25#include <nlohmann/json.hpp>
1292 void Exec(unsigned int slot)
1294 fPerThreadResults[slot]++;
1297 // Called at the end of the event loop.
1300 *fFinalResult = std::accumulate(fPerThreadResults.begin(), fPerThreadResults.end(), 0);
1303 // Called by RDataFrame to retrieve the name of this action.
1304 std::string GetActionName() const { return "MyCounter"; }
1308 ROOT::RDataFrame df(10);
1309 ROOT::RDF::RResultPtr<int> resultPtr = df.Book<>(MyCounter{df.GetNSlots()}, {});
1310 // The GetValue call triggers the event loop
1311 std::cout << "Number of processed entries: " << resultPtr.GetValue() << std::endl;
1315See the Book() method for more information and [this tutorial](https://root.cern/doc/master/df018__customActions_8C.html)
1316for a more complete example.
1318#### Injecting arbitrary code in the event loop with Foreach() and ForeachSlot()
1320Foreach() takes a callable (lambda expression, free function, functor...) and a list of columns and
1321executes the callable on the values of those columns for each event that passes all upstream selections.
1322It can be used to perform actions that are not already available in the interface. For example, the following snippet
1323evaluates the root mean square of column "x":
1325// Single-thread evaluation of RMS of column "x" using Foreach
1328df.Foreach([&sumSq, &n](double x) { ++n; sumSq += x*x; }, {"x"});
1329std::cout << "rms of x: " << std::sqrt(sumSq / n) << std::endl;
1331In multi-thread runs, users are responsible for the thread-safety of the expression passed to Foreach():
1332thread will execute the expression concurrently.
1333The code above would need to employ some resource protection mechanism to ensure non-concurrent writing of `rms`; but
1334this is probably too much head-scratch for such a simple operation.
1336ForeachSlot() can help in this situation. It is an alternative version of Foreach() for which the function takes an
1337additional "processing slot" parameter besides the columns it should be applied to. RDataFrame
1338guarantees that ForeachSlot() will invoke the user expression with different `slot` parameters for different concurrent
1339executions (see [Special helper columns: rdfentry_ and rdfslot_](\ref helper-cols) for more information on the slot parameter).
1340We can take advantage of ForeachSlot() to evaluate a thread-safe root mean square of column "x":
1342// Thread-safe evaluation of RMS of column "x" using ForeachSlot
1343ROOT::EnableImplicitMT();
1344const unsigned int nSlots = df.GetNSlots();
1345std::vector<double> sumSqs(nSlots, 0.);
1346std::vector<unsigned int> ns(nSlots, 0);
1348df.ForeachSlot([&sumSqs, &ns](unsigned int slot, double x) { sumSqs[slot] += x*x; ns[slot] += 1; }, {"x"});
1349double sumSq = std::accumulate(sumSqs.begin(), sumSqs.end(), 0.); // sum all squares
1350unsigned int n = std::accumulate(ns.begin(), ns.end(), 0); // sum all counts
1351std::cout << "rms of x: " << std::sqrt(sumSq / n) << std::endl;
1353Notice how we created one `double` variable for each processing slot and later merged their results via `std::accumulate`.
1357### Dataset joins with friend trees
1359Vertically concatenating multiple trees that have the same columns (creating a logical dataset with the same columns and
1360more rows) is trivial in RDataFrame: just pass the tree name and a list of file names to RDataFrame's constructor, or create a TChain
1361out of the desired trees and pass that to RDataFrame.
1363Horizontal concatenations of trees or chains (creating a logical dataset with the same number of rows and the union of the
1364columns of multiple trees) leverages TTree's "friend" mechanism.
1366Simple joins of trees that do not have the same number of rows are also possible with indexed friend trees (see below).
1368To use friend trees in RDataFrame, set up trees with the appropriate relationships and then instantiate an RDataFrame
1374main.AddFriend(&friend, "myFriend");
1377auto df2 = df.Filter("myFriend.MyCol == 42");
1380The same applies for TChains. Columns coming from the friend trees can be referred to by their full name, like in the example above,
1381or the friend tree name can be omitted in case the column name is not ambiguous (e.g. "MyCol" could be used instead of
1382"myFriend.MyCol" in the example above if there is no column "MyCol" in the main tree).
1384\note A common source of confusion is that trees that are written out from a multi-thread Snapshot() call will have their
1385 entries (block-wise) shuffled with respect to the original tree. Such trees cannot be used as friends of the original
1386 one: rows will be mismatched.
1388Indexed friend trees provide a way to perform simple joins of multiple trees over a common column.
1389When a certain entry in the main tree (or chain) is loaded, the friend trees (or chains) will then load an entry where the
1390"index" columns have a value identical to the one in the main one. For example, in Python:
1396# If a friend tree has an index on `commonColumn`, when the main tree loads
1397# a given row, it also loads the row of the friend tree that has the same
1398# value of `commonColumn`
1399aux_tree.BuildIndex("commonColumn")
1401mainTree.AddFriend(aux_tree)
1403df = ROOT.RDataFrame(mainTree)
1406RDataFrame supports indexed friend TTrees from ROOT v6.24 in single-thread mode and from v6.28/02 in multi-thread mode.
1408\anchor other-file-formats
1409### Reading data formats other than ROOT trees
1410RDataFrame can be interfaced with RDataSources. The ROOT::RDF::RDataSource interface defines an API that RDataFrame can use to read arbitrary columnar data formats.
1412RDataFrame calls into concrete RDataSource implementations to retrieve information about the data, retrieve (thread-local) readers or "cursors" for selected columns
1413and to advance the readers to the desired data entry.
1414Some predefined RDataSources are natively provided by ROOT such as the ROOT::RDF::RCsvDS which allows to read comma separated files:
1416auto tdf = ROOT::RDF::FromCSV("MuRun2010B.csv");
1417auto filteredEvents =
1418 tdf.Filter("Q1 * Q2 == -1")
1419 .Define("m", "sqrt(pow(E1 + E2, 2) - (pow(px1 + px2, 2) + pow(py1 + py2, 2) + pow(pz1 + pz2, 2)))");
1420auto h = filteredEvents.Histo1D("m");
1424See also FromNumpy (Python-only), FromRNTuple(), FromArrow(), FromSqlite().
1427### Computation graphs (storing and reusing sets of transformations)
1429As we saw, transformed dataframes can be stored as variables and reused multiple times to create modified versions of the dataset. This implicitly defines a **computation graph** in which
1430several paths of filtering/creation of columns are executed simultaneously, and finally aggregated results are produced.
1432RDataFrame detects when several actions use the same filter or the same defined column, and **only evaluates each
1433filter or defined column once per event**, regardless of how many times that result is used down the computation graph.
1434Objects read from each column are **built once and never copied**, for maximum efficiency.
1435When "upstream" filters are not passed, subsequent filters, temporary column expressions and actions are not evaluated,
1436so it might be advisable to put the strictest filters first in the graph.
1438\anchor representgraph
1439### Visualizing the computation graph
1440It is possible to print the computation graph from any node to obtain a [DOT (graphviz)](https://en.wikipedia.org/wiki/DOT_(graph_description_language)) representation either on the standard output
1443Invoking the function ROOT::RDF::SaveGraph() on any node that is not the head node, the computation graph of the branch
1444the node belongs to is printed. By using the head node, the entire computation graph is printed.
1446Following there is an example of usage:
1448// First, a sample computational graph is built
1449ROOT::RDataFrame df("tree", "f.root");
1451auto df2 = df.Define("x", []() { return 1; })
1452 .Filter("col0 % 1 == col0")
1453 .Filter([](int b1) { return b1 <2; }, {"cut1"})
1454 .Define("y", []() { return 1; });
1456auto count = df2.Count();
1458// Prints the graph to the rd1.dot file in the current directory
1459ROOT::RDF::SaveGraph(df, "./mydot.dot");
1460// Prints the graph to standard output
1461ROOT::RDF::SaveGraph(df);
1464The generated graph can be rendered using one of the graphviz filters, e.g. `dot`. For instance, the image below can be generated with the following command:
1466$ dot -Tpng computation_graph.dot -ocomputation_graph.png
1469\image html RDF_Graph2.png
1472### Activating RDataFrame execution logs
1474RDataFrame has experimental support for verbose logging of the event loop runtimes and other interesting related information. It is activated as follows:
1476#include <ROOT/RLogger.hxx>
1478// this increases RDF's verbosity level as long as the `verbosity` variable is in scope
1479auto verbosity = ROOT::Experimental::RLogScopedVerbosity(ROOT::Detail::RDF::RDFLogChannel(), ROOT::Experimental::ELogLevel::kInfo);
1486verbosity = ROOT.Experimental.RLogScopedVerbosity(ROOT.Detail.RDF.RDFLogChannel(), ROOT.Experimental.ELogLevel.kInfo)
1489More information (e.g. start and end of each multi-thread task) is printed using `ELogLevel.kDebug` and even more
1490(e.g. a full dump of the generated code that RDataFrame just-in-time-compiles) using `ELogLevel.kDebug+10`.
1492\anchor rdf-from-spec
1493### Creating an RDataFrame from a dataset specification file
1495RDataFrame can be created using a dataset specification JSON file:
1500df = ROOT.RDF.Experimental.FromSpec("spec.json")
1503The input dataset specification JSON file needs to be provided by the user and it describes all necessary samples and
1504their associated metadata information. The main required key is the "samples" (at least one sample is needed) and the
1505required sub-keys for each sample are "trees" and "files". Additionally, one can specify a metadata dictionary for each
1506sample in the "metadata" key.
1508A simple example for the formatting of the specification in the JSON file is the following:
1514 "trees": ["tree1", "tree2"],
1515 "files": ["file1.root", "file2.root"],
1519 "sample_category" = "data"
1523 "trees": ["tree3", "tree4"],
1524 "files": ["file3.root", "file4.root"],
1528 "sample_category" = "MC_background"
1535The metadata information from the specification file can be then accessed using the DefinePerSample function.
1536For example, to access luminosity information (stored as a double):
1539df.DefinePerSample("lumi", 'rdfsampleinfo_.GetD("lumi")')
1542or sample_category information (stored as a string):
1545df.DefinePerSample("sample_category", 'rdfsampleinfo_.GetS("sample_category")')
1548or directly the filename:
1551df.DefinePerSample("name", "rdfsampleinfo_.GetSampleName()")
1554An example implementation of the "FromSpec" method is available in tutorial: df106_HiggstoFourLeptons.py, which also
1555provides a corresponding exemplary JSON file for the dataset specification.
1558### Adding a progress bar
1560A progress bar showing the processed event statistics can be added to any RDataFrame program.
1561The event statistics include elapsed time, currently processed file, currently processed events, the rate of event processing
1562and an estimated remaining time (per file being processed). It is recorded and printed in the terminal every m events and every
1563n seconds (by default m = 1000 and n = 1). The ProgressBar can be also added when the multithread (MT) mode is enabled.
1565ProgressBar is added after creating the dataframe object (df):
1567ROOT::RDataFrame df("tree", "file.root");
1568ROOT::RDF::Experimental::AddProgressBar(df);
1571Alternatively, RDataFrame can be cast to an RNode first, giving the user more flexibility
1572For example, it can be called at any computational node, such as Filter or Define, not only the head node,
1573with no change to the ProgressBar function itself (please see the [Efficient analysis in Python](#python)
1574section for appropriate usage in Python):
1576ROOT::RDataFrame df("tree", "file.root");
1577auto df_1 = ROOT::RDF::RNode(df.Filter("x>1"));
1578ROOT::RDF::Experimental::AddProgressBar(df_1);
1580Examples of implemented progress bars can be seen by running [Higgs to Four Lepton tutorial](https://root.cern/doc/master/df106__HiggsToFourLeptons_8py_source.html) and [Dimuon tutorial](https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html).
1582\anchor missing-values
1583### Working with missing values in the dataset
1585In certain situations a dataset might be missing one or more values at one or
1586more of its entries. For example:
1588- If the dataset is composed of multiple files and one or more files is
1589 missing one or more columns required by the analysis.
1590- When joining different datasets horizontally according to some index value
1591 (e.g. the event number), if the index does not find a match in one or more
1592 other datasets for a certain entry.
1594For example, suppose that column "y" does not have a value for entry 42:
1604If the RDataFrame application reads that column, for example if a Take() action
1605was requested, the default behaviour is to throw an exception indicating
1606that that column is missing an entry.
1608The following paragraphs discuss the functionalities provided by RDataFrame to
1609work with missing values in the dataset.
1611#### FilterAvailable and FilterMissing
1613FilterAvailable and FilterMissing are specialized RDataFrame Filter operations.
1614They take as input argument the name of a column of the dataset to watch for
1615missing values. Like Filter, they will either keep or discard an entire entry
1616based on whether a condition returns true or false. Specifically:
1618- FilterAvailable: the condition is whether the value of the column is present.
1619 If so, the entry is kept. Otherwise if the value is missing the entry is
1621- FilterMissing: the condition is whether the value of the column is missing. If
1622 so, the entry is kept. Otherwise if the value is present the entry is
1626df = ROOT.RDataFrame(dataset)
1628# Anytime an entry from "col" is missing, the entire entry will be filtered out
1629df_available = df.FilterAvailable("col")
1630df_available = df_available.Define("twice", "col * 2")
1632# Conversely, if we want to select the entries for which the column has missing
1633# values, we do the following
1634df_missingcol = df.FilterMissing("col")
1635# Following operations in the same branch of the computation graph clearly
1636# cannot access that same column, since there would be no value to read
1637df_missingcol = df_missingcol.Define("observable", "othercolumn * 2")
1641ROOT::RDataFrame df{dataset};
1643// Anytime an entry from "col" is missing, the entire entry will be filtered out
1644auto df_available = df.FilterAvailable("col");
1645auto df_twicecol = df_available.Define("twice", "col * 2");
1647// Conversely, if we want to select the entries for which the column has missing
1648// values, we do the following
1649auto df_missingcol = df.FilterMissing("col");
1650// Following operations in the same branch of the computation graph clearly
1651// cannot access that same column, since there would be no value to read
1652auto df_observable = df_missingcol.Define("observable", "othercolumn * 2");
1657DefaultValueFor creates a node of the computation graph which just forwards the
1658values of the columns necessary for other downstream nodes, when they are
1659available. In case a value of the input column passed to this function is not
1660available, the node will provide the default value passed to this function call
1664df = ROOT.RDataFrame(dataset)
1665# Anytime an entry from "col" is missing, the value will be the default one
1666default_value = ... # Some sensible default value here
1667df = df.DefaultValueFor("col", default_value)
1668df = df.Define("twice", "col * 2")
1672ROOT::RDataFrame df{dataset};
1673// Anytime an entry from "col" is missing, the value will be the default one
1674constexpr auto default_value = ... // Some sensible default value here
1675auto df_default = df.DefaultValueFor("col", default_value);
1676auto df_col = df_default.Define("twice", "col * 2");
1679#### Mixing different strategies to work with missing values in the same RDataFrame
1681All the operations presented above only act on the particular branch of the
1682computation graph where they are called, so that different results can be
1683obtained by mixing and matching the filtering or providing a default value
1687df = ROOT.RDataFrame(dataset)
1688# Anytime an entry from "col" is missing, the value will be the default one
1689default_value = ... # Some sensible default value here
1690df_default = df.DefaultValueFor("col", default_value).Define("twice", "col * 2")
1691df_filtered = df.FilterAvailable("col").Define("twice", "col * 2")
1693# Same number of total entries as the input dataset, with defaulted values
1694df_default.Display(["twice"]).Print()
1695# Only keep the entries where "col" has values
1696df_filtered.Display(["twice"]).Print()
1700ROOT::RDataFrame df{dataset};
1702// Anytime an entry from "col" is missing, the value will be the default one
1703constexpr auto default_value = ... // Some sensible default value here
1704auto df_default = df.DefaultValueFor("col", default_value).Define("twice", "col * 2");
1705auto df_filtered = df.FilterAvailable("col").Define("twice", "col * 2");
1707// Same number of total entries as the input dataset, with defaulted values
1708df_default.Display({"twice"})->Print();
1709// Only keep the entries where "col" has values
1710df_filtered.Display({"twice"})->Print();
1713#### Further considerations
1715Note that working with missing values is currently supported with a TTree-based
1716data source. Support of this functionality for other data sources may come in
1737 : RInterface(std::make_shared<
RDFDetail::RLoopManager>(nullptr, defaultColumns))
1740 auto msg =
"Invalid TDirectory!";
1741 throw std::runtime_error(msg);
1743 const std::string treeNameInt(treeName);
1744 auto tree =
static_cast<TTree *
>(dirPtr->
Get(treeNameInt.c_str()));
1746 auto msg =
"Tree \"" + treeNameInt +
"\" cannot be found!";
1747 throw std::runtime_error(msg);
1749 GetProxiedPtr()->SetTree(std::shared_ptr<TTree>(tree, [](
TTree *) {}));
1765RDataFrame::RDataFrame(std::string_view treeName, std::string_view fileNameGlob,
const ColumnNames_t &defaultColumns)
1766 : RInterface(
ROOT::Detail::RDF::CreateLMFromFile(treeName, fileNameGlob, defaultColumns))
1770RDataFrame::RDataFrame(std::string_view treeName, std::string_view fileNameGlob,
const ColumnNames_t &defaultColumns)
1771 : RInterface(
ROOT::Detail::RDF::CreateLMFromTTree(treeName, fileNameGlob, defaultColumns))
1789 const ColumnNames_t &defaultColumns)
1790 : RInterface(
ROOT::Detail::RDF::CreateLMFromFile(datasetName, fileNameGlobs, defaultColumns))
1796 : RInterface(
ROOT::Detail::RDF::CreateLMFromTTree(datasetName, fileNameGlobs, defaultColumns))
1876namespace Experimental {
1910 const nlohmann::ordered_json fullData = nlohmann::ordered_json::parse(std::ifstream(jsonFile));
1911 if (!fullData.contains(
"samples") || fullData[
"samples"].empty()) {
1912 throw std::runtime_error(
1913 R
"(The input specification does not contain any samples. Please provide the samples in the specification like:
1917 "trees": ["tree1", "tree2"],
1918 "files": ["file1.root", "file2.root"],
1919 "metadata": {"lumi": 1.0, }
1922 "trees": ["tree3", "tree4"],
1923 "files": ["file3.root", "file4.root"],
1924 "metadata": {"lumi": 0.5, }
1932 for (
const auto &keyValue : fullData[
"samples"].items()) {
1933 const std::string &sampleName = keyValue.key();
1934 const auto &sample = keyValue.value();
1937 if (!sample.contains(
"trees")) {
1938 throw std::runtime_error(
"A list of tree names must be provided for sample " + sampleName +
".");
1940 std::vector<std::string> trees = sample[
"trees"];
1941 if (!sample.contains(
"files")) {
1942 throw std::runtime_error(
"A list of files must be provided for sample " + sampleName +
".");
1944 std::vector<std::string> files = sample[
"files"];
1945 if (!sample.contains(
"metadata")) {
1949 for (
const auto &metadata : sample[
"metadata"].items()) {
1950 const auto &val = metadata.value();
1951 if (val.is_string())
1952 m.Add(metadata.key(), val.get<std::string>());
1953 else if (val.is_number_integer())
1954 m.Add(metadata.key(), val.get<
int>());
1955 else if (val.is_number_float())
1956 m.Add(metadata.key(), val.get<
double>());
1958 throw std::logic_error(
"The metadata keys can only be of type [string|int|double].");
1963 if (fullData.contains(
"friends")) {
1964 for (
const auto &friends : fullData[
"friends"].items()) {
1965 std::string alias = friends.key();
1966 std::vector<std::string> trees = friends.value()[
"trees"];
1967 std::vector<std::string> files = friends.value()[
"files"];
1968 if (files.size() != trees.size() && trees.size() > 1)
1969 throw std::runtime_error(
"Mismatch between trees and files in a friend.");
1974 if (fullData.contains(
"range")) {
1975 std::vector<int> range = fullData[
"range"];
1977 if (range.size() == 1)
1979 else if (range.size() == 2)
2004 throw std::runtime_error(
"Cannot print information about this RDataFrame, "
2005 "it was not properly created. It must be discarded.");
2007 auto *
tree = lm->GetTree();
2008 auto defCols = lm->GetDefaultColumnNames();
2010 std::ostringstream ret;
2012 ret <<
"A data frame built on top of the " <<
tree->GetName() <<
" dataset.";
2013 if (!defCols.empty()) {
2014 if (defCols.size() == 1)
2015 ret <<
"\nDefault column: " << defCols[0];
2017 ret <<
"\nDefault columns:\n";
2018 for (
auto &&col : defCols) {
2019 ret <<
" - " << col <<
"\n";
2024 ret <<
"A data frame associated to the data source \"" << cling::printValue(ds) <<
"\"";
2026 ret <<
"An empty data frame that will create " << lm->GetNEmptyEntries() <<
" entries\n";
unsigned long long ULong64_t
The head node of a RDF computation graph.
The dataset specification for RDataFrame.
RDatasetSpec & WithGlobalFriends(const std::string &treeName, const std::string &fileNameGlob, const std::string &alias="")
Add friend tree to RDatasetSpec object.
RDatasetSpec & AddSample(RSample sample)
Add sample (RSample class object) to the RDatasetSpec object.
RDatasetSpec & WithGlobalRange(const RDatasetSpec::REntryRange &entryRange={})
Create an RDatasetSpec object for a given range of entries.
Class representing a sample which is a grouping of trees and their fileglobs, and,...
std::shared_ptr< ROOT::Detail::RDF::RLoopManager > fLoopManager
< The RLoopManager at the root of this computation graph. Never null.
RDataSource * fDataSource
Non-owning pointer to a data-source object. Null if no data-source. RLoopManager has ownership of the...
RDFDetail::RLoopManager * GetLoopManager() const
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
RDataFrame(std::string_view treeName, std::string_view filenameglob, const ColumnNames_t &defaultColumns={})
Build the dataframe.
ROOT::RDF::ColumnNames_t ColumnNames_t
Describe directory structure in memory.
virtual TObject * Get(const char *namecycle)
Return pointer to object identified by namecycle.
A TTree represents a columnar dataset.
ROOT::RDataFrame FromSpec(const std::string &jsonFile)
Factory method to create an RDataFrame from a JSON specification file.
std::vector< std::string > ColumnNames_t
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
std::shared_ptr< const ColumnNames_t > ColumnNamesPtr_t