141#pragma warning ( disable : 4355 )
163 fMultiGraph =
nullptr;
177 std::cerr << kERROR <<
"IPythonInteractive::Init: already initialized..." << std::endl;
181 for(
auto& title : graphTitles){
182 fGraphs.push_back(
new TGraph() );
183 fGraphs.back()->SetTitle(title);
184 fGraphs.back()->SetName(title);
185 fGraphs.back()->SetFillColor(color);
186 fGraphs.back()->SetLineColor(color);
187 fGraphs.back()->SetMarkerColor(color);
188 fMultiGraph->Add(fGraphs.back());
200 for(
Int_t i=0; i<fNumGraphs; i++){
214 fGraphs[0]->Set(fIndex+1);
215 fGraphs[1]->Set(fIndex+1);
216 fGraphs[0]->SetPoint(fIndex,
x, y1);
217 fGraphs[1]->SetPoint(fIndex,
x, y2);
230 for(
Int_t i=0; i<fNumGraphs;i++){
231 fGraphs[i]->Set(fIndex+1);
232 fGraphs[i]->SetPoint(fIndex, dat[0], dat[i+1]);
252 fAnalysisType (
Types::kNoAnalysisType ),
253 fRegressionReturnVal ( 0 ),
254 fMulticlassReturnVal ( 0 ),
255 fDataSetInfo ( dsi ),
256 fSignalReferenceCut ( 0.5 ),
257 fSignalReferenceCutOrientation( 1. ),
258 fVariableTransformType (
Types::kSignal ),
259 fJobName ( jobName ),
260 fMethodName ( methodTitle ),
261 fMethodType ( methodType ),
265 fConstructedFromWeightFile (
kFALSE ),
267 fMethodBaseDir ( 0 ),
270 fModelPersistence (
kTRUE),
281 fSplTrainEffBvsS ( 0 ),
282 fVarTransformString (
"None" ),
283 fTransformationPointer ( 0 ),
284 fTransformation ( dsi, methodTitle ),
286 fVerbosityLevelString (
"Default" ),
289 fIgnoreNegWeightsInTraining(
kFALSE ),
291 fBackgroundClass ( 0 ),
316 fAnalysisType (
Types::kNoAnalysisType ),
317 fRegressionReturnVal ( 0 ),
318 fMulticlassReturnVal ( 0 ),
319 fDataSetInfo ( dsi ),
320 fSignalReferenceCut ( 0.5 ),
321 fVariableTransformType (
Types::kSignal ),
323 fMethodName (
"MethodBase" ),
324 fMethodType ( methodType ),
326 fTMVATrainingVersion ( 0 ),
327 fROOTTrainingVersion ( 0 ),
328 fConstructedFromWeightFile (
kTRUE ),
330 fMethodBaseDir ( 0 ),
333 fModelPersistence (
kTRUE),
334 fWeightFile ( weightFile ),
344 fSplTrainEffBvsS ( 0 ),
345 fVarTransformString (
"None" ),
346 fTransformationPointer ( 0 ),
347 fTransformation ( dsi,
"" ),
349 fVerbosityLevelString (
"Default" ),
352 fIgnoreNegWeightsInTraining(
kFALSE ),
354 fBackgroundClass ( 0 ),
372 if (!fSetupCompleted)
Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Calling destructor of method which got never setup" <<
Endl;
375 if (fInputVars != 0) { fInputVars->clear();
delete fInputVars; }
376 if (fRanking != 0)
delete fRanking;
379 if (fDefaultPDF!= 0) {
delete fDefaultPDF; fDefaultPDF = 0; }
380 if (fMVAPdfS != 0) {
delete fMVAPdfS; fMVAPdfS = 0; }
381 if (fMVAPdfB != 0) {
delete fMVAPdfB; fMVAPdfB = 0; }
384 if (fSplS) {
delete fSplS; fSplS = 0; }
385 if (fSplB) {
delete fSplB; fSplB = 0; }
386 if (fSpleffBvsS) {
delete fSpleffBvsS; fSpleffBvsS = 0; }
387 if (fSplRefS) {
delete fSplRefS; fSplRefS = 0; }
388 if (fSplRefB) {
delete fSplRefB; fSplRefB = 0; }
389 if (fSplTrainRefS) {
delete fSplTrainRefS; fSplTrainRefS = 0; }
390 if (fSplTrainRefB) {
delete fSplTrainRefB; fSplTrainRefB = 0; }
391 if (fSplTrainEffBvsS) {
delete fSplTrainEffBvsS; fSplTrainEffBvsS = 0; }
393 for (
Int_t i = 0; i < 2; i++ ) {
394 if (fEventCollections.at(i)) {
395 for (std::vector<Event*>::const_iterator it = fEventCollections.at(i)->begin();
396 it != fEventCollections.at(i)->end(); ++it) {
399 delete fEventCollections.at(i);
400 fEventCollections.at(i) = 0;
404 if (fRegressionReturnVal)
delete fRegressionReturnVal;
405 if (fMulticlassReturnVal)
delete fMulticlassReturnVal;
415 if (fSetupCompleted)
Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Calling SetupMethod for the second time" <<
Endl;
417 DeclareBaseOptions();
420 fSetupCompleted =
kTRUE;
430 ProcessBaseOptions();
440 CheckForUnusedOptions();
448 SetConfigDescription(
"Configuration options for classifier architecture and tuning" );
456 fSplTrainEffBvsS = 0;
463 fTxtWeightsOnly =
kTRUE;
473 fInputVars =
new std::vector<TString>;
474 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
475 fInputVars->push_back(DataInfo().GetVariableInfo(ivar).GetLabel());
477 fRegressionReturnVal = 0;
478 fMulticlassReturnVal = 0;
480 fEventCollections.resize( 2 );
481 fEventCollections.at(0) = 0;
482 fEventCollections.at(1) = 0;
485 if (DataInfo().GetClassInfo(
"Signal") != 0) {
486 fSignalClass = DataInfo().GetClassInfo(
"Signal")->GetNumber();
488 if (DataInfo().GetClassInfo(
"Background") != 0) {
489 fBackgroundClass = DataInfo().GetClassInfo(
"Background")->GetNumber();
492 SetConfigDescription(
"Configuration options for MVA method" );
493 SetConfigName(
TString(
"Method") + GetMethodTypeName() );
516 DeclareOptionRef( fVerbose,
"V",
"Verbose output (short form of \"VerbosityLevel\" below - overrides the latter one)" );
518 DeclareOptionRef( fVerbosityLevelString=
"Default",
"VerbosityLevel",
"Verbosity level" );
519 AddPreDefVal(
TString(
"Default") );
520 AddPreDefVal(
TString(
"Debug") );
521 AddPreDefVal(
TString(
"Verbose") );
522 AddPreDefVal(
TString(
"Info") );
523 AddPreDefVal(
TString(
"Warning") );
524 AddPreDefVal(
TString(
"Error") );
525 AddPreDefVal(
TString(
"Fatal") );
529 fTxtWeightsOnly =
kTRUE;
532 DeclareOptionRef( fVarTransformString,
"VarTransform",
"List of variable transformations performed before training, e.g., \"D_Background,P_Signal,G,N_AllClasses\" for: \"Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)\"" );
534 DeclareOptionRef( fHelp,
"H",
"Print method-specific help message" );
536 DeclareOptionRef( fHasMVAPdfs,
"CreateMVAPdfs",
"Create PDFs for classifier outputs (signal and background)" );
538 DeclareOptionRef( fIgnoreNegWeightsInTraining,
"IgnoreNegWeightsInTraining",
539 "Events with negative weights are ignored in the training (but are included for testing and performance evaluation)" );
552 fDefaultPDF->DeclareOptions();
553 fDefaultPDF->ParseOptions();
554 fDefaultPDF->ProcessOptions();
555 fMVAPdfB =
new PDF(
TString(
GetName())+
"_PDFBkg", fDefaultPDF->GetOptions(),
"MVAPdfBkg", fDefaultPDF );
556 fMVAPdfB->DeclareOptions();
557 fMVAPdfB->ParseOptions();
558 fMVAPdfB->ProcessOptions();
559 fMVAPdfS =
new PDF(
TString(
GetName())+
"_PDFSig", fMVAPdfB->GetOptions(),
"MVAPdfSig", fDefaultPDF );
560 fMVAPdfS->DeclareOptions();
561 fMVAPdfS->ParseOptions();
562 fMVAPdfS->ProcessOptions();
565 SetOptions( fMVAPdfS->GetOptions() );
570 GetTransformationHandler(),
574 if (fDefaultPDF!= 0) {
delete fDefaultPDF; fDefaultPDF = 0; }
575 if (fMVAPdfS != 0) {
delete fMVAPdfS; fMVAPdfS = 0; }
576 if (fMVAPdfB != 0) {
delete fMVAPdfB; fMVAPdfB = 0; }
580 fVerbosityLevelString =
TString(
"Verbose");
581 Log().SetMinType( kVERBOSE );
583 else if (fVerbosityLevelString ==
"Debug" )
Log().SetMinType( kDEBUG );
584 else if (fVerbosityLevelString ==
"Verbose" )
Log().SetMinType( kVERBOSE );
585 else if (fVerbosityLevelString ==
"Info" )
Log().SetMinType( kINFO );
586 else if (fVerbosityLevelString ==
"Warning" )
Log().SetMinType( kWARNING );
587 else if (fVerbosityLevelString ==
"Error" )
Log().SetMinType( kERROR );
588 else if (fVerbosityLevelString ==
"Fatal" )
Log().SetMinType( kFATAL );
589 else if (fVerbosityLevelString !=
"Default" ) {
590 Log() << kFATAL <<
"<ProcessOptions> Verbosity level type '"
591 << fVerbosityLevelString <<
"' unknown." <<
Endl;
603 DeclareOptionRef( fNormalise=
kFALSE,
"Normalise",
"Normalise input variables" );
604 DeclareOptionRef( fUseDecorr=
kFALSE,
"D",
"Use-decorrelated-variables flag" );
605 DeclareOptionRef( fVariableTransformTypeString=
"Signal",
"VarTransformType",
606 "Use signal or background events to derive for variable transformation (the transformation is applied on both types of, course)" );
607 AddPreDefVal(
TString(
"Signal") );
608 AddPreDefVal(
TString(
"Background") );
609 DeclareOptionRef( fTxtWeightsOnly=
kTRUE,
"TxtWeightFilesOnly",
"If True: write all training results (weights) as text files (False: some are written in ROOT format)" );
619 DeclareOptionRef( fNbinsMVAPdf = 60,
"NbinsMVAPdf",
"Number of bins used for the PDFs of classifier outputs" );
620 DeclareOptionRef( fNsmoothMVAPdf = 2,
"NsmoothMVAPdf",
"Number of smoothing iterations for classifier PDFs" );
634 Log() << kWARNING <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Parameter optimization is not yet implemented for method "
636 Log() << kWARNING <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Currently we need to set hardcoded which parameter is tuned in which ranges"<<
Endl;
638 std::map<TString,Double_t> tunedParameters;
639 tunedParameters.size();
640 return tunedParameters;
661 if (Help()) PrintHelpMessage();
664 if(!IsSilentFile()) BaseDir()->cd();
668 GetTransformationHandler().CalcTransformations(Data()->GetEventCollection());
672 <<
"Begin training" <<
Endl;
673 Long64_t nEvents = Data()->GetNEvents();
677 <<
"\tEnd of training " <<
Endl;
680 <<
"Elapsed time for training with " << nEvents <<
" events: "
684 <<
"\tCreate MVA output for ";
687 if (DoMulticlass()) {
688 Log() <<
Form(
"[%s] : ",DataInfo().
GetName())<<
"Multiclass classification on training sample" <<
Endl;
691 else if (!DoRegression()) {
693 Log() <<
Form(
"[%s] : ",DataInfo().
GetName())<<
"classification on training sample" <<
Endl;
702 Log() <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"regression on training sample" <<
Endl;
713 if (fModelPersistence ) WriteStateToFile();
716 if ((!DoRegression()) && (fModelPersistence)) MakeClass();
723 WriteMonitoringHistosToFile();
731 if (!DoRegression())
Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Trying to use GetRegressionDeviation() with a classification job" <<
Endl;
734 bool truncate =
false;
735 TH1F*
h1 = regRes->QuadraticDeviation( tgtNum , truncate, 1.);
740 TH1F* h2 = regRes->QuadraticDeviation( tgtNum , truncate, yq[0]);
751 Data()->SetCurrentType(
type);
757 Long64_t nEvents = Data()->GetNEvents();
764 regRes->Resize( nEvents );
769 Int_t totalProgressDraws = 100;
770 Int_t drawProgressEvery = 1;
771 if(nEvents >= totalProgressDraws) drawProgressEvery = nEvents/totalProgressDraws;
773 for (
Int_t ievt=0; ievt<nEvents; ievt++) {
775 Data()->SetCurrentEvent(ievt);
776 std::vector< Float_t > vals = GetRegressionValues();
777 regRes->SetValue( vals, ievt );
780 if(ievt % drawProgressEvery == 0 || ievt==nEvents-1) timer.
DrawProgressBar( ievt );
784 <<
"Elapsed time for evaluation of " << nEvents <<
" events: "
791 TString histNamePrefix(GetTestvarName());
793 regRes->CreateDeviationHistograms( histNamePrefix );
801 Data()->SetCurrentType(
type);
806 if (!resMulticlass)
Log() << kFATAL<<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"unable to create pointer in AddMulticlassOutput, exiting."<<
Endl;
808 Long64_t nEvents = Data()->GetNEvents();
816 resMulticlass->Resize( nEvents );
817 for (
Int_t ievt=0; ievt<nEvents; ievt++) {
818 Data()->SetCurrentEvent(ievt);
819 std::vector< Float_t > vals = GetMulticlassValues();
820 resMulticlass->SetValue( vals, ievt );
825 <<
"Elapsed time for evaluation of " << nEvents <<
" events: "
832 TString histNamePrefix(GetTestvarName());
835 resMulticlass->CreateMulticlassHistos( histNamePrefix, fNbinsMVAoutput, fNbinsH );
836 resMulticlass->CreateMulticlassPerformanceHistos(histNamePrefix);
843 if (errUpper) *errUpper=-1;
850 Double_t val = GetMvaValue(err, errUpper);
860 return GetMvaValue()*GetSignalReferenceCutOrientation() > GetSignalReferenceCut()*GetSignalReferenceCutOrientation() ?
kTRUE :
kFALSE;
867 return mvaVal*GetSignalReferenceCutOrientation() > GetSignalReferenceCut()*GetSignalReferenceCutOrientation() ?
kTRUE :
kFALSE;
875 Data()->SetCurrentType(
type);
880 Long64_t nEvents = Data()->GetNEvents();
885 std::vector<Double_t> mvaValues = GetMvaValues(0, nEvents,
true);
892 for (
Int_t ievt=0; ievt<nEvents; ievt++) {
893 clRes->
SetValue( mvaValues[ievt], ievt );
902 Long64_t nEvents = Data()->GetNEvents();
903 if (firstEvt > lastEvt || lastEvt > nEvents) lastEvt = nEvents;
904 if (firstEvt < 0) firstEvt = 0;
905 std::vector<Double_t> values(lastEvt-firstEvt);
907 nEvents = values.size();
916 <<
" sample (" << nEvents <<
" events)" <<
Endl;
918 for (
Int_t ievt=firstEvt; ievt<lastEvt; ievt++) {
919 Data()->SetCurrentEvent(ievt);
920 values[ievt] = GetMvaValue();
925 if (modulo <= 0 ) modulo = 1;
931 <<
"Elapsed time for evaluation of " << nEvents <<
" events: "
943 Data()->SetCurrentType(
type);
948 Long64_t nEvents = Data()->GetNEvents();
956 mvaProb->
Resize( nEvents );
957 for (
Int_t ievt=0; ievt<nEvents; ievt++) {
959 Data()->SetCurrentEvent(ievt);
961 if (proba < 0)
break;
966 if (modulo <= 0 ) modulo = 1;
971 <<
"Elapsed time for evaluation of " << nEvents <<
" events: "
990 Data()->SetCurrentType(
type);
992 bias = 0; biasT = 0; dev = 0; devT = 0; rms = 0; rmsT = 0;
995 const Int_t nevt = GetNEvents();
1000 Log() << kINFO <<
"Calculate regression for all events" <<
Endl;
1002 for (
Long64_t ievt=0; ievt<nevt; ievt++) {
1004 const Event* ev = Data()->GetEvent(ievt);
1007 Float_t r = GetRegressionValues()[0];
1026 m1 += t*w;
s1 += t*t*w;
1027 m2 +=
r*w; s2 +=
r*
r*w;
1032 Log() << kINFO <<
"Elapsed time for evaluation of " << nevt <<
" events: "
1044 corr = s12/sumw - m1*
m2;
1056 for (
Long64_t ievt=0; ievt<nevt; ievt++) {
1058 hist->
Fill( rV[ievt], tV[ievt], wV[ievt] );
1059 if (
d >= devMin &&
d <= devMax) {
1061 biasT += wV[ievt] *
d;
1063 rmsT += wV[ievt] *
d *
d;
1064 histT->
Fill( rV[ievt], tV[ievt], wV[ievt] );
1082 Data()->SetCurrentType(savedType);
1092 if (!resMulticlass)
Log() << kFATAL<<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"unable to create pointer in TestMulticlass, exiting."<<
Endl;
1101 TString histNamePrefix(GetTestvarName());
1102 TString histNamePrefixTest{histNamePrefix +
"_Test"};
1103 TString histNamePrefixTrain{histNamePrefix +
"_Train"};
1124 if (0==mvaRes && !(GetMethodTypeName().Contains(
"Cuts"))) {
1125 Log()<<
Form(
"Dataset[%s] : ",DataInfo().
GetName()) <<
"mvaRes " << mvaRes <<
" GetMethodTypeName " << GetMethodTypeName()
1126 <<
" contains " << !(GetMethodTypeName().Contains(
"Cuts")) <<
Endl;
1127 Log() << kFATAL<<
Form(
"Dataset[%s] : ",DataInfo().
GetName()) <<
"<TestInit> Test variable " << GetTestvarName()
1128 <<
" not found in tree" <<
Endl;
1133 fMeanS, fMeanB, fRmsS, fRmsB, fXmin, fXmax, fSignalClass );
1141 fCutOrientation = (fMeanS > fMeanB) ? kPositive : kNegative;
1153 TestvarName=
Form(
"[%s]%s",DataInfo().
GetName(),GetTestvarName().Data());
1156 TestvarName=GetTestvarName();
1158 TH1* mva_s =
new TH1D( TestvarName +
"_S",TestvarName +
"_S", fNbinsMVAoutput, fXmin, sxmax );
1159 TH1* mva_b =
new TH1D( TestvarName +
"_B",TestvarName +
"_B", fNbinsMVAoutput, fXmin, sxmax );
1160 mvaRes->
Store(mva_s,
"MVA_S");
1161 mvaRes->
Store(mva_b,
"MVA_B");
1171 proba_s =
new TH1D( TestvarName +
"_Proba_S", TestvarName +
"_Proba_S", fNbinsMVAoutput, 0.0, 1.0 );
1172 proba_b =
new TH1D( TestvarName +
"_Proba_B", TestvarName +
"_Proba_B", fNbinsMVAoutput, 0.0, 1.0 );
1173 mvaRes->
Store(proba_s,
"Prob_S");
1174 mvaRes->
Store(proba_b,
"Prob_B");
1179 rarity_s =
new TH1D( TestvarName +
"_Rarity_S", TestvarName +
"_Rarity_S", fNbinsMVAoutput, 0.0, 1.0 );
1180 rarity_b =
new TH1D( TestvarName +
"_Rarity_B", TestvarName +
"_Rarity_B", fNbinsMVAoutput, 0.0, 1.0 );
1181 mvaRes->
Store(rarity_s,
"Rar_S");
1182 mvaRes->
Store(rarity_b,
"Rar_B");
1188 TH1* mva_eff_s =
new TH1D( TestvarName +
"_S_high", TestvarName +
"_S_high", fNbinsH, fXmin, sxmax );
1189 TH1* mva_eff_b =
new TH1D( TestvarName +
"_B_high", TestvarName +
"_B_high", fNbinsH, fXmin, sxmax );
1190 mvaRes->
Store(mva_eff_s,
"MVA_HIGHBIN_S");
1191 mvaRes->
Store(mva_eff_b,
"MVA_HIGHBIN_B");
1200 Log() << kHEADER <<
Form(
"[%s] : ",DataInfo().
GetName())<<
"Loop over test events and fill histograms with classifier response..." <<
Endl <<
Endl;
1201 if (mvaProb)
Log() << kINFO <<
"Also filling probability and rarity histograms (on request)..." <<
Endl;
1205 if ( mvaRes->
GetSize() != GetNEvents() ) {
1207 assert(mvaRes->
GetSize() == GetNEvents());
1210 for (
Long64_t ievt=0; ievt<GetNEvents(); ievt++) {
1212 const Event* ev = GetEvent(ievt);
1216 if (DataInfo().IsSignal(ev)) {
1217 mvaResTypes->push_back(
kTRUE);
1218 mva_s ->
Fill(
v, w );
1220 proba_s->
Fill( (*mvaProb)[ievt][0], w );
1221 rarity_s->
Fill( GetRarity(
v ), w );
1224 mva_eff_s ->
Fill(
v, w );
1227 mvaResTypes->push_back(
kFALSE);
1228 mva_b ->
Fill(
v, w );
1230 proba_b->
Fill( (*mvaProb)[ievt][0], w );
1231 rarity_b->
Fill( GetRarity(
v ), w );
1233 mva_eff_b ->
Fill(
v, w );
1248 if (fSplS) {
delete fSplS; fSplS = 0; }
1249 if (fSplB) {
delete fSplB; fSplB = 0; }
1263 tf << prefix <<
"#GEN -*-*-*-*-*-*-*-*-*-*-*- general info -*-*-*-*-*-*-*-*-*-*-*-" << std::endl << prefix << std::endl;
1264 tf << prefix <<
"Method : " << GetMethodTypeName() <<
"::" <<
GetMethodName() << std::endl;
1265 tf.setf(std::ios::left);
1266 tf << prefix <<
"TMVA Release : " << std::setw(10) << GetTrainingTMVAVersionString() <<
" ["
1267 << GetTrainingTMVAVersionCode() <<
"]" << std::endl;
1268 tf << prefix <<
"ROOT Release : " << std::setw(10) << GetTrainingROOTVersionString() <<
" ["
1269 << GetTrainingROOTVersionCode() <<
"]" << std::endl;
1270 tf << prefix <<
"Creator : " << userInfo->
fUser << std::endl;
1271 tf << prefix <<
"Date : ";
TDatime *
d =
new TDatime; tf <<
d->AsString() << std::endl;
delete d;
1274 tf << prefix <<
"Training events: " << Data()->GetNTrainingEvents() << std::endl;
1278 tf << prefix <<
"Analysis type : " <<
"[" << ((GetAnalysisType()==
Types::kRegression) ?
"Regression" :
"Classification") <<
"]" << std::endl;
1279 tf << prefix << std::endl;
1284 tf << prefix << std::endl << prefix <<
"#OPT -*-*-*-*-*-*-*-*-*-*-*-*- options -*-*-*-*-*-*-*-*-*-*-*-*-" << std::endl << prefix << std::endl;
1285 WriteOptionsToStream( tf, prefix );
1286 tf << prefix << std::endl;
1289 tf << prefix << std::endl << prefix <<
"#VAR -*-*-*-*-*-*-*-*-*-*-*-* variables *-*-*-*-*-*-*-*-*-*-*-*-" << std::endl << prefix << std::endl;
1290 WriteVarsToStream( tf, prefix );
1291 tf << prefix << std::endl;
1308 AddRegressionOutput(
type );
1310 AddMulticlassOutput(
type );
1312 AddClassifierOutput(
type );
1314 AddClassifierOutputProb(
type );
1324 if (!parent)
return;
1329 AddInfoItem( gi,
"TMVA Release", GetTrainingTMVAVersionString() +
" [" +
gTools().StringFromInt(GetTrainingTMVAVersionCode()) +
"]" );
1330 AddInfoItem( gi,
"ROOT Release", GetTrainingROOTVersionString() +
" [" +
gTools().StringFromInt(GetTrainingROOTVersionCode()) +
"]");
1331 AddInfoItem( gi,
"Creator", userInfo->
fUser);
1335 AddInfoItem( gi,
"Training events",
gTools().StringFromInt(Data()->GetNTrainingEvents()));
1336 AddInfoItem( gi,
"TrainingTime",
gTools().StringFromDouble(
const_cast<TMVA::MethodBase*
>(
this)->GetTrainTime()));
1341 AddInfoItem( gi,
"AnalysisType", analysisType );
1345 AddOptionsXMLTo( parent );
1348 AddVarsXMLTo( parent );
1351 if (fModelPersistence)
1352 AddSpectatorsXMLTo( parent );
1355 AddClassesXMLTo(parent);
1358 if (DoRegression()) AddTargetsXMLTo(parent);
1361 GetTransformationHandler(
false).AddXMLTo( parent );
1365 if (fMVAPdfS) fMVAPdfS->AddXMLTo(pdfs);
1366 if (fMVAPdfB) fMVAPdfB->AddXMLTo(pdfs);
1369 AddWeightsXMLTo( parent );
1385 ReadWeightsFromStream( rf );
1398 TString tfname( GetWeightFileName() );
1403 <<
"Creating xml weight file: "
1409 WriteStateToXML(rootnode);
1421 TString tfname(GetWeightFileName());
1424 <<
"Reading weight file: "
1428#if ROOT_VERSION_CODE >= ROOT_VERSION(5,29,0)
1434 Log() << kFATAL <<
"Error parsing XML file " << tfname <<
Endl;
1437 ReadStateFromXML(rootnode);
1442 fb.open(tfname.
Data(),std::ios::in);
1443 if (!fb.is_open()) {
1444 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<ReadStateFromFile> "
1445 <<
"Unable to open input weight file: " << tfname <<
Endl;
1447 std::istream fin(&fb);
1448 ReadStateFromStream(fin);
1451 if (!fTxtWeightsOnly) {
1454 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Reading root weight file: "
1457 ReadStateFromStream( *rfile );
1465#if ROOT_VERSION_CODE >= ROOT_VERSION(5,26,00)
1468 ReadStateFromXML(rootnode);
1471 Log() << kFATAL<<
Form(
"Dataset[%s] : ",DataInfo().
GetName()) <<
"Method MethodBase::ReadStateFromXMLString( const char* xmlstr = "
1472 << xmlstr <<
" ) is not available for ROOT versions prior to 5.26/00." <<
Endl;
1486 fMethodName = fullMethodName(fullMethodName.
Index(
"::")+2,fullMethodName.
Length());
1491 <<
"Read method \"" <<
GetMethodName() <<
"\" of type \"" << GetMethodTypeName() <<
"\"" <<
Endl;
1501 if (nodeName==
"GeneralInfo") {
1506 while (antypeNode) {
1509 if (
name ==
"TrainingTime")
1512 if (
name ==
"AnalysisType") {
1518 else Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Analysis type " << val <<
" is not known." <<
Endl;
1521 if (
name ==
"TMVA Release" ||
name ==
"TMVA") {
1524 fTMVATrainingVersion =
TString(
s(
s.Index(
"[")+1,
s.Index(
"]")-
s.Index(
"[")-1)).
Atoi();
1525 Log() << kDEBUG <<
Form(
"[%s] : ",DataInfo().
GetName()) <<
"MVA method was trained with TMVA Version: " << GetTrainingTMVAVersionString() <<
Endl;
1528 if (
name ==
"ROOT Release" ||
name ==
"ROOT") {
1531 fROOTTrainingVersion =
TString(
s(
s.Index(
"[")+1,
s.Index(
"]")-
s.Index(
"[")-1)).
Atoi();
1533 <<
"MVA method was trained with ROOT Version: " << GetTrainingROOTVersionString() <<
Endl;
1538 else if (nodeName==
"Options") {
1539 ReadOptionsFromXML(ch);
1543 else if (nodeName==
"Variables") {
1544 ReadVariablesFromXML(ch);
1546 else if (nodeName==
"Spectators") {
1547 ReadSpectatorsFromXML(ch);
1549 else if (nodeName==
"Classes") {
1550 if (DataInfo().GetNClasses()==0) ReadClassesFromXML(ch);
1552 else if (nodeName==
"Targets") {
1553 if (DataInfo().GetNTargets()==0 && DoRegression()) ReadTargetsFromXML(ch);
1555 else if (nodeName==
"Transformations") {
1556 GetTransformationHandler().ReadFromXML(ch);
1558 else if (nodeName==
"MVAPdfs") {
1560 if (fMVAPdfS) {
delete fMVAPdfS; fMVAPdfS=0; }
1561 if (fMVAPdfB) {
delete fMVAPdfB; fMVAPdfB=0; }
1565 fMVAPdfS =
new PDF(pdfname);
1566 fMVAPdfS->ReadXML(pdfnode);
1569 fMVAPdfB =
new PDF(pdfname);
1570 fMVAPdfB->ReadXML(pdfnode);
1573 else if (nodeName==
"Weights") {
1574 ReadWeightsFromXML(ch);
1577 Log() << kWARNING <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Unparsed XML node: '" << nodeName <<
"'" <<
Endl;
1584 if (GetTransformationHandler().GetCallerName() ==
"") GetTransformationHandler().SetCallerName(
GetName() );
1600 while (!
TString(buf).BeginsWith(
"Method")) GetLine(fin,buf);
1604 methodType = methodType(methodType.
Last(
' '),methodType.
Length());
1609 if (methodName ==
"") methodName = methodType;
1610 fMethodName = methodName;
1612 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Read method \"" <<
GetMethodName() <<
"\" of type \"" << GetMethodTypeName() <<
"\"" <<
Endl;
1629 while (!
TString(buf).BeginsWith(
"#OPT")) GetLine(fin,buf);
1630 ReadOptionsFromStream(fin);
1634 fin.getline(buf,512);
1635 while (!
TString(buf).BeginsWith(
"#VAR")) fin.getline(buf,512);
1636 ReadVarsFromStream(fin);
1641 if (IsNormalised()) {
1647 if ( fVarTransformString ==
"None") {
1650 }
else if ( fVarTransformString ==
"Decorrelate" ) {
1652 }
else if ( fVarTransformString ==
"PCA" ) {
1653 varTrafo = GetTransformationHandler().AddTransformation(
new VariablePCATransform(DataInfo()), -1 );
1654 }
else if ( fVarTransformString ==
"Uniform" ) {
1655 varTrafo = GetTransformationHandler().AddTransformation(
new VariableGaussTransform(DataInfo(),
"Uniform"), -1 );
1656 }
else if ( fVarTransformString ==
"Gauss" ) {
1658 }
else if ( fVarTransformString ==
"GaussDecorr" ) {
1662 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<ProcessOptions> Variable transform '"
1663 << fVarTransformString <<
"' unknown." <<
Endl;
1666 if (GetTransformationHandler().GetTransformationList().GetSize() > 0) {
1667 fin.getline(buf,512);
1668 while (!
TString(buf).BeginsWith(
"#MAT")) fin.getline(buf,512);
1671 varTrafo->ReadTransformationFromStream(fin, trafo );
1682 fin.getline(buf,512);
1683 while (!
TString(buf).BeginsWith(
"#MVAPDFS")) fin.getline(buf,512);
1684 if (fMVAPdfS != 0) {
delete fMVAPdfS; fMVAPdfS = 0; }
1685 if (fMVAPdfB != 0) {
delete fMVAPdfB; fMVAPdfB = 0; }
1688 fMVAPdfS->SetReadingVersion( GetTrainingTMVAVersionCode() );
1689 fMVAPdfB->SetReadingVersion( GetTrainingTMVAVersionCode() );
1696 fin.getline(buf,512);
1697 while (!
TString(buf).BeginsWith(
"#WGT")) fin.getline(buf,512);
1698 fin.getline(buf,512);
1699 ReadWeightsFromStream( fin );;
1702 if (GetTransformationHandler().GetCallerName() ==
"") GetTransformationHandler().SetCallerName(
GetName() );
1712 o << prefix <<
"NVar " << DataInfo().GetNVariables() << std::endl;
1713 std::vector<VariableInfo>::const_iterator varIt = DataInfo().GetVariableInfos().begin();
1714 for (; varIt!=DataInfo().GetVariableInfos().end(); ++varIt) { o << prefix; varIt->WriteToStream(o); }
1715 o << prefix <<
"NSpec " << DataInfo().GetNSpectators() << std::endl;
1716 varIt = DataInfo().GetSpectatorInfos().begin();
1717 for (; varIt!=DataInfo().GetSpectatorInfos().end(); ++varIt) { o << prefix; varIt->WriteToStream(o); }
1729 istr >>
dummy >> readNVar;
1731 if (readNVar!=DataInfo().GetNVariables()) {
1732 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"You declared "<< DataInfo().GetNVariables() <<
" variables in the Reader"
1733 <<
" while there are " << readNVar <<
" variables declared in the file"
1739 std::vector<VariableInfo>::iterator varIt = DataInfo().GetVariableInfos().begin();
1741 for (; varIt!=DataInfo().GetVariableInfos().end(); ++varIt, ++varIdx) {
1748 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"ERROR in <ReadVarsFromStream>" <<
Endl;
1749 Log() << kINFO <<
"The definition (or the order) of the variables found in the input file is" <<
Endl;
1750 Log() << kINFO <<
"is not the same as the one declared in the Reader (which is necessary for" <<
Endl;
1751 Log() << kINFO <<
"the correct working of the method):" <<
Endl;
1752 Log() << kINFO <<
" var #" << varIdx <<
" declared in Reader: " << varIt->GetExpression() <<
Endl;
1753 Log() << kINFO <<
" var #" << varIdx <<
" declared in file : " << varInfo.
GetExpression() <<
Endl;
1754 Log() << kFATAL <<
"The expression declared to the Reader needs to be checked (name or order are wrong)" <<
Endl;
1767 for (
UInt_t idx=0; idx<DataInfo().GetVariableInfos().size(); idx++) {
1783 for (
UInt_t idx=0; idx<DataInfo().GetSpectatorInfos().size(); idx++) {
1785 VariableInfo& vi = DataInfo().GetSpectatorInfos()[idx];
1803 UInt_t nClasses=DataInfo().GetNClasses();
1808 for (
UInt_t iCls=0; iCls<nClasses; ++iCls) {
1809 ClassInfo *classInfo=DataInfo().GetClassInfo (iCls);
1826 for (
UInt_t idx=0; idx<DataInfo().GetTargetInfos().size(); idx++) {
1842 if (readNVar!=DataInfo().GetNVariables()) {
1843 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"You declared "<< DataInfo().GetNVariables() <<
" variables in the Reader"
1844 <<
" while there are " << readNVar <<
" variables declared in the file"
1854 existingVarInfo = DataInfo().GetVariableInfos()[varIdx];
1859 existingVarInfo = readVarInfo;
1862 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"ERROR in <ReadVariablesFromXML>" <<
Endl;
1863 Log() << kINFO <<
"The definition (or the order) of the variables found in the input file is" <<
Endl;
1864 Log() << kINFO <<
"not the same as the one declared in the Reader (which is necessary for the" <<
Endl;
1865 Log() << kINFO <<
"correct working of the method):" <<
Endl;
1866 Log() << kINFO <<
" var #" << varIdx <<
" declared in Reader: " << existingVarInfo.
GetExpression() <<
Endl;
1867 Log() << kINFO <<
" var #" << varIdx <<
" declared in file : " << readVarInfo.
GetExpression() <<
Endl;
1868 Log() << kFATAL <<
"The expression declared to the Reader needs to be checked (name or order are wrong)" <<
Endl;
1882 if (readNSpec!=DataInfo().GetNSpectators(
kFALSE)) {
1883 Log() << kFATAL<<
Form(
"Dataset[%s] : ",DataInfo().
GetName()) <<
"You declared "<< DataInfo().GetNSpectators(
kFALSE) <<
" spectators in the Reader"
1884 <<
" while there are " << readNSpec <<
" spectators declared in the file"
1894 existingSpecInfo = DataInfo().GetSpectatorInfos()[specIdx];
1899 existingSpecInfo = readSpecInfo;
1902 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"ERROR in <ReadSpectatorsFromXML>" <<
Endl;
1903 Log() << kINFO <<
"The definition (or the order) of the spectators found in the input file is" <<
Endl;
1904 Log() << kINFO <<
"not the same as the one declared in the Reader (which is necessary for the" <<
Endl;
1905 Log() << kINFO <<
"correct working of the method):" <<
Endl;
1906 Log() << kINFO <<
" spec #" << specIdx <<
" declared in Reader: " << existingSpecInfo.
GetExpression() <<
Endl;
1907 Log() << kINFO <<
" spec #" << specIdx <<
" declared in file : " << readSpecInfo.
GetExpression() <<
Endl;
1908 Log() << kFATAL <<
"The expression declared to the Reader needs to be checked (name or order are wrong)" <<
Endl;
1927 for (
UInt_t icls = 0; icls<readNCls;++icls) {
1929 DataInfo().AddClass(classname);
1937 DataInfo().AddClass(className);
1944 if (DataInfo().GetClassInfo(
"Signal") != 0) {
1945 fSignalClass = DataInfo().GetClassInfo(
"Signal")->GetNumber();
1949 if (DataInfo().GetClassInfo(
"Background") != 0) {
1950 fBackgroundClass = DataInfo().GetClassInfo(
"Background")->GetNumber();
1970 DataInfo().AddTarget(expression,
"",
"",0,0);
1982 if (fBaseDir != 0)
return fBaseDir;
1983 Log()<<kDEBUG<<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
" Base Directory for " <<
GetMethodName() <<
" not set yet --> check if already there.." <<
Endl;
1987 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"MethodBase::BaseDir() - MethodBaseDir() return a NULL pointer!" <<
Endl;
1993 Log()<<kDEBUG<<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
" Base Directory for " << GetMethodTypeName() <<
" does not exist yet--> created it" <<
Endl;
1994 sdir = methodDir->
mkdir(defaultDir);
1997 if (fModelPersistence) {
2000 wfilePath.
Write(
"TrainingPath" );
2001 wfileName.
Write(
"WeightFileName" );
2005 Log()<<kDEBUG<<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
" Base Directory for " << GetMethodTypeName() <<
" existed, return it.." <<
Endl;
2015 if (fMethodBaseDir != 0)
return fMethodBaseDir;
2017 Log()<<kDEBUG<<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
" Base Directory for " << GetMethodTypeName() <<
" not set yet --> check if already there.." <<
Endl;
2025 fMethodBaseDir = fFactoryBaseDir->
mkdir(DataInfo().
GetName(),
Form(
"Base directory for dataset %s",DataInfo().
GetName()));
2026 if(!fMethodBaseDir)
Log()<<kFATAL<<
"Can not create dir "<<DataInfo().GetName();
2029 fMethodBaseDir = fMethodBaseDir->GetDirectory(_methodDir.
Data());
2031 if(!fMethodBaseDir){
2032 fMethodBaseDir = fFactoryBaseDir->
GetDirectory(DataInfo().
GetName())->
mkdir(_methodDir.
Data(),
Form(
"Directory for all %s methods", GetMethodTypeName().Data()));
2036 Log()<<kDEBUG<<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Return from MethodBaseDir() after creating base directory "<<
Endl;
2037 return fMethodBaseDir;
2054 fWeightFile = theWeightFile;
2062 if (fWeightFile!=
"")
return fWeightFile;
2067 TString wFileDir(GetWeightFileDir());
2070 if (wFileDir.
IsNull() )
return wFileName;
2072 return ( wFileDir + (wFileDir[wFileDir.
Length()-1]==
'/' ?
"" :
"/")
2084 if (0 != fMVAPdfS) {
2085 fMVAPdfS->GetOriginalHist()->Write();
2086 fMVAPdfS->GetSmoothedHist()->Write();
2087 fMVAPdfS->GetPDFHist()->Write();
2089 if (0 != fMVAPdfB) {
2090 fMVAPdfB->GetOriginalHist()->Write();
2091 fMVAPdfB->GetSmoothedHist()->Write();
2092 fMVAPdfB->GetPDFHist()->Write();
2098 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<WriteEvaluationHistosToFile> Unknown result: "
2100 <<
"/kMaxAnalysisType" <<
Endl;
2103 GetTransformationHandler().PlotVariables (GetEventCollection(
Types::kTesting ), BaseDir() );
2122 fin.getline(buf,512);
2124 if (
line.BeginsWith(
"TMVA Release")) {
2128 std::stringstream
s(code.
Data());
2129 s >> fTMVATrainingVersion;
2130 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"MVA method was trained with TMVA Version: " << GetTrainingTMVAVersionString() <<
Endl;
2132 if (
line.BeginsWith(
"ROOT Release")) {
2136 std::stringstream
s(code.
Data());
2137 s >> fROOTTrainingVersion;
2138 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"MVA method was trained with ROOT Version: " << GetTrainingROOTVersionString() <<
Endl;
2140 if (
line.BeginsWith(
"Analysis type")) {
2144 std::stringstream
s(code.
Data());
2145 std::string analysisType;
2147 if (analysisType ==
"regression" || analysisType ==
"Regression") SetAnalysisType(
Types::kRegression );
2148 else if (analysisType ==
"classification" || analysisType ==
"Classification") SetAnalysisType(
Types::kClassification );
2149 else if (analysisType ==
"multiclass" || analysisType ==
"Multiclass") SetAnalysisType(
Types::kMulticlass );
2150 else Log() << kFATAL <<
"Analysis type " << analysisType <<
" from weight-file not known!" << std::endl;
2152 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Method was trained for "
2172 if (mvaRes==0 || mvaRes->
GetSize()==0) {
2173 Log() << kERROR<<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<CreateMVAPdfs> No result of classifier testing available" <<
Endl;
2180 TH1* histMVAPdfS =
new TH1D( GetMethodTypeName() +
"_tr_S", GetMethodTypeName() +
"_tr_S",
2181 fMVAPdfS->GetHistNBins( mvaRes->
GetSize() ), minVal, maxVal );
2182 TH1* histMVAPdfB =
new TH1D( GetMethodTypeName() +
"_tr_B", GetMethodTypeName() +
"_tr_B",
2183 fMVAPdfB->GetHistNBins( mvaRes->
GetSize() ), minVal, maxVal );
2187 histMVAPdfS->
Sumw2();
2188 histMVAPdfB->
Sumw2();
2193 Double_t theWeight = Data()->GetEvent(ievt)->GetWeight();
2195 if (DataInfo().IsSignal(Data()->GetEvent(ievt))) histMVAPdfS->
Fill( theVal, theWeight );
2196 else histMVAPdfB->
Fill( theVal, theWeight );
2205 histMVAPdfS->
Write();
2206 histMVAPdfB->
Write();
2209 fMVAPdfS->BuildPDF ( histMVAPdfS );
2210 fMVAPdfB->BuildPDF ( histMVAPdfB );
2211 fMVAPdfS->ValidatePDF( histMVAPdfS );
2212 fMVAPdfB->ValidatePDF( histMVAPdfB );
2214 if (DataInfo().GetNClasses() == 2) {
2216 <<
Form(
"<CreateMVAPdfs> Separation from histogram (PDF): %1.3f (%1.3f)",
2217 GetSeparation( histMVAPdfS, histMVAPdfB ), GetSeparation( fMVAPdfS, fMVAPdfB ) )
2229 if (!fMVAPdfS || !fMVAPdfB) {
2230 Log() << kINFO<<
Form(
"Dataset[%s] : ",DataInfo().
GetName()) <<
"<GetProba> MVA PDFs for Signal and Background don't exist yet, we'll create them on demand" <<
Endl;
2233 Double_t sigFraction = DataInfo().GetTrainingSumSignalWeights() / (DataInfo().GetTrainingSumSignalWeights() + DataInfo().GetTrainingSumBackgrWeights() );
2236 return GetProba(mvaVal,sigFraction);
2244 if (!fMVAPdfS || !fMVAPdfB) {
2245 Log() << kWARNING <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetProba> MVA PDFs for Signal and Background don't exist" <<
Endl;
2248 Double_t p_s = fMVAPdfS->GetVal( mvaVal );
2249 Double_t p_b = fMVAPdfB->GetVal( mvaVal );
2251 Double_t denom = p_s*ap_sig + p_b*(1 - ap_sig);
2253 return (denom > 0) ? (p_s*ap_sig) / denom : -1;
2266 Log() << kWARNING <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetRarity> Required MVA PDF for Signal or Background does not exist: "
2267 <<
"select option \"CreateMVAPdfs\"" <<
Endl;
2282 Data()->SetCurrentType(
type);
2292 else if (list->
GetSize() > 2) {
2293 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetEfficiency> Wrong number of arguments"
2294 <<
" in string: " << theString
2295 <<
" | required format, e.g., Efficiency:0.05, or empty string" <<
Endl;
2303 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetEfficiency> Binning mismatch between signal and background histos" <<
Endl;
2311 TH1 * effhist = results->
GetHist(
"MVA_HIGHBIN_S");
2318 if (results->
DoesExist(
"MVA_EFF_S")==0) {
2321 TH1* eff_s =
new TH1D( GetTestvarName() +
"_effS", GetTestvarName() +
" (signal)", fNbinsH,
xmin,
xmax );
2322 TH1* eff_b =
new TH1D( GetTestvarName() +
"_effB", GetTestvarName() +
" (background)", fNbinsH,
xmin,
xmax );
2323 results->
Store(eff_s,
"MVA_EFF_S");
2324 results->
Store(eff_b,
"MVA_EFF_B");
2327 Int_t sign = (fCutOrientation == kPositive) ? +1 : -1;
2331 for (
UInt_t ievt=0; ievt<Data()->GetNEvents(); ievt++) {
2334 Bool_t isSignal = DataInfo().IsSignal(GetEvent(ievt));
2335 Float_t theWeight = GetEvent(ievt)->GetWeight();
2336 Float_t theVal = (*mvaRes)[ievt];
2339 TH1* theHist = isSignal ? eff_s : eff_b;
2342 if (isSignal) nevtS+=theWeight;
2346 if (sign > 0 && maxbin > fNbinsH)
continue;
2347 if (sign < 0 && maxbin < 1 )
continue;
2348 if (sign > 0 && maxbin < 1 ) maxbin = 1;
2349 if (sign < 0 && maxbin > fNbinsH) maxbin = fNbinsH;
2354 for (
Int_t ibin=maxbin+1; ibin<=fNbinsH; ibin++) theHist->
AddBinContent( ibin , theWeight );
2356 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetEfficiency> Mismatch in sign" <<
Endl;
2367 TH1* eff_BvsS =
new TH1D( GetTestvarName() +
"_effBvsS", GetTestvarName() +
"", fNbins, 0, 1 );
2368 results->
Store(eff_BvsS,
"MVA_EFF_BvsS");
2373 TH1* rej_BvsS =
new TH1D( GetTestvarName() +
"_rejBvsS", GetTestvarName() +
"", fNbins, 0, 1 );
2374 results->
Store(rej_BvsS);
2376 rej_BvsS->
SetYTitle(
"Backgr rejection (1-eff)" );
2379 TH1* inveff_BvsS =
new TH1D( GetTestvarName() +
"_invBeffvsSeff",
2380 GetTestvarName(), fNbins, 0, 1 );
2381 results->
Store(inveff_BvsS);
2383 inveff_BvsS->
SetYTitle(
"Inverse backgr. eff (1/eff)" );
2389 fSplRefS =
new TSpline1(
"spline2_signal",
new TGraph( eff_s ) );
2390 fSplRefB =
new TSpline1(
"spline2_background",
new TGraph( eff_b ) );
2404 for (
Int_t bini=1; bini<=fNbins; bini++) {
2426 Double_t effS = 0., rejB, effS_ = 0., rejB_ = 0.;
2427 Int_t nbins_ = 5000;
2428 for (
Int_t bini=1; bini<=nbins_; bini++) {
2431 effS = (bini - 0.5)/
Float_t(nbins_);
2432 rejB = 1.0 - fSpleffBvsS->Eval( effS );
2435 if ((effS - rejB)*(effS_ - rejB_) < 0)
break;
2442 SetSignalReferenceCut( cut );
2447 if (0 == fSpleffBvsS) {
2453 Double_t effS = 0, effB = 0, effS_ = 0, effB_ = 0;
2454 Int_t nbins_ = 1000;
2460 for (
Int_t bini=1; bini<=nbins_; bini++) {
2463 effS = (bini - 0.5)/
Float_t(nbins_);
2464 effB = fSpleffBvsS->Eval( effS );
2465 integral += (1.0 - effB);
2479 for (
Int_t bini=1; bini<=nbins_; bini++) {
2482 effS = (bini - 0.5)/
Float_t(nbins_);
2483 effB = fSpleffBvsS->Eval( effS );
2486 if ((effB - effBref)*(effB_ - effBref) <= 0)
break;
2492 effS = 0.5*(effS + effS_);
2495 if (nevtS > 0) effSerr =
TMath::Sqrt( effS*(1.0 - effS)/nevtS );
2520 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetTrainingEfficiency> Wrong number of arguments"
2521 <<
" in string: " << theString
2522 <<
" | required format, e.g., Efficiency:0.05" <<
Endl;
2535 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetTrainingEfficiency> Binning mismatch between signal and background histos"
2543 TH1 * effhist = results->
GetHist(
"MVA_HIGHBIN_S");
2548 if (results->
DoesExist(
"MVA_TRAIN_S")==0) {
2554 TH1* mva_s_tr =
new TH1D( GetTestvarName() +
"_Train_S",GetTestvarName() +
"_Train_S", fNbinsMVAoutput, fXmin, sxmax );
2555 TH1* mva_b_tr =
new TH1D( GetTestvarName() +
"_Train_B",GetTestvarName() +
"_Train_B", fNbinsMVAoutput, fXmin, sxmax );
2556 results->
Store(mva_s_tr,
"MVA_TRAIN_S");
2557 results->
Store(mva_b_tr,
"MVA_TRAIN_B");
2562 TH1* mva_eff_tr_s =
new TH1D( GetTestvarName() +
"_trainingEffS", GetTestvarName() +
" (signal)",
2564 TH1* mva_eff_tr_b =
new TH1D( GetTestvarName() +
"_trainingEffB", GetTestvarName() +
" (background)",
2566 results->
Store(mva_eff_tr_s,
"MVA_TRAINEFF_S");
2567 results->
Store(mva_eff_tr_b,
"MVA_TRAINEFF_B");
2570 Int_t sign = (fCutOrientation == kPositive) ? +1 : -1;
2572 std::vector<Double_t> mvaValues = GetMvaValues(0,Data()->GetNEvents());
2573 assert( (
Long64_t) mvaValues.size() == Data()->GetNEvents());
2576 for (
Int_t ievt=0; ievt<Data()->GetNEvents(); ievt++) {
2578 Data()->SetCurrentEvent(ievt);
2579 const Event* ev = GetEvent();
2584 TH1* theEffHist = DataInfo().IsSignal(ev) ? mva_eff_tr_s : mva_eff_tr_b;
2585 TH1* theClsHist = DataInfo().IsSignal(ev) ? mva_s_tr : mva_b_tr;
2587 theClsHist->
Fill( theVal, theWeight );
2591 if (sign > 0 && maxbin > fNbinsH)
continue;
2592 if (sign < 0 && maxbin < 1 )
continue;
2593 if (sign > 0 && maxbin < 1 ) maxbin = 1;
2594 if (sign < 0 && maxbin > fNbinsH) maxbin = fNbinsH;
2596 if (sign > 0)
for (
Int_t ibin=1; ibin<=maxbin; ibin++) theEffHist->
AddBinContent( ibin , theWeight );
2597 else for (
Int_t ibin=maxbin+1; ibin<=fNbinsH; ibin++) theEffHist->
AddBinContent( ibin , theWeight );
2610 TH1* eff_bvss =
new TH1D( GetTestvarName() +
"_trainingEffBvsS", GetTestvarName() +
"", fNbins, 0, 1 );
2612 TH1* rej_bvss =
new TH1D( GetTestvarName() +
"_trainingRejBvsS", GetTestvarName() +
"", fNbins, 0, 1 );
2613 results->
Store(eff_bvss,
"EFF_BVSS_TR");
2614 results->
Store(rej_bvss,
"REJ_BVSS_TR");
2620 if (fSplTrainRefS)
delete fSplTrainRefS;
2621 if (fSplTrainRefB)
delete fSplTrainRefB;
2622 fSplTrainRefS =
new TSpline1(
"spline2_signal",
new TGraph( mva_eff_tr_s ) );
2623 fSplTrainRefB =
new TSpline1(
"spline2_background",
new TGraph( mva_eff_tr_b ) );
2636 fEffS = results->
GetHist(
"MVA_TRAINEFF_S");
2637 for (
Int_t bini=1; bini<=fNbins; bini++) {
2655 fSplTrainEffBvsS =
new TSpline1(
"effBvsS",
new TGraph( eff_bvss ) );
2659 if (0 == fSplTrainEffBvsS)
return 0.0;
2662 Double_t effS = 0., effB, effS_ = 0., effB_ = 0.;
2663 Int_t nbins_ = 1000;
2664 for (
Int_t bini=1; bini<=nbins_; bini++) {
2667 effS = (bini - 0.5)/
Float_t(nbins_);
2668 effB = fSplTrainEffBvsS->Eval( effS );
2671 if ((effB - effBref)*(effB_ - effBref) <= 0)
break;
2676 return 0.5*(effS + effS_);
2685 if (!resMulticlass)
Log() << kFATAL<<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"unable to create pointer in GetMulticlassEfficiency, exiting."<<
Endl;
2697 if (!resMulticlass)
Log() << kFATAL<<
"unable to create pointer in GetMulticlassTrainingEfficiency, exiting."<<
Endl;
2699 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Determine optimal multiclass cuts for training data..." <<
Endl;
2700 for (
UInt_t icls = 0; icls<DataInfo().GetNClasses(); ++icls) {
2731 Log() << kFATAL <<
"Cannot get confusion matrix for non-multiclass analysis." << std::endl;
2735 Data()->SetCurrentType(
type);
2739 if (resMulticlass ==
nullptr) {
2741 <<
"unable to create pointer in GetMulticlassEfficiency, exiting." <<
Endl;
2758 return (rms > 0) ?
TMath::Abs(fMeanS - fMeanB)/rms : 0;
2782 if ((!pdfS && pdfB) || (pdfS && !pdfB))
2783 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetSeparation> Mismatch in pdfs" <<
Endl;
2784 if (!pdfS) pdfS = fSplS;
2785 if (!pdfB) pdfB = fSplB;
2787 if (!fSplS || !fSplB) {
2788 Log()<<kDEBUG<<
Form(
"[%s] : ",DataInfo().
GetName())<<
"could not calculate the separation, distributions"
2789 <<
" fSplS or fSplB are not yet filled" <<
Endl;
2804 if ((!histS && histB) || (histS && !histB))
2805 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetROCIntegral(TH1D*, TH1D*)> Mismatch in hists" <<
Endl;
2807 if (histS==0 || histB==0)
return 0.;
2820 for (
UInt_t i=0; i<nsteps; i++) {
2826 return integral*step;
2838 if ((!pdfS && pdfB) || (pdfS && !pdfB))
2839 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetSeparation> Mismatch in pdfs" <<
Endl;
2840 if (!pdfS) pdfS = fSplS;
2841 if (!pdfB) pdfB = fSplB;
2843 if (pdfS==0 || pdfB==0)
return 0.;
2852 for (
UInt_t i=0; i<nsteps; i++) {
2856 return integral*step;
2866 Double_t& max_significance_value )
const
2871 Double_t effS(0),effB(0),significance(0);
2872 TH1D *temp_histogram =
new TH1D(
"temp",
"temp", fNbinsH, fXmin, fXmax );
2874 if (SignalEvents <= 0 || BackgroundEvents <= 0) {
2875 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<GetMaximumSignificance> "
2876 <<
"Number of signal or background events is <= 0 ==> abort"
2880 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Using ratio SignalEvents/BackgroundEvents = "
2881 << SignalEvents/BackgroundEvents <<
Endl;
2886 if ( (eff_s==0) || (eff_b==0) ) {
2887 Log() << kWARNING <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Efficiency histograms empty !" <<
Endl;
2888 Log() << kWARNING <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"no maximum cut found, return 0" <<
Endl;
2892 for (
Int_t bin=1; bin<=fNbinsH; bin++) {
2897 significance =
sqrt(SignalEvents)*( effS )/
sqrt( effS + ( BackgroundEvents / SignalEvents) * effB );
2907 delete temp_histogram;
2909 Log() << kINFO <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"Optimal cut at : " << max_significance <<
Endl;
2910 Log() << kINFO<<
Form(
"Dataset[%s] : ",DataInfo().
GetName()) <<
"Maximum significance: " << max_significance_value <<
Endl;
2912 return max_significance;
2926 Data()->SetCurrentType(treeType);
2928 Long64_t entries = Data()->GetNEvents();
2932 Log() << kFATAL <<
Form(
"Dataset[%s] : ",DataInfo().
GetName())<<
"<CalculateEstimator> Wrong tree type: " << treeType <<
Endl;
2935 UInt_t varIndex = DataInfo().FindVarIndex( theVarName );
2951 for (
Int_t ievt = 0; ievt < entries; ievt++) {
2953 const Event* ev = GetEvent(ievt);
2958 if (DataInfo().IsSignal(ev)) {
2960 meanS += weight*theVar;
2961 rmsS += weight*theVar*theVar;
2965 meanB += weight*theVar;
2966 rmsB += weight*theVar*theVar;
2974 meanS = meanS/sumwS;
2975 meanB = meanB/sumwB;
2979 Data()->SetCurrentType(previousTreeType);
2989 if (theClassFileName ==
"")
2990 classFileName = GetWeightFileDir() +
"/" + GetJobName() +
"_" +
GetMethodName() +
".class.C";
2992 classFileName = theClassFileName;
2996 TString tfname( classFileName );
2998 <<
"Creating standalone class: "
3001 std::ofstream fout( classFileName );
3003 Log() << kFATAL <<
"<MakeClass> Unable to open file: " << classFileName <<
Endl;
3008 fout <<
"// Class: " << className << std::endl;
3009 fout <<
"// Automatically generated by MethodBase::MakeClass" << std::endl <<
"//" << std::endl;
3013 fout <<
"/* configuration options =====================================================" << std::endl << std::endl;
3014 WriteStateToStream( fout );
3016 fout <<
"============================================================================ */" << std::endl;
3019 fout <<
"" << std::endl;
3020 fout <<
"#include <array>" << std::endl;
3021 fout <<
"#include <vector>" << std::endl;
3022 fout <<
"#include <cmath>" << std::endl;
3023 fout <<
"#include <string>" << std::endl;
3024 fout <<
"#include <iostream>" << std::endl;
3025 fout <<
"" << std::endl;
3028 this->MakeClassSpecificHeader( fout, className );
3030 fout <<
"#ifndef IClassifierReader__def" << std::endl;
3031 fout <<
"#define IClassifierReader__def" << std::endl;
3033 fout <<
"class IClassifierReader {" << std::endl;
3035 fout <<
" public:" << std::endl;
3037 fout <<
" // constructor" << std::endl;
3038 fout <<
" IClassifierReader() : fStatusIsClean( true ) {}" << std::endl;
3039 fout <<
" virtual ~IClassifierReader() {}" << std::endl;
3041 fout <<
" // return classifier response" << std::endl;
3042 fout <<
" virtual double GetMvaValue( const std::vector<double>& inputValues ) const = 0;" << std::endl;
3044 fout <<
" // returns classifier status" << std::endl;
3045 fout <<
" bool IsStatusClean() const { return fStatusIsClean; }" << std::endl;
3047 fout <<
" protected:" << std::endl;
3049 fout <<
" bool fStatusIsClean;" << std::endl;
3050 fout <<
"};" << std::endl;
3052 fout <<
"#endif" << std::endl;
3054 fout <<
"class " << className <<
" : public IClassifierReader {" << std::endl;
3056 fout <<
" public:" << std::endl;
3058 fout <<
" // constructor" << std::endl;
3059 fout <<
" " << className <<
"( std::vector<std::string>& theInputVars )" << std::endl;
3060 fout <<
" : IClassifierReader()," << std::endl;
3061 fout <<
" fClassName( \"" << className <<
"\" )," << std::endl;
3062 fout <<
" fNvars( " << GetNvar() <<
" )" << std::endl;
3063 fout <<
" {" << std::endl;
3064 fout <<
" // the training input variables" << std::endl;
3065 fout <<
" const char* inputVars[] = { ";
3066 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
3067 fout <<
"\"" << GetOriginalVarName(ivar) <<
"\"";
3068 if (ivar<GetNvar()-1) fout <<
", ";
3070 fout <<
" };" << std::endl;
3072 fout <<
" // sanity checks" << std::endl;
3073 fout <<
" if (theInputVars.size() <= 0) {" << std::endl;
3074 fout <<
" std::cout << \"Problem in class \\\"\" << fClassName << \"\\\": empty input vector\" << std::endl;" << std::endl;
3075 fout <<
" fStatusIsClean = false;" << std::endl;
3076 fout <<
" }" << std::endl;
3078 fout <<
" if (theInputVars.size() != fNvars) {" << std::endl;
3079 fout <<
" std::cout << \"Problem in class \\\"\" << fClassName << \"\\\": mismatch in number of input values: \"" << std::endl;
3080 fout <<
" << theInputVars.size() << \" != \" << fNvars << std::endl;" << std::endl;
3081 fout <<
" fStatusIsClean = false;" << std::endl;
3082 fout <<
" }" << std::endl;
3084 fout <<
" // validate input variables" << std::endl;
3085 fout <<
" for (size_t ivar = 0; ivar < theInputVars.size(); ivar++) {" << std::endl;
3086 fout <<
" if (theInputVars[ivar] != inputVars[ivar]) {" << std::endl;
3087 fout <<
" std::cout << \"Problem in class \\\"\" << fClassName << \"\\\": mismatch in input variable names\" << std::endl" << std::endl;
3088 fout <<
" << \" for variable [\" << ivar << \"]: \" << theInputVars[ivar].c_str() << \" != \" << inputVars[ivar] << std::endl;" << std::endl;
3089 fout <<
" fStatusIsClean = false;" << std::endl;
3090 fout <<
" }" << std::endl;
3091 fout <<
" }" << std::endl;
3093 fout <<
" // initialize min and max vectors (for normalisation)" << std::endl;
3094 for (
UInt_t ivar = 0; ivar < GetNvar(); ivar++) {
3095 fout <<
" fVmin[" << ivar <<
"] = " << std::setprecision(15) << GetXmin( ivar ) <<
";" << std::endl;
3096 fout <<
" fVmax[" << ivar <<
"] = " << std::setprecision(15) << GetXmax( ivar ) <<
";" << std::endl;
3099 fout <<
" // initialize input variable types" << std::endl;
3100 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
3101 fout <<
" fType[" << ivar <<
"] = \'" << DataInfo().GetVariableInfo(ivar).GetVarType() <<
"\';" << std::endl;
3104 fout <<
" // initialize constants" << std::endl;
3105 fout <<
" Initialize();" << std::endl;
3107 if (GetTransformationHandler().GetTransformationList().GetSize() != 0) {
3108 fout <<
" // initialize transformation" << std::endl;
3109 fout <<
" InitTransform();" << std::endl;
3111 fout <<
" }" << std::endl;
3113 fout <<
" // destructor" << std::endl;
3114 fout <<
" virtual ~" << className <<
"() {" << std::endl;
3115 fout <<
" Clear(); // method-specific" << std::endl;
3116 fout <<
" }" << std::endl;
3118 fout <<
" // the classifier response" << std::endl;
3119 fout <<
" // \"inputValues\" is a vector of input values in the same order as the" << std::endl;
3120 fout <<
" // variables given to the constructor" << std::endl;
3121 fout <<
" double GetMvaValue( const std::vector<double>& inputValues ) const override;" << std::endl;
3123 fout <<
" private:" << std::endl;
3125 fout <<
" // method-specific destructor" << std::endl;
3126 fout <<
" void Clear();" << std::endl;
3128 if (GetTransformationHandler().GetTransformationList().GetSize()!=0) {
3129 fout <<
" // input variable transformation" << std::endl;
3130 GetTransformationHandler().MakeFunction(fout, className,1);
3131 fout <<
" void InitTransform();" << std::endl;
3132 fout <<
" void Transform( std::vector<double> & iv, int sigOrBgd ) const;" << std::endl;
3135 fout <<
" // common member variables" << std::endl;
3136 fout <<
" const char* fClassName;" << std::endl;
3138 fout <<
" const size_t fNvars;" << std::endl;
3139 fout <<
" size_t GetNvar() const { return fNvars; }" << std::endl;
3140 fout <<
" char GetType( int ivar ) const { return fType[ivar]; }" << std::endl;
3142 fout <<
" // normalisation of input variables" << std::endl;
3143 fout <<
" double fVmin[" << GetNvar() <<
"];" << std::endl;
3144 fout <<
" double fVmax[" << GetNvar() <<
"];" << std::endl;
3145 fout <<
" double NormVariable( double x, double xmin, double xmax ) const {" << std::endl;
3146 fout <<
" // normalise to output range: [-1, 1]" << std::endl;
3147 fout <<
" return 2*(x - xmin)/(xmax - xmin) - 1.0;" << std::endl;
3148 fout <<
" }" << std::endl;
3150 fout <<
" // type of input variable: 'F' or 'I'" << std::endl;
3151 fout <<
" char fType[" << GetNvar() <<
"];" << std::endl;
3153 fout <<
" // initialize internal variables" << std::endl;
3154 fout <<
" void Initialize();" << std::endl;
3155 fout <<
" double GetMvaValue__( const std::vector<double>& inputValues ) const;" << std::endl;
3156 fout <<
"" << std::endl;
3157 fout <<
" // private members (method specific)" << std::endl;
3160 MakeClassSpecific( fout, className );
3162 fout <<
" inline double " << className <<
"::GetMvaValue( const std::vector<double>& inputValues ) const" << std::endl;
3163 fout <<
" {" << std::endl;
3164 fout <<
" // classifier response value" << std::endl;
3165 fout <<
" double retval = 0;" << std::endl;
3167 fout <<
" // classifier response, sanity check first" << std::endl;
3168 fout <<
" if (!IsStatusClean()) {" << std::endl;
3169 fout <<
" std::cout << \"Problem in class \\\"\" << fClassName << \"\\\": cannot return classifier response\"" << std::endl;
3170 fout <<
" << \" because status is dirty\" << std::endl;" << std::endl;
3171 fout <<
" retval = 0;" << std::endl;
3172 fout <<
" }" << std::endl;
3173 fout <<
" else {" << std::endl;
3174 if (IsNormalised()) {
3175 fout <<
" // normalise variables" << std::endl;
3176 fout <<
" std::vector<double> iV;" << std::endl;
3177 fout <<
" iV.reserve(inputValues.size());" << std::endl;
3178 fout <<
" int ivar = 0;" << std::endl;
3179 fout <<
" for (std::vector<double>::const_iterator varIt = inputValues.begin();" << std::endl;
3180 fout <<
" varIt != inputValues.end(); varIt++, ivar++) {" << std::endl;
3181 fout <<
" iV.push_back(NormVariable( *varIt, fVmin[ivar], fVmax[ivar] ));" << std::endl;
3182 fout <<
" }" << std::endl;
3183 if (GetTransformationHandler().GetTransformationList().GetSize() != 0 && GetMethodType() !=
Types::kLikelihood &&
3185 fout <<
" Transform( iV, -1 );" << std::endl;
3187 fout <<
" retval = GetMvaValue__( iV );" << std::endl;
3189 if (GetTransformationHandler().GetTransformationList().GetSize() != 0 && GetMethodType() !=
Types::kLikelihood &&
3191 fout <<
" std::vector<double> iV(inputValues);" << std::endl;
3192 fout <<
" Transform( iV, -1 );" << std::endl;
3193 fout <<
" retval = GetMvaValue__( iV );" << std::endl;
3195 fout <<
" retval = GetMvaValue__( inputValues );" << std::endl;
3198 fout <<
" }" << std::endl;
3200 fout <<
" return retval;" << std::endl;
3201 fout <<
" }" << std::endl;
3204 if (GetTransformationHandler().GetTransformationList().GetSize()!=0)
3205 GetTransformationHandler().MakeFunction(fout, className,2);
3217 std::streambuf* cout_sbuf = std::cout.rdbuf();
3218 std::ofstream* o = 0;
3219 if (
gConfig().WriteOptionsReference()) {
3220 Log() << kINFO <<
"Print Help message for class " <<
GetName() <<
" into file: " << GetReferenceFile() <<
Endl;
3221 o =
new std::ofstream( GetReferenceFile(), std::ios::app );
3223 Log() << kFATAL <<
"<PrintHelpMessage> Unable to append to output file: " << GetReferenceFile() <<
Endl;
3225 std::cout.rdbuf( o->rdbuf() );
3232 <<
"================================================================"
3236 <<
"H e l p f o r M V A m e t h o d [ " <<
GetName() <<
" ] :"
3241 Log() <<
"Help for MVA method [ " <<
GetName() <<
" ] :" <<
Endl;
3249 Log() <<
"<Suppress this message by specifying \"!H\" in the booking option>" <<
Endl;
3251 <<
"================================================================"
3258 Log() <<
"# End of Message___" <<
Endl;
3261 std::cout.rdbuf( cout_sbuf );
3276 retval = fSplRefS->Eval( theCut );
3278 else retval = fEffS->GetBinContent( fEffS->FindBin( theCut ) );
3287 if (theCut-fXmin < eps) retval = (GetCutOrientation() == kPositive) ? 1.0 : 0.0;
3288 else if (fXmax-theCut < eps) retval = (GetCutOrientation() == kPositive) ? 0.0 : 1.0;
3301 if (GetTransformationHandler().GetTransformationList().GetEntries() <= 0) {
3302 return (Data()->GetEventCollection(
type));
3309 if (fEventCollections.at(idx) == 0) {
3310 fEventCollections.at(idx) = &(Data()->GetEventCollection(
type));
3311 fEventCollections.at(idx) = GetTransformationHandler().CalcTransformations(*(fEventCollections.at(idx)),
kTRUE);
3313 return *(fEventCollections.at(idx));
3321 UInt_t a = GetTrainingTMVAVersionCode() & 0xff0000;
a>>=16;
3322 UInt_t b = GetTrainingTMVAVersionCode() & 0x00ff00;
b>>=8;
3323 UInt_t c = GetTrainingTMVAVersionCode() & 0x0000ff;
3333 UInt_t a = GetTrainingROOTVersionCode() & 0xff0000;
a>>=16;
3334 UInt_t b = GetTrainingROOTVersionCode() & 0x00ff00;
b>>=8;
3335 UInt_t c = GetTrainingROOTVersionCode() & 0x0000ff;
3346 if (mvaRes != NULL) {
3349 TH1D *mva_s_tr =
dynamic_cast<TH1D*
> (mvaRes->
GetHist(
"MVA_TRAIN_S"));
3350 TH1D *mva_b_tr =
dynamic_cast<TH1D*
> (mvaRes->
GetHist(
"MVA_TRAIN_B"));
3352 if ( !mva_s || !mva_b || !mva_s_tr || !mva_b_tr)
return -1;
3354 if (SorB ==
's' || SorB ==
'S')
const Bool_t Use_Splines_for_Eff_
const Int_t NBIN_HIST_HIGH
#define ROOT_VERSION_CODE
static RooMathCoreReg dummy
TMatrixT< Double_t > TMatrixD
char * Form(const char *fmt,...)
R__EXTERN TSystem * gSystem
#define TMVA_VERSION_CODE
Class to manage histogram axis.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write all objects in this collection.
This class stores the date and time with a precision of one second in an unsigned 32 bit word (950130...
const char * AsString() const
Return the date & time as a string (ctime() format).
virtual TObject * Get(const char *namecycle)
Return pointer to object identified by namecycle.
Describe directory structure in memory.
virtual TDirectory * GetDirectory(const char *namecycle, Bool_t printError=false, const char *funcname="GetDirectory")
Find a directory using apath.
virtual Bool_t cd(const char *path=0)
Change current directory to "this" directory.
virtual TDirectory * mkdir(const char *name, const char *title="")
Create a sub-directory "a" or a hierarchy of sub-directories "a/b/c/...".
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
virtual void Close(Option_t *option="")
Close a file.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseGeneralPurpose, Int_t netopt=0)
Create / open a file.
A Graph is a graphics object made of two arrays X and Y with npoints each.
1-D histogram with a double per channel (see TH1 documentation)}
1-D histogram with a float per channel (see TH1 documentation)}
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum=0)
Compute Quantiles for this histogram Quantile x_q of a probability distribution Function F is defined...
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
virtual void SetXTitle(const char *title)
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
virtual Int_t GetNbinsX() const
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual Int_t GetMaximumBin() const
Return location of bin with maximum value in the range.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
virtual void SetYTitle(const char *title)
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using Kolmogorov test.
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
2-D histogram with a float per channel (see TH1 documentation)}
Int_t Fill(Double_t)
Invalid Fill method.
virtual TObject * At(Int_t idx) const
Returns the object at position idx. Returns 0 if idx is out of range.
Class that contains all the information of a class.
TString fWeightFileExtension
class TMVA::Config::VariablePlotting fVariablePlotting
Class that contains all the data information.
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not.
static void SetIsTraining(Bool_t)
when this static function is called, it sets the flag whether events with negative event weight shoul...
Float_t GetTarget(UInt_t itgt) const
static void SetIgnoreNegWeightsInTraining(Bool_t)
when this static function is called, it sets the flag whether events with negative event weight shoul...
Interface for all concrete MVA method implementations.
void Init(std::vector< TString > &graphTitles)
This function gets some title and it creates a TGraph for every title.
IPythonInteractive()
standard constructor
~IPythonInteractive()
standard destructor
void ClearGraphs()
This function sets the point number to 0 for all graphs.
void AddPoint(Double_t x, Double_t y1, Double_t y2)
This function is used only in 2 TGraph case, and it will add new data points to graphs.
Virtual base Class for all MVA method.
TDirectory * MethodBaseDir() const
returns the ROOT directory where all instances of the corresponding MVA method are stored
virtual Double_t GetKSTrainingVsTest(Char_t SorB, TString opt="X")
MethodBase(const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="")
standard constructor
virtual Double_t GetSeparation(TH1 *, TH1 *) const
compute "separation" defined as
void ReadClassesFromXML(void *clsnode)
read number of classes from XML
void SetWeightFileDir(TString fileDir)
set directory of weight file
void WriteStateToXML(void *parent) const
general method used in writing the header of the weight files where the used variables,...
void DeclareBaseOptions()
define the options (their key words) that can be set in the option string here the options valid for ...
virtual void TestRegression(Double_t &bias, Double_t &biasT, Double_t &dev, Double_t &devT, Double_t &rms, Double_t &rmsT, Double_t &mInf, Double_t &mInfT, Double_t &corr, Types::ETreeType type)
calculate <sum-of-deviation-squared> of regression output versus "true" value from test sample
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
virtual Double_t GetSignificance() const
compute significance of mean difference
virtual Double_t GetProba(const Event *ev)
const char * GetName() const
virtual TMatrixD GetMulticlassConfusionMatrix(Double_t effB, Types::ETreeType type)
Construct a confusion matrix for a multiclass classifier.
void PrintHelpMessage() const
prints out method-specific help method
virtual void WriteEvaluationHistosToFile(Types::ETreeType treetype)
writes all MVA evaluation histograms to file
virtual void TestMulticlass()
test multiclass classification
const std::vector< TMVA::Event * > & GetEventCollection(Types::ETreeType type)
returns the event collection (i.e.
void SetupMethod()
setup of methods
TDirectory * BaseDir() const
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are sto...
virtual std::vector< Float_t > GetMulticlassEfficiency(std::vector< std::vector< Float_t > > &purity)
void AddInfoItem(void *gi, const TString &name, const TString &value) const
xml writing
virtual void AddClassifierOutputProb(Types::ETreeType type)
prepare tree branch with the method's discriminating variable
virtual Double_t GetEfficiency(const TString &, Types::ETreeType, Double_t &err)
fill background efficiency (resp.
TString GetTrainingTMVAVersionString() const
calculates the TMVA version string from the training version code on the fly
void Statistics(Types::ETreeType treeType, const TString &theVarName, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &)
calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as th...
Bool_t GetLine(std::istream &fin, char *buf)
reads one line from the input stream checks for certain keywords and interprets the line if keywords ...
void ProcessSetup()
process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overr...
virtual std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
virtual Bool_t IsSignalLike()
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for...
virtual ~MethodBase()
destructor
virtual Double_t GetMaximumSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t &optimal_significance_value) const
plot significance, , curve for given number of signal and background events; returns cut for maximum ...
virtual Double_t GetTrainingEfficiency(const TString &)
void SetWeightFileName(TString)
set the weight file name (depreciated)
virtual void MakeClass(const TString &classFileName=TString("")) const
create reader class for method (classification only at present)
TString GetWeightFileName() const
retrieve weight file name
virtual void TestClassification()
initialization
void AddOutput(Types::ETreeType type, Types::EAnalysisType analysisType)
virtual void WriteMonitoringHistosToFile() const
write special monitoring histograms to file dummy implementation here --------------—
virtual void AddRegressionOutput(Types::ETreeType type)
prepare tree branch with the method's discriminating variable
void InitBase()
default initialization called by all constructors
virtual void GetRegressionDeviation(UInt_t tgtNum, Types::ETreeType type, Double_t &stddev, Double_t &stddev90Percent) const
void ReadStateFromXMLString(const char *xmlstr)
for reading from memory
void CreateMVAPdfs()
Create PDFs of the MVA output variables.
TString GetTrainingROOTVersionString() const
calculates the ROOT version string from the training version code on the fly
virtual Double_t GetValueForRoot(Double_t)
returns efficiency as function of cut
void ReadStateFromFile()
Function to write options and weights to file.
void WriteVarsToStream(std::ostream &tf, const TString &prefix="") const
write the list of variables (name, min, max) for a given data transformation method to the stream
void ReadVarsFromStream(std::istream &istr)
Read the variables (name, min, max) for a given data transformation method from the stream.
void ReadSpectatorsFromXML(void *specnode)
read spectator info from XML
virtual Double_t GetMvaValue(Double_t *errLower=0, Double_t *errUpper=0)=0
void SetTestvarName(const TString &v="")
void ReadVariablesFromXML(void *varnode)
read variable info from XML
virtual std::map< TString, Double_t > OptimizeTuningParameters(TString fomType="ROCIntegral", TString fitType="FitGA")
call the Optimizer with the set of parameters and ranges that are meant to be tuned.
virtual std::vector< Float_t > GetMulticlassTrainingEfficiency(std::vector< std::vector< Float_t > > &purity)
void WriteStateToStream(std::ostream &tf) const
general method used in writing the header of the weight files where the used variables,...
virtual Double_t GetRarity(Double_t mvaVal, Types::ESBType reftype=Types::kBackground) const
compute rarity:
virtual void SetTuneParameters(std::map< TString, Double_t > tuneParameters)
set the tuning parameters according to the argument This is just a dummy .
void ReadStateFromStream(std::istream &tf)
read the header from the weight files of the different MVA methods
void AddVarsXMLTo(void *parent) const
write variable info to XML
void AddTargetsXMLTo(void *parent) const
write target info to XML
void ReadTargetsFromXML(void *tarnode)
read target info from XML
void ProcessBaseOptions()
the option string is decoded, for available options see "DeclareOptions"
void ReadStateFromXML(void *parent)
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
void WriteStateToFile() const
write options and weights to file note that each one text file for the main configuration information...
void AddClassesXMLTo(void *parent) const
write class info to XML
virtual void AddClassifierOutput(Types::ETreeType type)
prepare tree branch with the method's discriminating variable
void AddSpectatorsXMLTo(void *parent) const
write spectator info to XML
virtual Double_t GetROCIntegral(TH1D *histS, TH1D *histB) const
calculate the area (integral) under the ROC curve as a overall quality measure of the classification
virtual void AddMulticlassOutput(Types::ETreeType type)
prepare tree branch with the method's discriminating variable
virtual void CheckSetup()
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implement...
void SetSource(const std::string &source)
PDF wrapper for histograms; uses user-defined spline interpolation.
Double_t GetVal(Double_t x) const
returns value PDF(x)
Double_t GetIntegral(Double_t xmin, Double_t xmax)
computes PDF integral within given ranges
Class that is the base-class for a vector of result.
void Resize(Int_t entries)
std::vector< Bool_t > * GetValueVectorTypes()
void SetValue(Float_t value, Int_t ievt)
set MVA response
std::vector< Float_t > * GetValueVector()
Class which takes the results of a multiclass classification.
TMatrixD GetConfusionMatrix(Double_t effB)
Returns a confusion matrix where each class is pitted against each other.
Float_t GetAchievablePur(UInt_t cls)
std::vector< Double_t > GetBestMultiClassCuts(UInt_t targetClass)
calculate the best working point (optimal cut values) for the multiclass classifier
void CreateMulticlassHistos(TString prefix, Int_t nbins, Int_t nbins_high)
this function fills the mva response histos for multiclass classification
Float_t GetAchievableEff(UInt_t cls)
void CreateMulticlassPerformanceHistos(TString prefix)
Create performance graphs for this classifier a multiclass setting.
Class that is the base-class for a vector of result.
Class that is the base-class for a vector of result.
Bool_t DoesExist(const TString &alias) const
Returns true if there is an object stored in the result for a given alias, false otherwise.
TH1 * GetHist(const TString &alias) const
TList * GetStorage() const
void Store(TObject *obj, const char *alias=0)
Root finding using Brents algorithm (translated from CERNLIB function RZERO)
Double_t Root(Double_t refValue)
Root finding using Brents algorithm; taken from CERNLIB function RZERO.
Linear interpolation of TGraph.
Timing information for training and evaluation of MVA methods.
Double_t ElapsedSeconds(void)
computes elapsed tim in seconds
TString GetElapsedTime(Bool_t Scientific=kTRUE)
returns pretty string with elapsed time
void DrawProgressBar(Int_t, const TString &comment="")
draws progress bar in color or B&W caution:
Singleton class for Global types used by TMVA.
Class for type info of MVA input variable.
void ReadFromXML(void *varnode)
read VariableInfo from stream
const TString & GetExpression() const
void ReadFromStream(std::istream &istr)
read VariableInfo from stream
void AddToXML(void *varnode)
write class to XML
void SetExternalLink(void *p)
void * GetExternalLink() const
A TMultiGraph is a collection of TGraph (or derived) objects.
virtual const char * GetName() const
Returns name of object.
Collectable string class.
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
void ToLower()
Change string to lower-case.
Int_t Atoi() const
Return integer value of string.
Bool_t EndsWith(const char *pat, ECaseCompare cmp=kExact) const
Return true if string ends with the specified string.
TSubString Strip(EStripType s=kTrailing, char c=' ') const
Return a substring of self stripped at beginning and/or end.
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
Ssiz_t Last(char c) const
Find last occurrence of a character c.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
virtual const char * GetBuildNode() const
Return the build node name.
virtual int MakeDirectory(const char *name)
Make a directory.
virtual const char * WorkingDirectory()
Return working directory.
virtual UserGroup_t * GetUserInfo(Int_t uid)
Returns all user info in the UserGroup_t structure.
void SaveDoc(XMLDocPointer_t xmldoc, const char *filename, Int_t layout=1)
store document content to file if layout<=0, no any spaces or newlines will be placed between xmlnode...
void FreeDoc(XMLDocPointer_t xmldoc)
frees allocated document data and deletes document itself
XMLNodePointer_t DocGetRootElement(XMLDocPointer_t xmldoc)
returns root node of document
XMLDocPointer_t NewDoc(const char *version="1.0")
creates new xml document with provided version
XMLDocPointer_t ParseFile(const char *filename, Int_t maxbuf=100000)
Parses content of file and tries to produce xml structures.
XMLDocPointer_t ParseString(const char *xmlstring)
parses content of string and tries to produce xml structures
void DocSetRootElement(XMLDocPointer_t xmldoc, XMLNodePointer_t xmlnode)
set main (root) node for document
std::string GetMethodName(TCppMethod_t)
std::string GetName(const std::string &scope_name)
void Init(TClassEdit::TInterpreterLookupHelper *helper)
static constexpr double s
static constexpr double m2
void CreateVariableTransforms(const TString &trafoDefinition, TMVA::DataSetInfo &dataInfo, TMVA::TransformationHandler &transformationHandler, TMVA::MsgLogger &log)
MsgLogger & Endl(MsgLogger &ml)
Short_t Max(Short_t a, Short_t b)
Double_t Sqrt(Double_t x)
Short_t Min(Short_t a, Short_t b)