ROOT
6.07/01
Reference Guide
|
Public Member Functions | |
DataSet (const DataSetInfo &) | |
constructor More... | |
virtual | ~DataSet () |
destructor More... | |
void | AddEvent (Event *, Types::ETreeType) |
add event to event list after which the event is owned by the dataset More... | |
Long64_t | GetNEvents (Types::ETreeType type=Types::kMaxTreeType) const |
Long64_t | GetNTrainingEvents () const |
Long64_t | GetNTestEvents () const |
const Event * | GetEvent () const |
const Event * | GetEvent (Long64_t ievt) const |
const Event * | GetTrainingEvent (Long64_t ievt) const |
const Event * | GetTestEvent (Long64_t ievt) const |
const Event * | GetEvent (Long64_t ievt, Types::ETreeType type) const |
UInt_t | GetNVariables () const |
access the number of variables through the datasetinfo More... | |
UInt_t | GetNTargets () const |
access the number of targets through the datasetinfo More... | |
UInt_t | GetNSpectators () const |
access the number of targets through the datasetinfo More... | |
void | SetCurrentEvent (Long64_t ievt) const |
void | SetCurrentType (Types::ETreeType type) const |
Types::ETreeType | GetCurrentType () const |
void | SetEventCollection (std::vector< Event * > *, Types::ETreeType) |
Sets the event collection (by DataSetFactory) More... | |
const std::vector< Event * > & | GetEventCollection (Types::ETreeType type=Types::kMaxTreeType) const |
const TTree * | GetEventCollectionAsTree () |
Long64_t | GetNEvtSigTest () |
return number of signal test events in dataset More... | |
Long64_t | GetNEvtBkgdTest () |
return number of background test events in dataset More... | |
Long64_t | GetNEvtSigTrain () |
return number of signal training events in dataset More... | |
Long64_t | GetNEvtBkgdTrain () |
return number of background training events in dataset More... | |
Bool_t | HasNegativeEventWeights () const |
Results * | GetResults (const TString &, Types::ETreeType type, Types::EAnalysisType analysistype) |
TString info(resultsName+"/"); switch(type) { case Types::kTraining: info += "kTraining/"; break; case Types::kTesting: info += "kTesting/"; break; default: break; } switch(analysistype) { case Types::kClassification: info += "kClassification"; break; case Types::kRegression: info += "kRegression"; break; case Types::kNoAnalysisType: info += "kNoAnalysisType"; break; case Types::kMaxAnalysisType:info += "kMaxAnalysisType"; break; }. More... | |
void | DeleteResults (const TString &, Types::ETreeType type, Types::EAnalysisType analysistype) |
delete the results stored for this particulary Method instance (here appareantly called resultsName instead of MethodTitle Tree type (Training, testing etc..) Analysis Type (Classification, Multiclass, Regression etc..) More... | |
void | SetVerbose (Bool_t) |
void | DivideTrainingSet (UInt_t blockNum) |
divide training set More... | |
void | MoveTrainingBlock (Int_t blockInd, Types::ETreeType dest, Bool_t applyChanges=kTRUE) |
move training block More... | |
void | IncrementNClassEvents (Int_t type, UInt_t classNumber) |
Long64_t | GetNClassEvents (Int_t type, UInt_t classNumber) |
void | ClearNClassEvents (Int_t type) |
TTree * | GetTree (Types::ETreeType type) |
create the test/trainings tree with all the variables, the weights, the classes, the targets, the spectators, the MVA outputs More... | |
void | InitSampling (Float_t fraction, Float_t weight, UInt_t seed=0) |
initialize random or importance sampling More... | |
void | EventResult (Bool_t successful, Long64_t evtNumber=-1) |
increase the importance sampling weight of the event when not successful and decrease it when successful More... | |
void | CreateSampling () const |
create an event sampling (random or importance sampling) More... | |
UInt_t | TreeIndex (Types::ETreeType type) const |
Private Member Functions | |
DataSet () | |
void | DestroyCollection (Types::ETreeType type, Bool_t deleteEvents) |
destroys the event collection (events + vector) More... | |
MsgLogger & | Log () const |
void | ApplyTrainingBlockDivision () |
void | ApplyTrainingSetDivision () |
apply division of data set More... | |
Private Attributes | |
const DataSetInfo & | fdsi |
std::vector< Event * >::iterator | fEvtCollIt |
datasetinfo that created this dataset More... | |
std::vector< std::vector < Event * > * > | fEventCollection |
std::vector< std::map< TString, Results * > > | fResults |
list of events for training/testing/... More... | |
UInt_t | fCurrentTreeIdx |
[train/test/...][method-identifier] More... | |
Long64_t | fCurrentEventIdx |
std::vector< Char_t > | fSampling |
std::vector< Int_t > | fSamplingNEvents |
std::vector< Float_t > | fSamplingWeight |
std::vector< std::vector < std::pair< Float_t, Long64_t > * > > | fSamplingEventList |
std::vector< std::vector < std::pair< Float_t, Long64_t > * > > | fSamplingSelected |
TRandom3 * | fSamplingRandom |
std::vector< std::vector < Long64_t > > | fClassEvents |
Bool_t | fHasNegativeEventWeights |
number of events of class 0,1,2,... in training[0] More... | |
MsgLogger * | fLogger |
std::vector< Char_t > | fBlockBelongToTraining |
Long64_t | fTrainingBlockSize |
#include <TMVA/DataSet.h>
TMVA::DataSet::DataSet | ( | const DataSetInfo & | dsi | ) |
constructor
Definition at line 67 of file DataSet.cxx.
|
virtual |
destructor
Definition at line 100 of file DataSet.cxx.
|
private |
void TMVA::DataSet::AddEvent | ( | Event * | ev, |
Types::ETreeType | type | ||
) |
add event to event list after which the event is owned by the dataset
Definition at line 225 of file DataSet.cxx.
|
private |
|
private |
apply division of data set
Definition at line 364 of file DataSet.cxx.
Definition at line 144 of file DataSet.cxx.
void TMVA::DataSet::CreateSampling | ( | ) | const |
create an event sampling (random or importance sampling)
Definition at line 478 of file DataSet.cxx.
void TMVA::DataSet::DeleteResults | ( | const TString & | resultsName, |
Types::ETreeType | type, | ||
Types::EAnalysisType | analysistype | ||
) |
delete the results stored for this particulary Method instance (here appareantly called resultsName instead of MethodTitle Tree type (Training, testing etc..) Analysis Type (Classification, Multiclass, Regression etc..)
Definition at line 314 of file DataSet.cxx.
|
private |
destroys the event collection (events + vector)
Definition at line 173 of file DataSet.cxx.
divide training set
Definition at line 340 of file DataSet.cxx.
increase the importance sampling weight of the event when not successful and decrease it when successful
Definition at line 542 of file DataSet.cxx.
|
inline |
const TMVA::Event * TMVA::DataSet::GetEvent | ( | ) | const |
Definition at line 186 of file DataSet.cxx.
Referenced by TMVA::DataSetFactory::CalcCovarianceMatrix(), TMVA::DataSetFactory::CalcMinMax(), TMVA::ResultsMulticlass::CreateMulticlassHistos(), TMVA::ResultsRegression::DeviationAsAFunctionOf(), TMVA::ResultsMulticlass::EstimatorFunction(), TMVA::Factory::EvaluateAllMethods(), GetEvent(), TMVA::MethodPyAdaBoost::GetMvaValue(), TMVA::MethodPyRandomForest::GetMvaValue(), TMVA::MethodPyGTB::GetMvaValue(), GetTestEvent(), GetTrainingEvent(), TMVA::RMethodBase::LoadData(), TMVA::ResultsRegression::QuadraticDeviation(), and TMVA::CCTreeWrapper::TestTreeQuality().
Definition at line 95 of file DataSet.h.
Referenced by GetEvent().
|
inline |
|
inline |
const TTree* TMVA::DataSet::GetEventCollectionAsTree | ( | ) |
Definition at line 152 of file DataSet.cxx.
Referenced by TMVA::DataSetFactory::BuildInitialDataSet().
|
inline |
Definition at line 225 of file DataSet.h.
Referenced by TMVA::DataSetFactory::CalcCovarianceMatrix(), TMVA::DataSetFactory::CalcMinMax(), TMVA::DataSetFactory::CreateDataSet(), TMVA::ResultsMulticlass::CreateMulticlassHistos(), TMVA::ResultsRegression::DeviationAsAFunctionOf(), TMVA::ResultsMulticlass::EstimatorFunction(), TMVA::Factory::EvaluateAllMethods(), TMVA::MethodBase::GetNEvents(), GetNTestEvents(), GetNTrainingEvents(), TMVA::ResultsRegression::QuadraticDeviation(), and TMVA::CCTreeWrapper::TestTreeQuality().
Long64_t TMVA::DataSet::GetNEvtBkgdTest | ( | ) |
return number of background test events in dataset
Definition at line 404 of file DataSet.cxx.
Referenced by TMVA::Factory::EvaluateAllMethods().
Long64_t TMVA::DataSet::GetNEvtBkgdTrain | ( | ) |
return number of background training events in dataset
Definition at line 420 of file DataSet.cxx.
Referenced by TMVA::MethodRSVM::Train().
Long64_t TMVA::DataSet::GetNEvtSigTest | ( | ) |
return number of signal test events in dataset
Definition at line 396 of file DataSet.cxx.
Referenced by TMVA::Factory::EvaluateAllMethods().
Long64_t TMVA::DataSet::GetNEvtSigTrain | ( | ) |
return number of signal training events in dataset
Definition at line 412 of file DataSet.cxx.
Referenced by TMVA::MethodRSVM::Train().
UInt_t TMVA::DataSet::GetNSpectators | ( | ) | const |
access the number of targets through the datasetinfo
Definition at line 216 of file DataSet.cxx.
Referenced by TMVA::DataSetFactory::CalcMinMax().
UInt_t TMVA::DataSet::GetNTargets | ( | ) | const |
access the number of targets through the datasetinfo
Definition at line 208 of file DataSet.cxx.
Referenced by TMVA::DataSetFactory::CalcMinMax().
|
inline |
Definition at line 91 of file DataSet.h.
Referenced by TMVA::RMethodBase::LoadData(), and TMVA::DataSetFactory::MixEvents().
|
inline |
Definition at line 90 of file DataSet.h.
Referenced by TMVA::MethodBase::HasTrainingTree(), TMVA::MethodPyGTB::Init(), TMVA::MethodPyRandomForest::Init(), TMVA::MethodPyAdaBoost::Init(), TMVA::RMethodBase::LoadData(), TMVA::DataSetFactory::MixEvents(), TMVA::Factory::OptimizeAllMethods(), TMVA::MethodCategory::Train(), and TMVA::Factory::TrainAllMethods().
UInt_t TMVA::DataSet::GetNVariables | ( | ) | const |
access the number of variables through the datasetinfo
Definition at line 200 of file DataSet.cxx.
Referenced by TMVA::DataSetFactory::CalcCorrelationMatrix(), TMVA::DataSetFactory::CalcCovarianceMatrix(), TMVA::DataSetFactory::CalcMinMax(), TMVA::MethodPyGTB::Init(), TMVA::MethodPyRandomForest::Init(), and TMVA::MethodPyAdaBoost::Init().
TMVA::Results * TMVA::DataSet::GetResults | ( | const TString & | resultsName, |
Types::ETreeType | type, | ||
Types::EAnalysisType | analysistype | ||
) |
TString info(resultsName+"/"); switch(type) { case Types::kTraining: info += "kTraining/"; break; case Types::kTesting: info += "kTesting/"; break; default: break; } switch(analysistype) { case Types::kClassification: info += "kClassification"; break; case Types::kRegression: info += "kRegression"; break; case Types::kNoAnalysisType: info += "kNoAnalysisType"; break; case Types::kMaxAnalysisType:info += "kMaxAnalysisType"; break; }.
Definition at line 263 of file DataSet.cxx.
Referenced by TMVA::Factory::EvaluateAllMethods().
Definition at line 96 of file DataSet.h.
Referenced by TMVA::MethodPyAdaBoost::Init(), TMVA::MethodPyRandomForest::Init(), and TMVA::MethodPyGTB::Init().
TTree * TMVA::DataSet::GetTree | ( | Types::ETreeType | type | ) |
create the test/trainings tree with all the variables, the weights, the classes, the targets, the spectators, the MVA outputs
Definition at line 579 of file DataSet.cxx.
|
inline |
Definition at line 135 of file DataSet.cxx.
initialize random or importance sampling
Definition at line 428 of file DataSet.cxx.
void TMVA::DataSet::MoveTrainingBlock | ( | Int_t | blockInd, |
Types::ETreeType | dest, | ||
Bool_t | applyChanges = kTRUE |
||
) |
move training block
Definition at line 384 of file DataSet.cxx.
Definition at line 110 of file DataSet.h.
Referenced by TMVA::DataSetFactory::BuildDynamicDataSet().
|
inline |
Definition at line 111 of file DataSet.h.
Referenced by TMVA::DataSetFactory::BuildDynamicDataSet(), TMVA::ResultsMulticlass::CreateMulticlassHistos(), TMVA::ResultsRegression::DeviationAsAFunctionOf(), TMVA::ResultsMulticlass::EstimatorFunction(), TMVA::Factory::EvaluateAllMethods(), TMVA::ResultsRegression::QuadraticDeviation(), and TMVA::CCTreeWrapper::TestTreeQuality().
void TMVA::DataSet::SetEventCollection | ( | std::vector< Event * > * | events, |
Types::ETreeType | type | ||
) |
Sets the event collection (by DataSetFactory)
Definition at line 235 of file DataSet.cxx.
Referenced by TMVA::DataSetFactory::BuildDynamicDataSet(), and TMVA::DataSetFactory::MixEvents().
|
inline |
Definition at line 200 of file DataSet.h.
Referenced by GetEvent(), and SetCurrentType().
|
private |
|
private |
|
mutableprivate |
Definition at line 168 of file DataSet.h.
Referenced by GetEvent(), and SetCurrentEvent().
|
mutableprivate |
[train/test/...][method-identifier]
Definition at line 167 of file DataSet.h.
Referenced by GetEvent(), SetCurrentType(), and TreeIndex().
|
private |
|
private |
|
private |
|
private |
number of events of class 0,1,2,... in training[0]
Definition at line 183 of file DataSet.h.
Referenced by HasNegativeEventWeights().
|
mutableprivate |
|
private |
|
private |
|
private |
|
private |