26 #ifndef ROOT_TMVA_MethodKNN
27 #define ROOT_TMVA_MethodKNN
41 #ifndef ROOT_TMVA_MethodBase
44 #ifndef ROOT_TMVA_ModulekNN
67 const TString& theOption =
"KNN",
void ProcessOptions()
process the options specified by the user
void DeclareOptions()
MethodKNN options.
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
void Train(void)
kNN training
void MakeKNN(void)
create kNN
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility
void ReadWeightsFromStream(std::istream &istr)
read the weights
MethodKNN(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="KNN", TDirectory *theTargetDir=NULL)
void Init(void)
Initialization.
#define ClassDef(name, id)
Double_t PolnKernel(Double_t value) const
polynomial kernel
std::vector< TMVA::kNN::Event > EventVec
void WriteWeightsToStream(TFile &rf) const
save weights to ROOT file
LDA fLDA
(untouched) events used for learning
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
Compute classifier response.
Double_t GausKernel(const kNN::Event &event_knn, const kNN::Event &event, const std::vector< Double_t > &svec) const
Gaussian kernel.
virtual ~MethodKNN(void)
destructor
Int_t fTreeOptDepth
Experimental feature for local knn analysis.
const Ranking * CreateRanking()
no ranking available
void ReadWeightsFromXML(void *wghtnode)
Describe directory structure in memory.
void AddWeightsXMLTo(void *parent) const
write weights to XML
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes and regression with one regression-target.
void GetHelpMessage() const
get help message text
const std::vector< Double_t > getRMS(const kNN::List &rlist, const kNN::Event &event_knn) const
Get polynomial kernel radius.
virtual void ReadWeightsFromStream(std::istream &)=0
const std::vector< Float_t > & GetRegressionValues()
Return vector of averages for target values of k-nearest neighbors.
double getLDAValue(const kNN::List &rlist, const kNN::Event &event_knn)
Int_t fnkNN
module where all work is done
Double_t getKernelRadius(const kNN::List &rlist) const
Get polynomial kernel radius.