ROOT  6.06/09
Reference Guide
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
TMVA::MethodKNN Class Reference

Definition at line 60 of file MethodKNN.h.

Public Member Functions

 MethodKNN (const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="KNN", TDirectory *theTargetDir=NULL)
 
 MethodKNN (DataSetInfo &theData, const TString &theWeightFile, TDirectory *theTargetDir=NULL)
 constructor from weight file More...
 
virtual ~MethodKNN (void)
 destructor More...
 
virtual Bool_t HasAnalysisType (Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
 FDA can handle classification with 2 classes and regression with one regression-target. More...
 
void Train (void)
 kNN training More...
 
Double_t GetMvaValue (Double_t *err=0, Double_t *errUpper=0)
 Compute classifier response. More...
 
const std::vector< Float_t > & GetRegressionValues ()
 Return vector of averages for target values of k-nearest neighbors. More...
 
void WriteWeightsToStream (TFile &rf) const
 save weights to ROOT file More...
 
void AddWeightsXMLTo (void *parent) const
 write weights to XML More...
 
void ReadWeightsFromXML (void *wghtnode)
 
void ReadWeightsFromStream (std::istream &istr)
 read the weights More...
 
void ReadWeightsFromStream (TFile &rf)
 read weights from ROOT file More...
 
const RankingCreateRanking ()
 no ranking available More...
 
- Public Member Functions inherited from TMVA::MethodBase
 MethodBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="", TDirectory *theBaseDir=0)
 standard constructur More...
 
 MethodBase (Types::EMVA methodType, DataSetInfo &dsi, const TString &weightFile, TDirectory *theBaseDir=0)
 constructor used for Testing + Application of the MVA, only (no training), using given WeightFiles More...
 
virtual ~MethodBase ()
 destructor More...
 
void SetupMethod ()
 setup of methods More...
 
void ProcessSetup ()
 process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) More...
 
virtual void CheckSetup ()
 check may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) More...
 
void AddOutput (Types::ETreeType type, Types::EAnalysisType analysisType)
 
void TrainMethod ()
 
virtual std::map< TString, Double_tOptimizeTuningParameters (TString fomType="ROCIntegral", TString fitType="FitGA")
 call the Optimzier with the set of paremeters and ranges that are meant to be tuned. More...
 
virtual void SetTuneParameters (std::map< TString, Double_t > tuneParameters)
 set the tuning parameters accoding to the argument This is just a dummy . More...
 
void SetTrainTime (Double_t trainTime)
 
Double_t GetTrainTime () const
 
void SetTestTime (Double_t testTime)
 
Double_t GetTestTime () const
 
virtual void TestClassification ()
 initialization More...
 
virtual Double_t GetKSTrainingVsTest (Char_t SorB, TString opt="X")
 
virtual void TestMulticlass ()
 test multiclass classification More...
 
virtual void TestRegression (Double_t &bias, Double_t &biasT, Double_t &dev, Double_t &devT, Double_t &rms, Double_t &rmsT, Double_t &mInf, Double_t &mInfT, Double_t &corr, Types::ETreeType type)
 calculate <sum-of-deviation-squared> of regression output versus "true" value from test sample More...
 
virtual void Reset ()
 
Double_t GetMvaValue (const TMVA::Event *const ev, Double_t *err=0, Double_t *errUpper=0)
 
const std::vector< Float_t > & GetRegressionValues (const TMVA::Event *const ev)
 
virtual const std::vector< Float_t > & GetMulticlassValues ()
 
virtual Double_t GetProba (const Event *ev)
 
virtual Double_t GetProba (Double_t mvaVal, Double_t ap_sig)
 compute likelihood ratio More...
 
virtual Double_t GetRarity (Double_t mvaVal, Types::ESBType reftype=Types::kBackground) const
 compute rarity: R(x) = Integrate_[-oo..x] { PDF(x') dx' } where PDF(x) is the PDF of the classifier's signal or background distribution More...
 
virtual void MakeClass (const TString &classFileName=TString("")) const
 create reader class for method (classification only at present) More...
 
void PrintHelpMessage () const
 prints out method-specific help method More...
 
void WriteStateToFile () const
 write options and weights to file note that each one text file for the main configuration information and one ROOT file for ROOT objects are created More...
 
void ReadStateFromFile ()
 Function to write options and weights to file. More...
 
void ReadStateFromStream (std::istream &tf)
 read the header from the weight files of the different MVA methods More...
 
void ReadStateFromStream (TFile &rf)
 write reference MVA distributions (and other information) to a ROOT type weight file More...
 
void ReadStateFromXMLString (const char *xmlstr)
 for reading from memory More...
 
virtual void WriteEvaluationHistosToFile (Types::ETreeType treetype)
 writes all MVA evaluation histograms to file More...
 
virtual void WriteMonitoringHistosToFile () const
 write special monitoring histograms to file dummy implementation here --------------— More...
 
virtual Double_t GetEfficiency (const TString &, Types::ETreeType, Double_t &err)
 fill background efficiency (resp. More...
 
virtual Double_t GetTrainingEfficiency (const TString &)
 
virtual std::vector< Float_tGetMulticlassEfficiency (std::vector< std::vector< Float_t > > &purity)
 
virtual std::vector< Float_tGetMulticlassTrainingEfficiency (std::vector< std::vector< Float_t > > &purity)
 
virtual Double_t GetSignificance () const
 compute significance of mean difference significance = |<S> - |/Sqrt(RMS_S2 + RMS_B2) More...
 
virtual Double_t GetROCIntegral (TH1D *histS, TH1D *histB) const
 calculate the area (integral) under the ROC curve as a overall quality measure of the classification More...
 
virtual Double_t GetROCIntegral (PDF *pdfS=0, PDF *pdfB=0) const
 calculate the area (integral) under the ROC curve as a overall quality measure of the classification More...
 
virtual Double_t GetMaximumSignificance (Double_t SignalEvents, Double_t BackgroundEvents, Double_t &optimal_significance_value) const
 plot significance, S/Sqrt(S^2 + B^2), curve for given number of signal and background events; returns cut for maximum significance also returned via reference is the maximum significance More...
 
virtual Double_t GetSeparation (TH1 *, TH1 *) const
 compute "separation" defined as <s2> = (1/2) Int_-oo..+oo { (S(x) - B(x))^2/(S(x) + B(x)) dx } More...
 
virtual Double_t GetSeparation (PDF *pdfS=0, PDF *pdfB=0) const
 compute "separation" defined as <s2> = (1/2) Int_-oo..+oo { (S(x) - B(x))^2/(S(x) + B(x)) dx } More...
 
virtual void GetRegressionDeviation (UInt_t tgtNum, Types::ETreeType type, Double_t &stddev, Double_t &stddev90Percent) const
 
const TStringGetJobName () const
 
const TStringGetMethodName () const
 
TString GetMethodTypeName () const
 
Types::EMVA GetMethodType () const
 
const char * GetName () const
 Returns name of object. More...
 
const TStringGetTestvarName () const
 
const TString GetProbaName () const
 
TString GetWeightFileName () const
 retrieve weight file name More...
 
void SetTestvarName (const TString &v="")
 
UInt_t GetNvar () const
 
UInt_t GetNVariables () const
 
UInt_t GetNTargets () const
 
const TStringGetInputVar (Int_t i) const
 
const TStringGetInputLabel (Int_t i) const
 
const TStringGetInputTitle (Int_t i) const
 
Double_t GetMean (Int_t ivar) const
 
Double_t GetRMS (Int_t ivar) const
 
Double_t GetXmin (Int_t ivar) const
 
Double_t GetXmax (Int_t ivar) const
 
Double_t GetSignalReferenceCut () const
 
Double_t GetSignalReferenceCutOrientation () const
 
void SetSignalReferenceCut (Double_t cut)
 
void SetSignalReferenceCutOrientation (Double_t cutOrientation)
 
TDirectoryBaseDir () const
 returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are stored More...
 
TDirectoryMethodBaseDir () const
 returns the ROOT directory where all instances of the corresponding MVA method are stored More...
 
void SetMethodDir (TDirectory *methodDir)
 
void SetBaseDir (TDirectory *methodDir)
 
void SetMethodBaseDir (TDirectory *methodDir)
 
UInt_t GetTrainingTMVAVersionCode () const
 
UInt_t GetTrainingROOTVersionCode () const
 
TString GetTrainingTMVAVersionString () const
 calculates the TMVA version string from the training version code on the fly More...
 
TString GetTrainingROOTVersionString () const
 calculates the ROOT version string from the training version code on the fly More...
 
TransformationHandlerGetTransformationHandler (Bool_t takeReroutedIfAvailable=true)
 
const TransformationHandlerGetTransformationHandler (Bool_t takeReroutedIfAvailable=true) const
 
void RerouteTransformationHandler (TransformationHandler *fTargetTransformation)
 
DataSetData () const
 
DataSetInfoDataInfo () const
 
UInt_t GetNEvents () const
 temporary event when testing on a different DataSet than the own one More...
 
const EventGetEvent () const
 
const EventGetEvent (const TMVA::Event *ev) const
 
const EventGetEvent (Long64_t ievt) const
 
const EventGetEvent (Long64_t ievt, Types::ETreeType type) const
 
const EventGetTrainingEvent (Long64_t ievt) const
 
const EventGetTestingEvent (Long64_t ievt) const
 
const std::vector< TMVA::Event * > & GetEventCollection (Types::ETreeType type)
 returns the event collection (i.e. More...
 
virtual Bool_t IsSignalLike ()
 uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event would be selected as signal or background More...
 
virtual Bool_t IsSignalLike (Double_t mvaVal)
 uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event with this mva output value would tbe selected as signal or background More...
 
Bool_t HasMVAPdfs () const
 
virtual void SetAnalysisType (Types::EAnalysisType type)
 
Types::EAnalysisType GetAnalysisType () const
 
Bool_t DoRegression () const
 
Bool_t DoMulticlass () const
 
void DisableWriting (Bool_t setter)
 
- Public Member Functions inherited from TMVA::IMethod
 IMethod ()
 
virtual ~IMethod ()
 
- Public Member Functions inherited from TMVA::Configurable
 Configurable (const TString &theOption="")
 
virtual ~Configurable ()
 default destructur More...
 
virtual void ParseOptions ()
 options parser More...
 
void PrintOptions () const
 prints out the options set in the options string and the defaults More...
 
const char * GetConfigName () const
 
const char * GetConfigDescription () const
 
void SetConfigName (const char *n)
 
void SetConfigDescription (const char *d)
 
template<class T >
OptionBaseDeclareOptionRef (T &ref, const TString &name, const TString &desc="")
 
template<class T >
OptionBaseDeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc="")
 
template<class T >
void AddPreDefVal (const T &)
 
template<class T >
void AddPreDefVal (const TString &optname, const T &)
 
void CheckForUnusedOptions () const
 checks for unused options in option string More...
 
const TStringGetOptions () const
 
void SetOptions (const TString &s)
 
void WriteOptionsToStream (std::ostream &o, const TString &prefix) const
 write options to output stream (e.g. in writing the MVA weight files More...
 
void ReadOptionsFromStream (std::istream &istr)
 read option back from the weight file More...
 
void AddOptionsXMLTo (void *parent) const
 write options to XML file More...
 
void ReadOptionsFromXML (void *node)
 
void SetMsgType (EMsgType t)
 
template<class T >
TMVA::OptionBaseDeclareOptionRef (T &ref, const TString &name, const TString &desc)
 
template<class T >
TMVA::OptionBaseDeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc)
 
- Public Member Functions inherited from TObject
 TObject ()
 
 TObject (const TObject &object)
 TObject copy ctor. More...
 
TObjectoperator= (const TObject &rhs)
 TObject assignment operator. More...
 
virtual ~TObject ()
 TObject destructor. More...
 
virtual void AppendPad (Option_t *option="")
 Append graphics object to current pad. More...
 
virtual void Browse (TBrowser *b)
 Browse object. May be overridden for another default action. More...
 
virtual const char * ClassName () const
 Returns name of class to which the object belongs. More...
 
virtual void Clear (Option_t *="")
 
virtual TObjectClone (const char *newname="") const
 Make a clone of an object using the Streamer facility. More...
 
virtual Int_t Compare (const TObject *obj) const
 Compare abstract method. More...
 
virtual void Copy (TObject &object) const
 Copy this to obj. More...
 
virtual void Delete (Option_t *option="")
 Delete this object. More...
 
virtual Int_t DistancetoPrimitive (Int_t px, Int_t py)
 Computes distance from point (px,py) to the object. More...
 
virtual void Draw (Option_t *option="")
 Default Draw method for all objects. More...
 
virtual void DrawClass () const
 Draw class inheritance tree of the class to which this object belongs. More...
 
virtual TObjectDrawClone (Option_t *option="") const
 Draw a clone of this object in the current pad. More...
 
virtual void Dump () const
 Dump contents of object on stdout. More...
 
virtual void Execute (const char *method, const char *params, Int_t *error=0)
 Execute method on this object with the given parameter string, e.g. More...
 
virtual void Execute (TMethod *method, TObjArray *params, Int_t *error=0)
 Execute method on this object with parameters stored in the TObjArray. More...
 
virtual void ExecuteEvent (Int_t event, Int_t px, Int_t py)
 Execute action corresponding to an event at (px,py). More...
 
virtual TObjectFindObject (const char *name) const
 Must be redefined in derived classes. More...
 
virtual TObjectFindObject (const TObject *obj) const
 Must be redefined in derived classes. More...
 
virtual Option_tGetDrawOption () const
 Get option used by the graphics system to draw this object. More...
 
virtual UInt_t GetUniqueID () const
 Return the unique object id. More...
 
virtual const char * GetIconName () const
 Returns mime type name of object. More...
 
virtual Option_tGetOption () const
 
virtual char * GetObjectInfo (Int_t px, Int_t py) const
 Returns string containing info about the object at position (px,py). More...
 
virtual const char * GetTitle () const
 Returns title of object. More...
 
virtual Bool_t HandleTimer (TTimer *timer)
 Execute action in response of a timer timing out. More...
 
virtual ULong_t Hash () const
 Return hash value for this object. More...
 
virtual Bool_t InheritsFrom (const char *classname) const
 Returns kTRUE if object inherits from class "classname". More...
 
virtual Bool_t InheritsFrom (const TClass *cl) const
 Returns kTRUE if object inherits from TClass cl. More...
 
virtual void Inspect () const
 Dump contents of this object in a graphics canvas. More...
 
virtual Bool_t IsFolder () const
 Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). More...
 
virtual Bool_t IsEqual (const TObject *obj) const
 Default equal comparison (objects are equal if they have the same address in memory). More...
 
virtual Bool_t IsSortable () const
 
Bool_t IsOnHeap () const
 
Bool_t IsZombie () const
 
virtual Bool_t Notify ()
 This method must be overridden to handle object notification. More...
 
virtual void ls (Option_t *option="") const
 The ls function lists the contents of a class on stdout. More...
 
virtual void Paint (Option_t *option="")
 This method must be overridden if a class wants to paint itself. More...
 
virtual void Pop ()
 Pop on object drawn in a pad to the top of the display list. More...
 
virtual void Print (Option_t *option="") const
 This method must be overridden when a class wants to print itself. More...
 
virtual Int_t Read (const char *name)
 Read contents of object with specified name from the current directory. More...
 
virtual void RecursiveRemove (TObject *obj)
 Recursively remove this object from a list. More...
 
virtual void SaveAs (const char *filename="", Option_t *option="") const
 Save this object in the file specified by filename. More...
 
virtual void SavePrimitive (std::ostream &out, Option_t *option="")
 Save a primitive as a C++ statement(s) on output stream "out". More...
 
virtual void SetDrawOption (Option_t *option="")
 Set drawing option for object. More...
 
virtual void SetUniqueID (UInt_t uid)
 Set the unique object id. More...
 
virtual void UseCurrentStyle ()
 Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. More...
 
virtual Int_t Write (const char *name=0, Int_t option=0, Int_t bufsize=0)
 Write this object to the current directory. More...
 
virtual Int_t Write (const char *name=0, Int_t option=0, Int_t bufsize=0) const
 Write this object to the current directory. More...
 
voidoperator new (size_t sz)
 
voidoperator new[] (size_t sz)
 
voidoperator new (size_t sz, void *vp)
 
voidoperator new[] (size_t sz, void *vp)
 
void operator delete (void *ptr)
 Operator delete. More...
 
void operator delete[] (void *ptr)
 Operator delete []. More...
 
void SetBit (UInt_t f, Bool_t set)
 Set or unset the user status bits as specified in f. More...
 
void SetBit (UInt_t f)
 
void ResetBit (UInt_t f)
 
Bool_t TestBit (UInt_t f) const
 
Int_t TestBits (UInt_t f) const
 
void InvertBit (UInt_t f)
 
virtual void Info (const char *method, const char *msgfmt,...) const
 Issue info message. More...
 
virtual void Warning (const char *method, const char *msgfmt,...) const
 Issue warning message. More...
 
virtual void Error (const char *method, const char *msgfmt,...) const
 Issue error message. More...
 
virtual void SysError (const char *method, const char *msgfmt,...) const
 Issue system error message. More...
 
virtual void Fatal (const char *method, const char *msgfmt,...) const
 Issue fatal error message. More...
 
void AbstractMethod (const char *method) const
 Use this method to implement an "abstract" method that you don't want to leave purely abstract. More...
 
void MayNotUse (const char *method) const
 Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). More...
 
void Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const
 Use this method to declare a method obsolete. More...
 

Protected Member Functions

void MakeClassSpecific (std::ostream &, const TString &) const
 write specific classifier response More...
 
void GetHelpMessage () const
 get help message text More...
 
- Protected Member Functions inherited from TMVA::MethodBase
void NoErrorCalc (Double_t *const err, Double_t *const errUpper)
 
void SetWeightFileName (TString)
 set the weight file name (depreciated) More...
 
const TStringGetWeightFileDir () const
 
void SetWeightFileDir (TString fileDir)
 set directory of weight file More...
 
Bool_t IsNormalised () const
 
void SetNormalised (Bool_t norm)
 
Bool_t Verbose () const
 
Bool_t Help () const
 
const TStringGetInternalVarName (Int_t ivar) const
 
const TStringGetOriginalVarName (Int_t ivar) const
 
Bool_t HasTrainingTree () const
 
virtual void MakeClassSpecificHeader (std::ostream &, const TString &="") const
 
void Statistics (Types::ETreeType treeType, const TString &theVarName, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &)
 calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as they are or for normalised variables (in the range of 0-1) if "norm" is set to kTRUE More...
 
Bool_t TxtWeightsOnly () const
 
Bool_t IsConstructedFromWeightFile () const
 
Bool_t IgnoreEventsWithNegWeightsInTraining () const
 
- Protected Member Functions inherited from TMVA::Configurable
Bool_t LooseOptionCheckingEnabled () const
 
void EnableLooseOptions (Bool_t b=kTRUE)
 
void WriteOptionsReferenceToFile ()
 write complete options to output stream More...
 
void ResetSetFlag ()
 resets the IsSet falg for all declare options to be called before options are read from stream More...
 
const TStringGetReferenceFile () const
 
MsgLoggerLog () const
 
- Protected Member Functions inherited from TObject
void MakeZombie ()
 
virtual void DoError (int level, const char *location, const char *fmt, va_list va) const
 Interface to ErrorHandler (protected). More...
 

Private Member Functions

void DeclareOptions ()
 MethodKNN options. More...
 
void ProcessOptions ()
 process the options specified by the user More...
 
void DeclareCompatibilityOptions ()
 options that are used ONLY for the READER to ensure backward compatibility More...
 
void Init (void)
 Initialization. More...
 
void MakeKNN (void)
 create kNN More...
 
Double_t PolnKernel (Double_t value) const
 polynomial kernel More...
 
Double_t GausKernel (const kNN::Event &event_knn, const kNN::Event &event, const std::vector< Double_t > &svec) const
 Gaussian kernel. More...
 
Double_t getKernelRadius (const kNN::List &rlist) const
 Get polynomial kernel radius. More...
 
const std::vector< Double_tgetRMS (const kNN::List &rlist, const kNN::Event &event_knn) const
 Get polynomial kernel radius. More...
 
double getLDAValue (const kNN::List &rlist, const kNN::Event &event_knn)
 

Private Attributes

Double_t fSumOfWeightsS
 
Double_t fSumOfWeightsB
 
kNN::ModulekNNfModule
 
Int_t fnkNN
 module where all work is done More...
 
Int_t fBalanceDepth
 
Float_t fScaleFrac
 
Float_t fSigmaFact
 
TString fKernel
 
Bool_t fTrim
 
Bool_t fUseKernel
 
Bool_t fUseWeight
 
Bool_t fUseLDA
 
kNN::EventVec fEvent
 
LDA fLDA
 (untouched) events used for learning More...
 
Int_t fTreeOptDepth
 Experimental feature for local knn analysis. More...
 

Additional Inherited Members

- Public Types inherited from TMVA::MethodBase
enum  EWeightFileType { kROOT =0, kTEXT }
 
- Public Types inherited from TObject
enum  EStatusBits {
  kCanDelete = BIT(0), kMustCleanup = BIT(3), kObjInCanvas = BIT(3), kIsReferenced = BIT(4),
  kHasUUID = BIT(5), kCannotPick = BIT(6), kNoContextMenu = BIT(8), kInvalidObject = BIT(13)
}
 
enum  { kIsOnHeap = 0x01000000, kNotDeleted = 0x02000000, kZombie = 0x04000000, kBitMask = 0x00ffffff }
 
enum  { kSingleKey = BIT(0), kOverwrite = BIT(1), kWriteDelete = BIT(2) }
 
- Static Public Member Functions inherited from TObject
static Long_t GetDtorOnly ()
 Return destructor only flag. More...
 
static void SetDtorOnly (void *obj)
 Set destructor only flag. More...
 
static Bool_t GetObjectStat ()
 Get status of object stat flag. More...
 
static void SetObjectStat (Bool_t stat)
 Turn on/off tracking of objects in the TObjectTable. More...
 
- Public Attributes inherited from TMVA::MethodBase
const EventfTmpEvent
 
Bool_t fSetupCompleted
 
- Static Protected Member Functions inherited from TMVA::MethodBase
static MethodBaseGetThisBase ()
 return a pointer the base class of this method More...
 
- Protected Attributes inherited from TMVA::MethodBase
RankingfRanking
 
std::vector< TString > * fInputVars
 
Int_t fNbins
 
Int_t fNbinsMVAoutput
 
Int_t fNbinsH
 
Types::EAnalysisType fAnalysisType
 
std::vector< Float_t > * fRegressionReturnVal
 
std::vector< Float_t > * fMulticlassReturnVal
 
UInt_t fSignalClass
 
UInt_t fBackgroundClass
 

#include <TMVA/MethodKNN.h>

+ Inheritance diagram for TMVA::MethodKNN:
+ Collaboration diagram for TMVA::MethodKNN:

Constructor & Destructor Documentation

TMVA::MethodKNN::MethodKNN ( const TString jobName,
const TString methodTitle,
DataSetInfo theData,
const TString theOption = "KNN",
TDirectory theTargetDir = NULL 
)
TMVA::MethodKNN::MethodKNN ( DataSetInfo theData,
const TString theWeightFile,
TDirectory theTargetDir = NULL 
)

constructor from weight file

Definition at line 81 of file MethodKNN.cxx.

TMVA::MethodKNN::~MethodKNN ( void  )
virtual

destructor

Definition at line 103 of file MethodKNN.cxx.

Member Function Documentation

void TMVA::MethodKNN::AddWeightsXMLTo ( void parent) const
virtual

write weights to XML

Implements TMVA::MethodBase.

Definition at line 523 of file MethodKNN.cxx.

const TMVA::Ranking * TMVA::MethodKNN::CreateRanking ( )
virtual

no ranking available

Implements TMVA::MethodBase.

Definition at line 515 of file MethodKNN.cxx.

void TMVA::MethodKNN::DeclareCompatibilityOptions ( )
privatevirtual

options that are used ONLY for the READER to ensure backward compatibility

Reimplemented from TMVA::MethodBase.

Definition at line 137 of file MethodKNN.cxx.

void TMVA::MethodKNN::DeclareOptions ( )
privatevirtual

MethodKNN options.

Implements TMVA::MethodBase.

Definition at line 111 of file MethodKNN.cxx.

Double_t TMVA::MethodKNN::GausKernel ( const kNN::Event event_knn,
const kNN::Event event,
const std::vector< Double_t > &  svec 
) const
private

Gaussian kernel.

Definition at line 828 of file MethodKNN.cxx.

Referenced by GetMvaValue().

void TMVA::MethodKNN::GetHelpMessage ( ) const
protectedvirtual

get help message text

typical length of text line: "|--------------------------------------------------------------|"

Implements TMVA::IMethod.

Definition at line 767 of file MethodKNN.cxx.

Double_t TMVA::MethodKNN::getKernelRadius ( const kNN::List rlist) const
private

Get polynomial kernel radius.

Definition at line 866 of file MethodKNN.cxx.

Referenced by GetMvaValue().

Double_t TMVA::MethodKNN::getLDAValue ( const kNN::List rlist,
const kNN::Event event_knn 
)
private

Definition at line 942 of file MethodKNN.cxx.

Referenced by GetMvaValue().

Double_t TMVA::MethodKNN::GetMvaValue ( Double_t err = 0,
Double_t errUpper = 0 
)
virtual

Compute classifier response.

Implements TMVA::MethodBase.

Definition at line 291 of file MethodKNN.cxx.

const std::vector< Float_t > & TMVA::MethodKNN::GetRegressionValues ( )
virtual

Return vector of averages for target values of k-nearest neighbors.

Use own copy of the regression vector, I do not like using a pointer to vector.

Reimplemented from TMVA::MethodBase.

Definition at line 432 of file MethodKNN.cxx.

const std::vector< Double_t > TMVA::MethodKNN::getRMS ( const kNN::List rlist,
const kNN::Event event_knn 
) const
private

Get polynomial kernel radius.

Definition at line 890 of file MethodKNN.cxx.

Referenced by GetMvaValue().

Bool_t TMVA::MethodKNN::HasAnalysisType ( Types::EAnalysisType  type,
UInt_t  numberClasses,
UInt_t  numberTargets 
)
virtual

FDA can handle classification with 2 classes and regression with one regression-target.

Implements TMVA::IMethod.

Definition at line 177 of file MethodKNN.cxx.

void TMVA::MethodKNN::Init ( void  )
privatevirtual

Initialization.

Implements TMVA::MethodBase.

Definition at line 187 of file MethodKNN.cxx.

void TMVA::MethodKNN::MakeClassSpecific ( std::ostream &  fout,
const TString className 
) const
protectedvirtual

write specific classifier response

Reimplemented from TMVA::MethodBase.

Definition at line 755 of file MethodKNN.cxx.

void TMVA::MethodKNN::MakeKNN ( void  )
private

create kNN

Definition at line 200 of file MethodKNN.cxx.

Double_t TMVA::MethodKNN::PolnKernel ( Double_t  value) const
private

polynomial kernel

Definition at line 812 of file MethodKNN.cxx.

Referenced by GetMvaValue().

void TMVA::MethodKNN::ProcessOptions ( )
privatevirtual

process the options specified by the user

Implements TMVA::MethodBase.

Definition at line 145 of file MethodKNN.cxx.

void TMVA::MethodKNN::ReadWeightsFromStream ( std::istream &  istr)
virtual

read the weights

Implements TMVA::MethodBase.

Definition at line 588 of file MethodKNN.cxx.

void TMVA::MethodKNN::ReadWeightsFromStream ( TFile rf)
virtual

read weights from ROOT file

Reimplemented from TMVA::MethodBase.

Definition at line 713 of file MethodKNN.cxx.

void TMVA::MethodKNN::ReadWeightsFromXML ( void wghtnode)
virtual

Implements TMVA::MethodBase.

Definition at line 550 of file MethodKNN.cxx.

void TMVA::MethodKNN::Train ( void  )
virtual

kNN training

Implements TMVA::MethodBase.

Definition at line 231 of file MethodKNN.cxx.

void TMVA::MethodKNN::WriteWeightsToStream ( TFile rf) const

save weights to ROOT file

Definition at line 677 of file MethodKNN.cxx.

Member Data Documentation

Int_t TMVA::MethodKNN::fBalanceDepth
private

Definition at line 133 of file MethodKNN.h.

kNN::EventVec TMVA::MethodKNN::fEvent
private

Definition at line 145 of file MethodKNN.h.

TString TMVA::MethodKNN::fKernel
private

Definition at line 138 of file MethodKNN.h.

LDA TMVA::MethodKNN::fLDA
private

(untouched) events used for learning

Definition at line 147 of file MethodKNN.h.

kNN::ModulekNN* TMVA::MethodKNN::fModule
private

Definition at line 130 of file MethodKNN.h.

Int_t TMVA::MethodKNN::fnkNN
private

module where all work is done

Definition at line 132 of file MethodKNN.h.

Float_t TMVA::MethodKNN::fScaleFrac
private

Definition at line 135 of file MethodKNN.h.

Float_t TMVA::MethodKNN::fSigmaFact
private

Definition at line 136 of file MethodKNN.h.

Double_t TMVA::MethodKNN::fSumOfWeightsB
private

Definition at line 128 of file MethodKNN.h.

Double_t TMVA::MethodKNN::fSumOfWeightsS
private

Definition at line 127 of file MethodKNN.h.

Int_t TMVA::MethodKNN::fTreeOptDepth
private

Experimental feature for local knn analysis.

Definition at line 150 of file MethodKNN.h.

Bool_t TMVA::MethodKNN::fTrim
private

Definition at line 140 of file MethodKNN.h.

Bool_t TMVA::MethodKNN::fUseKernel
private

Definition at line 141 of file MethodKNN.h.

Bool_t TMVA::MethodKNN::fUseLDA
private

Definition at line 143 of file MethodKNN.h.

Bool_t TMVA::MethodKNN::fUseWeight
private

Definition at line 142 of file MethodKNN.h.


The documentation for this class was generated from the following files: