Logo ROOT   6.16/01
Reference Guide
AxisAngle.h
Go to the documentation of this file.
1// @(#)root/mathcore:$Id$
2// Authors: W. Brown, M. Fischler, L. Moneta 2005
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2005 , LCG ROOT MathLib Team *
7 * *
8 * *
9 **********************************************************************/
10
11// Header file for class AxisAngle
12//
13// Created by: Lorenzo Moneta at Wed May 11 10:37:10 2005
14//
15// Last update: Wed May 11 10:37:10 2005
16//
17#ifndef ROOT_Math_GenVector_AxisAngle
18#define ROOT_Math_GenVector_AxisAngle 1
19
25#include <algorithm>
26#include <cassert>
27
28
29namespace ROOT {
30namespace Math {
31
32
33//__________________________________________________________________________________________
34 /**
35 AxisAngle class describing rotation represented with direction axis (3D Vector) and an
36 angle of rotation around that axis.
37
38 @ingroup GenVector
39
40 */
41class AxisAngle {
42
43public:
44
45 typedef double Scalar;
46
47 /**
48 definition of vector axis
49 */
51
52
53 /**
54 Default constructor (axis is z and angle is zero)
55 */
56 AxisAngle() : fAxis(0,0,1), fAngle(0) { }
57
58 /**
59 Construct from a non-zero vector (x,y,z) and an angle.
60 Precondition: the Vector needs to implement x(), y(), z(), and unit()
61 */
62 template<class AnyVector>
63 AxisAngle(const AnyVector & v, Scalar angle) :
64 fAxis(v.unit()), fAngle(angle) { }
65
66 /**
67 Construct given a pair of pointers or iterators defining the
68 beginning and end of an array of four Scalars, to be treated as
69 the x, y, and z components of a unit axis vector, and the angle
70 of rotation.
71 Precondition: The first three components are assumed to represent
72 the rotation axis vector and the 4-th the rotation angle.
73 The angle is assumed to be in the range (-pi,pi].
74 The axis vector is automatically normalized to be a unit vector
75 */
76 template<class IT>
77 AxisAngle(IT begin, IT end) { SetComponents(begin,end); }
78
79 // The compiler-generated copy ctor, copy assignment, and dtor are OK.
80
81 /**
82 Re-adjust components to eliminate small deviations from the axis
83 being a unit vector and angles out of the canonical range (-pi,pi]
84 */
85 void Rectify();
86
87 // ======== Construction From other Rotation Forms ==================
88
89 /**
90 Construct from another supported rotation type (see gv_detail::convert )
91 */
92 template <class OtherRotation>
93 explicit AxisAngle(const OtherRotation & r) {gv_detail::convert(r,*this);}
94
95
96 /**
97 Assign from another supported rotation type (see gv_detail::convert )
98 */
99 template <class OtherRotation>
100 AxisAngle & operator=( OtherRotation const & r ) {
101 gv_detail::convert(r,*this);
102 return *this;
103 }
104
105 // ======== Components ==============
106
107 /**
108 Set the axis and then the angle given a pair of pointers or iterators
109 defining the beginning and end of an array of four Scalars.
110 Precondition: The first three components are assumed to represent
111 the rotation axis vector and the 4-th the rotation angle.
112 The angle is assumed to be in the range (-pi,pi].
113 The axis vector is automatically normalized to be a unit vector
114 */
115 template<class IT>
116#ifndef NDEBUG
117 void SetComponents(IT begin, IT end) {
118#else
119 void SetComponents(IT begin, IT ) {
120#endif
121 IT a = begin; IT b = ++begin; IT c = ++begin;
123 fAngle = *(++begin);
124 assert (++begin==end);
125 // re-normalize the vector
126 double tot = fAxis.R();
127 if (tot > 0) fAxis /= tot;
128 }
129
130 /**
131 Get the axis and then the angle into data specified by an iterator begin
132 and another to the end of the desired data (4 past start).
133 */
134 template<class IT>
135#ifndef NDEBUG
136 void GetComponents(IT begin, IT end) const {
137#else
138 void GetComponents(IT begin, IT ) const {
139#endif
140 IT a = begin; IT b = ++begin; IT c = ++begin;
142 *(++begin) = fAngle;
143 assert (++begin==end);
144 }
145
146 /**
147 Get the axis and then the angle into data specified by an iterator begin
148 */
149 template<class IT>
150 void GetComponents(IT begin) const {
151 double ax,ay,az = 0;
152 fAxis.GetCoordinates(ax,ay,az);
153 *begin++ = ax;
154 *begin++ = ay;
155 *begin++ = az;
156 *begin = fAngle;
157 }
158
159 /**
160 Set components from a non-zero vector (x,y,z) and an angle.
161 Precondition: the Vector needs to implement x(), y(), z(), and unit()
162 */
163 template<class AnyVector>
164 void SetComponents(const AnyVector & v, Scalar angle) {
165 fAxis=v.unit();
166 fAngle=angle;
167 }
168
169 /**
170 Set components into a non-zero vector (x,y,z) and an angle.
171 The vector is intended to be a cartesian dispalcement vector
172 but any vector class assignable from one will work.
173 */
174 template<class AnyVector>
175 void GetComponents(AnyVector & axis, Scalar & angle) const {
176 axis = fAxis;
177 angle = fAngle;
178 }
179
180 /**
181 accesss to rotation axis
182 */
183 AxisVector Axis() const { return fAxis; }
184
185 /**
186 access to rotation angle
187 */
188 Scalar Angle() const { return fAngle; }
189
190 // =========== operations ==============
191
192 /**
193 Rotation operation on a cartesian vector
194 */
197
198 /**
199 Rotation operation on a displacement vector in any coordinate system
200 */
201 template <class CoordSystem, class Tag>
204 DisplacementVector3D< Cartesian3D<double> > xyz(v.X(), v.Y(), v.Z());
207 vNew.SetXYZ( rxyz.X(), rxyz.Y(), rxyz.Z() );
208 return vNew;
209 }
210
211 /**
212 Rotation operation on a position vector in any coordinate system
213 */
214 template <class CoordSystem, class Tag>
219 return PositionVector3D<CoordSystem,Tag> ( rxyz );
220 }
221
222 /**
223 Rotation operation on a Lorentz vector in any 4D coordinate system
224 */
225 template <class CoordSystem>
229 xyz = operator()(xyz);
230 LorentzVector< PxPyPzE4D<double> > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E());
231 return LorentzVector<CoordSystem> ( xyzt );
232 }
233
234
235 /**
236 Rotation operation on an arbitrary vector v.
237 Preconditions: v must implement methods x(), y(), and z()
238 and the arbitrary vector type must have a constructor taking (x,y,z)
239 */
240 template <class ForeignVector>
241 ForeignVector
242 operator() (const ForeignVector & v) const {
245 return ForeignVector ( rxyz.X(), rxyz.Y(), rxyz.Z() );
246 }
247
248 /**
249 Overload operator * for rotation on a vector
250 */
251 template <class AVector>
252 inline
253 AVector operator* (const AVector & v) const
254 {
255 return operator()(v);
256 }
257
258 /**
259 Invert an AxisAngle rotation in place
260 */
261 void Invert() { fAngle = -fAngle; }
262
263 /**
264 Return inverse of an AxisAngle rotation
265 */
266 AxisAngle Inverse() const { AxisAngle result(*this); result.Invert(); return result; }
267
268 // ========= Multi-Rotation Operations ===============
269
270 /**
271 Multiply (combine) two rotations
272 */
273 AxisAngle operator * (const Rotation3D & r) const;
274 AxisAngle operator * (const AxisAngle & a) const;
275 AxisAngle operator * (const EulerAngles & e) const;
276 AxisAngle operator * (const Quaternion & q) const;
277 AxisAngle operator * (const RotationZYX & r) const;
278 AxisAngle operator * (const RotationX & rx) const;
279 AxisAngle operator * (const RotationY & ry) const;
280 AxisAngle operator * (const RotationZ & rz) const;
281
282 /**
283 Post-Multiply (on right) by another rotation : T = T*R
284 */
285 template <class R>
286 AxisAngle & operator *= (const R & r) { return *this = (*this)*r; }
287
288
289 /**
290 Distance between two rotations
291 */
292 template <class R>
293 Scalar Distance ( const R & r ) const {return gv_detail::dist(*this,r);}
294
295 /**
296 Equality/inequality operators
297 */
298 bool operator == (const AxisAngle & rhs) const {
299 if( fAxis != rhs.fAxis ) return false;
300 if( fAngle != rhs.fAngle ) return false;
301 return true;
302 }
303 bool operator != (const AxisAngle & rhs) const {
304 return ! operator==(rhs);
305 }
306
307private:
308
309 AxisVector fAxis; // rotation axis (3D vector)
310 Scalar fAngle; // rotation angle
311
312 void RectifyAngle();
313
314 static double Pi() { return 3.14159265358979323; }
315
316}; // AxisAngle
317
318// ============ Class AxisAngle ends here ============
319
320/**
321 Distance between two rotations
322 */
323template <class R>
324inline
325typename AxisAngle::Scalar
326Distance ( const AxisAngle& r1, const R & r2) {return gv_detail::dist(r1,r2);}
327
328/**
329 Multiplication of an axial rotation by an AxisAngle
330 */
331AxisAngle operator* (RotationX const & r1, AxisAngle const & r2);
332AxisAngle operator* (RotationY const & r1, AxisAngle const & r2);
333AxisAngle operator* (RotationZ const & r1, AxisAngle const & r2);
334
335/**
336 Stream Output and Input
337 */
338 // TODO - I/O should be put in the manipulator form
339
340std::ostream & operator<< (std::ostream & os, const AxisAngle & a);
341
342} // namespace Math
343} // namespace ROOT
344
345
346#endif /* ROOT_Math_GenVector_AxisAngle */
SVector< double, 2 > v
Definition: Dict.h:5
ROOT::R::TRInterface & r
Definition: Object.C:4
#define b(i)
Definition: RSha256.hxx:100
#define c(i)
Definition: RSha256.hxx:101
#define R(a, b, c, d, e, f, g, h, i)
Definition: RSha256.hxx:110
#define e(i)
Definition: RSha256.hxx:103
float * q
Definition: THbookFile.cxx:87
AxisAngle class describing rotation represented with direction axis (3D Vector) and an angle of rotat...
Definition: AxisAngle.h:41
void SetComponents(IT begin, IT end)
Set the axis and then the angle given a pair of pointers or iterators defining the beginning and end ...
Definition: AxisAngle.h:117
void GetComponents(IT begin, IT end) const
Get the axis and then the angle into data specified by an iterator begin and another to the end of th...
Definition: AxisAngle.h:136
static double Pi()
Definition: AxisAngle.h:314
void Rectify()
Re-adjust components to eliminate small deviations from the axis being a unit vector and angles out o...
Definition: AxisAngle.cxx:47
XYZVector operator()(const XYZVector &v) const
AVector operator*(const AVector &v) const
Overload operator * for rotation on a vector.
Definition: AxisAngle.h:253
bool operator==(const AxisAngle &rhs) const
Equality/inequality operators.
Definition: AxisAngle.h:298
void GetComponents(AnyVector &axis, Scalar &angle) const
Set components into a non-zero vector (x,y,z) and an angle.
Definition: AxisAngle.h:175
AxisVector Axis() const
accesss to rotation axis
Definition: AxisAngle.h:183
Scalar Angle() const
access to rotation angle
Definition: AxisAngle.h:188
Scalar Distance(const R &r) const
Distance between two rotations.
Definition: AxisAngle.h:293
DisplacementVector3D< Cartesian3D< Scalar > > AxisVector
definition of vector axis
Definition: AxisAngle.h:50
void SetComponents(const AnyVector &v, Scalar angle)
Set components from a non-zero vector (x,y,z) and an angle.
Definition: AxisAngle.h:164
DisplacementVector3D< Cartesian3D< double >, DefaultCoordinateSystemTag > XYZVector
Rotation operation on a cartesian vector.
Definition: AxisAngle.h:195
AxisAngle(const AnyVector &v, Scalar angle)
Construct from a non-zero vector (x,y,z) and an angle.
Definition: AxisAngle.h:63
AxisAngle Inverse() const
Return inverse of an AxisAngle rotation.
Definition: AxisAngle.h:266
AxisAngle(const OtherRotation &r)
Construct from another supported rotation type (see gv_detail::convert )
Definition: AxisAngle.h:93
AxisAngle()
Default constructor (axis is z and angle is zero)
Definition: AxisAngle.h:56
void GetComponents(IT begin) const
Get the axis and then the angle into data specified by an iterator begin.
Definition: AxisAngle.h:150
bool operator!=(const AxisAngle &rhs) const
Definition: AxisAngle.h:303
void Invert()
Invert an AxisAngle rotation in place.
Definition: AxisAngle.h:261
AxisAngle & operator=(OtherRotation const &r)
Assign from another supported rotation type (see gv_detail::convert )
Definition: AxisAngle.h:100
AxisAngle & operator*=(const R &r)
Post-Multiply (on right) by another rotation : T = T*R.
Definition: AxisAngle.h:286
AxisAngle(IT begin, IT end)
Construct given a pair of pointers or iterators defining the beginning and end of an array of four Sc...
Definition: AxisAngle.h:77
DefaultCoordinateSystemTag Default tag for identifying any coordinate system.
Class describing a generic displacement vector in 3 dimensions.
Scalar R() const
Polar R, converting if necessary from internal coordinate system.
Scalar X() const
Cartesian X, converting if necessary from internal coordinate system.
void GetCoordinates(Scalar &a, Scalar &b, Scalar &c) const
get internal data into 3 Scalar numbers
Scalar Y() const
Cartesian Y, converting if necessary from internal coordinate system.
DisplacementVector3D< CoordSystem, Tag > & SetCoordinates(const Scalar src[])
Set internal data based on a C-style array of 3 Scalar numbers.
DisplacementVector3D< CoordSystem, Tag > & SetXYZ(Scalar a, Scalar b, Scalar c)
set the values of the vector from the cartesian components (x,y,z) (if the vector is held in polar or...
Scalar Z() const
Cartesian Z, converting if necessary from internal coordinate system.
EulerAngles class describing rotation as three angles (Euler Angles).
Definition: EulerAngles.h:43
Class describing a generic LorentzVector in the 4D space-time, using the specified coordinate system ...
Definition: LorentzVector.h:48
Class describing a generic position vector (point) in 3 dimensions.
Rotation class with the (3D) rotation represented by a unit quaternion (u, i, j, k).
Definition: Quaternion.h:47
Rotation class with the (3D) rotation represented by a 3x3 orthogonal matrix.
Definition: Rotation3D.h:65
Rotation class representing a 3D rotation about the X axis by the angle of rotation.
Definition: RotationX.h:43
Rotation class representing a 3D rotation about the Y axis by the angle of rotation.
Definition: RotationY.h:43
Rotation class with the (3D) rotation represented by angles describing first a rotation of an angle p...
Definition: RotationZYX.h:61
Rotation class representing a 3D rotation about the Z axis by the angle of rotation.
Definition: RotationZ.h:43
Namespace for new Math classes and functions.
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48
void convert(R1 const &, R2 const)
Definition: 3DConversions.h:41
std::ostream & operator<<(std::ostream &os, const AxisAngle &a)
Stream Output and Input.
Definition: AxisAngle.cxx:91
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
auto * a
Definition: textangle.C:12