|
| DecisionTree (const DecisionTree &d) |
| copy constructor that creates a true copy, i.e. More...
|
|
| DecisionTree (SeparationBase *sepType, Float_t minSize, Int_t nCuts, DataSetInfo *=NULL, UInt_t cls=0, Bool_t randomisedTree=kFALSE, Int_t useNvars=0, Bool_t usePoissonNvars=kFALSE, UInt_t nMaxDepth=9999999, Int_t iSeed=fgRandomSeed, Float_t purityLimit=0.5, Int_t treeID=0) |
| constructor specifying the separation type, the min number of events in a no that is still subjected to further splitting, the number of bins in the grid used in applying the cut for the node splitting. More...
|
|
| DecisionTree (void) |
| default constructor using the GiniIndex as separation criterion, no restrictions on minium number of events in a leave note or the separation gain in the node splitting More...
|
|
virtual | ~DecisionTree (void) |
| destructor More...
|
|
void | ApplyValidationSample (const EventConstList *validationSample) const |
| run the validation sample through the (pruned) tree and fill in the nodes the variables NSValidation and NBValidadtion (i.e. More...
|
|
UInt_t | BuildTree (const EventConstList &eventSample, DecisionTreeNode *node=NULL) |
| building the decision tree by recursively calling the splitting of one (root-) node into two daughter nodes (returns the number of nodes) More...
|
|
Double_t | CheckEvent (const TMVA::Event *, Bool_t UseYesNoLeaf=kFALSE) const |
| the event e is put into the decision tree (starting at the root node) and the output is NodeType (signal) or (background) of the final node (basket) in which the given events ends up. More...
|
|
void | CheckEventWithPrunedTree (const TMVA::Event *) const |
| pass a single validation event through a pruned decision tree on the way down the tree, fill in all the "intermediate" information that would normally be there from training. More...
|
|
virtual const char * | ClassName () const |
|
UInt_t | CleanTree (DecisionTreeNode *node=NULL) |
| remove those last splits that result in two leaf nodes that are both of the type (i.e. More...
|
|
void | ClearTree () |
| clear the tree nodes (their S/N, Nevents etc), just keep the structure of the tree More...
|
|
UInt_t | CountLeafNodes (TMVA::Node *n=NULL) |
| return the number of terminal nodes in the sub-tree below Node n More...
|
|
virtual DecisionTreeNode * | CreateNode (UInt_t) const |
|
virtual BinaryTree * | CreateTree () const |
|
void | DescendTree (Node *n=NULL) |
| descend a tree to find all its leaf nodes More...
|
|
Bool_t | DoRegression () const |
|
void | FillEvent (const TMVA::Event &event, TMVA::DecisionTreeNode *node) |
| fill the existing the decision tree structure by filling event in from the top node and see where they happen to end up More...
|
|
void | FillTree (const EventList &eventSample) |
| fill the existing the decision tree structure by filling event in from the top node and see where they happen to end up More...
|
|
Types::EAnalysisType | GetAnalysisType (void) |
|
TMVA::DecisionTreeNode * | GetEventNode (const TMVA::Event &e) const |
| get the pointer to the leaf node where a particular event ends up in... (used in gradient boosting) More...
|
|
std::vector< Double_t > | GetFisherCoefficients (const EventConstList &eventSample, UInt_t nFisherVars, UInt_t *mapVarInFisher) |
| calculate the fisher coefficients for the event sample and the variables used More...
|
|
Int_t | GetNNodesBeforePruning () |
|
Node * | GetNode (ULong_t sequence, UInt_t depth) |
| retrieve node from the tree. More...
|
|
Double_t | GetNodePurityLimit () const |
|
Double_t | GetPruneStrength () const |
|
void | GetRandomisedVariables (Bool_t *useVariable, UInt_t *variableMap, UInt_t &nVars) |
|
virtual DecisionTreeNode * | GetRoot () const |
|
Double_t | GetSumWeights (const EventConstList *validationSample) const |
| calculate the normalization factor for a pruning validation sample More...
|
|
Int_t | GetTreeID () |
|
std::vector< Double_t > | GetVariableImportance () |
| Return the relative variable importance, normalized to all variables together having the importance 1. More...
|
|
Double_t | GetVariableImportance (UInt_t ivar) |
| returns the relative importance of variable ivar More...
|
|
void | PruneNode (TMVA::DecisionTreeNode *node) |
| prune away the subtree below the node More...
|
|
void | PruneNodeInPlace (TMVA::DecisionTreeNode *node) |
| prune a node temporarily (without actually deleting its descendants which allows testing the pruned tree quality for many different pruning stages without "touching" the tree. More...
|
|
Double_t | PruneTree (const EventConstList *validationSample=NULL) |
| prune (get rid of internal nodes) the Decision tree to avoid overtraining several different pruning methods can be applied as selected by the variable "fPruneMethod". More...
|
|
void | SetAnalysisType (Types::EAnalysisType t) |
|
void | SetMinLinCorrForFisher (Double_t min) |
|
void | SetNodePurityLimit (Double_t p) |
|
void | SetNVars (Int_t n) |
|
void | SetParentTreeInNodes (Node *n=NULL) |
| descend a tree to find all its leaf nodes, fill max depth reached in the tree at the same time. More...
|
|
void | SetPruneMethod (EPruneMethod m=kCostComplexityPruning) |
|
void | SetPruneStrength (Double_t p) |
|
void | SetTreeID (Int_t treeID) |
|
void | SetUseExclusiveVars (Bool_t t=kTRUE) |
|
void | SetUseFisherCuts (Bool_t t=kTRUE) |
|
Double_t | TestPrunedTreeQuality (const DecisionTreeNode *dt=NULL, Int_t mode=0) const |
| return the misclassification rate of a pruned tree a "pruned tree" may have set the variable "IsTerminal" to "arbitrary" at any node, hence this tree quality testing will stop there, hence test the pruned tree (while the full tree is still in place for normal/later use) More...
|
|
Double_t | TrainNode (const EventConstList &eventSample, DecisionTreeNode *node) |
|
Double_t | TrainNodeFast (const EventConstList &eventSample, DecisionTreeNode *node) |
| Decide how to split a node using one of the variables that gives the best separation of signal/background. More...
|
|
Double_t | TrainNodeFull (const EventConstList &eventSample, DecisionTreeNode *node) |
| train a node by finding the single optimal cut for a single variable that best separates signal and background (maximizes the separation gain) More...
|
|
| BinaryTree (void) |
| constructor for a yet "empty" tree. Needs to be filled afterwards More...
|
|
virtual | ~BinaryTree () |
| destructor (deletes the nodes and "events" if owned by the tree More...
|
|
virtual void * | AddXMLTo (void *parent) const |
| add attributes to XML More...
|
|
virtual const char * | ClassName () const =0 |
|
UInt_t | CountNodes (Node *n=NULL) |
| return the number of nodes in the tree. (make a new count --> takes time) More...
|
|
virtual Node * | CreateNode (UInt_t size=0) const =0 |
|
virtual BinaryTree * | CreateTree () const =0 |
|
Node * | GetLeftDaughter (Node *n) |
| get left daughter node current node "n" More...
|
|
UInt_t | GetNNodes () const |
|
Node * | GetRightDaughter (Node *n) |
| get right daughter node current node "n" More...
|
|
virtual Node * | GetRoot () const |
|
UInt_t | GetTotalTreeDepth () const |
|
virtual void | Print (std::ostream &os) const |
| recursively print the tree More...
|
|
virtual void | Read (std::istream &istr, UInt_t tmva_Version_Code=TMVA_VERSION_CODE) |
| Read the binary tree from an input stream. More...
|
|
virtual void | ReadXML (void *node, UInt_t tmva_Version_Code=TMVA_VERSION_CODE) |
| read attributes from XML More...
|
|
void | SetRoot (Node *r) |
|
void | SetTotalTreeDepth (Int_t depth) |
|
void | SetTotalTreeDepth (Node *n=NULL) |
| descend a tree to find all its leaf nodes, fill max depth reached in the tree at the same time. More...
|
|