Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
df106_HiggsToFourLeptons.C File Reference

Detailed Description

View in nbviewer Open in SWAN
The Higgs to four lepton analysis from the ATLAS Open Data release of 2020, with RDataFrame.

This tutorial is the Higgs to four lepton analysis from the ATLAS Open Data release in 2020 (http://opendata.atlas.cern/release/2020/documentation/). The data was taken with the ATLAS detector during 2016 at a center-of-mass energy of 13 TeV. The decay of the Standard Model Higgs boson to two Z bosons and subsequently to four leptons is called the "golden channel". The selection leads to a narrow invariant mass peak on top a relatively smooth and small background, revealing the Higgs at 125 GeV. The analysis is translated to an RDataFrame workflow processing about 300 MB of simulated events and data.

Lepton selection efficiency corrections ("scale factors") are applied to simulated samples to correct for the differences in the trigger, reconstruction, and identification efficiencies in simulation compared to real data. Systematic uncertainties for those scale factors are evaluated and the Vary function of RDataFrame is used to propagate the variations to the final four leptons mass distribution.

See the corresponding spec json file.

#include "TInterpreter.h"
#include <Math/Vector4D.h>
#include <ROOT/RVec.hxx>
#include <TCanvas.h>
#include <TGraph.h>
#include <TH1D.h>
#include <THStack.h>
#include <TLatex.h>
#include <TLegend.h>
#include <TProfile.h>
#include <TStyle.h>
using namespace ROOT::VecOps;
using namespace ROOT::RDF::Experimental;
// Define functions needed in the analysis
// Select events for the analysis
bool GoodElectronsAndMuons(const ROOT::RVecI &type, const RVecF &pt, const RVecF &eta, const RVecF &phi, const RVecF &e,
const RVecF &trackd0pv, const RVecF &tracksigd0pv, const RVecF &z0)
{
for (size_t i = 0; i < type.size(); i++) {
PtEtaPhiEVectorF p(0.001 * pt[i], eta[i], phi[i], 0.001 * e[i]);
if (type[i] == 11) {
if (pt[i] < 7000 || abs(eta[i]) > 2.47 || abs(trackd0pv[i] / tracksigd0pv[i]) > 5 ||
abs(z0[i] * sin(p.Theta())) > 0.5)
return false;
} else {
if (abs(trackd0pv[i] / tracksigd0pv[i]) > 5 || abs(z0[i] * sin(p.Theta())) > 0.5)
return false;
}
}
return true;
}
// Compute the invariant mass of a four-lepton-system.
float ComputeInvariantMass(const RVecF &pt, const RVecF &eta, const RVecF &phi, const RVecF &e)
{
PtEtaPhiEVectorF p1(pt[0], eta[0], phi[0], e[0]);
PtEtaPhiEVectorF p2(pt[1], eta[1], phi[1], e[1]);
PtEtaPhiEVectorF p3(pt[2], eta[2], phi[2], e[2]);
PtEtaPhiEVectorF p4(pt[3], eta[3], phi[3], e[3]);
return 0.001 * (p1 + p2 + p3 + p4).M();
}
{
// Enable Multithreading
// Create the RDataFrame from the spec json file. The df106_HiggsToFourLeptons_spec.json is provided in the same
// folder as this tutorial
std::string dataset_spec = gROOT->GetTutorialsDir() + std::string("/dataframe/df106_HiggsToFourLeptons_spec.json");
// Add the ProgressBar feature
#ifndef __CLING__
// If this tutorial is compiled, rather than run as a ROOT macro, the interpreter needs to be fed the signatures
// of all the functions we want to JIT in our analysis, as well as any type used in those signatures.
// clang-format off
gInterpreter->Declare(
"using ROOT::RVecF;"
"bool GoodElectronsAndMuons(const ROOT::RVecI &type, const RVecF &pt, const RVecF &eta, const RVecF &phi, const RVecF &e,"
"const RVecF &trackd0pv, const RVecF &tracksigd0pv, const RVecF &z0);"
"float ComputeInvariantMass(const RVecF &pt, const RVecF &eta, const RVecF &phi, const RVecF &e);"
);
// clang-format on
#endif
// Perform the analysis
// Access metadata information that is stored in the JSON config file of the RDataFrame
// The metadata contained in the JSON file is accessible within a `DefinePerSample` call, through the `RSampleInfo`
// class
auto df_analysis =
df.DefinePerSample("xsecs", [](unsigned int slot, const RSampleInfo &id) { return id.GetD("xsecs"); })
.DefinePerSample("lumi", [](unsigned int slot, const RSampleInfo &id) { return id.GetD("lumi"); })
.DefinePerSample("sumws", [](unsigned int slot, const RSampleInfo &id) { return id.GetD("sumws"); })
.DefinePerSample("sample_category",
[](unsigned int slot, const RSampleInfo &id) { return id.GetS("sample_category"); })
// Apply an MC correction for the ZZ decay due to missing gg->ZZ process
.DefinePerSample("scale",
[](unsigned int slot, const ROOT::RDF::RSampleInfo &id) {
return id.Contains("mc_363490.llll.4lep.root") ? 1.3f : 1.0f;
})
// Select electron or muon trigger
.Filter("trigE || trigM")
// Select events with exactly four good leptons conserving charge and lepton numbers
// Note that all collections are RVecs and good_lep is the mask for the good leptons.
// The lepton types are PDG numbers and set to 11 or 13 for an electron or muon
// irrespective of the charge.
.Define("good_lep",
"abs(lep_eta) < 2.5 && lep_pt > 5000 && lep_ptcone30 / lep_pt < 0.3 && lep_etcone20 / lep_pt < 0.3")
.Filter("Sum(good_lep) == 4")
.Filter("Sum(lep_charge[good_lep]) == 0")
.Define("goodlep_sumtypes", "Sum(lep_type[good_lep])")
.Filter("goodlep_sumtypes == 44 || goodlep_sumtypes == 52 || goodlep_sumtypes == 48")
// Apply additional cuts depending on lepton flavour
.Filter(
"GoodElectronsAndMuons(lep_type[good_lep], lep_pt[good_lep], lep_eta[good_lep], lep_phi[good_lep], "
"lep_E[good_lep], lep_trackd0pvunbiased[good_lep], lep_tracksigd0pvunbiased[good_lep], lep_z0[good_lep])")
// Create new columns with the kinematics of good leptons
.Define("goodlep_pt", "lep_pt[good_lep]")
.Define("goodlep_eta", "lep_eta[good_lep]")
.Define("goodlep_phi", "lep_phi[good_lep]")
.Define("goodlep_E", "lep_E[good_lep]")
.Define("goodlep_type", "lep_type[good_lep]")
// Select leptons with high transverse momentum
.Filter("goodlep_pt[0] > 25000 && goodlep_pt[1] > 15000 && goodlep_pt[2] > 10000")
// Compute invariant mass
.Define("m4l", "ComputeInvariantMass(goodlep_pt, goodlep_eta, goodlep_phi, goodlep_E)")
// Reweighting of the samples is different for "data" and "MC"
.DefinePerSample("reweighting", [](unsigned int slot, const RSampleInfo &id) { return id.Contains("mc"); });
// Define the weight column (scale factor) for the MC samples
auto df_mc = df_analysis.Filter("reweighting == true")
.Define("weight", ("scaleFactor_ELE * scaleFactor_MUON * scaleFactor_LepTRIGGER * "
"scaleFactor_PILEUP * mcWeight * scale * xsecs / sumws * lumi"));
// Book histograms for individual MC samples
auto df_higgs = df_mc.Filter(R"(sample_category == "higgs")")
.Histo1D<float>(ROOT::RDF::TH1DModel("higgs", "m4l", 24, 80, 170), "m4l", "weight");
auto df_zz = df_mc.Filter("sample_category == \"zz\"")
.Histo1D<float>(ROOT::RDF::TH1DModel("zz", "m4l", 24, 80, 170), "m4l", "weight");
auto df_other = df_mc.Filter("sample_category == \"other\"")
.Histo1D<float>(ROOT::RDF::TH1DModel("other", "m4l", 24, 80, 170), "m4l", "weight");
// Book the invariant mass histogram for the data
auto df_h_mass_data = df_analysis.Filter("reweighting == false")
.Filter("sample_category == \"data\"")
.Define("weight_", []() { return 1; })
.Histo1D<float>(ROOT::RDF::TH1DModel("data", "m4l", 24, 80, 170), "m4l", "weight_");
// Evaluate the systematic uncertainty
// The systematic uncertainty in this analysis is the MC scale factor uncertainty that depends on lepton
// kinematics such as pT or pseudorapidity.
// Muons uncertainties are negligible, as stated in https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/MUON
// Electrons uncertainties are evaluated based on the plots available in https://doi.org/10.48550/arXiv.1908.0
// The uncertainties are linearly interpolated, using the `TGraph::Eval()` method, to cover a range of pT values
// covered by the analysis.
const std::vector<double> x{5.50e3, 5.52e3, 12.54e3, 17.43e3, 22.40e3, 27.48e3, 30e3, 10000e3};
const std::vector<double> y{0.06628, 0.06395, 0.06396, 0.03372, 0.02441, 0.01403, 0, 0};
TGraph graph(x.size(), x.data(), y.data());
// Use the Vary method to add the systematic variations to the total MC scale factor ("weight") of the analysis
// The input consists of the input column to be varied and the lambda function to compute the systematic variations.
// The new output columns contain the varied values of the input column.
auto df_with_variations_mc =
df_mc
.Vary("weight",
[&graph](double x, const RVecF &pt, const RVec<unsigned int> &type) {
const auto v = Mean(Map(pt[type == 11], [&graph](auto p) { return graph.Eval(p); }));
return RVec<double>{(1 + v) * x, (1 - v) * x};
},
{"weight", "goodlep_pt", "goodlep_type"}, {"up", "down"})
.Histo1D<float>(ROOT::RDF::TH1DModel("Invariant Mass", "m4l", 24, 80, 170), "m4l", "weight");
// Create the total MC scale factor histograms: "nominal", "weight:up" and "weight:down".
auto histos_mc = VariationsFor(df_with_variations_mc);
// Evaluate the total MC uncertainty based on the variations. Note, in this case the uncertainties are symmetric.
for (unsigned int i = 0; i < histos_mc["nominal"].GetXaxis()->GetNbins(); i++) {
histos_mc["nominal"].SetBinError(
i, (histos_mc["weight:up"].GetBinContent(i) - histos_mc["nominal"].GetBinContent(i)));
}
// Make the plot of the data, individual MC contributions and the total MC scale factor systematic variations.
gROOT->SetStyle("ATLAS");
// Create canvas with pad
auto c = new TCanvas("c", " ", 600, 600);
auto pad = new TPad("upper_pad", "", 0, 0, 1, 1);
pad->SetTickx(0);
pad->SetTicky(0);
pad->Draw();
pad->cd();
// Draw stack with MC contributions
// Draw cloned histograms to preserve graphics when original objects goes out of scope
df_other->SetFillColor(kViolet - 9);
df_zz->SetFillColor(kAzure - 9);
df_higgs->SetFillColor(kRed + 2);
auto stack = new THStack("stack", "");
auto h_other = static_cast<TH1 *>(df_other->Clone());
stack->Add(h_other);
auto h_zz = static_cast<TH1 *>(df_zz->Clone());
stack->Add(h_zz);
auto h_higgs = static_cast<TH1 *>(df_higgs->Clone());
stack->Add(h_higgs);
stack->Draw("HIST");
// stack histogram can be accessed only after drawing
stack->GetHistogram()->SetTitle("");
stack->GetHistogram()->GetXaxis()->SetLabelSize(0.035);
stack->GetHistogram()->GetXaxis()->SetTitleSize(0.045);
stack->GetHistogram()->GetXaxis()->SetTitleOffset(1.3);
stack->GetHistogram()->GetXaxis()->SetTitle("m_{4l}^{H#rightarrow ZZ} [GeV]");
stack->GetHistogram()->GetYaxis()->SetLabelSize(0.035);
stack->GetHistogram()->GetYaxis()->SetTitleSize(0.045);
stack->GetHistogram()->GetYaxis()->SetTitle("Events");
stack->SetMaximum(35);
stack->GetHistogram()->GetYaxis()->ChangeLabel(1, -1, 0);
// Draw MC scale factor and variations
histos_mc["nominal"].SetFillColor(kBlack);
histos_mc["nominal"].SetFillStyle(3254);
auto h_nominal = histos_mc["nominal"].DrawClone("E2 same");
histos_mc["weight:up"].SetLineColor(kGreen + 2);
auto h_weight_up = histos_mc["weight:up"].DrawClone("HIST same");
histos_mc["weight:down"].SetLineColor(kBlue + 2);
auto h_weight_down = histos_mc["weight:down"].DrawClone("HIST same");
// Draw data histogram
df_h_mass_data->SetMarkerStyle(20);
df_h_mass_data->SetMarkerSize(1.);
df_h_mass_data->SetLineWidth(2);
df_h_mass_data->SetLineColor(kBlack);
df_h_mass_data->SetStats(false);
auto h_mass_data = df_h_mass_data->DrawClone("E sames");
// Add legend
auto legend = new TLegend(0.57, 0.65, 0.94, 0.94);
legend->SetTextFont(42);
legend->SetFillStyle(0);
legend->SetBorderSize(0);
legend->SetTextSize(0.025);
legend->SetTextAlign(32);
legend->AddEntry(h_mass_data, "Data", "lep");
legend->AddEntry(h_higgs, "Higgs MC", "f");
legend->AddEntry(h_zz, "ZZ MC", "f");
legend->AddEntry(h_other, "Other MC", "f");
legend->AddEntry(h_weight_down, "Total MC Variations Down", "l");
legend->AddEntry(h_weight_up, "Total MC Variations Up", "l");
legend->AddEntry(h_nominal, "Total MC Uncertainty", "f");
legend->Draw();
// Add ATLAS label
TLatex atlas_label;
atlas_label.SetTextFont(70);
atlas_label.SetTextSize(0.04);
atlas_label.DrawLatexNDC(0.19, 0.85, "ATLAS");
TLatex data_label;
data_label.SetTextFont(42);
data_label.DrawLatexNDC(0.19 + 0.13, 0.85, "Open Data");
TLatex header;
data_label.SetTextFont(42);
header.SetTextSize(0.035);
header.DrawLatexNDC(0.21, 0.8, "#sqrt{s} = 13 TeV, 10 fb^{-1}");
// Save the plot.
c->SaveAs("df106_HiggsToFourLeptons_cpp.png");
std::cout << "Saved figure to df106_HiggsToFourLeptons_cpp.png" << std::endl;
}
int main()
{
}
int main()
Definition Prototype.cxx:12
#define c(i)
Definition RSha256.hxx:101
#define e(i)
Definition RSha256.hxx:103
@ kRed
Definition Rtypes.h:66
@ kBlack
Definition Rtypes.h:65
@ kGreen
Definition Rtypes.h:66
@ kBlue
Definition Rtypes.h:66
@ kAzure
Definition Rtypes.h:67
@ kViolet
Definition Rtypes.h:67
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
#define gInterpreter
#define gROOT
Definition TROOT.h:406
Class describing a generic LorentzVector in the 4D space-time, using the specified coordinate system ...
RInterface< Proxied, DS_t > DefinePerSample(std::string_view name, F expression)
Define a new column that is updated when the input sample changes.
This type represents a sample identifier, to be used in conjunction with RDataFrame features such as ...
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
virtual void SetTextFont(Font_t tfont=62)
Set the text font.
Definition TAttText.h:46
virtual void SetTextSize(Float_t tsize=1)
Set the text size.
Definition TAttText.h:47
The Canvas class.
Definition TCanvas.h:23
A TGraph is an object made of two arrays X and Y with npoints each.
Definition TGraph.h:41
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:59
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:826
The Histogram stack class.
Definition THStack.h:40
To draw Mathematical Formula.
Definition TLatex.h:18
TLatex * DrawLatexNDC(Double_t x, Double_t y, const char *text)
Draw this TLatex with new coordinates in NDC.
Definition TLatex.cxx:1957
This class displays a legend box (TPaveText) containing several legend entries.
Definition TLegend.h:23
virtual void SaveAs(const char *filename="", Option_t *option="") const
Save this object in the file specified by filename.
Definition TObject.cxx:704
The most important graphics class in the ROOT system.
Definition TPad.h:28
TPaveText * pt
auto Map(Args &&... args)
Create new collection applying a callable to the elements of the input collection.
Definition RVec.hxx:2150
RVec< T > Filter(const RVec< T > &v, F &&f)
Create a new collection with the elements passing the filter expressed by the predicate.
Definition RVec.hxx:2182
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
ROOT::RDataFrame FromSpec(const std::string &jsonFile)
Factory method to create an RDataFrame from a JSON specification file.
RResultMap< T > VariationsFor(RResultPtr< T > resPtr)
Produce all required systematic variations for the given result.
void AddProgressBar(ROOT::RDF::RNode df)
Add ProgressBar to a ROOT::RDF::RNode.
void EnableImplicitMT(UInt_t numthreads=0)
Enable ROOT's implicit multi-threading for all objects and methods that provide an internal paralleli...
Definition TROOT.cxx:539
Double_t Mean(Long64_t n, const T *a, const Double_t *w=nullptr)
Returns the weighted mean of an array a with length n.
Definition TMath.h:1089
Definition graph.py:1
A struct which stores the parameters of a TH1D.
Date
March 2020, August 2022, August 2023
Authors
Stefan Wunsch (KIT, CERN), Julia Mathe (CERN), Marta Czurylo (CERN)

Definition in file df106_HiggsToFourLeptons.C.