fBoostType = "AdaBoost";
548 fUseYesNoLeaf = kFALSE;
549 } else if (fBoostType=="AdaCost"){
550 fUseYesNoLeaf = kFALSE;
551 }
552
553 if (fFValidationEvents < 0.0) fFValidationEvents = 0.0;
554 if (fAutomatic && fFValidationEvents > 0.5) {
555 Log() << kWARNING << "You have chosen to use more than half of your training sample "
556 << "to optimize the automatic pruning algorithm. This is probably wasteful "
557 << "and your overall results will be degraded. Are you sure you want this?"
558 << Endl;
559 }
560
561
562 if (this->Data()->HasNegativeEventWeights()){
563 Log() << kINFO << " You are using a Monte Carlo that has also negative weights. "
564 << "That should in principle be fine as long as on average you end up with "
565 << "something positive. For this you have to make sure that the minimal number "
566 << "of (un-weighted) events demanded for a tree node (currently you use: MinNodeSize="
567 << fMinNodeSizeS << " ("<< fMinNodeSize << "%)"
568 <<", (or the deprecated equivalent nEventsMin) you can set this via the "
569 <<"BDT option string when booking the "
570 << "classifier) is large enough to allow for reasonable averaging!!! "
571 << " If this does not help.. maybe you want to try the option: IgnoreNegWeightsInTraining "
572 << "which ignores events with negative weight in the training. " << Endl
573 << Endl << "Note: You'll get a WARNING message during the training if that should ever happen" << Endl;
574 }
575
576 if (DoRegression()) {
577 if (fUseYesNoLeaf && !IsConstructedFromWeightFile()){
578 Log() << kWARNING << "Regression Trees do not work with fUseYesNoLeaf=TRUE --> I will set it to FALSE" << Endl;
579 fUseYesNoLeaf = kFALSE;
580 }
581
582 if (fSepType != NULL){
583 Log() << kWARNING << "Regression Trees do not work with Separation type other than <RegressionVariance> --> I will use it instead" << Endl;
584 fSepType = NULL;
585 }
586 if (fUseFisherCuts){
587 Log() << kWARNING << "Sorry, UseFisherCuts is not available for regression analysis, I will ignore it!" << Endl;
588 fUseFisherCuts = kFALSE;
589 }
590 if (fNCuts < 0) {
591 Log() << kWARNING << "Sorry, the option of nCuts<0 using a more elaborate node splitting algorithm " << Endl;
592 Log() << kWARNING << "is not implemented for regression analysis ! " << Endl;
593 Log() << kWARNING << "--> I switch do default nCuts = 20 and use standard node splitting"<<Endl;
594 fNCuts=20;
595 }
596 }
597 if (fRandomisedTrees){
598 Log() << kINFO << " Randomised trees use no pruning" << Endl;
599 fPruneMethod = DecisionTree::kNoPruning;
600 // fBoostType = "Bagging";
601 }
602
603 if (fUseFisherCuts) {
604 Log() << kWARNING << "When using the option UseFisherCuts, the other option nCuts<0 (i.e. using" << Endl;
605 Log() << " a more elaborate node splitting algorithm) is not implemented. " << Endl;
606 //I will switch o " << Endl;
607 //Log() << "--> I switch do default nCuts = 20 and use standard node splitting WITH possible Fisher criteria"<<Endl;
608 fNCuts=20;
609 }
610
611 if (fNTrees==0){
612 Log() << kERROR << " Zero Decision Trees demanded... that does not work !! "
613 << " I set it to 1 .. just so that the program does not crash"
614 << Endl;
615 fNTrees = 1;
616 }
617
618 fNegWeightTreatment.ToLower();
619 if (fNegWeightTreatment == "ignorenegweightsintraining") fNoNegWeightsInTraining = kTRUE;
620 else if (fNegWeightTreatment == "nonegweightsintraining") fNoNegWeightsInTraining = kTRUE;
621 else if (fNegWeightTreatment == "inverseboostnegweights") fInverseBoostNegWeights = kTRUE;
622 else if (fNegWeightTreatment == "pairnegweightsglobal") fPairNegWeightsGlobal = kTRUE;
623 else if (fNegWeightTreatment == "pray") Log() << kDEBUG << "Yes, good luck with praying " << Endl;
624 else {
625 Log() << kINFO << GetOptions() << Endl;
626 Log() << kFATAL << "<ProcessOptions> unknown option for treating negative event weights during training " << fNegWeightTreatment << " requested" << Endl;
627 }
628
629 if (fNegWeightTreatment == "pairnegweightsglobal")
630 Log() << kWARNING << " you specified the option NegWeightTreatment=PairNegWeightsGlobal : This option is still considered EXPERIMENTAL !! " << Endl;
631
632
633 // dealing with deprecated options !
634 if (fNNodesMax>0) {
635 UInt_t tmp=1; // depth=0 == 1 node
636 fMaxDepth=0;
637 while (tmp < fNNodesMax){
638 tmp+=2*tmp;
639 fMaxDepth++;
640 }
641 Log() << kWARNING << "You have specified a deprecated option *NNodesMax="<<fNNodesMax
642 << "* \n this has been translated to MaxDepth="<<fMaxDepth<<Endl;
643 }
644
645
646 if (fUseNTrainEvents>0){
647 fBaggedSampleFraction = (Double_t) fUseNTrainEvents/Data()->GetNTrainingEvents();
648 Log() << kWARNING << "You have specified a deprecated option *UseNTrainEvents="<<fUseNTrainEvents
649 << "* \n this has been translated to BaggedSampleFraction="<<fBaggedSampleFraction<<"(%)"<<Endl;
650 }
651
652 if (fBoostType=="Bagging") fBaggedBoost = kTRUE;
653 if (fBaggedGradBoost){
654 fBaggedBoost = kTRUE;
655 Log() << kWARNING << "You have specified a deprecated option *UseBaggedGrad* --> please use *UseBaggedBoost* instead" << Endl;
656 }
657
658}
659
660////////////////////////////////////////////////////////////////////////////////
661
663 if (sizeInPercent > 0 && sizeInPercent < 50){
664 fMinNodeSize=sizeInPercent;
665
666 } else {
667 Log() << kFATAL << "you have demanded a minimal node size of "
668 << sizeInPercent << "% of the training events.. \n"
669 << " that somehow does not make sense "<<Endl;
670 }
671
672}
673
674////////////////////////////////////////////////////////////////////////////////
675
677 sizeInPercent.ReplaceAll("%","");
678 sizeInPercent.ReplaceAll(" ","");
679 if (sizeInPercent.IsFloat()) SetMinNodeSize(sizeInPercent.Atof());
680 else {
681 Log() << kFATAL << "I had problems reading the option MinNodeEvents, which "
682 << "after removing a possible % sign now reads " << sizeInPercent << Endl;
683 }
684}
685
686////////////////////////////////////////////////////////////////////////////////
687/// Common initialisation with defaults for the BDT-Method.
688
690{
691 fNTrees = 800;
692 if (fAnalysisType == Types::kClassification || fAnalysisType == Types::kMulticlass ) {
693 fMaxDepth = 3;
694 fBoostType = "AdaBoost";
695 if(DataInfo().GetNClasses()!=0) //workaround for multiclass application
696 fMinNodeSize = 5.;
697 }else {
698 fMaxDepth = 50;
699 fBoostType = "AdaBoostR2";
700 fAdaBoostR2Loss = "Quadratic";
701 if(DataInfo().GetNClasses()!=0) //workaround for multiclass application
702 fMinNodeSize = .2;
703 }
704
705
706 fNCuts = 20;
707 fPruneMethodS = "NoPruning";
708 fPruneMethod = DecisionTree::kNoPruning;
709 fPruneStrength = 0;
710 fAutomatic = kFALSE;
711 fFValidationEvents = 0.5;
712 fRandomisedTrees = kFALSE;
713 // fUseNvars = (GetNvar()>12) ? UInt_t(GetNvar()/8) : TMath::Max(UInt_t(2),UInt_t(GetNvar()/3));
714 fUseNvars = UInt_t(TMath::Sqrt(GetNvar())+0.6);
715 fUsePoissonNvars = kTRUE;
716 fShrinkage = 1.0;
717// fSumOfWeights = 0.0;
718
719 // reference cut value to distinguish signal-like from background-like events
720 SetSignalReferenceCut( 0 );
721}
722
723
724////////////////////////////////////////////////////////////////////////////////
725/// Reset the method, as if it had just been instantiated (forget all training etc.).
726
728{
729 // I keep the BDT EventSample and its Validation sample (eventually they should all
730 // disappear and just use the DataSet samples ..
731
732 // remove all the trees
733 for (UInt_t i=0; i<fForest.size(); i++) delete fForest[i];
734 fForest.clear();
735
736 fBoostWeights.clear();
737 if (fMonitorNtuple) { fMonitorNtuple->Delete(); fMonitorNtuple=NULL; }
738 fVariableImportance.clear();
739 fResiduals.clear();
740 fLossFunctionEventInfo.clear();
741 // now done in "InitEventSample" which is called in "Train"
742 // reset all previously stored/accumulated BOOST weights in the event sample
743 //for (UInt_t iev=0; iev<fEventSample.size(); iev++) fEventSample[iev]->SetBoostWeight(1.);
744 if (Data()) Data()->DeleteResults(GetMethodName(), Types::kTraining, GetAnalysisType());
745 Log() << kDEBUG << " successfully(?) reset the method " << Endl;
746}
747
748
749////////////////////////////////////////////////////////////////////////////////
750/// Destructor.
751///
752/// - Note: fEventSample and ValidationSample are already deleted at the end of TRAIN
753/// When they are not used anymore
754
756{
757 for (UInt_t i=0; i<fForest.size(); i++) delete fForest[i];
758}
759
760////////////////////////////////////////////////////////////////////////////////
761/// Initialize the event sample (i.e. reset the boost-weights... etc).
762
764{
765 if (!HasTrainingTree()) Log() << kFATAL << "<Init> Data().TrainingTree() is zero pointer" << Endl;
766
767 if (fEventSample.size() > 0) { // do not re-initialise the event sample, just set all boostweights to 1. as if it were untouched
768 // reset all previously stored/accumulated BOOST weights in the event sample
769 for (UInt_t iev=0; iev<fEventSample.size(); iev++) fEventSample[iev]->SetBoostWeight(1.);
770 } else {
771 Data()->SetCurrentType(Types::kTraining);
772 UInt_t nevents = Data()->GetNTrainingEvents();
773
774 std::vector<const TMVA::Event*> tmpEventSample;
775 for (Long64_t ievt=0; ievt<nevents; ievt++) {
776 // const Event *event = new Event(*(GetEvent(ievt)));
777 Event* event = new Event( *GetTrainingEvent(ievt) );
778 tmpEventSample.push_back(event);
779 }
780
781 if (!DoRegression()) DeterminePreselectionCuts(tmpEventSample);
782 else fDoPreselection = kFALSE; // just to make sure...
783
784 for (UInt_t i=0; i<tmpEventSample.size(); i++) delete tmpEventSample[i];
785
786
787 Bool_t firstNegWeight=kTRUE;
788 Bool_t firstZeroWeight=kTRUE;
789 for (Long64_t ievt=0; ievt<nevents; ievt++) {
790 // const Event *event = new Event(*(GetEvent(ievt)));
791 // const Event* event = new Event( *GetTrainingEvent(ievt) );
792 Event* event = new Event( *GetTrainingEvent(ievt) );
793 if (fDoPreselection){
794 if (TMath::Abs(ApplyPreselectionCuts(event)) > 0.05) {
795 delete event;
796 continue;
797 }
798 }
799
800 if (event->GetWeight() < 0 && (IgnoreEventsWithNegWeightsInTraining() || fNoNegWeightsInTraining)){
801 if (firstNegWeight) {
802 Log() << kWARNING << " Note, you have events with negative event weight in the sample, but you've chosen to ignore them" << Endl;
803 firstNegWeight=kFALSE;
804 }
805 delete event;
806 }else if (event->GetWeight()==0){
807 if (firstZeroWeight) {
808 firstZeroWeight = kFALSE;
809 Log() << "Events with weight == 0 are going to be simply ignored " << Endl;
810 }
811 delete event;
812 }else{
813 if (event->GetWeight() < 0) {
814 fTrainWithNegWeights=kTRUE;
815 if (firstNegWeight){
816 firstNegWeight = kFALSE;
817 if (fPairNegWeightsGlobal){
818 Log() << kWARNING << "Events with negative event weights are found and "
819 << " will be removed prior to the actual BDT training by global "
820 << " paring (and subsequent annihilation) with positiv weight events"
821 << Endl;
822 }else{
823 Log() << kWARNING << "Events with negative event weights are USED during "
824 << "the BDT training. This might cause problems with small node sizes "
825 << "or with the boosting. Please remove negative events from training "
826 << "using the option *IgnoreEventsWithNegWeightsInTraining* in case you "
827 << "observe problems with the boosting"
828 << Endl;
829 }
830 }
831 }
832 // if fAutomatic == true you need a validation sample to optimize pruning
833 if (fAutomatic) {
834 Double_t modulo = 1.0/(fFValidationEvents);
835 Int_t imodulo = static_cast<Int_t>( fmod(modulo,1.0) > 0.5 ? ceil(modulo) : floor(modulo) );
836 if (ievt % imodulo == 0) fValidationSample.push_back( event );
837 else fEventSample.push_back( event );
838 }
839 else {
840 fEventSample.push_back(event);
841 }
842 }
843 }
844
845 if (fAutomatic) {
846 Log() << kINFO << "<InitEventSample> Internally I use " << fEventSample.size()
847 << " for Training and " << fValidationSample.size()
848 << " for Pruning Validation (" << ((Float_t)fValidationSample.size())/((Float_t)fEventSample.size()+fValidationSample.size())*100.0
849 << "% of training used for validation)" << Endl;
850 }
851
852 // some pre-processing for events with negative weights
853 if (fPairNegWeightsGlobal) PreProcessNegativeEventWeights();
854 }
855
856 if (DoRegression()) {
857 // Regression, no reweighting to do
858 } else if (DoMulticlass()) {
859 // Multiclass, only gradboost is supported. No reweighting.
860 } else if (!fSkipNormalization) {
861 // Binary classification.
862 Log() << kDEBUG << "\t<InitEventSample> For classification trees, "<< Endl;
863 Log() << kDEBUG << " \tthe effective number of backgrounds is scaled to match "<<Endl;
864 Log() << kDEBUG << " \tthe signal. Otherwise the first boosting step would do 'just that'!"<<Endl;
865 // it does not make sense in decision trees to start with unequal number of signal/background
866 // events (weights) .. hence normalize them now (happens otherwise in first 'boosting step'
867 // anyway..
868 // Also make sure, that the sum_of_weights == sample.size() .. as this is assumed in
869 // the DecisionTree to derive a sensible number for "fMinSize" (min.#events in node)
870 // that currently is an OR between "weighted" and "unweighted number"
871 // I want:
872 // nS + nB = n
873 // a*SW + b*BW = n
874 // (a*SW)/(b*BW) = fSigToBkgFraction
875 //
876 // ==> b = n/((1+f)BW) and a = (nf/(1+f))/SW
877
878 Double_t nevents = fEventSample.size();
879 Double_t sumSigW=0, sumBkgW=0;
880 Int_t sumSig=0, sumBkg=0;
881 for (UInt_t ievt=0; ievt<fEventSample.size(); ievt++) {
882 if ((DataInfo().IsSignal(fEventSample[ievt])) ) {
883 sumSigW += fEventSample[ievt]->GetWeight();
884 sumSig++;
885 } else {
886 sumBkgW += fEventSample[ievt]->GetWeight();
887 sumBkg++;
888 }
889 }
890 if (sumSigW && sumBkgW){
891 Double_t normSig = nevents/((1+fSigToBkgFraction)*sumSigW)*fSigToBkgFraction;
892 Double_t normBkg = nevents/((1+fSigToBkgFraction)*sumBkgW); ;
893 Log() << kDEBUG << "\tre-normalise events such that Sig and Bkg have respective sum of weights = "
894 << fSigToBkgFraction << Endl;
895 Log() << kDEBUG << " \tsig->sig*"<<normSig << "ev. bkg->bkg*"<<normBkg << "ev." <<Endl;
896 Log() << kHEADER << "#events: (reweighted) sig: "<< sumSigW*normSig << " bkg: " << sumBkgW*normBkg << Endl;
897 Log() << kINFO << "#events: (unweighted) sig: "<< sumSig << " bkg: " << sumBkg << Endl;
898 for (Long64_t ievt=0; ievt<nevents; ievt++) {
899 if ((DataInfo().IsSignal(fEventSample[ievt])) ) fEventSample[ievt]->SetBoostWeight(normSig);
900 else fEventSample[ievt]->SetBoostWeight(normBkg);
901 }
902 }else{
903 Log() << kINFO << "--> could not determine scaling factors as either there are " << Endl;
904 Log() << kINFO << " no signal events (sumSigW="<<sumSigW<<") or no bkg ev. (sumBkgW="<<sumBkgW<<")"<<Endl;
905 }
906
907 }
908
909 fTrainSample = &fEventSample;
910 if (fBaggedBoost){
911 GetBaggedSubSample(fEventSample);
912 fTrainSample = &fSubSample;
913 }
914
915 //just for debug purposes..
916 /*
917 sumSigW=0;
918 sumBkgW=0;
919 for (UInt_t ievt=0; ievt<fEventSample.size(); ievt++) {
920 if ((DataInfo().IsSignal(fEventSample[ievt])) ) sumSigW += fEventSample[ievt]->GetWeight();
921 else sumBkgW += fEventSample[ievt]->GetWeight();
922 }
923 Log() << kWARNING << "sigSumW="<<sumSigW<<"bkgSumW="<<sumBkgW<< Endl;
924 */
925}
926
927////////////////////////////////////////////////////////////////////////////////
928/// O.k. you know there are events with negative event weights. This routine will remove
929/// them by pairing them with the closest event(s) of the same event class with positive
930/// weights
931/// A first attempt is "brute force", I dont' try to be clever using search trees etc,
932/// just quick and dirty to see if the result is any good
933
935 Double_t totalNegWeights = 0;
936 Double_t totalPosWeights = 0;
937 Double_t totalWeights = 0;
938 std::vector<const Event*> negEvents;
939 for (UInt_t iev = 0; iev < fEventSample.size(); iev++){
940 if (fEventSample[iev]->GetWeight() < 0) {
941 totalNegWeights += fEventSample[iev]->GetWeight();
942 negEvents.push_back(fEventSample[iev]);
943 } else {
944 totalPosWeights += fEventSample[iev]->GetWeight();
945 }
946 totalWeights += fEventSample[iev]->GetWeight();
947 }
948 if (totalNegWeights == 0 ) {
949 Log() << kINFO << "no negative event weights found .. no preprocessing necessary" << Endl;
950 return;
951 } else {
952 Log() << kINFO << "found a total of " << totalNegWeights << " of negative event weights which I am going to try to pair with positive events to annihilate them" << Endl;
953 Log() << kINFO << "found a total of " << totalPosWeights << " of events with positive weights" << Endl;
954 Log() << kINFO << "--> total sum of weights = " << totalWeights << " = " << totalNegWeights+totalPosWeights << Endl;
955 }
956
957 std::vector<TMatrixDSym*>* cov = gTools().CalcCovarianceMatrices( fEventSample, 2);
958
959 TMatrixDSym *invCov;
960
961 for (Int_t i=0; i<2; i++){
962 invCov = ((*cov)[i]);
963 if ( TMath::Abs(invCov->Determinant()) < 10E-24 ) {
964 std::cout << "<MethodBDT::PreProcessNeg...> matrix is almost singular with determinant="
965 << TMath::Abs(invCov->Determinant())
966 << " did you use the variables that are linear combinations or highly correlated?"
967 << std::endl;
968 }
969 if ( TMath::Abs(invCov->Determinant()) < 10E-120 ) {
970 std::cout << "<MethodBDT::PreProcessNeg...> matrix is singular with determinant="
971 << TMath::Abs(invCov->Determinant())
972 << " did you use the variables that are linear combinations?"
973 << std::endl;
974 }
975
976 invCov->Invert();
977 }
978
979
980
981 Log() << kINFO << "Found a total of " << totalNegWeights << " in negative weights out of " << fEventSample.size() << " training events " << Endl;
982 Timer timer(negEvents.size(),"Negative Event paired");
983 for (UInt_t nev = 0; nev < negEvents.size(); nev++){
984 timer.DrawProgressBar( nev );
985 Double_t weight = negEvents[nev]->GetWeight();
986 UInt_t iClassID = negEvents[nev]->GetClass();
987 invCov = ((*cov)[iClassID]);
988 while (weight < 0){
989 // find closest event with positive event weight and "pair" it with the negative event
990 // (add their weight) until there is no negative weight anymore
991 Int_t iMin=-1;
992 Double_t dist, minDist=10E270;
993 for (UInt_t iev = 0; iev < fEventSample.size(); iev++){
994 if (iClassID==fEventSample[iev]->GetClass() && fEventSample[iev]->GetWeight() > 0){
995 dist=0;
996 for (UInt_t ivar=0; ivar < GetNvar(); ivar++){
997 for (UInt_t jvar=0; jvar<GetNvar(); jvar++){
998 dist += (negEvents[nev]->GetValue(ivar)-fEventSample[iev]->GetValue(ivar))*
999 (*invCov)[ivar][jvar]*
1000 (negEvents[nev]->GetValue(jvar)-fEventSample[iev]->GetValue(jvar));
1001 }
1002 }
1003 if (dist < minDist) { iMin=iev; minDist=dist;}
1004 }
1005 }
1006
1007 if (iMin > -1) {
1008 // std::cout << "Happily pairing .. weight before : " << negEvents[nev]->GetWeight() << " and " << fEventSample[iMin]->GetWeight();
1009 Double_t newWeight = (negEvents[nev]->GetWeight() + fEventSample[iMin]->GetWeight());
1010 if (newWeight > 0){
1011 negEvents[nev]->SetBoostWeight( 0 );
1012 fEventSample[iMin]->SetBoostWeight( newWeight/fEventSample[iMin]->GetOriginalWeight() ); // note the weight*boostweight should be "newWeight"
1013 } else {
1014 negEvents[nev]->SetBoostWeight( newWeight/negEvents[nev]->GetOriginalWeight() ); // note the weight*boostweight should be "newWeight"
1015 fEventSample[iMin]->SetBoostWeight( 0 );
1016 }
1017 // std::cout << " and afterwards " << negEvents[nev]->GetWeight() << " and the paired " << fEventSample[iMin]->GetWeight() << " dist="<<minDist<< std::endl;
1018 } else Log() << kFATAL << "preprocessing didn't find event to pair with the negative weight ... probably a bug" << Endl;
1019 weight = negEvents[nev]->GetWeight();
1020 }
1021 }
1022 Log() << kINFO << "<Negative Event Pairing> took: " << timer.GetElapsedTime()
1023 << " " << Endl;
1024
1025 // just check.. now there should be no negative event weight left anymore
1026 totalNegWeights = 0;
1027 totalPosWeights = 0;
1028 totalWeights = 0;
1029 Double_t sigWeight=0;
1030 Double_t bkgWeight=0;
1031 Int_t nSig=0;
1032 Int_t nBkg=0;
1033
1034 std::vector<const Event*> newEventSample;
1035
1036 for (UInt_t iev = 0; iev < fEventSample.size(); iev++){
1037 if (fEventSample[iev]->GetWeight() < 0) {
1038 totalNegWeights += fEventSample[iev]->GetWeight();
1039 totalWeights += fEventSample[iev]->GetWeight();
1040 } else {
1041 totalPosWeights += fEventSample[iev]->GetWeight();
1042 totalWeights += fEventSample[iev]->GetWeight();
1043 }
1044 if (fEventSample[iev]->GetWeight() > 0) {
1045 newEventSample.push_back(new Event(*fEventSample[iev]));
1046 if (fEventSample[iev]->GetClass() == fSignalClass){
1047 sigWeight += fEventSample[iev]->GetWeight();
1048 nSig+=1;
1049 }else{
1050 bkgWeight += fEventSample[iev]->GetWeight();
1051 nBkg+=1;
1052 }
1053 }
1054 }
1055 if (totalNegWeights < 0) Log() << kFATAL << " compensation of negative event weights with positive ones did not work " << totalNegWeights << Endl;
1056
1057 for (UInt_t i=0; i<fEventSample.size(); i++) delete fEventSample[i];
1058 fEventSample = newEventSample;
1059
1060 Log() << kINFO << " after PreProcessing, the Event sample is left with " << fEventSample.size() << " events (unweighted), all with positive weights, adding up to " << totalWeights << Endl;
1061 Log() << kINFO << " nSig="<<nSig << " sigWeight="<<sigWeight << " nBkg="<<nBkg << " bkgWeight="<<bkgWeight << Endl;
1062
1063
1064}
1065
1066////////////////////////////////////////////////////////////////////////////////
1067/// Call the Optimizer with the set of parameters and ranges that
1068/// are meant to be tuned.
1069
1070std::map<TString,Double_t> TMVA::MethodBDT::OptimizeTuningParameters(TString fomType, TString fitType)
1071{
1072 // fill all the tuning parameters that should be optimized into a map:
1073 std::map<TString,TMVA::Interval*> tuneParameters;
1074 std::map<TString,Double_t> tunedParameters;
1075
1076 // note: the 3rd parameter in the interval is the "number of bins", NOT the stepsize !!
1077 // the actual VALUES at (at least for the scan, guess also in GA) are always
1078 // read from the middle of the bins. Hence.. the choice of Intervals e.g. for the
1079 // MaxDepth, in order to make nice integer values!!!
1080
1081 // find some reasonable ranges for the optimisation of MinNodeEvents:
1082
1083 tuneParameters.insert(std::pair<TString,Interval*>("NTrees", new Interval(10,1000,5))); // stepsize 50
1084 tuneParameters.insert(std::pair<TString,Interval*>("MaxDepth", new Interval(2,4,3))); // stepsize 1
1085 tuneParameters.insert(std::pair<TString,Interval*>("MinNodeSize", new LogInterval(1,30,30))); //
1086 //tuneParameters.insert(std::pair<TString,Interval*>("NodePurityLimit",new Interval(.4,.6,3))); // stepsize .1
1087 //tuneParameters.insert(std::pair<TString,Interval*>("BaggedSampleFraction",new Interval(.4,.9,6))); // stepsize .1
1088
1089 // method-specific parameters
1090 if (fBoostType=="AdaBoost"){
1091 tuneParameters.insert(std::pair<TString,Interval*>("AdaBoostBeta", new Interval(.2,1.,5)));
1092
1093 }else if (fBoostType=="Grad"){
1094 tuneParameters.insert(std::pair<TString,Interval*>("Shrinkage", new Interval(0.05,0.50,5)));
1095
1096 }else if (fBoostType=="Bagging" && fRandomisedTrees){
1097 Int_t min_var = TMath::FloorNint( GetNvar() * .25 );
1098 Int_t max_var = TMath::CeilNint( GetNvar() * .75 );
1099 tuneParameters.insert(std::pair<TString,Interval*>("UseNvars", new Interval(min_var,max_var,4)));
1100
1101 }
1102
1103 Log()<<kINFO << " the following BDT parameters will be tuned on the respective *grid*\n"<<Endl;
1104 std::map<TString,TMVA::Interval*>::iterator it;
1105 for(it=tuneParameters.begin(); it!= tuneParameters.end(); ++it){
1106 Log() << kWARNING << it->first << Endl;
1107 std::ostringstream oss;
1108 (it->second)->Print(oss);
1109 Log()<<oss.str();
1110 Log()<<Endl;
1111 }
1112
1113 OptimizeConfigParameters optimize(this, tuneParameters, fomType, fitType);
1114 tunedParameters=optimize.optimize();
1115
1116 return tunedParameters;
1117
1118}
1119
1120////////////////////////////////////////////////////////////////////////////////
1121/// Set the tuning parameters according to the argument.
1122
1123void TMVA::MethodBDT::SetTuneParameters(std::map<TString,Double_t> tuneParameters)
1124{
1125 std::map<TString,Double_t>::iterator it;
1126 for(it=tuneParameters.begin(); it!= tuneParameters.end(); ++it){
1127 Log() << kWARNING << it->first << " = " << it->second << Endl;
1128 if (it->first == "MaxDepth" ) SetMaxDepth ((Int_t)it->second);
1129 else if (it->first == "MinNodeSize" ) SetMinNodeSize (it->second);
1130 else if (it->first == "NTrees" ) SetNTrees ((Int_t)it->second);
1131 else if (it->first == "NodePurityLimit") SetNodePurityLimit (it->second);
1132 else if (it->first == "AdaBoostBeta" ) SetAdaBoostBeta (it->second);
1133 else if (it->first == "Shrinkage" ) SetShrinkage (it->second);
1134 else if (it->first == "UseNvars" ) SetUseNvars ((Int_t)it->second);
1135 else if (it->first == "BaggedSampleFraction" ) SetBaggedSampleFraction (it->second);
1136 else Log() << kFATAL << " SetParameter for " << it->first << " not yet implemented " <<Endl;
1137 }
1138}
1139
1140////////////////////////////////////////////////////////////////////////////////
1141/// BDT training.
1142
1143
1145{
1147
1148 // fill the STL Vector with the event sample
1149 // (needs to be done here and cannot be done in "init" as the options need to be
1150 // known).
1151 InitEventSample();
1152
1153 if (fNTrees==0){
1154 Log() << kERROR << " Zero Decision Trees demanded... that does not work !! "
1155 << " I set it to 1 .. just so that the program does not crash"
1156 << Endl;
1157 fNTrees = 1;
1158 }
1159
1160 if (fInteractive && fInteractive->NotInitialized()){
1161 std::vector<TString> titles = {"Boost weight", "Error Fraction"};
1162 fInteractive->Init(titles);
1163 }
1164 fIPyMaxIter = fNTrees;
1165 fExitFromTraining = false;
1166
1167 // HHV (it's been here since looong but I really don't know why we cannot handle
1168 // normalized variables in BDTs... todo
1169 if (IsNormalised()) Log() << kFATAL << "\"Normalise\" option cannot be used with BDT; "
1170 << "please remove the option from the configuration string, or "
1171 << "use \"!Normalise\""
1172 << Endl;
1173
1174 if(DoRegression())
1175 Log() << kINFO << "Regression Loss Function: "<< fRegressionLossFunctionBDTG->Name() << Endl;
1176
1177 Log() << kINFO << "Training "<< fNTrees << " Decision Trees ... patience please" << Endl;
1178
1179 Log() << kDEBUG << "Training with maximal depth = " <<fMaxDepth
1180 << ", MinNodeEvents=" << fMinNodeEvents
1181 << ", NTrees="<<fNTrees
1182 << ", NodePurityLimit="<<fNodePurityLimit
1183 << ", AdaBoostBeta="<<fAdaBoostBeta
1184 << Endl;
1185
1186 // weights applied in boosting
1187 Int_t nBins;
1188 Double_t xMin,xMax;
1189 TString hname = "AdaBooost weight distribution";
1190
1191 nBins= 100;
1192 xMin = 0;
1193 xMax = 30;
1194
1195 if (DoRegression()) {
1196 nBins= 100;
1197 xMin = 0;
1198 xMax = 1;
1199 hname="Boost event weights distribution";
1200 }
1201
1202 // book monitoring histograms (for AdaBost only)
1203
1204 TH1* h = new TH1F(Form("%s_BoostWeight",DataInfo().GetName()),hname,nBins,xMin,xMax);
1205 TH1* nodesBeforePruningVsTree = new TH1I(Form("%s_NodesBeforePruning",DataInfo().GetName()),"nodes before pruning",fNTrees,0,fNTrees);
1206 TH1* nodesAfterPruningVsTree = new TH1I(Form("%s_NodesAfterPruning",DataInfo().GetName()),"nodes after pruning",fNTrees,0,fNTrees);
1207
1208
1209
1210 if(!DoMulticlass()){
1211 Results* results = Data()->GetResults(GetMethodName(), Types::kTraining, GetAnalysisType());
1212
1213 h->SetXTitle("boost weight");
1214 results->Store(h, "BoostWeights");
1215
1216
1217 // Monitor the performance (on TEST sample) versus number of trees
1218 if (fDoBoostMonitor){
1219 TH2* boostMonitor = new TH2F("BoostMonitor","ROC Integral Vs iTree",2,0,fNTrees,2,0,1.05);
1220 boostMonitor->SetXTitle("#tree");
1221 boostMonitor->SetYTitle("ROC Integral");
1222 results->Store(boostMonitor, "BoostMonitor");
1223 TGraph *boostMonitorGraph = new TGraph();
1224 boostMonitorGraph->SetName("BoostMonitorGraph");
1225 boostMonitorGraph->SetTitle("ROCIntegralVsNTrees");
1226 results->Store(boostMonitorGraph, "BoostMonitorGraph");
1227 }
1228
1229 // weights applied in boosting vs tree number
1230 h = new TH1F("BoostWeightVsTree","Boost weights vs tree",fNTrees,0,fNTrees);
1231 h->SetXTitle("#tree");
1232 h->SetYTitle("boost weight");
1233 results->Store(h, "BoostWeightsVsTree");
1234
1235 // error fraction vs tree number
1236 h = new TH1F("ErrFractHist","error fraction vs tree number",fNTrees,0,fNTrees);
1237 h->SetXTitle("#tree");
1238 h->SetYTitle("error fraction");
1239 results->Store(h, "ErrorFrac");
1240
1241 // nNodesBeforePruning vs tree number
1242 nodesBeforePruningVsTree->SetXTitle("#tree");
1243 nodesBeforePruningVsTree->SetYTitle("#tree nodes");
1244 results->Store(nodesBeforePruningVsTree);
1245
1246 // nNodesAfterPruning vs tree number
1247 nodesAfterPruningVsTree->SetXTitle("#tree");
1248 nodesAfterPruningVsTree->SetYTitle("#tree nodes");
1249 results->Store(nodesAfterPruningVsTree);
1250
1251 }
1252
1253 fMonitorNtuple= new TTree("MonitorNtuple","BDT variables");
1254 fMonitorNtuple->Branch("iTree",&fITree,"iTree/I");
1255 fMonitorNtuple->Branch("boostWeight",&fBoostWeight,"boostWeight/D");
1256 fMonitorNtuple->Branch("errorFraction",&fErrorFraction,"errorFraction/D");
1257
1258 Timer timer( fNTrees, GetName() );
1259 Int_t nNodesBeforePruningCount = 0;
1260 Int_t nNodesAfterPruningCount = 0;
1261
1262 Int_t nNodesBeforePruning = 0;
1263 Int_t nNodesAfterPruning = 0;
1264
1265 if(fBoostType=="Grad"){
1266 InitGradBoost(fEventSample);
1267 }
1268
1269 Int_t itree=0;
1270 Bool_t continueBoost=kTRUE;
1271 //for (int itree=0; itree<fNTrees; itree++) {
1272
1273 while (itree < fNTrees && continueBoost){
1274 if (fExitFromTraining) break;
1275 fIPyCurrentIter = itree;
1276 timer.DrawProgressBar( itree );
1277 // Results* results = Data()->GetResults(GetMethodName(), Types::kTraining, GetAnalysisType());
1278 // TH1 *hxx = new TH1F(Form("swdist%d",itree),Form("swdist%d",itree),10000,0,15);
1279 // results->Store(hxx,Form("swdist%d",itree));
1280 // TH1 *hxy = new TH1F(Form("bwdist%d",itree),Form("bwdist%d",itree),10000,0,15);
1281 // results->Store(hxy,Form("bwdist%d",itree));
1282 // for (Int_t iev=0; iev<fEventSample.size(); iev++) {
1283 // if (fEventSample[iev]->GetClass()!=0) hxy->Fill((fEventSample[iev])->GetWeight());
1284 // else hxx->Fill((fEventSample[iev])->GetWeight());
1285 // }
1286
1287 if(DoMulticlass()){
1288 if (fBoostType!="Grad"){
1289 Log() << kFATAL << "Multiclass is currently only supported by gradient boost. "
1290 << "Please change boost option accordingly (BoostType=Grad)." << Endl;
1291 }
1292
1293 UInt_t nClasses = DataInfo().GetNClasses();
1294 for (UInt_t i=0;i<nClasses;i++){
1295 // Careful: If fSepType is nullptr, the tree will be considered a regression tree and
1296 // use the correct output for gradboost (response rather than yesnoleaf) in checkEvent.
1297 // See TMVA::MethodBDT::InitGradBoost.
1298 fForest.push_back( new DecisionTree( fSepType, fMinNodeSize, fNCuts, &(DataInfo()), i,
1299 fRandomisedTrees, fUseNvars, fUsePoissonNvars, fMaxDepth,
1300 itree*nClasses+i, fNodePurityLimit, itree*nClasses+1));
1301 fForest.back()->SetNVars(GetNvar());
1302 if (fUseFisherCuts) {
1303 fForest.back()->SetUseFisherCuts();
1304 fForest.back()->SetMinLinCorrForFisher(fMinLinCorrForFisher);
1305 fForest.back()->SetUseExclusiveVars(fUseExclusiveVars);
1306 }
1307 // the minimum linear correlation between two variables demanded for use in fisher criterion in node splitting
1308
1309 nNodesBeforePruning = fForest.back()->BuildTree(*fTrainSample);
1310 Double_t bw = this->Boost(*fTrainSample, fForest.back(),i);
1311 if (bw > 0) {
1312 fBoostWeights.push_back(bw);
1313 }else{
1314 fBoostWeights.push_back(0);
1315 Log() << kWARNING << "stopped boosting at itree="<<itree << Endl;
1316 // fNTrees = itree+1; // that should stop the boosting
1317 continueBoost=kFALSE;
1318 }
1319 }
1320 }
1321 else{
1322
1323 DecisionTree* dt = new DecisionTree( fSepType, fMinNodeSize, fNCuts, &(DataInfo()), fSignalClass,
1324 fRandomisedTrees, fUseNvars, fUsePoissonNvars, fMaxDepth,
1325 itree, fNodePurityLimit, itree);
1326
1327 fForest.push_back(dt);
1328 fForest.back()->SetNVars(GetNvar());
1329 if (fUseFisherCuts) {
1330 fForest.back()->SetUseFisherCuts();
1331 fForest.back()->SetMinLinCorrForFisher(fMinLinCorrForFisher);
1332 fForest.back()->SetUseExclusiveVars(fUseExclusiveVars);
1333 }
1334
1335 nNodesBeforePruning = fForest.back()->BuildTree(*fTrainSample);
1336
1337 if (fUseYesNoLeaf && !DoRegression() && fBoostType!="Grad") { // remove leaf nodes where both daughter nodes are of same type
1338 nNodesBeforePruning = fForest.back()->CleanTree();
1339 }
1340
1341 nNodesBeforePruningCount += nNodesBeforePruning;
1342 nodesBeforePruningVsTree->SetBinContent(itree+1,nNodesBeforePruning);
1343
1344 fForest.back()->SetPruneMethod(fPruneMethod); // set the pruning method for the tree
1345 fForest.back()->SetPruneStrength(fPruneStrength); // set the strength parameter
1346
1347 std::vector<const Event*> * validationSample = NULL;
1348 if(fAutomatic) validationSample = &fValidationSample;
1349 Double_t bw = this->Boost(*fTrainSample, fForest.back());
1350 if (bw > 0) {
1351 fBoostWeights.push_back(bw);
1352 }else{
1353 fBoostWeights.push_back(0);
1354 Log() << kWARNING << "stopped boosting at itree="<<itree << Endl;
1355 continueBoost=kFALSE;
1356 }
1357
1358 // if fAutomatic == true, pruneStrength will be the optimal pruning strength
1359 // determined by the pruning algorithm; otherwise, it is simply the strength parameter
1360 // set by the user
1361 if (fPruneMethod != DecisionTree::kNoPruning) fForest.back()->PruneTree(validationSample);
1362
1363 if (fUseYesNoLeaf && !DoRegression() && fBoostType!="Grad"){ // remove leaf nodes where both daughter nodes are of same type
1364 fForest.back()->CleanTree();
1365 }
1366 nNodesAfterPruning = fForest.back()->GetNNodes();
1367 nNodesAfterPruningCount += nNodesAfterPruning;
1368 nodesAfterPruningVsTree->SetBinContent(itree+1,nNodesAfterPruning);
1369
1370 if (fInteractive){
1371 fInteractive->AddPoint(itree, fBoostWeight, fErrorFraction);
1372 }
1373 fITree = itree;
1374 fMonitorNtuple->Fill();
1375 if (fDoBoostMonitor){
1376 if (! DoRegression() ){
1377 if ( itree==fNTrees-1 || (!(itree%500)) ||
1378 (!(itree%250) && itree <1000)||
1379 (!(itree%100) && itree < 500)||
1380 (!(itree%50) && itree < 250)||
1381 (!(itree%25) && itree < 150)||
1382 (!(itree%10) && itree < 50)||
1383 (!(itree%5) && itree < 20)
1384 ) BoostMonitor(itree);
1385 }
1386 }
1387 }
1388 itree++;
1389 }
1390
1391 // get elapsed time
1392 Log() << kDEBUG << "\t<Train> elapsed time: " << timer.GetElapsedTime()
1393 << " " << Endl;
1394 if (fPruneMethod == DecisionTree::kNoPruning) {
1395 Log() << kDEBUG << "\t<Train> average number of nodes (w/o pruning) : "
1396 << nNodesBeforePruningCount/GetNTrees() << Endl;
1397 }
1398 else {
1399 Log() << kDEBUG << "\t<Train> average number of nodes before/after pruning : "
1400 << nNodesBeforePruningCount/GetNTrees() << " / "
1401 << nNodesAfterPruningCount/GetNTrees()
1402 << Endl;
1403 }
1405
1406
1407 // reset all previously stored/accumulated BOOST weights in the event sample
1408 // for (UInt_t iev=0; iev<fEventSample.size(); iev++) fEventSample[iev]->SetBoostWeight(1.);
1409 Log() << kDEBUG << "Now I delete the privat data sample"<< Endl;
1410 for (UInt_t i=0; i<fEventSample.size(); i++) delete fEventSample[i];
1411 for (UInt_t i=0; i<fValidationSample.size(); i++) delete fValidationSample[i];
1412 fEventSample.clear();
1413 fValidationSample.clear();
1414
1415 if (!fExitFromTraining) fIPyMaxIter = fIPyCurrentIter;
1416 ExitFromTraining();
1417}
1418
1419
1420////////////////////////////////////////////////////////////////////////////////
1421/// Returns MVA value: -1 for background, 1 for signal.
1422
1424{
1425 Double_t sum=0;
1426 for (UInt_t itree=0; itree<nTrees; itree++) {
1427 //loop over all trees in forest
1428 sum += fForest[itree]->CheckEvent(e,kFALSE);
1429
1430 }
1431 return 2.0/(1.0+exp(-2.0*sum))-1; //MVA output between -1 and 1
1432}
1433
1434////////////////////////////////////////////////////////////////////////////////
1435/// Calculate residual for all events.
1436
1437void TMVA::MethodBDT::UpdateTargets(std::vector<const TMVA::Event*>& eventSample, UInt_t cls)
1438{
1439 if (DoMulticlass()) {
1440 UInt_t nClasses = DataInfo().GetNClasses();
1441 Bool_t isLastClass = (cls == nClasses - 1);
1442
1443 #ifdef R__USE_IMT
1444 //
1445 // This is the multi-threaded multiclass version
1446 //
1447 // Note: we only need to update the predicted probabilities every
1448 // `nClasses` tree. Let's call a set of `nClasses` trees a "round". Thus
1449 // the algortihm is split in two parts `update_residuals` and
1450 // `update_residuals_last` where the latter is inteded to be run instead
1451 // of the former for the last tree in a "round".
1452 //
1453 std::map<const TMVA::Event *, std::vector<double>> & residuals = this->fResiduals;
1454 DecisionTree & lastTree = *(this->fForest.back());
1455
1456 auto update_residuals = [&residuals, &lastTree, cls](const TMVA::Event * e) {
1457 residuals[e].at(cls) += lastTree.CheckEvent(e, kFALSE);
1458 };
1459
1460 auto update_residuals_last = [&residuals, &lastTree, cls, nClasses](const TMVA::Event * e) {
1461 residuals[e].at(cls) += lastTree.CheckEvent(e, kFALSE);
1462
1463 auto &residualsThisEvent = residuals[e];
1464
1465 std::vector<Double_t> expCache(nClasses, 0.0);
1466 std::transform(residualsThisEvent.begin(),
1467 residualsThisEvent.begin() + nClasses,
1468 expCache.begin(), [](Double_t d) { return exp(d); });
1469
1470 Double_t exp_sum = std::accumulate(expCache.begin(),
1471 expCache.begin() + nClasses,
1472 0.0);
1473
1474 for (UInt_t i = 0; i < nClasses; i++) {
1475 Double_t p_cls = expCache[i] / exp_sum;
1476
1477 Double_t res = (e->GetClass() == i) ? (1.0 - p_cls) : (-p_cls);
1478 const_cast<TMVA::Event *>(e)->SetTarget(i, res);
1479 }
1480 };
1481
1482 if (isLastClass) {
1484 .Foreach(update_residuals_last, eventSample);
1485 } else {
1487 .Foreach(update_residuals, eventSample);
1488 }
1489 #else
1490 //
1491 // Single-threaded multiclass version
1492 //
1493 std::vector<Double_t> expCache;
1494 if (isLastClass) {
1495 expCache.resize(nClasses);
1496 }
1497
1498 for (auto e : eventSample) {
1499 fResiduals[e].at(cls) += fForest.back()->CheckEvent(e, kFALSE);
1500 if (isLastClass) {
1501 auto &residualsThisEvent = fResiduals[e];
1502 std::transform(residualsThisEvent.begin(),
1503 residualsThisEvent.begin() + nClasses,
1504 expCache.begin(), [](Double_t d) { return exp(d); });
1505
1506 Double_t exp_sum = std::accumulate(expCache.begin(),
1507 expCache.begin() + nClasses,
1508 0.0);
1509
1510 for (UInt_t i = 0; i < nClasses; i++) {
1511 Double_t p_cls = expCache[i] / exp_sum;
1512
1513 Double_t res = (e->GetClass() == i) ? (1.0 - p_cls) : (-p_cls);
1514 const_cast<TMVA::Event *>(e)->SetTarget(i, res);
1515 }
1516 }
1517 }
1518 #endif
1519 } else {
1520 std::map<const TMVA::Event *, std::vector<double>> & residuals = this->fResiduals;
1521 DecisionTree & lastTree = *(this->fForest.back());
1522
1523 UInt_t signalClass = DataInfo().GetSignalClassIndex();
1524
1525 #ifdef R__USE_IMT
1526 auto update_residuals = [&residuals, &lastTree, signalClass](const TMVA::Event * e) {
1527 double & residualAt0 = residuals[e].at(0);
1528 residualAt0 += lastTree.CheckEvent(e, kFALSE);
1529
1530 Double_t p_sig = 1.0 / (1.0 + exp(-2.0 * residualAt0));
1531 Double_t res = ((e->GetClass() == signalClass) ? (1.0 - p_sig) : (-p_sig));
1532
1533 const_cast<TMVA::Event *>(e)->SetTarget(0, res);
1534 };
1535
1537 .Foreach(update_residuals, eventSample);
1538 #else
1539 for (auto e : eventSample) {
1540 double & residualAt0 = residuals[e].at(0);
1541 residualAt0 += lastTree.CheckEvent(e, kFALSE);
1542
1543 Double_t p_sig = 1.0 / (1.0 + exp(-2.0 * residualAt0));
1544 Double_t res = ((e->GetClass() == signalClass) ? (1.0 - p_sig) : (-p_sig));
1545
1546 const_cast<TMVA::Event *>(e)->SetTarget(0, res);
1547 }
1548 #endif
1549 }
1550}
1551
1552////////////////////////////////////////////////////////////////////////////////
1553/// \brief Calculate residuals for all events and update targets for next iter.
1554///
1555/// \param[in] eventSample The collection of events currently under training.
1556/// \param[in] first Should be true when called before the first boosting
1557/// iteration has been run
1558///
1559void TMVA::MethodBDT::UpdateTargetsRegression(std::vector<const TMVA::Event*>& eventSample, Bool_t first)
1560{
1561 if (!first) {
1562#ifdef R__USE_IMT
1564 auto seeds = ROOT::TSeqU(nPartitions);
1565
1566 // need a lambda function to pass to TThreadExecutor::MapReduce
1567 auto f = [this, &nPartitions](UInt_t partition = 0) -> Int_t {
1568 Int_t start = 1.0 * partition / nPartitions * this->fEventSample.size();
1569 Int_t end = (partition + 1.0) / nPartitions * this->fEventSample.size();
1570
1571 for (Int_t i = start; i < end; ++i) {
1572 const TMVA::Event *e = fEventSample[i];
1573 LossFunctionEventInfo & lossInfo = fLossFunctionEventInfo.at(e);
1574 lossInfo.predictedValue += fForest.back()->CheckEvent(e, kFALSE);
1575 }
1576
1577 return 0;
1578 };
1579
1581#else
1582 for (const TMVA::Event *e : fEventSample) {
1583 LossFunctionEventInfo & lossInfo = fLossFunctionEventInfo.at(e);
1584 lossInfo.predictedValue += fForest.back()->CheckEvent(e, kFALSE);
1585 }
1586#endif
1587 }
1588
1589 // NOTE: Set targets are also parallelised internally
1590 fRegressionLossFunctionBDTG->SetTargets(eventSample, fLossFunctionEventInfo);
1591
1592}
1593
1594////////////////////////////////////////////////////////////////////////////////
1595/// Calculate the desired response value for each region.
1596
1597Double_t TMVA::MethodBDT::GradBoost(std::vector<const TMVA::Event*>& eventSample, DecisionTree *dt, UInt_t cls)
1598{
1599 struct LeafInfo {
1600 Double_t sumWeightTarget = 0;
1601 Double_t sum2 = 0;
1602 };
1603
1604 std::unordered_map<TMVA::DecisionTreeNode*, LeafInfo> leaves;
1605 for (auto e : eventSample) {
1606 Double_t weight = e->GetWeight();
1608 auto &v = leaves[node];
1609 auto target = e->GetTarget(cls);
1610 v.sumWeightTarget += target * weight;
1611 v.sum2 += fabs(target) * (1.0 - fabs(target)) * weight;
1612 }
1613 for (auto &iLeave : leaves) {
1614 constexpr auto minValue = 1e-30;
1615 if (iLeave.second.sum2 < minValue) {
1616 iLeave.second.sum2 = minValue;
1617 }
1618 const Double_t K = DataInfo().GetNClasses();
1619 iLeave.first->SetResponse(fShrinkage * (K - 1) / K * iLeave.second.sumWeightTarget / iLeave.second.sum2);
1620 }
1621
1622 //call UpdateTargets before next tree is grown
1623
1624 DoMulticlass() ? UpdateTargets(fEventSample, cls) : UpdateTargets(fEventSample);
1625 return 1; //trees all have the same weight
1626}
1627
1628////////////////////////////////////////////////////////////////////////////////
1629/// Implementation of M_TreeBoost using any loss function as described by Friedman 1999.
1630
1631Double_t TMVA::MethodBDT::GradBoostRegression(std::vector<const TMVA::Event*>& eventSample, DecisionTree *dt )
1632{
1633 // get the vector of events for each terminal so that we can calculate the constant fit value in each
1634 // terminal node
1635 // #### Not sure how many events are in each node in advance, so I can't parallelize this easily
1636 std::map<TMVA::DecisionTreeNode*,vector< TMVA::LossFunctionEventInfo > > leaves;
1637 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
1638 TMVA::DecisionTreeNode* node = dt->GetEventNode(*(*e));
1639 (leaves[node]).push_back(fLossFunctionEventInfo[*e]);
1640 }
1641
1642 // calculate the constant fit for each terminal node based upon the events in the node
1643 // node (iLeave->first), vector of event information (iLeave->second)
1644 // #### could parallelize this and do the leaves at the same time, but this doesn't take very long compared
1645 // #### to the other processes
1646 for (std::map<TMVA::DecisionTreeNode*,vector< TMVA::LossFunctionEventInfo > >::iterator iLeave=leaves.begin();
1647 iLeave!=leaves.end();++iLeave){
1648 Double_t fit = fRegressionLossFunctionBDTG->Fit(iLeave->second);
1649 (iLeave->first)->SetResponse(fShrinkage*fit);
1650 }
1651
1652 UpdateTargetsRegression(*fTrainSample);
1653
1654 return 1;
1655}
1656
1657////////////////////////////////////////////////////////////////////////////////
1658/// Initialize targets for first tree.
1659
1660void TMVA::MethodBDT::InitGradBoost( std::vector<const TMVA::Event*>& eventSample)
1661{
1662 // Should get rid of this line. It's just for debugging.
1663 //std::sort(eventSample.begin(), eventSample.end(), [](const TMVA::Event* a, const TMVA::Event* b){
1664 // return (a->GetTarget(0) < b->GetTarget(0)); });
1665 fSepType=NULL; //set fSepType to NULL (regression trees are used for both classification an regression)
1666 if(DoRegression()){
1667 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
1668 fLossFunctionEventInfo[*e]= TMVA::LossFunctionEventInfo((*e)->GetTarget(0), 0, (*e)->GetWeight());
1669 }
1670
1671 fRegressionLossFunctionBDTG->Init(fLossFunctionEventInfo, fBoostWeights);
1672 UpdateTargetsRegression(*fTrainSample,kTRUE);
1673
1674 return;
1675 }
1676 else if(DoMulticlass()){
1677 UInt_t nClasses = DataInfo().GetNClasses();
1678 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
1679 for (UInt_t i=0;i<nClasses;i++){
1680 //Calculate initial residua, assuming equal probability for all classes
1681 Double_t r = (*e)->GetClass()==i?(1-1.0/nClasses):(-1.0/nClasses);
1682 const_cast<TMVA::Event*>(*e)->SetTarget(i,r);
1683 fResiduals[*e].push_back(0);
1684 }
1685 }
1686 }
1687 else{
1688 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
1689 Double_t r = (DataInfo().IsSignal(*e)?1:0)-0.5; //Calculate initial residua
1690 const_cast<TMVA::Event*>(*e)->SetTarget(0,r);
1691 fResiduals[*e].push_back(0);
1692 }
1693 }
1694
1695}
1696////////////////////////////////////////////////////////////////////////////////
1697/// Test the tree quality.. in terms of Misclassification.
1698
1700{
1701 Double_t ncorrect=0, nfalse=0;
1702 for (UInt_t ievt=0; ievt<fValidationSample.size(); ievt++) {
1703 Bool_t isSignalType= (dt->CheckEvent(fValidationSample[ievt]) > fNodePurityLimit ) ? 1 : 0;
1704
1705 if (isSignalType == (DataInfo().IsSignal(fValidationSample[ievt])) ) {
1706 ncorrect += fValidationSample[ievt]->GetWeight();
1707 }
1708 else{
1709 nfalse += fValidationSample[ievt]->GetWeight();
1710 }
1711 }
1712
1713 return ncorrect / (ncorrect + nfalse);
1714}
1715
1716////////////////////////////////////////////////////////////////////////////////
1717/// Apply the boosting algorithm (the algorithm is selecte via the the "option" given
1718/// in the constructor. The return value is the boosting weight.
1719
1720Double_t TMVA::MethodBDT::Boost( std::vector<const TMVA::Event*>& eventSample, DecisionTree *dt, UInt_t cls )
1721{
1722 Double_t returnVal=-1;
1723
1724 if (fBoostType=="AdaBoost") returnVal = this->AdaBoost (eventSample, dt);
1725 else if (fBoostType=="AdaCost") returnVal = this->AdaCost (eventSample, dt);
1726 else if (fBoostType=="Bagging") returnVal = this->Bagging ( );
1727 else if (fBoostType=="RegBoost") returnVal = this->RegBoost (eventSample, dt);
1728 else if (fBoostType=="AdaBoostR2") returnVal = this->AdaBoostR2(eventSample, dt);
1729 else if (fBoostType=="Grad"){
1730 if(DoRegression())
1731 returnVal = this->GradBoostRegression(eventSample, dt);
1732 else if(DoMulticlass())
1733 returnVal = this->GradBoost (eventSample, dt, cls);
1734 else
1735 returnVal = this->GradBoost (eventSample, dt);
1736 }
1737 else {
1738 Log() << kINFO << GetOptions() << Endl;
1739 Log() << kFATAL << "<Boost> unknown boost option " << fBoostType<< " called" << Endl;
1740 }
1741
1742 if (fBaggedBoost){
1743 GetBaggedSubSample(fEventSample);
1744 }
1745
1746
1747 return returnVal;
1748}
1749
1750////////////////////////////////////////////////////////////////////////////////
1751/// Fills the ROCIntegral vs Itree from the testSample for the monitoring plots
1752/// during the training .. but using the testing events
1753
1755{
1756 Results* results = Data()->GetResults(GetMethodName(),Types::kTraining, Types::kMaxAnalysisType);
1757
1758 TH1F *tmpS = new TH1F( "tmpS", "", 100 , -1., 1.00001 );
1759 TH1F *tmpB = new TH1F( "tmpB", "", 100 , -1., 1.00001 );
1760 TH1F *tmp;
1761
1762
1763 UInt_t signalClassNr = DataInfo().GetClassInfo("Signal")->GetNumber();
1764
1765 // const std::vector<Event*> events=Data()->GetEventCollection(Types::kTesting);
1766 // // fMethod->GetTransformationHandler().CalcTransformations(fMethod->Data()->GetEventCollection(Types::kTesting));
1767 // for (UInt_t iev=0; iev < events.size() ; iev++){
1768 // if (events[iev]->GetClass() == signalClassNr) tmp=tmpS;
1769 // else tmp=tmpB;
1770 // tmp->Fill(PrivateGetMvaValue(*(events[iev])),events[iev]->GetWeight());
1771 // }
1772
1773 UInt_t nevents = Data()->GetNTestEvents();
1774 for (UInt_t iev=0; iev < nevents; iev++){
1775 const Event* event = GetTestingEvent(iev);
1776
1777 if (event->GetClass() == signalClassNr) {tmp=tmpS;}
1778 else {tmp=tmpB;}
1779 tmp->Fill(PrivateGetMvaValue(event),event->GetWeight());
1780 }
1781 Double_t max=1;
1782
1783 std::vector<TH1F*> hS;
1784 std::vector<TH1F*> hB;
1785 for (UInt_t ivar=0; ivar<GetNvar(); ivar++){
1786 hS.push_back(new TH1F(Form("SigVar%dAtTree%d",ivar,iTree),Form("SigVar%dAtTree%d",ivar,iTree),100,DataInfo().GetVariableInfo(ivar).GetMin(),DataInfo().GetVariableInfo(ivar).GetMax()));
1787 hB.push_back(new TH1F(Form("BkgVar%dAtTree%d",ivar,iTree),Form("BkgVar%dAtTree%d",ivar,iTree),100,DataInfo().GetVariableInfo(ivar).GetMin(),DataInfo().GetVariableInfo(ivar).GetMax()));
1788 results->Store(hS.back(),hS.back()->GetTitle());
1789 results->Store(hB.back(),hB.back()->GetTitle());
1790 }
1791
1792
1793 for (UInt_t iev=0; iev < fEventSample.size(); iev++){
1794 if (fEventSample[iev]->GetBoostWeight() > max) max = 1.01*fEventSample[iev]->GetBoostWeight();
1795 }
1796 TH1F *tmpBoostWeightsS = new TH1F(Form("BoostWeightsInTreeS%d",iTree),Form("BoostWeightsInTreeS%d",iTree),100,0.,max);
1797 TH1F *tmpBoostWeightsB = new TH1F(Form("BoostWeightsInTreeB%d",iTree),Form("BoostWeightsInTreeB%d",iTree),100,0.,max);
1798 results->Store(tmpBoostWeightsS,tmpBoostWeightsS->GetTitle());
1799 results->Store(tmpBoostWeightsB,tmpBoostWeightsB->GetTitle());
1800
1801 TH1F *tmpBoostWeights;
1802 std::vector<TH1F*> *h;
1803
1804 for (UInt_t iev=0; iev < fEventSample.size(); iev++){
1805 if (fEventSample[iev]->GetClass() == signalClassNr) {
1806 tmpBoostWeights=tmpBoostWeightsS;
1807 h=&hS;
1808 }else{
1809 tmpBoostWeights=tmpBoostWeightsB;
1810 h=&hB;
1811 }
1812 tmpBoostWeights->Fill(fEventSample[iev]->GetBoostWeight());
1813 for (UInt_t ivar=0; ivar<GetNvar(); ivar++){
1814 (*h)[ivar]->Fill(fEventSample[iev]->GetValue(ivar),fEventSample[iev]->GetWeight());
1815 }
1816 }
1817
1818
1819 TMVA::PDF *sig = new TMVA::PDF( " PDF Sig", tmpS, TMVA::PDF::kSpline3 );
1820 TMVA::PDF *bkg = new TMVA::PDF( " PDF Bkg", tmpB, TMVA::PDF::kSpline3 );
1821
1822
1823 TGraph* gr=results->GetGraph("BoostMonitorGraph");
1824 Int_t nPoints = gr->GetN();
1825 gr->Set(nPoints+1);
1826 gr->SetPoint(nPoints,(Double_t)iTree+1,GetROCIntegral(sig,bkg));
1827
1828 tmpS->Delete();
1829 tmpB->Delete();
1830
1831 delete sig;
1832 delete bkg;
1833
1834 return;
1835}
1836
1837////////////////////////////////////////////////////////////////////////////////
1838/// The AdaBoost implementation.
1839/// a new training sample is generated by weighting
1840/// events that are misclassified by the decision tree. The weight
1841/// applied is \f$ w = \frac{(1-err)}{err} \f$ or more general:
1842/// \f$ w = (\frac{(1-err)}{err})^\beta \f$
1843/// where \f$err\f$ is the fraction of misclassified events in the tree ( <0.5 assuming
1844/// demanding the that previous selection was better than random guessing)
1845/// and "beta" being a free parameter (standard: beta = 1) that modifies the
1846/// boosting.
1847
1848Double_t TMVA::MethodBDT::AdaBoost( std::vector<const TMVA::Event*>& eventSample, DecisionTree *dt )
1849{
1850 Double_t err=0, sumGlobalw=0, sumGlobalwfalse=0, sumGlobalwfalse2=0;
1851
1852 std::vector<Double_t> sumw(DataInfo().GetNClasses(),0); //for individually re-scaling each class
1853
1854 Double_t maxDev=0;
1855 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
1856 Double_t w = (*e)->GetWeight();
1857 sumGlobalw += w;
1858 UInt_t iclass=(*e)->GetClass();
1859 sumw[iclass] += w;
1860
1861 if ( DoRegression() ) {
1862 Double_t tmpDev = TMath::Abs(dt->CheckEvent(*e,kFALSE) - (*e)->GetTarget(0) );
1863 sumGlobalwfalse += w * tmpDev;
1864 sumGlobalwfalse2 += w * tmpDev*tmpDev;
1865 if (tmpDev > maxDev) maxDev = tmpDev;
1866 }else{
1867
1868 if (fUseYesNoLeaf){
1869 Bool_t isSignalType = (dt->CheckEvent(*e,fUseYesNoLeaf) > fNodePurityLimit );
1870 if (!(isSignalType == DataInfo().IsSignal(*e))) {
1871 sumGlobalwfalse+= w;
1872 }
1873 }else{
1874 Double_t dtoutput = (dt->CheckEvent(*e,fUseYesNoLeaf) - 0.5)*2.;
1875 Int_t trueType;
1876 if (DataInfo().IsSignal(*e)) trueType = 1;
1877 else trueType = -1;
1878 sumGlobalwfalse+= w*trueType*dtoutput;
1879 }
1880 }
1881 }
1882
1883 err = sumGlobalwfalse/sumGlobalw ;
1884 if ( DoRegression() ) {
1885 //if quadratic loss:
1886 if (fAdaBoostR2Loss=="linear"){
1887 err = sumGlobalwfalse/maxDev/sumGlobalw ;
1888 }
1889 else if (fAdaBoostR2Loss=="quadratic"){
1890 err = sumGlobalwfalse2/maxDev/maxDev/sumGlobalw ;
1891 }
1892 else if (fAdaBoostR2Loss=="exponential"){
1893 err = 0;
1894 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
1895 Double_t w = (*e)->GetWeight();
1896 Double_t tmpDev = TMath::Abs(dt->CheckEvent(*e,kFALSE) - (*e)->GetTarget(0) );
1897 err += w * (1 - exp (-tmpDev/maxDev)) / sumGlobalw;
1898 }
1899
1900 }
1901 else {
1902 Log() << kFATAL << " you've chosen a Loss type for Adaboost other than linear, quadratic or exponential "
1903 << " namely " << fAdaBoostR2Loss << "\n"
1904 << "and this is not implemented... a typo in the options ??" <<Endl;
1905 }
1906 }
1907
1908 Log() << kDEBUG << "BDT AdaBoos wrong/all: " << sumGlobalwfalse << "/" << sumGlobalw << Endl;
1909
1910
1911 Double_t newSumGlobalw=0;
1912 std::vector<Double_t> newSumw(sumw.size(),0);
1913
1914 Double_t boostWeight=1.;
1915 if (err >= 0.5 && fUseYesNoLeaf) { // sanity check ... should never happen as otherwise there is apparently
1916 // something odd with the assignment of the leaf nodes (rem: you use the training
1917 // events for this determination of the error rate)
1918 if (dt->GetNNodes() == 1){
1919 Log() << kERROR << " YOUR tree has only 1 Node... kind of a funny *tree*. I cannot "
1920 << "boost such a thing... if after 1 step the error rate is == 0.5"
1921 << Endl
1922 << "please check why this happens, maybe too many events per node requested ?"
1923 << Endl;
1924
1925 }else{
1926 Log() << kERROR << " The error rate in the BDT boosting is > 0.5. ("<< err
1927 << ") That should not happen, please check your code (i.e... the BDT code), I "
1928 << " stop boosting here" << Endl;
1929 return -1;
1930 }
1931 err = 0.5;
1932 } else if (err < 0) {
1933 Log() << kERROR << " The error rate in the BDT boosting is < 0. That can happen"
1934 << " due to improper treatment of negative weights in a Monte Carlo.. (if you have"
1935 << " an idea on how to do it in a better way, please let me know (Helge.Voss@cern.ch)"
1936 << " for the time being I set it to its absolute value.. just to continue.." << Endl;
1937 err = TMath::Abs(err);
1938 }
1939 if (fUseYesNoLeaf)
1940 boostWeight = TMath::Log((1.-err)/err)*fAdaBoostBeta;
1941 else
1942 boostWeight = TMath::Log((1.+err)/(1-err))*fAdaBoostBeta;
1943
1944
1945 Log() << kDEBUG << "BDT AdaBoos wrong/all: " << sumGlobalwfalse << "/" << sumGlobalw << " 1-err/err="<<boostWeight<< " log.."<<TMath::Log(boostWeight)<<Endl;
1946
1947 Results* results = Data()->GetResults(GetMethodName(),Types::kTraining, Types::kMaxAnalysisType);
1948
1949
1950 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
1951
1952 if (fUseYesNoLeaf||DoRegression()){
1953 if ((!( (dt->CheckEvent(*e,fUseYesNoLeaf) > fNodePurityLimit ) == DataInfo().IsSignal(*e))) || DoRegression()) {
1954 Double_t boostfactor = TMath::Exp(boostWeight);
1955
1956 if (DoRegression()) boostfactor = TMath::Power(1/boostWeight,(1.-TMath::Abs(dt->CheckEvent(*e,kFALSE) - (*e)->GetTarget(0) )/maxDev ) );
1957 if ( (*e)->GetWeight() > 0 ){
1958 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
1959 // Helge change back (*e)->ScaleBoostWeight(boostfactor);
1960 if (DoRegression()) results->GetHist("BoostWeights")->Fill(boostfactor);
1961 } else {
1962 if ( fInverseBoostNegWeights )(*e)->ScaleBoostWeight( 1. / boostfactor); // if the original event weight is negative, and you want to "increase" the events "positive" influence, you'd rather make the event weight "smaller" in terms of it's absolute value while still keeping it something "negative"
1963 else (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
1964
1965 }
1966 }
1967
1968 }else{
1969 Double_t dtoutput = (dt->CheckEvent(*e,fUseYesNoLeaf) - 0.5)*2.;
1970 Int_t trueType;
1971 if (DataInfo().IsSignal(*e)) trueType = 1;
1972 else trueType = -1;
1973 Double_t boostfactor = TMath::Exp(-1*boostWeight*trueType*dtoutput);
1974
1975 if ( (*e)->GetWeight() > 0 ){
1976 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
1977 // Helge change back (*e)->ScaleBoostWeight(boostfactor);
1978 if (DoRegression()) results->GetHist("BoostWeights")->Fill(boostfactor);
1979 } else {
1980 if ( fInverseBoostNegWeights )(*e)->ScaleBoostWeight( 1. / boostfactor); // if the original event weight is negative, and you want to "increase" the events "positive" influence, you'd rather make the event weight "smaller" in terms of it's absolute value while still keeping it something "negative"
1981 else (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
1982 }
1983 }
1984 newSumGlobalw+=(*e)->GetWeight();
1985 newSumw[(*e)->GetClass()] += (*e)->GetWeight();
1986 }
1987
1988
1989 // Double_t globalNormWeight=sumGlobalw/newSumGlobalw;
1990 Double_t globalNormWeight=( (Double_t) eventSample.size())/newSumGlobalw;
1991 Log() << kDEBUG << "new Nsig="<<newSumw[0]*globalNormWeight << " new Nbkg="<<newSumw[1]*globalNormWeight << Endl;
1992
1993
1994 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
1995 // if (fRenormByClass) (*e)->ScaleBoostWeight( normWeightByClass[(*e)->GetClass()] );
1996 // else (*e)->ScaleBoostWeight( globalNormWeight );
1997 // else (*e)->ScaleBoostWeight( globalNormWeight );
1998 if (DataInfo().IsSignal(*e))(*e)->ScaleBoostWeight( globalNormWeight * fSigToBkgFraction );
1999 else (*e)->ScaleBoostWeight( globalNormWeight );
2000 }
2001
2002 if (!(DoRegression()))results->GetHist("BoostWeights")->Fill(boostWeight);
2003 results->GetHist("BoostWeightsVsTree")->SetBinContent(fForest.size(),boostWeight);
2004 results->GetHist("ErrorFrac")->SetBinContent(fForest.size(),err);
2005
2006 fBoostWeight = boostWeight;
2007 fErrorFraction = err;
2008
2009 return boostWeight;
2010}
2011
2012////////////////////////////////////////////////////////////////////////////////
2013/// The AdaCost boosting algorithm takes a simple cost Matrix (currently fixed for
2014/// all events... later could be modified to use individual cost matrices for each
2015/// events as in the original paper...
2016///
2017/// true_signal true_bkg
2018/// ----------------------------------
2019/// sel_signal | Css Ctb_ss Cxx.. in the range [0,1]
2020/// sel_bkg | Cts_sb Cbb
2021///
2022/// and takes this into account when calculating the mis class. cost (former: error fraction):
2023///
2024/// err = sum_events ( weight* y_true*y_sel * beta(event)
2025
2026Double_t TMVA::MethodBDT::AdaCost( vector<const TMVA::Event*>& eventSample, DecisionTree *dt )
2027{
2028 Double_t Css = fCss;
2029 Double_t Cbb = fCbb;
2030 Double_t Cts_sb = fCts_sb;
2031 Double_t Ctb_ss = fCtb_ss;
2032
2033 Double_t err=0, sumGlobalWeights=0, sumGlobalCost=0;
2034
2035 std::vector<Double_t> sumw(DataInfo().GetNClasses(),0); //for individually re-scaling each class
2036
2037 for (vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
2038 Double_t w = (*e)->GetWeight();
2039 sumGlobalWeights += w;
2040 UInt_t iclass=(*e)->GetClass();
2041
2042 sumw[iclass] += w;
2043
2044 if ( DoRegression() ) {
2045 Log() << kFATAL << " AdaCost not implemented for regression"<<Endl;
2046 }else{
2047
2048 Double_t dtoutput = (dt->CheckEvent(*e,false) - 0.5)*2.;
2049 Int_t trueType;
2050 Bool_t isTrueSignal = DataInfo().IsSignal(*e);
2051 Bool_t isSelectedSignal = (dtoutput>0);
2052 if (isTrueSignal) trueType = 1;
2053 else trueType = -1;
2054
2055 Double_t cost=0;
2056 if (isTrueSignal && isSelectedSignal) cost=Css;
2057 else if (isTrueSignal && !isSelectedSignal) cost=Cts_sb;
2058 else if (!isTrueSignal && isSelectedSignal) cost=Ctb_ss;
2059 else if (!isTrueSignal && !isSelectedSignal) cost=Cbb;
2060 else Log() << kERROR << "something went wrong in AdaCost" << Endl;
2061
2062 sumGlobalCost+= w*trueType*dtoutput*cost;
2063
2064 }
2065 }
2066
2067 if ( DoRegression() ) {
2068 Log() << kFATAL << " AdaCost not implemented for regression"<<Endl;
2069 }
2070
2071 // Log() << kDEBUG << "BDT AdaBoos wrong/all: " << sumGlobalCost << "/" << sumGlobalWeights << Endl;
2072 // Log() << kWARNING << "BDT AdaBoos wrong/all: " << sumGlobalCost << "/" << sumGlobalWeights << Endl;
2073 sumGlobalCost /= sumGlobalWeights;
2074 // Log() << kWARNING << "BDT AdaBoos wrong/all: " << sumGlobalCost << "/" << sumGlobalWeights << Endl;
2075
2076
2077 Double_t newSumGlobalWeights=0;
2078 vector<Double_t> newSumClassWeights(sumw.size(),0);
2079
2080 Double_t boostWeight = TMath::Log((1+sumGlobalCost)/(1-sumGlobalCost)) * fAdaBoostBeta;
2081
2082 Results* results = Data()->GetResults(GetMethodName(),Types::kTraining, Types::kMaxAnalysisType);
2083
2084 for (vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
2085 Double_t dtoutput = (dt->CheckEvent(*e,false) - 0.5)*2.;
2086 Int_t trueType;
2087 Bool_t isTrueSignal = DataInfo().IsSignal(*e);
2088 Bool_t isSelectedSignal = (dtoutput>0);
2089 if (isTrueSignal) trueType = 1;
2090 else trueType = -1;
2091
2092 Double_t cost=0;
2093 if (isTrueSignal && isSelectedSignal) cost=Css;
2094 else if (isTrueSignal && !isSelectedSignal) cost=Cts_sb;
2095 else if (!isTrueSignal && isSelectedSignal) cost=Ctb_ss;
2096 else if (!isTrueSignal && !isSelectedSignal) cost=Cbb;
2097 else Log() << kERROR << "something went wrong in AdaCost" << Endl;
2098
2099 Double_t boostfactor = TMath::Exp(-1*boostWeight*trueType*dtoutput*cost);
2100 if (DoRegression())Log() << kFATAL << " AdaCost not implemented for regression"<<Endl;
2101 if ( (*e)->GetWeight() > 0 ){
2102 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
2103 // Helge change back (*e)->ScaleBoostWeight(boostfactor);
2104 if (DoRegression())Log() << kFATAL << " AdaCost not implemented for regression"<<Endl;
2105 } else {
2106 if ( fInverseBoostNegWeights )(*e)->ScaleBoostWeight( 1. / boostfactor); // if the original event weight is negative, and you want to "increase" the events "positive" influence, you'd rather make the event weight "smaller" in terms of it's absolute value while still keeping it something "negative"
2107 }
2108
2109 newSumGlobalWeights+=(*e)->GetWeight();
2110 newSumClassWeights[(*e)->GetClass()] += (*e)->GetWeight();
2111 }
2112
2113
2114 // Double_t globalNormWeight=sumGlobalWeights/newSumGlobalWeights;
2115 Double_t globalNormWeight=Double_t(eventSample.size())/newSumGlobalWeights;
2116 Log() << kDEBUG << "new Nsig="<<newSumClassWeights[0]*globalNormWeight << " new Nbkg="<<newSumClassWeights[1]*globalNormWeight << Endl;
2117
2118
2119 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
2120 // if (fRenormByClass) (*e)->ScaleBoostWeight( normWeightByClass[(*e)->GetClass()] );
2121 // else (*e)->ScaleBoostWeight( globalNormWeight );
2122 if (DataInfo().IsSignal(*e))(*e)->ScaleBoostWeight( globalNormWeight * fSigToBkgFraction );
2123 else (*e)->ScaleBoostWeight( globalNormWeight );
2124 }
2125
2126
2127 if (!(DoRegression()))results->GetHist("BoostWeights")->Fill(boostWeight);
2128 results->GetHist("BoostWeightsVsTree")->SetBinContent(fForest.size(),boostWeight);
2129 results->GetHist("ErrorFrac")->SetBinContent(fForest.size(),err);
2130
2131 fBoostWeight = boostWeight;
2132 fErrorFraction = err;
2133
2134
2135 return boostWeight;
2136}
2137
2138////////////////////////////////////////////////////////////////////////////////
2139/// Call it boot-strapping, re-sampling or whatever you like, in the end it is nothing
2140/// else but applying "random" poisson weights to each event.
2141
2143{
2144 // this is now done in "MethodBDT::Boost as it might be used by other boost methods, too
2145 // GetBaggedSample(eventSample);
2146
2147 return 1.; //here as there are random weights for each event, just return a constant==1;
2148}
2149
2150////////////////////////////////////////////////////////////////////////////////
2151/// Fills fEventSample with fBaggedSampleFraction*NEvents random training events.
2152
2153void TMVA::MethodBDT::GetBaggedSubSample(std::vector<const TMVA::Event*>& eventSample)
2154{
2155
2156 Double_t n;
2157 TRandom3 *trandom = new TRandom3(100*fForest.size()+1234);
2158
2159 if (!fSubSample.empty()) fSubSample.clear();
2160
2161 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
2162 n = trandom->PoissonD(fBaggedSampleFraction);
2163 for (Int_t i=0;i<n;i++) fSubSample.push_back(*e);
2164 }
2165
2166 delete trandom;
2167 return;
2168
2169 /*
2170 UInt_t nevents = fEventSample.size();
2171
2172 if (!fSubSample.empty()) fSubSample.clear();
2173 TRandom3 *trandom = new TRandom3(fForest.size()+1);
2174
2175 for (UInt_t ievt=0; ievt<nevents; ievt++) { // recreate new random subsample
2176 if(trandom->Rndm()<fBaggedSampleFraction)
2177 fSubSample.push_back(fEventSample[ievt]);
2178 }
2179 delete trandom;
2180 */
2181
2182}
2183
2184////////////////////////////////////////////////////////////////////////////////
2185/// A special boosting only for Regression (not implemented).
2186
2187Double_t TMVA::MethodBDT::RegBoost( std::vector<const TMVA::Event*>& /* eventSample */, DecisionTree* /* dt */ )
2188{
2189 return 1;
2190}
2191
2192////////////////////////////////////////////////////////////////////////////////
2193/// Adaption of the AdaBoost to regression problems (see H.Drucker 1997).
2194
2195Double_t TMVA::MethodBDT::AdaBoostR2( std::vector<const TMVA::Event*>& eventSample, DecisionTree *dt )
2196{
2197 if ( !DoRegression() ) Log() << kFATAL << "Somehow you chose a regression boost method for a classification job" << Endl;
2198
2199 Double_t err=0, sumw=0, sumwfalse=0, sumwfalse2=0;
2200 Double_t maxDev=0;
2201 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
2202 Double_t w = (*e)->GetWeight();
2203 sumw += w;
2204
2205 Double_t tmpDev = TMath::Abs(dt->CheckEvent(*e,kFALSE) - (*e)->GetTarget(0) );
2206 sumwfalse += w * tmpDev;
2207 sumwfalse2 += w * tmpDev*tmpDev;
2208 if (tmpDev > maxDev) maxDev = tmpDev;
2209 }
2210
2211 //if quadratic loss:
2212 if (fAdaBoostR2Loss=="linear"){
2213 err = sumwfalse/maxDev/sumw ;
2214 }
2215 else if (fAdaBoostR2Loss=="quadratic"){
2216 err = sumwfalse2/maxDev/maxDev/sumw ;
2217 }
2218 else if (fAdaBoostR2Loss=="exponential"){
2219 err = 0;
2220 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
2221 Double_t w = (*e)->GetWeight();
2222 Double_t tmpDev = TMath::Abs(dt->CheckEvent(*e,kFALSE) - (*e)->GetTarget(0) );
2223 err += w * (1 - exp (-tmpDev/maxDev)) / sumw;
2224 }
2225
2226 }
2227 else {
2228 Log() << kFATAL << " you've chosen a Loss type for Adaboost other than linear, quadratic or exponential "
2229 << " namely " << fAdaBoostR2Loss << "\n"
2230 << "and this is not implemented... a typo in the options ??" <<Endl;
2231 }
2232
2233
2234 if (err >= 0.5) { // sanity check ... should never happen as otherwise there is apparently
2235 // something odd with the assignment of the leaf nodes (rem: you use the training
2236 // events for this determination of the error rate)
2237 if (dt->GetNNodes() == 1){
2238 Log() << kERROR << " YOUR tree has only 1 Node... kind of a funny *tree*. I cannot "
2239 << "boost such a thing... if after 1 step the error rate is == 0.5"
2240 << Endl
2241 << "please check why this happens, maybe too many events per node requested ?"
2242 << Endl;
2243
2244 }else{
2245 Log() << kERROR << " The error rate in the BDT boosting is > 0.5. ("<< err
2246 << ") That should not happen, but is possible for regression trees, and"
2247 << " should trigger a stop for the boosting. please check your code (i.e... the BDT code), I "
2248 << " stop boosting " << Endl;
2249 return -1;
2250 }
2251 err = 0.5;
2252 } else if (err < 0) {
2253 Log() << kERROR << " The error rate in the BDT boosting is < 0. That can happen"
2254 << " due to improper treatment of negative weights in a Monte Carlo.. (if you have"
2255 << " an idea on how to do it in a better way, please let me know (Helge.Voss@cern.ch)"
2256 << " for the time being I set it to its absolute value.. just to continue.." << Endl;
2257 err = TMath::Abs(err);
2258 }
2259
2260 Double_t boostWeight = err / (1.-err);
2261 Double_t newSumw=0;
2262
2263 Results* results = Data()->GetResults(GetMethodName(), Types::kTraining, Types::kMaxAnalysisType);
2264
2265 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
2266 Double_t boostfactor = TMath::Power(boostWeight,(1.-TMath::Abs(dt->CheckEvent(*e,kFALSE) - (*e)->GetTarget(0) )/maxDev ) );
2267 results->GetHist("BoostWeights")->Fill(boostfactor);
2268 // std::cout << "R2 " << boostfactor << " " << boostWeight << " " << (1.-TMath::Abs(dt->CheckEvent(*e,kFALSE) - (*e)->GetTarget(0) )/maxDev) << std::endl;
2269 if ( (*e)->GetWeight() > 0 ){
2270 Float_t newBoostWeight = (*e)->GetBoostWeight() * boostfactor;
2271 Float_t newWeight = (*e)->GetWeight() * (*e)->GetBoostWeight() * boostfactor;
2272 if (newWeight == 0) {
2273 Log() << kINFO << "Weight= " << (*e)->GetWeight() << Endl;
2274 Log() << kINFO << "BoostWeight= " << (*e)->GetBoostWeight() << Endl;
2275 Log() << kINFO << "boostweight="<<boostWeight << " err= " <<err << Endl;
2276 Log() << kINFO << "NewBoostWeight= " << newBoostWeight << Endl;
2277 Log() << kINFO << "boostfactor= " << boostfactor << Endl;
2278 Log() << kINFO << "maxDev = " << maxDev << Endl;
2279 Log() << kINFO << "tmpDev = " << TMath::Abs(dt->CheckEvent(*e,kFALSE) - (*e)->GetTarget(0) ) << Endl;
2280 Log() << kINFO << "target = " << (*e)->GetTarget(0) << Endl;
2281 Log() << kINFO << "estimate = " << dt->CheckEvent(*e,kFALSE) << Endl;
2282 }
2283 (*e)->SetBoostWeight( newBoostWeight );
2284 // (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostfactor);
2285 } else {
2286 (*e)->SetBoostWeight( (*e)->GetBoostWeight() / boostfactor);
2287 }
2288 newSumw+=(*e)->GetWeight();
2289 }
2290
2291 // re-normalise the weights
2292 Double_t normWeight = sumw / newSumw;
2293 for (std::vector<const TMVA::Event*>::const_iterator e=eventSample.begin(); e!=eventSample.end();++e) {
2294 //Helge (*e)->ScaleBoostWeight( sumw/newSumw);
2295 // (*e)->ScaleBoostWeight( normWeight);
2296 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * normWeight );
2297 }
2298
2299
2300 results->GetHist("BoostWeightsVsTree")->SetBinContent(fForest.size(),1./boostWeight);
2301 results->GetHist("ErrorFrac")->SetBinContent(fForest.size(),err);
2302
2303 fBoostWeight = boostWeight;
2304 fErrorFraction = err;
2305
2306 return TMath::Log(1./boostWeight);
2307}
2308
2309////////////////////////////////////////////////////////////////////////////////
2310/// Write weights to XML.
2311
2312void TMVA::MethodBDT::AddWeightsXMLTo( void* parent ) const
2313{
2314 void* wght = gTools().AddChild(parent, "Weights");
2315
2316 if (fDoPreselection){
2317 for (UInt_t ivar=0; ivar<GetNvar(); ivar++){
2318 gTools().AddAttr( wght, Form("PreselectionLowBkgVar%d",ivar), fIsLowBkgCut[ivar]);
2319 gTools().AddAttr( wght, Form("PreselectionLowBkgVar%dValue",ivar), fLowBkgCut[ivar]);
2320 gTools().AddAttr( wght, Form("PreselectionLowSigVar%d",ivar), fIsLowSigCut[ivar]);
2321 gTools().AddAttr( wght, Form("PreselectionLowSigVar%dValue",ivar), fLowSigCut[ivar]);
2322 gTools().AddAttr( wght, Form("PreselectionHighBkgVar%d",ivar), fIsHighBkgCut[ivar]);
2323 gTools().AddAttr( wght, Form("PreselectionHighBkgVar%dValue",ivar),fHighBkgCut[ivar]);
2324 gTools().AddAttr( wght, Form("PreselectionHighSigVar%d",ivar), fIsHighSigCut[ivar]);
2325 gTools().AddAttr( wght, Form("PreselectionHighSigVar%dValue",ivar),fHighSigCut[ivar]);
2326 }
2327 }
2328
2329
2330 gTools().AddAttr( wght, "NTrees", fForest.size() );
2331 gTools().AddAttr( wght, "AnalysisType", fForest.back()->GetAnalysisType() );
2332
2333 for (UInt_t i=0; i< fForest.size(); i++) {
2334 void* trxml = fForest[i]->AddXMLTo(wght);
2335 gTools().AddAttr( trxml, "boostWeight", fBoostWeights[i] );
2336 gTools().AddAttr( trxml, "itree", i );
2337 }
2338}
2339
2340////////////////////////////////////////////////////////////////////////////////
2341/// Reads the BDT from the xml file.
2342
2344 UInt_t i;
2345 for (i=0; i<fForest.size(); i++) delete fForest[i];
2346 fForest.clear();
2347 fBoostWeights.clear();
2348
2349 UInt_t ntrees;
2350 UInt_t analysisType;
2351 Float_t boostWeight;
2352
2353
2354 if (gTools().HasAttr( parent, Form("PreselectionLowBkgVar%d",0))) {
2355 fIsLowBkgCut.resize(GetNvar());
2356 fLowBkgCut.resize(GetNvar());
2357 fIsLowSigCut.resize(GetNvar());
2358 fLowSigCut.resize(GetNvar());
2359 fIsHighBkgCut.resize(GetNvar());
2360 fHighBkgCut.resize(GetNvar());
2361 fIsHighSigCut.resize(GetNvar());
2362 fHighSigCut.resize(GetNvar());
2363
2364 Bool_t tmpBool;
2365 Double_t tmpDouble;
2366 for (UInt_t ivar=0; ivar<GetNvar(); ivar++){
2367 gTools().ReadAttr( parent, Form("PreselectionLowBkgVar%d",ivar), tmpBool);
2368 fIsLowBkgCut[ivar]=tmpBool;
2369 gTools().ReadAttr( parent, Form("PreselectionLowBkgVar%dValue",ivar), tmpDouble);
2370 fLowBkgCut[ivar]=tmpDouble;
2371 gTools().ReadAttr( parent, Form("PreselectionLowSigVar%d",ivar), tmpBool);
2372 fIsLowSigCut[ivar]=tmpBool;
2373 gTools().ReadAttr( parent, Form("PreselectionLowSigVar%dValue",ivar), tmpDouble);
2374 fLowSigCut[ivar]=tmpDouble;
2375 gTools().ReadAttr( parent, Form("PreselectionHighBkgVar%d",ivar), tmpBool);
2376 fIsHighBkgCut[ivar]=tmpBool;
2377 gTools().ReadAttr( parent, Form("PreselectionHighBkgVar%dValue",ivar), tmpDouble);
2378 fHighBkgCut[ivar]=tmpDouble;
2379 gTools().ReadAttr( parent, Form("PreselectionHighSigVar%d",ivar),tmpBool);
2380 fIsHighSigCut[ivar]=tmpBool;
2381 gTools().ReadAttr( parent, Form("PreselectionHighSigVar%dValue",ivar), tmpDouble);
2382 fHighSigCut[ivar]=tmpDouble;
2383 }
2384 }
2385
2386
2387 gTools().ReadAttr( parent, "NTrees", ntrees );
2388
2389 if(gTools().HasAttr(parent, "TreeType")) { // pre 4.1.0 version
2390 gTools().ReadAttr( parent, "TreeType", analysisType );
2391 } else { // from 4.1.0 onwards
2392 gTools().ReadAttr( parent, "AnalysisType", analysisType );
2393 }
2394
2395 void* ch = gTools().GetChild(parent);
2396 i=0;
2397 while(ch) {
2398 fForest.push_back( dynamic_cast<DecisionTree*>( DecisionTree::CreateFromXML(ch, GetTrainingTMVAVersionCode()) ) );
2399 fForest.back()->SetAnalysisType(Types::EAnalysisType(analysisType));
2400 fForest.back()->SetTreeID(i++);
2401 gTools().ReadAttr(ch,"boostWeight",boostWeight);
2402 fBoostWeights.push_back(boostWeight);
2403 ch = gTools().GetNextChild(ch);
2404 }
2405}
2406
2407////////////////////////////////////////////////////////////////////////////////
2408/// Read the weights (BDT coefficients).
2409
2411{
2412 TString dummy;
2413 // Types::EAnalysisType analysisType;
2414 Int_t analysisType(0);
2415
2416 // coverity[tainted_data_argument]
2417 istr >> dummy >> fNTrees;
2418 Log() << kINFO << "Read " << fNTrees << " Decision trees" << Endl;
2419
2420 for (UInt_t i=0;i<fForest.size();i++) delete fForest[i];
2421 fForest.clear();
2422 fBoostWeights.clear();
2423 Int_t iTree;
2424 Double_t boostWeight;
2425 for (int i=0;i<fNTrees;i++) {
2426 istr >> dummy >> iTree >> dummy >> boostWeight;
2427 if (iTree != i) {
2428 fForest.back()->Print( std::cout );
2429 Log() << kFATAL << "Error while reading weight file; mismatch iTree="
2430 << iTree << " i=" << i
2431 << " dummy " << dummy
2432 << " boostweight " << boostWeight
2433 << Endl;
2434 }
2435 fForest.push_back( new DecisionTree() );
2436 fForest.back()->SetAnalysisType(Types::EAnalysisType(analysisType));
2437 fForest.back()->SetTreeID(i);
2438 fForest.back()->Read(istr, GetTrainingTMVAVersionCode());
2439 fBoostWeights.push_back(boostWeight);
2440 }
2441}
2442
2443////////////////////////////////////////////////////////////////////////////////
2444
2446 return this->GetMvaValue( err, errUpper, 0 );
2447}
2448
2449////////////////////////////////////////////////////////////////////////////////
2450/// Return the MVA value (range [-1;1]) that classifies the
2451/// event according to the majority vote from the total number of
2452/// decision trees.
2453
2455{
2456 const Event* ev = GetEvent();
2457 if (fDoPreselection) {
2458 Double_t val = ApplyPreselectionCuts(ev);
2459 if (TMath::Abs(val)>0.05) return val;
2460 }
2461 return PrivateGetMvaValue(ev, err, errUpper, useNTrees);
2462
2463}
2464
2465////////////////////////////////////////////////////////////////////////////////
2466/// Return the MVA value (range [-1;1]) that classifies the
2467/// event according to the majority vote from the total number of
2468/// decision trees.
2469
2471{
2472 // cannot determine error
2473 NoErrorCalc(err, errUpper);
2474
2475 // allow for the possibility to use less trees in the actual MVA calculation
2476 // than have been originally trained.
2477 UInt_t nTrees = fForest.size();
2478
2479 if (useNTrees > 0 ) nTrees = useNTrees;
2480
2481 if (fBoostType=="Grad") return GetGradBoostMVA(ev,nTrees);
2482
2483 Double_t myMVA = 0;
2484 Double_t norm = 0;
2485 for (UInt_t itree=0; itree<nTrees; itree++) {
2486 //
2487 myMVA += fBoostWeights[itree] * fForest[itree]->CheckEvent(ev,fUseYesNoLeaf);
2488 norm += fBoostWeights[itree];
2489 }
2490 return ( norm > std::numeric_limits<double>::epsilon() ) ? myMVA /= norm : 0 ;
2491}
2492
2493
2494////////////////////////////////////////////////////////////////////////////////
2495/// Get the multiclass MVA response for the BDT classifier.
2496
2497const std::vector<Float_t>& TMVA::MethodBDT::GetMulticlassValues()
2498{
2499 const TMVA::Event *e = GetEvent();
2500 if (fMulticlassReturnVal == NULL) fMulticlassReturnVal = new std::vector<Float_t>();
2501 fMulticlassReturnVal->clear();
2502
2503 UInt_t nClasses = DataInfo().GetNClasses();
2504 std::vector<Double_t> temp(nClasses);
2505 auto forestSize = fForest.size();
2506
2507 #ifdef R__USE_IMT
2508 std::vector<TMVA::DecisionTree *> forest = fForest;
2509 auto get_output = [&e, &forest, &temp, forestSize, nClasses](UInt_t iClass) {
2510 for (UInt_t itree = iClass; itree < forestSize; itree += nClasses) {
2511 temp[iClass] += forest[itree]->CheckEvent(e, kFALSE);
2512 }
2513 };
2514
2516 .Foreach(get_output, ROOT::TSeqU(nClasses));
2517 #else
2518 // trees 0, nClasses, 2*nClasses, ... belong to class 0
2519 // trees 1, nClasses+1, 2*nClasses+1, ... belong to class 1 and so forth
2520 UInt_t classOfTree = 0;
2521 for (UInt_t itree = 0; itree < forestSize; ++itree) {
2522 temp[classOfTree] += fForest[itree]->CheckEvent(e, kFALSE);
2523 if (++classOfTree == nClasses) classOfTree = 0; // cheap modulo
2524 }
2525 #endif
2526
2527 // we want to calculate sum of exp(temp[j] - temp[i]) for all i,j (i!=j)
2528 // first calculate exp(), then replace minus with division.
2529 std::transform(temp.begin(), temp.end(), temp.begin(), [](Double_t d){return exp(d);});
2530
2531 Double_t exp_sum = std::accumulate(temp.begin(), temp.end(), 0.0);
2532
2533 for (UInt_t i = 0; i < nClasses; i++) {
2534 Double_t p_cls = temp[i] / exp_sum;
2535 (*fMulticlassReturnVal).push_back(p_cls);
2536 }
2537
2538 return *fMulticlassReturnVal;
2539}
2540
2541////////////////////////////////////////////////////////////////////////////////
2542/// Get the regression value generated by the BDTs.
2543
2544const std::vector<Float_t> & TMVA::MethodBDT::GetRegressionValues()
2545{
2546
2547 if (fRegressionReturnVal == NULL) fRegressionReturnVal = new std::vector<Float_t>();
2548 fRegressionReturnVal->clear();
2549
2550 const Event * ev = GetEvent();
2551 Event * evT = new Event(*ev);
2552
2553 Double_t myMVA = 0;
2554 Double_t norm = 0;
2555 if (fBoostType=="AdaBoostR2") {
2556 // rather than using the weighted average of the tree respones in the forest
2557 // H.Decker(1997) proposed to use the "weighted median"
2558
2559 // sort all individual tree responses according to the prediction value
2560 // (keep the association to their tree weight)
2561 // the sum up all the associated weights (starting from the one whose tree
2562 // yielded the smalles response) up to the tree "t" at which you've
2563 // added enough tree weights to have more than half of the sum of all tree weights.
2564 // choose as response of the forest that one which belongs to this "t"
2565
2566 vector< Double_t > response(fForest.size());
2567 vector< Double_t > weight(fForest.size());
2568 Double_t totalSumOfWeights = 0;
2569
2570 for (UInt_t itree=0; itree<fForest.size(); itree++) {
2571 response[itree] = fForest[itree]->CheckEvent(ev,kFALSE);
2572 weight[itree] = fBoostWeights[itree];
2573 totalSumOfWeights += fBoostWeights[itree];
2574 }
2575
2576 std::vector< std::vector<Double_t> > vtemp;
2577 vtemp.push_back( response ); // this is the vector that will get sorted
2578 vtemp.push_back( weight );
2579 gTools().UsefulSortAscending( vtemp );
2580
2581 Int_t t=0;
2582 Double_t sumOfWeights = 0;
2583 while (sumOfWeights <= totalSumOfWeights/2.) {
2584 sumOfWeights += vtemp[1][t];
2585 t++;
2586 }
2587
2588 Double_t rVal=0;
2589 Int_t count=0;
2590 for (UInt_t i= TMath::Max(UInt_t(0),UInt_t(t-(fForest.size()/6)-0.5));
2591 i< TMath::Min(UInt_t(fForest.size()),UInt_t(t+(fForest.size()/6)+0.5)); i++) {
2592 count++;
2593 rVal+=vtemp[0][i];
2594 }
2595 // fRegressionReturnVal->push_back( rVal/Double_t(count));
2596 evT->SetTarget(0, rVal/Double_t(count) );
2597 }
2598 else if(fBoostType=="Grad"){
2599 for (UInt_t itree=0; itree<fForest.size(); itree++) {
2600 myMVA += fForest[itree]->CheckEvent(ev,kFALSE);
2601 }
2602 // fRegressionReturnVal->push_back( myMVA+fBoostWeights[0]);
2603 evT->SetTarget(0, myMVA+fBoostWeights[0] );
2604 }
2605 else{
2606 for (UInt_t itree=0; itree<fForest.size(); itree++) {
2607 //
2608 myMVA += fBoostWeights[itree] * fForest[itree]->CheckEvent(ev,kFALSE);
2609 norm += fBoostWeights[itree];
2610 }
2611 // fRegressionReturnVal->push_back( ( norm > std::numeric_limits<double>::epsilon() ) ? myMVA /= norm : 0 );
2612 evT->SetTarget(0, ( norm > std::numeric_limits<double>::epsilon() ) ? myMVA /= norm : 0 );
2613 }
2614
2615
2616
2617 const Event* evT2 = GetTransformationHandler().InverseTransform( evT );
2618 fRegressionReturnVal->push_back( evT2->GetTarget(0) );
2619
2620 delete evT;
2621
2622
2623 return *fRegressionReturnVal;
2624}
2625
2626////////////////////////////////////////////////////////////////////////////////
2627/// Here we could write some histograms created during the processing
2628/// to the output file.
2629
2631{
2632 Log() << kDEBUG << "\tWrite monitoring histograms to file: " << BaseDir()->GetPath() << Endl;
2633
2634 //Results* results = Data()->GetResults(GetMethodName(), Types::kTraining, Types::kMaxAnalysisType);
2635 //results->GetStorage()->Write();
2636 fMonitorNtuple->Write();
2637}
2638
2639////////////////////////////////////////////////////////////////////////////////
2640/// Return the relative variable importance, normalized to all
2641/// variables together having the importance 1. The importance in
2642/// evaluated as the total separation-gain that this variable had in
2643/// the decision trees (weighted by the number of events)
2644
2646{
2647 fVariableImportance.resize(GetNvar());
2648 for (UInt_t ivar = 0; ivar < GetNvar(); ivar++) {
2649 fVariableImportance[ivar]=0;
2650 }
2651 Double_t sum=0;
2652 for (UInt_t itree = 0; itree < GetNTrees(); itree++) {
2653 std::vector<Double_t> relativeImportance(fForest[itree]->GetVariableImportance());
2654 for (UInt_t i=0; i< relativeImportance.size(); i++) {
2655 fVariableImportance[i] += fBoostWeights[itree] * relativeImportance[i];
2656 }
2657 }
2658
2659 for (UInt_t ivar=0; ivar< fVariableImportance.size(); ivar++){
2660 fVariableImportance[ivar] = TMath::Sqrt(fVariableImportance[ivar]);
2661 sum += fVariableImportance[ivar];
2662 }
2663 for (UInt_t ivar=0; ivar< fVariableImportance.size(); ivar++) fVariableImportance[ivar] /= sum;
2664
2665 return fVariableImportance;
2666}
2667
2668////////////////////////////////////////////////////////////////////////////////
2669/// Returns the measure for the variable importance of variable "ivar"
2670/// which is later used in GetVariableImportance() to calculate the
2671/// relative variable importances.
2672
2674{
2675 std::vector<Double_t> relativeImportance = this->GetVariableImportance();
2676 if (ivar < (UInt_t)relativeImportance.size()) return relativeImportance[ivar];
2677 else Log() << kFATAL << "<GetVariableImportance> ivar = " << ivar << " is out of range " << Endl;
2678
2679 return -1;
2680}
2681
2682////////////////////////////////////////////////////////////////////////////////
2683/// Compute ranking of input variables
2684
2686{
2687 // create the ranking object
2688 fRanking = new Ranking( GetName(), "Variable Importance" );
2689 vector< Double_t> importance(this->GetVariableImportance());
2690
2691 for (UInt_t ivar=0; ivar<GetNvar(); ivar++) {
2692
2693 fRanking->AddRank( Rank( GetInputLabel(ivar), importance[ivar] ) );
2694 }
2695
2696 return fRanking;
2697}
2698
2699////////////////////////////////////////////////////////////////////////////////
2700/// Get help message text.
2701
2703{
2704 Log() << Endl;
2705 Log() << gTools().Color("bold") << "--- Short description:" << gTools().Color("reset") << Endl;
2706 Log() << Endl;
2707 Log() << "Boosted Decision Trees are a collection of individual decision" << Endl;
2708 Log() << "trees which form a multivariate classifier by (weighted) majority " << Endl;
2709 Log() << "vote of the individual trees. Consecutive decision trees are " << Endl;
2710 Log() << "trained using the original training data set with re-weighted " << Endl;
2711 Log() << "events. By default, the AdaBoost method is employed, which gives " << Endl;
2712 Log() << "events that were misclassified in the previous tree a larger " << Endl;
2713 Log() << "weight in the training of the following tree." << Endl;
2714 Log() << Endl;
2715 Log() << "Decision trees are a sequence of binary splits of the data sample" << Endl;
2716 Log() << "using a single discriminant variable at a time. A test event " << Endl;
2717 Log() << "ending up after the sequence of left-right splits in a final " << Endl;
2718 Log() << "(\"leaf\") node is classified as either signal or background" << Endl;
2719 Log() << "depending on the majority type of training events in that node." << Endl;
2720 Log() << Endl;
2721 Log() << gTools().Color("bold") << "--- Performance optimisation:" << gTools().Color("reset") << Endl;
2722 Log() << Endl;
2723 Log() << "By the nature of the binary splits performed on the individual" << Endl;
2724 Log() << "variables, decision trees do not deal well with linear correlations" << Endl;
2725 Log() << "between variables (they need to approximate the linear split in" << Endl;
2726 Log() << "the two dimensional space by a sequence of splits on the two " << Endl;
2727 Log() << "variables individually). Hence decorrelation could be useful " << Endl;
2728 Log() << "to optimise the BDT performance." << Endl;
2729 Log() << Endl;
2730 Log() << gTools().Color("bold") << "--- Performance tuning via configuration options:" << gTools().Color("reset") << Endl;
2731 Log() << Endl;
2732 Log() << "The two most important parameters in the configuration are the " << Endl;
2733 Log() << "minimal number of events requested by a leaf node as percentage of the " <<Endl;
2734 Log() << " number of training events (option \"MinNodeSize\" replacing the actual number " << Endl;
2735 Log() << " of events \"nEventsMin\" as given in earlier versions" << Endl;
2736 Log() << "If this number is too large, detailed features " << Endl;
2737 Log() << "in the parameter space are hard to be modelled. If it is too small, " << Endl;
2738 Log() << "the risk to overtrain rises and boosting seems to be less effective" << Endl;
2739 Log() << " typical values from our current experience for best performance " << Endl;
2740 Log() << " are between 0.5(%) and 10(%) " << Endl;
2741 Log() << Endl;
2742 Log() << "The default minimal number is currently set to " << Endl;
2743 Log() << " max(20, (N_training_events / N_variables^2 / 10)) " << Endl;
2744 Log() << "and can be changed by the user." << Endl;
2745 Log() << Endl;
2746 Log() << "The other crucial parameter, the pruning strength (\"PruneStrength\")," << Endl;
2747 Log() << "is also related to overtraining. It is a regularisation parameter " << Endl;
2748 Log() << "that is used when determining after the training which splits " << Endl;
2749 Log() << "are considered statistically insignificant and are removed. The" << Endl;
2750 Log() << "user is advised to carefully watch the BDT screen output for" << Endl;
2751 Log() << "the comparison between efficiencies obtained on the training and" << Endl;
2752 Log() << "the independent test sample. They should be equal within statistical" << Endl;
2753 Log() << "errors, in order to minimize statistical fluctuations in different samples." << Endl;
2754}
2755
2756////////////////////////////////////////////////////////////////////////////////
2757/// Make ROOT-independent C++ class for classifier response (classifier-specific implementation).
2758
2759void TMVA::MethodBDT::MakeClassSpecific( std::ostream& fout, const TString& className ) const
2760{
2761 TString nodeName = className;
2762 nodeName.ReplaceAll("Read","");
2763 nodeName.Append("Node");
2764 // write BDT-specific classifier response
2765 fout << " std::vector<"<<nodeName<<"*> fForest; // i.e. root nodes of decision trees" << std::endl;
2766 fout << " std::vector<double> fBoostWeights; // the weights applied in the individual boosts" << std::endl;
2767 fout << "};" << std::endl << std::endl;
2768 fout << "double " << className << "::GetMvaValue__( const std::vector<double>& inputValues ) const" << std::endl;
2769 fout << "{" << std::endl;
2770 fout << " double myMVA = 0;" << std::endl;
2771 if (fDoPreselection){
2772 for (UInt_t ivar = 0; ivar< fIsLowBkgCut.size(); ivar++){
2773 if (fIsLowBkgCut[ivar]){
2774 fout << " if (inputValues["<<ivar<<"] < " << fLowBkgCut[ivar] << ") return -1; // is background preselection cut" << std::endl;
2775 }
2776 if (fIsLowSigCut[ivar]){
2777 fout << " if (inputValues["<<ivar<<"] < "<< fLowSigCut[ivar] << ") return 1; // is signal preselection cut" << std::endl;
2778 }
2779 if (fIsHighBkgCut[ivar]){
2780 fout << " if (inputValues["<<ivar<<"] > "<<fHighBkgCut[ivar] <<") return -1; // is background preselection cut" << std::endl;
2781 }
2782 if (fIsHighSigCut[ivar]){
2783 fout << " if (inputValues["<<ivar<<"] > "<<fHighSigCut[ivar]<<") return 1; // is signal preselection cut" << std::endl;
2784 }
2785 }
2786 }
2787
2788 if (fBoostType!="Grad"){
2789 fout << " double norm = 0;" << std::endl;
2790 }
2791 fout << " for (unsigned int itree=0; itree<fForest.size(); itree++){" << std::endl;
2792 fout << " "<<nodeName<<" *current = fForest[itree];" << std::endl;
2793 fout << " while (current->GetNodeType() == 0) { //intermediate node" << std::endl;
2794 fout << " if (current->GoesRight(inputValues)) current=("<<nodeName<<"*)current->GetRight();" << std::endl;
2795 fout << " else current=("<<nodeName<<"*)current->GetLeft();" << std::endl;
2796 fout << " }" << std::endl;
2797 if (fBoostType=="Grad"){
2798 fout << " myMVA += current->GetResponse();" << std::endl;
2799 }else{
2800 if (fUseYesNoLeaf) fout << " myMVA += fBoostWeights[itree] * current->GetNodeType();" << std::endl;
2801 else fout << " myMVA += fBoostWeights[itree] * current->GetPurity();" << std::endl;
2802 fout << " norm += fBoostWeights[itree];" << std::endl;
2803 }
2804 fout << " }" << std::endl;
2805 if (fBoostType=="Grad"){
2806 fout << " return 2.0/(1.0+exp(-2.0*myMVA))-1.0;" << std::endl;
2807 }
2808 else fout << " return myMVA /= norm;" << std::endl;
2809 fout << "};" << std::endl << std::endl;
2810 fout << "void " << className << "::Initialize()" << std::endl;
2811 fout << "{" << std::endl;
2812 //Now for each decision tree, write directly the constructors of the nodes in the tree structure
2813 for (UInt_t itree=0; itree<GetNTrees(); itree++) {
2814 fout << " // itree = " << itree << std::endl;
2815 fout << " fBoostWeights.push_back(" << fBoostWeights[itree] << ");" << std::endl;
2816 fout << " fForest.push_back( " << std::endl;
2817 this->MakeClassInstantiateNode((DecisionTreeNode*)fForest[itree]->GetRoot(), fout, className);
2818 fout <<" );" << std::endl;
2819 }
2820 fout << " return;" << std::endl;
2821 fout << "};" << std::endl;
2822 fout << " " << std::endl;
2823 fout << "// Clean up" << std::endl;
2824 fout << "inline void " << className << "::Clear() " << std::endl;
2825 fout << "{" << std::endl;
2826 fout << " for (unsigned int itree=0; itree<fForest.size(); itree++) { " << std::endl;
2827 fout << " delete fForest[itree]; " << std::endl;
2828 fout << " }" << std::endl;
2829 fout << "}" << std::endl;
2830}
2831
2832////////////////////////////////////////////////////////////////////////////////
2833/// Specific class header.
2834
2835void TMVA::MethodBDT::MakeClassSpecificHeader( std::ostream& fout, const TString& className) const
2836{
2837 TString nodeName = className;
2838 nodeName.ReplaceAll("Read","");
2839 nodeName.Append("Node");
2840 //fout << "#ifndef NN" << std::endl; commented out on purpose see next line
2841 fout << "#define NN new "<<nodeName << std::endl; // NN definition depends on individual methods. Important to have NO #ifndef if several BDT methods compile together
2842 //fout << "#endif" << std::endl; commented out on purpose see previous line
2843 fout << " " << std::endl;
2844 fout << "#ifndef "<<nodeName<<"__def" << std::endl;
2845 fout << "#define "<<nodeName<<"__def" << std::endl;
2846 fout << " " << std::endl;
2847 fout << "class "<<nodeName<<" {" << std::endl;
2848 fout << " " << std::endl;
2849 fout << "public:" << std::endl;
2850 fout << " " << std::endl;
2851 fout << " // constructor of an essentially \"empty\" node floating in space" << std::endl;
2852 fout << " "<<nodeName<<" ( "<<nodeName<<"* left,"<<nodeName<<"* right," << std::endl;
2853 if (fUseFisherCuts){
2854 fout << " int nFisherCoeff," << std::endl;
2855 for (UInt_t i=0;i<GetNVariables()+1;i++){
2856 fout << " double fisherCoeff"<<i<<"," << std::endl;
2857 }
2858 }
2859 fout << " int selector, double cutValue, bool cutType, " << std::endl;
2860 fout << " int nodeType, double purity, double response ) :" << std::endl;
2861 fout << " fLeft ( left )," << std::endl;
2862 fout << " fRight ( right )," << std::endl;
2863 if (fUseFisherCuts) fout << " fNFisherCoeff ( nFisherCoeff )," << std::endl;
2864 fout << " fSelector ( selector )," << std::endl;
2865 fout << " fCutValue ( cutValue )," << std::endl;
2866 fout << " fCutType ( cutType )," << std::endl;
2867 fout << " fNodeType ( nodeType )," << std::endl;
2868 fout << " fPurity ( purity )," << std::endl;
2869 fout << " fResponse ( response ){" << std::endl;
2870 if (fUseFisherCuts){
2871 for (UInt_t i=0;i<GetNVariables()+1;i++){
2872 fout << " fFisherCoeff.push_back(fisherCoeff"<<i<<");" << std::endl;
2873 }
2874 }
2875 fout << " }" << std::endl << std::endl;
2876 fout << " virtual ~"<<nodeName<<"();" << std::endl << std::endl;
2877 fout << " // test event if it descends the tree at this node to the right" << std::endl;
2878 fout << " virtual bool GoesRight( const std::vector<double>& inputValues ) const;" << std::endl;
2879 fout << " "<<nodeName<<"* GetRight( void ) {return fRight; };" << std::endl << std::endl;
2880 fout << " // test event if it descends the tree at this node to the left " << std::endl;
2881 fout << " virtual bool GoesLeft ( const std::vector<double>& inputValues ) const;" << std::endl;
2882 fout << " "<<nodeName<<"* GetLeft( void ) { return fLeft; }; " << std::endl << std::endl;
2883 fout << " // return S/(S+B) (purity) at this node (from training)" << std::endl << std::endl;
2884 fout << " double GetPurity( void ) const { return fPurity; } " << std::endl;
2885 fout << " // return the node type" << std::endl;
2886 fout << " int GetNodeType( void ) const { return fNodeType; }" << std::endl;
2887 fout << " double GetResponse(void) const {return fResponse;}" << std::endl << std::endl;
2888 fout << "private:" << std::endl << std::endl;
2889 fout << " "<<nodeName<<"* fLeft; // pointer to the left daughter node" << std::endl;
2890 fout << " "<<nodeName<<"* fRight; // pointer to the right daughter node" << std::endl;
2891 if (fUseFisherCuts){
2892 fout << " int fNFisherCoeff; // =0 if this node doesn't use fisher, else =nvar+1 " << std::endl;
2893 fout << " std::vector<double> fFisherCoeff; // the fisher coeff (offset at the last element)" << std::endl;
2894 }
2895 fout << " int fSelector; // index of variable used in node selection (decision tree) " << std::endl;
2896 fout << " double fCutValue; // cut value applied on this node to discriminate bkg against sig" << std::endl;
2897 fout << " bool fCutType; // true: if event variable > cutValue ==> signal , false otherwise" << std::endl;
2898 fout << " int fNodeType; // Type of node: -1 == Bkg-leaf, 1 == Signal-leaf, 0 = internal " << std::endl;
2899 fout << " double fPurity; // Purity of node from training"<< std::endl;
2900 fout << " double fResponse; // Regression response value of node" << std::endl;
2901 fout << "}; " << std::endl;
2902 fout << " " << std::endl;
2903 fout << "//_______________________________________________________________________" << std::endl;
2904 fout << " "<<nodeName<<"::~"<<nodeName<<"()" << std::endl;
2905 fout << "{" << std::endl;
2906 fout << " if (fLeft != NULL) delete fLeft;" << std::endl;
2907 fout << " if (fRight != NULL) delete fRight;" << std::endl;
2908 fout << "}; " << std::endl;
2909 fout << " " << std::endl;
2910 fout << "//_______________________________________________________________________" << std::endl;
2911 fout << "bool "<<nodeName<<"::GoesRight( const std::vector<double>& inputValues ) const" << std::endl;
2912 fout << "{" << std::endl;
2913 fout << " // test event if it descends the tree at this node to the right" << std::endl;
2914 fout << " bool result;" << std::endl;
2915 if (fUseFisherCuts){
2916 fout << " if (fNFisherCoeff == 0){" << std::endl;
2917 fout << " result = (inputValues[fSelector] > fCutValue );" << std::endl;
2918 fout << " }else{" << std::endl;
2919 fout << " double fisher = fFisherCoeff.at(fFisherCoeff.size()-1);" << std::endl;
2920 fout << " for (unsigned int ivar=0; ivar<fFisherCoeff.size()-1; ivar++)" << std::endl;
2921 fout << " fisher += fFisherCoeff.at(ivar)*inputValues.at(ivar);" << std::endl;
2922 fout << " result = fisher > fCutValue;" << std::endl;
2923 fout << " }" << std::endl;
2924 }else{
2925 fout << " result = (inputValues[fSelector] > fCutValue );" << std::endl;
2926 }
2927 fout << " if (fCutType == true) return result; //the cuts are selecting Signal ;" << std::endl;
2928 fout << " else return !result;" << std::endl;
2929 fout << "}" << std::endl;
2930 fout << " " << std::endl;
2931 fout << "//_______________________________________________________________________" << std::endl;
2932 fout << "bool "<<nodeName<<"::GoesLeft( const std::vector<double>& inputValues ) const" << std::endl;
2933 fout << "{" << std::endl;
2934 fout << " // test event if it descends the tree at this node to the left" << std::endl;
2935 fout << " if (!this->GoesRight(inputValues)) return true;" << std::endl;
2936 fout << " else return false;" << std::endl;
2937 fout << "}" << std::endl;
2938 fout << " " << std::endl;
2939 fout << "#endif" << std::endl;
2940 fout << " " << std::endl;
2941}
2942
2943////////////////////////////////////////////////////////////////////////////////
2944/// Recursively descends a tree and writes the node instance to the output stream.
2945
2946void TMVA::MethodBDT::MakeClassInstantiateNode( DecisionTreeNode *n, std::ostream& fout, const TString& className ) const
2947{
2948 if (n == NULL) {
2949 Log() << kFATAL << "MakeClassInstantiateNode: started with undefined node" <<Endl;
2950 return ;
2951 }
2952 fout << "NN("<<std::endl;
2953 if (n->GetLeft() != NULL){
2954 this->MakeClassInstantiateNode( (DecisionTreeNode*)n->GetLeft() , fout, className);
2955 }
2956 else {
2957 fout << "0";
2958 }
2959 fout << ", " <<std::endl;
2960 if (n->GetRight() != NULL){
2961 this->MakeClassInstantiateNode( (DecisionTreeNode*)n->GetRight(), fout, className );
2962 }
2963 else {
2964 fout << "0";
2965 }
2966 fout << ", " << std::endl
2967 << std::setprecision(6);
2968 if (fUseFisherCuts){
2969 fout << n->GetNFisherCoeff() << ", ";
2970 for (UInt_t i=0; i< GetNVariables()+1; i++) {
2971 if (n->GetNFisherCoeff() == 0 ){
2972 fout << "0, ";
2973 }else{
2974 fout << n->GetFisherCoeff(i) << ", ";
2975 }
2976 }
2977 }
2978 fout << n->GetSelector() << ", "
2979 << n->GetCutValue() << ", "
2980 << n->GetCutType() << ", "
2981 << n->GetNodeType() << ", "
2982 << n->GetPurity() << ","
2983 << n->GetResponse() << ") ";
2984}
2985
2986////////////////////////////////////////////////////////////////////////////////
2987/// Find useful preselection cuts that will be applied before
2988/// and Decision Tree training.. (and of course also applied
2989/// in the GetMVA .. --> -1 for background +1 for Signal)
2990
2991void TMVA::MethodBDT::DeterminePreselectionCuts(const std::vector<const TMVA::Event*>& eventSample)
2992{
2993 Double_t nTotS = 0.0, nTotB = 0.0;
2994 Int_t nTotS_unWeighted = 0, nTotB_unWeighted = 0;
2995
2996 std::vector<TMVA::BDTEventWrapper> bdtEventSample;
2997
2998 fIsLowSigCut.assign(GetNvar(),kFALSE);
2999 fIsLowBkgCut.assign(GetNvar(),kFALSE);
3000 fIsHighSigCut.assign(GetNvar(),kFALSE);
3001 fIsHighBkgCut.assign(GetNvar(),kFALSE);
3002
3003 fLowSigCut.assign(GetNvar(),0.); // ---------------| --> in var is signal (accept all above lower cut)
3004 fLowBkgCut.assign(GetNvar(),0.); // ---------------| --> in var is bkg (accept all above lower cut)
3005 fHighSigCut.assign(GetNvar(),0.); // <-- | -------------- in var is signal (accept all blow cut)
3006 fHighBkgCut.assign(GetNvar(),0.); // <-- | -------------- in var is blg (accept all blow cut)
3007
3008
3009 // Initialize (un)weighted counters for signal & background
3010 // Construct a list of event wrappers that point to the original data
3011 for( std::vector<const TMVA::Event*>::const_iterator it = eventSample.begin(); it != eventSample.end(); ++it ) {
3012 if (DataInfo().IsSignal(*it)){
3013 nTotS += (*it)->GetWeight();
3014 ++nTotS_unWeighted;
3015 }
3016 else {
3017 nTotB += (*it)->GetWeight();
3018 ++nTotB_unWeighted;
3019 }
3020 bdtEventSample.push_back(TMVA::BDTEventWrapper(*it));
3021 }
3022
3023 for( UInt_t ivar = 0; ivar < GetNvar(); ivar++ ) { // loop over all discriminating variables
3024 TMVA::BDTEventWrapper::SetVarIndex(ivar); // select the variable to sort by
3025 std::sort( bdtEventSample.begin(),bdtEventSample.end() ); // sort the event data
3026
3027 Double_t bkgWeightCtr = 0.0, sigWeightCtr = 0.0;
3028 std::vector<TMVA::BDTEventWrapper>::iterator it = bdtEventSample.begin(), it_end = bdtEventSample.end();
3029 for( ; it != it_end; ++it ) {
3030 if (DataInfo().IsSignal(**it))
3031 sigWeightCtr += (**it)->GetWeight();
3032 else
3033 bkgWeightCtr += (**it)->GetWeight();
3034 // Store the accumulated signal (background) weights
3035 it->SetCumulativeWeight(false,bkgWeightCtr);
3036 it->SetCumulativeWeight(true,sigWeightCtr);
3037 }
3038
3039 //variable that determines how "exact" you cut on the preselection found in the training data. Here I chose
3040 //1% of the variable range...
3041 Double_t dVal = (DataInfo().GetVariableInfo(ivar).GetMax() - DataInfo().GetVariableInfo(ivar).GetMin())/100. ;
3042 Double_t nSelS, nSelB, effS=0.05, effB=0.05, rejS=0.05, rejB=0.05;
3043 Double_t tmpEffS, tmpEffB, tmpRejS, tmpRejB;
3044 // Locate the optimal cut for this (ivar-th) variable
3045
3046
3047
3048 for(UInt_t iev = 1; iev < bdtEventSample.size(); iev++) {
3049 //dVal = bdtEventSample[iev].GetVal() - bdtEventSample[iev-1].GetVal();
3050
3051 nSelS = bdtEventSample[iev].GetCumulativeWeight(true);
3052 nSelB = bdtEventSample[iev].GetCumulativeWeight(false);
3053 // you look for some 100% efficient pre-selection cut to remove background.. i.e. nSelS=0 && nSelB>5%nTotB or ( nSelB=0 nSelS>5%nTotS)
3054 tmpEffS=nSelS/nTotS;
3055 tmpEffB=nSelB/nTotB;
3056 tmpRejS=1-tmpEffS;
3057 tmpRejB=1-tmpEffB;
3058 if (nSelS==0 && tmpEffB>effB) {effB=tmpEffB; fLowBkgCut[ivar] = bdtEventSample[iev].GetVal() - dVal; fIsLowBkgCut[ivar]=kTRUE;}
3059 else if (nSelB==0 && tmpEffS>effS) {effS=tmpEffS; fLowSigCut[ivar] = bdtEventSample[iev].GetVal() - dVal; fIsLowSigCut[ivar]=kTRUE;}
3060 else if (nSelB==nTotB && tmpRejS>rejS) {rejS=tmpRejS; fHighSigCut[ivar] = bdtEventSample[iev].GetVal() + dVal; fIsHighSigCut[ivar]=kTRUE;}
3061 else if (nSelS==nTotS && tmpRejB>rejB) {rejB=tmpRejB; fHighBkgCut[ivar] = bdtEventSample[iev].GetVal() + dVal; fIsHighBkgCut[ivar]=kTRUE;}
3062
3063 }
3064 }
3065
3066 Log() << kDEBUG << " \tfound and suggest the following possible pre-selection cuts " << Endl;
3067 if (fDoPreselection) Log() << kDEBUG << "\tthe training will be done after these cuts... and GetMVA value returns +1, (-1) for a signal (bkg) event that passes these cuts" << Endl;
3068 else Log() << kDEBUG << "\tas option DoPreselection was not used, these cuts however will not be performed, but the training will see the full sample"<<Endl;
3069 for (UInt_t ivar=0; ivar < GetNvar(); ivar++ ) { // loop over all discriminating variables
3070 if (fIsLowBkgCut[ivar]){
3071 Log() << kDEBUG << " \tfound cut: Bkg if var " << ivar << " < " << fLowBkgCut[ivar] << Endl;
3072 }
3073 if (fIsLowSigCut[ivar]){
3074 Log() << kDEBUG << " \tfound cut: Sig if var " << ivar << " < " << fLowSigCut[ivar] << Endl;
3075 }
3076 if (fIsHighBkgCut[ivar]){
3077 Log() << kDEBUG << " \tfound cut: Bkg if var " << ivar << " > " << fHighBkgCut[ivar] << Endl;
3078 }
3079 if (fIsHighSigCut[ivar]){
3080 Log() << kDEBUG << " \tfound cut: Sig if var " << ivar << " > " << fHighSigCut[ivar] << Endl;
3081 }
3082 }
3083
3084 return;
3085}
3086
3087////////////////////////////////////////////////////////////////////////////////
3088/// Apply the preselection cuts before even bothering about any
3089/// Decision Trees in the GetMVA .. --> -1 for background +1 for Signal
3090
3092{
3093 Double_t result=0;
3094
3095 for (UInt_t ivar=0; ivar < GetNvar(); ivar++ ) { // loop over all discriminating variables
3096 if (fIsLowBkgCut[ivar]){
3097 if (ev->GetValue(ivar) < fLowBkgCut[ivar]) result = -1; // is background
3098 }
3099 if (fIsLowSigCut[ivar]){
3100 if (ev->GetValue(ivar) < fLowSigCut[ivar]) result = 1; // is signal
3101 }
3102 if (fIsHighBkgCut[ivar]){
3103 if (ev->GetValue(ivar) > fHighBkgCut[ivar]) result = -1; // is background
3104 }
3105 if (fIsHighSigCut[ivar]){
3106 if (ev->GetValue(ivar) > fHighSigCut[ivar]) result = 1; // is signal
3107 }
3108 }
3109
3110 return result;
3111}
3112
#define REGISTER_METHOD(CLASS)
for example
SVector< double, 2 > v
Definition: Dict.h:5
ROOT::R::TRInterface & r
Definition: Object.C:4
#define d(i)
Definition: RSha256.hxx:102
#define f(i)
Definition: RSha256.hxx:104
#define h(i)
Definition: RSha256.hxx:106
#define e(i)
Definition: RSha256.hxx:103
static RooMathCoreReg dummy
int Int_t
Definition: RtypesCore.h:41
unsigned int UInt_t
Definition: RtypesCore.h:42
const Bool_t kFALSE
Definition: RtypesCore.h:88
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
long long Long64_t
Definition: RtypesCore.h:69
float Float_t
Definition: RtypesCore.h:53
const Bool_t kTRUE
Definition: RtypesCore.h:87
#define ClassImp(name)
Definition: Rtypes.h:363
int type
Definition: TGX11.cxx:120
double ceil(double)
double floor(double)
double exp(double)
char * Form(const char *fmt,...)
A pseudo container class which is a generator of indices.
Definition: TSeq.hxx:66
auto Map(F func, unsigned nTimes) -> std::vector< typename std::result_of< F()>::type >
Execute func (with no arguments) nTimes in parallel.
void Foreach(F func, unsigned nTimes, unsigned nChunks=0)
Execute func (with no arguments) nTimes in parallel.
A Graph is a graphics object made of two arrays X and Y with npoints each.
Definition: TGraph.h:41
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
Definition: TGraph.cxx:2200
virtual void SetName(const char *name="")
Set graph name.
Definition: TGraph.cxx:2223
Int_t GetN() const
Definition: TGraph.h:123
virtual void SetTitle(const char *title="")
Set graph title.
Definition: TGraph.cxx:2232
virtual void Set(Int_t n)
Set number of points in the graph Existing coordinates are preserved New coordinates above fNpoints a...
Definition: TGraph.cxx:2135
1-D histogram with a float per channel (see TH1 documentation)}
Definition: TH1.h:571
1-D histogram with an int per channel (see TH1 documentation)}
Definition: TH1.h:530
The TH1 histogram class.
Definition: TH1.h:56
virtual void SetXTitle(const char *title)
Definition: TH1.h:409
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3251
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition: TH1.cxx:8542
virtual void SetYTitle(const char *title)
Definition: TH1.h:410
2-D histogram with a float per channel (see TH1 documentation)}
Definition: TH2.h:250
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
Absolute Deviation BDT Loss Function.
Definition: LossFunction.h:261
static void SetVarIndex(Int_t iVar)
UInt_t GetNNodes() const
Definition: BinaryTree.h:86
static Config & Instance()
static function: returns TMVA instance
Definition: Config.cxx:108
ROOT::TThreadExecutor & GetThreadExecutor()
Definition: Config.h:82
Implementation of the CrossEntropy as separation criterion.
Definition: CrossEntropy.h:43
Class that contains all the data information.
Definition: DataSetInfo.h:60
Implementation of a Decision Tree.
Definition: DecisionTree.h:64
TMVA::DecisionTreeNode * GetEventNode(const TMVA::Event &e) const
get the pointer to the leaf node where a particular event ends up in... (used in gradient boosting)
Double_t CheckEvent(const TMVA::Event *, Bool_t UseYesNoLeaf=kFALSE) const
the event e is put into the decision tree (starting at the root node) and the output is NodeType (sig...
static DecisionTree * CreateFromXML(void *node, UInt_t tmva_Version_Code=TMVA_VERSION_CODE)
re-create a new tree (decision tree or search tree) from XML
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
Definition: Event.cxx:237
void SetTarget(UInt_t itgt, Float_t value)
set the target value (dimension itgt) to value
Definition: Event.cxx:360
Float_t GetTarget(UInt_t itgt) const
Definition: Event.h:97
Implementation of the GiniIndex With Laplace correction as separation criterion.
Implementation of the GiniIndex as separation criterion.
Definition: GiniIndex.h:63
Huber BDT Loss Function.
Definition: LossFunction.h:179
The TMVA::Interval Class.
Definition: Interval.h:61
Least Squares BDT Loss Function.
Definition: LossFunction.h:222
The TMVA::Interval Class.
Definition: LogInterval.h:83
Analysis of Boosted Decision Trees.
Definition: MethodBDT.h:61
void Init(void)
Common initialisation with defaults for the BDT-Method.
Definition: MethodBDT.cxx:689
static const Int_t fgDebugLevel
Definition: MethodBDT.h:300
MethodBDT(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
The standard constructor for the "boosted decision trees".
Definition: MethodBDT.cxx:165
void BoostMonitor(Int_t iTree)
Fills the ROCIntegral vs Itree from the testSample for the monitoring plots during the training .
Definition: MethodBDT.cxx:1754
const std::vector< Float_t > & GetMulticlassValues()
Get the multiclass MVA response for the BDT classifier.
Definition: MethodBDT.cxx:2497
Double_t AdaBoostR2(std::vector< const TMVA::Event * > &, DecisionTree *dt)
Adaption of the AdaBoost to regression problems (see H.Drucker 1997).
Definition: MethodBDT.cxx:2195
void MakeClassSpecific(std::ostream &, const TString &) const
Make ROOT-independent C++ class for classifier response (classifier-specific implementation).
Definition: MethodBDT.cxx:2759
void GetHelpMessage() const
Get help message text.
Definition: MethodBDT.cxx:2702
LossFunctionBDT * fRegressionLossFunctionBDTG
Definition: MethodBDT.h:297
void DeterminePreselectionCuts(const std::vector< const TMVA::Event * > &eventSample)
Find useful preselection cuts that will be applied before and Decision Tree training.
Definition: MethodBDT.cxx:2991
Double_t GradBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt, UInt_t cls=0)
Calculate the desired response value for each region.
Definition: MethodBDT.cxx:1597
const Ranking * CreateRanking()
Compute ranking of input variables.
Definition: MethodBDT.cxx:2685
virtual void SetTuneParameters(std::map< TString, Double_t > tuneParameters)
Set the tuning parameters according to the argument.
Definition: MethodBDT.cxx:1123
Double_t AdaCost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
The AdaCost boosting algorithm takes a simple cost Matrix (currently fixed for all events....
Definition: MethodBDT.cxx:2026
void DeclareOptions()
Define the options (their key words).
Definition: MethodBDT.cxx:335
virtual std::map< TString, Double_t > OptimizeTuningParameters(TString fomType="ROCIntegral", TString fitType="FitGA")
Call the Optimizer with the set of parameters and ranges that are meant to be tuned.
Definition: MethodBDT.cxx:1070
Double_t Boost(std::vector< const TMVA::Event * > &, DecisionTree *dt, UInt_t cls=0)
Apply the boosting algorithm (the algorithm is selecte via the the "option" given in the constructor.
Definition: MethodBDT.cxx:1720
Double_t TestTreeQuality(DecisionTree *dt)
Test the tree quality.. in terms of Misclassification.
Definition: MethodBDT.cxx:1699
Double_t Bagging()
Call it boot-strapping, re-sampling or whatever you like, in the end it is nothing else but applying ...
Definition: MethodBDT.cxx:2142
void UpdateTargets(std::vector< const TMVA::Event * > &, UInt_t cls=0)
Calculate residual for all events.
Definition: MethodBDT.cxx:1437
void UpdateTargetsRegression(std::vector< const TMVA::Event * > &, Bool_t first=kFALSE)
Calculate residuals for all events and update targets for next iter.
Definition: MethodBDT.cxx:1559
Double_t GradBoostRegression(std::vector< const TMVA::Event * > &, DecisionTree *dt)
Implementation of M_TreeBoost using any loss function as described by Friedman 1999.
Definition: MethodBDT.cxx:1631
void WriteMonitoringHistosToFile(void) const
Here we could write some histograms created during the processing to the output file.
Definition: MethodBDT.cxx:2630
virtual ~MethodBDT(void)
Destructor.
Definition: MethodBDT.cxx:755
void AddWeightsXMLTo(void *parent) const
Write weights to XML.
Definition: MethodBDT.cxx:2312
Double_t GetGradBoostMVA(const TMVA::Event *e, UInt_t nTrees)
Returns MVA value: -1 for background, 1 for signal.
Definition: MethodBDT.cxx:1423
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
BDT can handle classification with multiple classes and regression with one regression-target.
Definition: MethodBDT.cxx:282
Double_t RegBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
A special boosting only for Regression (not implemented).
Definition: MethodBDT.cxx:2187
void InitEventSample()
Initialize the event sample (i.e. reset the boost-weights... etc).
Definition: MethodBDT.cxx:763
Double_t ApplyPreselectionCuts(const Event *ev)
Apply the preselection cuts before even bothering about any Decision Trees in the GetMVA .
Definition: MethodBDT.cxx:3091
void SetMinNodeSize(Double_t sizeInPercent)
Definition: MethodBDT.cxx:662
void ProcessOptions()
The option string is decoded, for available options see "DeclareOptions".
Definition: MethodBDT.cxx:472
void PreProcessNegativeEventWeights()
O.k.
Definition: MethodBDT.cxx:934
void MakeClassInstantiateNode(DecisionTreeNode *n, std::ostream &fout, const TString &className) const
Recursively descends a tree and writes the node instance to the output stream.
Definition: MethodBDT.cxx:2946
Double_t AdaBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
The AdaBoost implementation.
Definition: MethodBDT.cxx:1848
TTree * fMonitorNtuple
Definition: MethodBDT.h:262
std::vector< Double_t > GetVariableImportance()
Return the relative variable importance, normalized to all variables together having the importance 1...
Definition: MethodBDT.cxx:2645
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
Definition: MethodBDT.cxx:2445
Double_t PrivateGetMvaValue(const TMVA::Event *ev, Double_t *err=0, Double_t *errUpper=0, UInt_t useNTrees=0)
Return the MVA value (range [-1;1]) that classifies the event according to the majority vote from the...
Definition: MethodBDT.cxx:2470
void InitGradBoost(std::vector< const TMVA::Event * > &)
Initialize targets for first tree.
Definition: MethodBDT.cxx:1660
void Train(void)
BDT training.
Definition: MethodBDT.cxx:1144
void GetBaggedSubSample(std::vector< const TMVA::Event * > &)
Fills fEventSample with fBaggedSampleFraction*NEvents random training events.
Definition: MethodBDT.cxx:2153
const std::vector< Float_t > & GetRegressionValues()
Get the regression value generated by the BDTs.
Definition: MethodBDT.cxx:2544
SeparationBase * fSepType
Definition: MethodBDT.h:227
void ReadWeightsFromXML(void *parent)
Reads the BDT from the xml file.
Definition: MethodBDT.cxx:2343
void ReadWeightsFromStream(std::istream &istr)
Read the weights (BDT coefficients).
Definition: MethodBDT.cxx:2410
void Reset(void)
Reset the method, as if it had just been instantiated (forget all training etc.).
Definition: MethodBDT.cxx:727
void MakeClassSpecificHeader(std::ostream &, const TString &) const
Specific class header.
Definition: MethodBDT.cxx:2835
void DeclareCompatibilityOptions()
Options that are used ONLY for the READER to ensure backward compatibility.
Definition: MethodBDT.cxx:456
Virtual base Class for all MVA method.
Definition: MethodBase.h:109
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
Definition: MethodBase.cxx:601
Implementation of the MisClassificationError as separation criterion.
std::map< TString, Double_t > optimize()
PDF wrapper for histograms; uses user-defined spline interpolation.
Definition: PDF.h:63
@ kSpline3
Definition: PDF.h:70
Ranking for variables in method (implementation)
Definition: Ranking.h:48
Class that is the base-class for a vector of result.
Definition: Results.h:57
TGraph * GetGraph(const TString &alias) const
Definition: Results.cxx:153
TH1 * GetHist(const TString &alias) const
Definition: Results.cxx:136
void Store(TObject *obj, const char *alias=0)
Definition: Results.cxx:86
Implementation of the SdivSqrtSplusB as separation criterion.
Timing information for training and evaluation of MVA methods.
Definition: Timer.h:58
TString GetElapsedTime(Bool_t Scientific=kTRUE)
returns pretty string with elapsed time
Definition: Timer.cxx:134
void DrawProgressBar(Int_t, const TString &comment="")
draws progress bar in color or B&W caution:
Definition: Timer.cxx:190
void * GetNextChild(void *prevchild, const char *childname=0)
XML helpers.
Definition: Tools.cxx:1174
void * AddChild(void *parent, const char *childname, const char *content=0, bool isRootNode=false)
add child node
Definition: Tools.cxx:1136
const TString & Color(const TString &)
human readable color strings
Definition: Tools.cxx:840
void * GetChild(void *parent, const char *childname=0)
get child node
Definition: Tools.cxx:1162
void ReadAttr(void *node, const char *, T &value)
read attribute from xml
Definition: Tools.h:337
void AddAttr(void *node, const char *, const T &value, Int_t precision=16)
add attribute to xml
Definition: Tools.h:355
std::vector< TMatrixDSym * > * CalcCovarianceMatrices(const std::vector< Event * > &events, Int_t maxCls, VariableTransformBase *transformBase=0)
compute covariance matrices
Definition: Tools.cxx:1526
void UsefulSortAscending(std::vector< std::vector< Double_t > > &, std::vector< TString > *vs=0)
sort 2D vector (AND in parallel a TString vector) in such a way that the "first vector is sorted" and...
Definition: Tools.cxx:550
Singleton class for Global types used by TMVA.
Definition: Types.h:73
EAnalysisType
Definition: Types.h:127
@ kMulticlass
Definition: Types.h:130
@ kClassification
Definition: Types.h:128
@ kMaxAnalysisType
Definition: Types.h:132
@ kRegression
Definition: Types.h:129
@ kTraining
Definition: Types.h:144
virtual Double_t Determinant() const
TMatrixTSym< Element > & Invert(Double_t *det=0)
Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of B...
virtual const char * GetTitle() const
Returns title of object.
Definition: TNamed.h:48
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
Definition: TObject.cxx:785
virtual void Delete(Option_t *option="")
Delete this object.
Definition: TObject.cxx:169
virtual Int_t Read(const char *name)
Read contents of object with specified name from the current directory.
Definition: TObject.cxx:562
Random number generator class based on M.
Definition: TRandom3.h:27
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
Definition: TRandom.cxx:435
Basic string class.
Definition: TString.h:131
Double_t Atof() const
Return floating-point value contained in string.
Definition: TString.cxx:1962
Bool_t IsFloat() const
Returns kTRUE if string contains a floating point or integer number.
Definition: TString.cxx:1766
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition: TString.h:687
TString & Append(const char *cs)
Definition: TString.h:559
A TTree object has a header with a name and a title.
Definition: TTree.h:71
const Int_t n
Definition: legend1.C:16
TGraphErrors * gr
Definition: legend1.C:25
std::string GetMethodName(TCppMethod_t)
Definition: Cppyy.cxx:750
std::string GetName(const std::string &scope_name)
Definition: Cppyy.cxx:146
static const uint32_t K[64]
Definition: RSha256.hxx:148
void Print(std::ostream &os, const OptionType &opt)
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
TClass * GetClass(T *)
Definition: TClass.h:582
TSeq< unsigned int > TSeqU
Definition: TSeq.hxx:195
Abstract ClassifierFactory template that handles arbitrary types.
Tools & gTools()
void BDT(TString dataset, const TString &fin="TMVA.root")
MsgLogger & Endl(MsgLogger &ml)
Definition: MsgLogger.h:158
Short_t Max(Short_t a, Short_t b)
Definition: TMathBase.h:212
Double_t Exp(Double_t x)
Definition: TMath.h:715
Int_t FloorNint(Double_t x)
Definition: TMath.h:695
constexpr Double_t E()
Base of natural log:
Definition: TMath.h:97
Double_t Log(Double_t x)
Definition: TMath.h:748
Double_t Sqrt(Double_t x)
Definition: TMath.h:679
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Definition: TMath.h:723
Int_t CeilNint(Double_t x)
Definition: TMath.h:687
Short_t Min(Short_t a, Short_t b)
Definition: TMathBase.h:180
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
Definition: first.py:1
static long int sum(long int i)
Definition: Factory.cxx:2258
REAL epsilon
Definition: triangle.c:617