Logo ROOT   6.16/01
Reference Guide
OptimizeConfigParameters.h
Go to the documentation of this file.
1/**********************************************************************************
2 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
3 * Package: TMVA *
4 * Class : OptimizeConfigParameters *
5 * Web : http://tmva.sourceforge.net *
6 * *
7 * Description: The OptimizeConfigParameters takes care of "scanning/fitting" *
8 * different tuning parameters in order to find the best set of *
9 * tuning paraemters which will be used in the end *
10 * *
11 * Authors (alphabetical): *
12 * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
13 * *
14 * Copyright (c) 2005: *
15 * CERN, Switzerland *
16 * MPI-K Heidelberg, Germany *
17 * *
18 * Redistribution and use in source and binary forms, with or without *
19 * modification, are permitted according to the terms listed in LICENSE *
20 * (http://ttmva.sourceforge.net/LICENSE) *
21 **********************************************************************************/
22#include <map>
23
24#ifndef ROOT_TMVA_OptimizeConfigParameters
25#define ROOT_TMVA_OptimizeConfigParameters
26
27
28#include "Rtypes.h"
29
30#include "TString.h"
31
32#include "TMVA/MethodBase.h"
33
34
35#include "TMVA/Interval.h"
36
37#include "TMVA/DataSet.h"
38
39#include "IFitterTarget.h"
40
41#include "TH1.h"
42
43namespace TMVA {
44
45 class MethodBase;
46 class MsgLogger;
48
49 public:
50
51 //default constructor
52 OptimizeConfigParameters(MethodBase * const method, std::map<TString,TMVA::Interval*> tuneParameters, TString fomType="Separation", TString optimizationType = "GA");
53
54 // destructor
56 // could later be changed to be set via option string...
57 // but for now it's simpler like this
58 std::map<TString,Double_t> optimize();
59
60 private:
61 std::vector< int > GetScanIndices( int val, std::vector<int> base);
62 void optimizeScan();
63 void optimizeFit();
64
65 Double_t EstimatorFunction( std::vector<Double_t> & );
66
68
70
71 void GetMVADists();
74 Double_t GetSigEffAtBkgEff( Double_t bkgEff = 0.1);
75 Double_t GetBkgEffAtSigEff( Double_t sigEff = 0.5);
76 Double_t GetBkgRejAtSigEff( Double_t sigEff = 0.5);
77
78
79 MethodBase* const fMethod; // The MVA method to be evaluated
80 std::vector<Float_t> fFOMvsIter; // graph showing the development of the Figure Of Merit values during the fit
81 std::map<TString,TMVA::Interval*> fTuneParameters; // parameters included in the tuning
82 std::map<TString,Double_t> fTunedParameters; // parameters included in the tuning
83 std::map< std::vector<Double_t> , Double_t> fAlreadyTrainedParCombination; // save parameters for which the FOM is already known (GA seems to evaluate the same parameters several times)
84 TString fFOMType; // the FOM type (Separation, ROC integra.. whatever you implemented..
85 TString fOptimizationFitType; // which type of optimisation procedure to be used
86 TH1D *fMvaSig; // MVA distribution for signal events, used for spline fit
87 TH1D *fMvaBkg; // MVA distribution for bakgr. events, used for spline fit
88
89 TH1D *fMvaSigFineBin; // MVA distribution for signal events
90 TH1D *fMvaBkgFineBin; // MVA distribution for bakgr. events
91
92 Bool_t fNotDoneYet; // flat to indicate of Method Transformations have been obtained yet or not (normally done in MethodBase::TrainMethod)
93
94 mutable MsgLogger* fLogger; // message logger
95 MsgLogger& Log() const { return *fLogger; }
96
97 ClassDef(OptimizeConfigParameters,0); // Interface to different separation criteria used in training algorithms
98 };
99} // namespace TMVA
100
101#endif
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
#define ClassDef(name, id)
Definition: Rtypes.h:324
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:614
Interface for a fitter 'target'.
Definition: IFitterTarget.h:44
Virtual base Class for all MVA method.
Definition: MethodBase.h:109
ostringstream derivative to redirect and format output
Definition: MsgLogger.h:59
std::vector< int > GetScanIndices(int val, std::vector< int > base)
helper function to scan through the all the combinations in the parameter space
Double_t GetBkgRejAtSigEff(Double_t sigEff=0.5)
calculate the background rejection for a given signal efficiency
std::map< TString, Double_t > fTunedParameters
virtual ~OptimizeConfigParameters()
the destructor (delete the OptimizeConfigParameters, store the graph and .. delete it)
Double_t GetBkgEffAtSigEff(Double_t sigEff=0.5)
calculate the background efficiency for a given signal efficiency
void optimizeScan()
do the actual optimization using a simple scan method, i.e.
OptimizeConfigParameters(MethodBase *const method, std::map< TString, TMVA::Interval * > tuneParameters, TString fomType="Separation", TString optimizationType="GA")
Constructor which sets either "Classification or Regression".
std::map< TString, TMVA::Interval * > fTuneParameters
std::map< TString, Double_t > optimize()
Double_t GetSeparation()
return the separation between the signal and background MVA ouput distribution
Double_t GetFOM()
Return the Figure of Merit (FOM) used in the parameter optimization process.
Double_t GetSigEffAtBkgEff(Double_t bkgEff=0.1)
calculate the signal efficiency for a given background efficiency
Double_t GetROCIntegral()
calculate the area (integral) under the ROC curve as a overall quality measure of the classification
void GetMVADists()
fill the private histograms with the mva distributions for sig/bkg
Double_t EstimatorFunction(std::vector< Double_t > &)
return the estimator (from current FOM) for the fitting interface
std::map< std::vector< Double_t >, Double_t > fAlreadyTrainedParCombination
Basic string class.
Definition: TString.h:131
Abstract ClassifierFactory template that handles arbitrary types.