25#include <nlohmann/json.hpp>
1348 void Exec(unsigned int slot)
1350 fPerThreadResults[slot]++;
1353 // Called at the end of the event loop.
1356 *fFinalResult = std::accumulate(fPerThreadResults.begin(), fPerThreadResults.end(), 0);
1359 // Called by RDataFrame to retrieve the name of this action.
1360 std::string GetActionName() const { return "MyCounter"; }
1364 ROOT::RDataFrame df(10);
1365 ROOT::RDF::RResultPtr<int> resultPtr = df.Book<>(MyCounter{df.GetNSlots()}, {});
1366 // The GetValue call triggers the event loop
1367 std::cout << "Number of processed entries: " << resultPtr.GetValue() << std::endl;
1371See the Book() method for more information and [this tutorial](https://root.cern/doc/master/df018__customActions_8C.html)
1372for a more complete example.
1374#### Injecting arbitrary code in the event loop with Foreach() and ForeachSlot()
1376Foreach() takes a callable (lambda expression, free function, functor...) and a list of columns and
1377executes the callable on the values of those columns for each event that passes all upstream selections.
1378It can be used to perform actions that are not already available in the interface. For example, the following snippet
1379evaluates the root mean square of column "x":
1381// Single-thread evaluation of RMS of column "x" using Foreach
1384df.Foreach([&sumSq, &n](double x) { ++n; sumSq += x*x; }, {"x"});
1385std::cout << "rms of x: " << std::sqrt(sumSq / n) << std::endl;
1387In multi-thread runs, users are responsible for the thread-safety of the expression passed to Foreach():
1388thread will execute the expression concurrently.
1389The code above would need to employ some resource protection mechanism to ensure non-concurrent writing of `rms`; but
1390this is probably too much head-scratch for such a simple operation.
1392ForeachSlot() can help in this situation. It is an alternative version of Foreach() for which the function takes an
1393additional "processing slot" parameter besides the columns it should be applied to. RDataFrame
1394guarantees that ForeachSlot() will invoke the user expression with different `slot` parameters for different concurrent
1395executions (see [Special helper columns: rdfentry_ and rdfslot_](\ref helper-cols) for more information on the slot parameter).
1396We can take advantage of ForeachSlot() to evaluate a thread-safe root mean square of column "x":
1398// Thread-safe evaluation of RMS of column "x" using ForeachSlot
1399ROOT::EnableImplicitMT();
1400const unsigned int nSlots = df.GetNSlots();
1401std::vector<double> sumSqs(nSlots, 0.);
1402std::vector<unsigned int> ns(nSlots, 0);
1404df.ForeachSlot([&sumSqs, &ns](unsigned int slot, double x) { sumSqs[slot] += x*x; ns[slot] += 1; }, {"x"});
1405double sumSq = std::accumulate(sumSqs.begin(), sumSqs.end(), 0.); // sum all squares
1406unsigned int n = std::accumulate(ns.begin(), ns.end(), 0); // sum all counts
1407std::cout << "rms of x: " << std::sqrt(sumSq / n) << std::endl;
1409Notice how we created one `double` variable for each processing slot and later merged their results via `std::accumulate`.
1413### Dataset joins with friend trees
1415Vertically concatenating multiple trees that have the same columns (creating a logical dataset with the same columns and
1416more rows) is trivial in RDataFrame: just pass the tree name and a list of file names to RDataFrame's constructor, or create a TChain
1417out of the desired trees and pass that to RDataFrame.
1419Horizontal concatenations of trees or chains (creating a logical dataset with the same number of rows and the union of the
1420columns of multiple trees) leverages TTree's "friend" mechanism.
1422Simple joins of trees that do not have the same number of rows are also possible with indexed friend trees (see below).
1424To use friend trees in RDataFrame, set up trees with the appropriate relationships and then instantiate an RDataFrame
1430main.AddFriend(&friend, "myFriend");
1433auto df2 = df.Filter("myFriend.MyCol == 42");
1436The same applies for TChains. Columns coming from the friend trees can be referred to by their full name, like in the example above,
1437or the friend tree name can be omitted in case the column name is not ambiguous (e.g. "MyCol" could be used instead of
1438"myFriend.MyCol" in the example above if there is no column "MyCol" in the main tree).
1440\note A common source of confusion is that trees that are written out from a multi-thread Snapshot() call will have their
1441 entries (block-wise) shuffled with respect to the original tree. Such trees cannot be used as friends of the original
1442 one: rows will be mismatched.
1444Indexed friend trees provide a way to perform simple joins of multiple trees over a common column.
1445When a certain entry in the main tree (or chain) is loaded, the friend trees (or chains) will then load an entry where the
1446"index" columns have a value identical to the one in the main one. For example, in Python:
1452# If a friend tree has an index on `commonColumn`, when the main tree loads
1453# a given row, it also loads the row of the friend tree that has the same
1454# value of `commonColumn`
1455aux_tree.BuildIndex("commonColumn")
1457mainTree.AddFriend(aux_tree)
1459df = ROOT.RDataFrame(mainTree)
1462RDataFrame supports indexed friend TTrees from ROOT v6.24 in single-thread mode and from v6.28/02 in multi-thread mode.
1464\anchor other-file-formats
1465### Reading data formats other than ROOT trees
1466RDataFrame can be interfaced with RDataSources. The ROOT::RDF::RDataSource interface defines an API that RDataFrame can use to read arbitrary columnar data formats.
1468RDataFrame calls into concrete RDataSource implementations to retrieve information about the data, retrieve (thread-local) readers or "cursors" for selected columns
1469and to advance the readers to the desired data entry.
1470Some predefined RDataSources are natively provided by ROOT such as the ROOT::RDF::RCsvDS which allows to read comma separated files:
1472auto tdf = ROOT::RDF::FromCSV("MuRun2010B.csv");
1473auto filteredEvents =
1474 tdf.Filter("Q1 * Q2 == -1")
1475 .Define("m", "sqrt(pow(E1 + E2, 2) - (pow(px1 + px2, 2) + pow(py1 + py2, 2) + pow(pz1 + pz2, 2)))");
1476auto h = filteredEvents.Histo1D("m");
1480See also FromNumpy (Python-only), FromRNTuple(), FromArrow(), FromSqlite().
1483### Computation graphs (storing and reusing sets of transformations)
1485As we saw, transformed dataframes can be stored as variables and reused multiple times to create modified versions of the dataset. This implicitly defines a **computation graph** in which
1486several paths of filtering/creation of columns are executed simultaneously, and finally aggregated results are produced.
1488RDataFrame detects when several actions use the same filter or the same defined column, and **only evaluates each
1489filter or defined column once per event**, regardless of how many times that result is used down the computation graph.
1490Objects read from each column are **built once and never copied**, for maximum efficiency.
1491When "upstream" filters are not passed, subsequent filters, temporary column expressions and actions are not evaluated,
1492so it might be advisable to put the strictest filters first in the graph.
1494\anchor representgraph
1495### Visualizing the computation graph
1496It is possible to print the computation graph from any node to obtain a [DOT (graphviz)](https://en.wikipedia.org/wiki/DOT_(graph_description_language)) representation either on the standard output
1499Invoking the function ROOT::RDF::SaveGraph() on any node that is not the head node, the computation graph of the branch
1500the node belongs to is printed. By using the head node, the entire computation graph is printed.
1502Following there is an example of usage:
1504// First, a sample computational graph is built
1505ROOT::RDataFrame df("tree", "f.root");
1507auto df2 = df.Define("x", []() { return 1; })
1508 .Filter("col0 % 1 == col0")
1509 .Filter([](int b1) { return b1 <2; }, {"cut1"})
1510 .Define("y", []() { return 1; });
1512auto count = df2.Count();
1514// Prints the graph to the rd1.dot file in the current directory
1515ROOT::RDF::SaveGraph(df, "./mydot.dot");
1516// Prints the graph to standard output
1517ROOT::RDF::SaveGraph(df);
1520The generated graph can be rendered using one of the graphviz filters, e.g. `dot`. For instance, the image below can be generated with the following command:
1522$ dot -Tpng computation_graph.dot -ocomputation_graph.png
1525\image html RDF_Graph2.png
1528### Activating RDataFrame execution logs
1530RDataFrame has experimental support for verbose logging of the event loop runtimes and other interesting related information. It is activated as follows:
1532#include <ROOT/RLogger.hxx>
1534// this increases RDF's verbosity level as long as the `verbosity` variable is in scope
1535auto verbosity = ROOT::Experimental::RLogScopedVerbosity(ROOT::Detail::RDF::RDFLogChannel(), ROOT::Experimental::ELogLevel::kInfo);
1542verbosity = ROOT.Experimental.RLogScopedVerbosity(ROOT.Detail.RDF.RDFLogChannel(), ROOT.Experimental.ELogLevel.kInfo)
1545More information (e.g. start and end of each multi-thread task) is printed using `ELogLevel.kDebug` and even more
1546(e.g. a full dump of the generated code that RDataFrame just-in-time-compiles) using `ELogLevel.kDebug+10`.
1548\anchor rdf-from-spec
1549### Creating an RDataFrame from a dataset specification file
1551RDataFrame can be created using a dataset specification JSON file:
1556df = ROOT.RDF.Experimental.FromSpec("spec.json")
1559The input dataset specification JSON file needs to be provided by the user and it describes all necessary samples and
1560their associated metadata information. The main required key is the "samples" (at least one sample is needed) and the
1561required sub-keys for each sample are "trees" and "files". Additionally, one can specify a metadata dictionary for each
1562sample in the "metadata" key.
1564A simple example for the formatting of the specification in the JSON file is the following:
1570 "trees": ["tree1", "tree2"],
1571 "files": ["file1.root", "file2.root"],
1575 "sample_category" = "data"
1579 "trees": ["tree3", "tree4"],
1580 "files": ["file3.root", "file4.root"],
1584 "sample_category" = "MC_background"
1591The metadata information from the specification file can be then accessed using the DefinePerSample function.
1592For example, to access luminosity information (stored as a double):
1595df.DefinePerSample("lumi", 'rdfsampleinfo_.GetD("lumi")')
1598or sample_category information (stored as a string):
1601df.DefinePerSample("sample_category", 'rdfsampleinfo_.GetS("sample_category")')
1604or directly the filename:
1607df.DefinePerSample("name", "rdfsampleinfo_.GetSampleName()")
1610An example implementation of the "FromSpec" method is available in tutorial: df106_HiggstoFourLeptons.py, which also
1611provides a corresponding exemplary JSON file for the dataset specification.
1614### Adding a progress bar
1616A progress bar showing the processed event statistics can be added to any RDataFrame program.
1617The event statistics include elapsed time, currently processed file, currently processed events, the rate of event processing
1618and an estimated remaining time (per file being processed). It is recorded and printed in the terminal every m events and every
1619n seconds (by default m = 1000 and n = 1). The ProgressBar can be also added when the multithread (MT) mode is enabled.
1621ProgressBar is added after creating the dataframe object (df):
1623ROOT::RDataFrame df("tree", "file.root");
1624ROOT::RDF::Experimental::AddProgressBar(df);
1627Alternatively, RDataFrame can be cast to an RNode first, giving the user more flexibility
1628For example, it can be called at any computational node, such as Filter or Define, not only the head node,
1629with no change to the ProgressBar function itself (please see the [Efficient analysis in Python](#python)
1630section for appropriate usage in Python):
1632ROOT::RDataFrame df("tree", "file.root");
1633auto df_1 = ROOT::RDF::RNode(df.Filter("x>1"));
1634ROOT::RDF::Experimental::AddProgressBar(df_1);
1636Examples of implemented progress bars can be seen by running [Higgs to Four Lepton tutorial](https://root.cern/doc/master/df106__HiggsToFourLeptons_8py_source.html) and [Dimuon tutorial](https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html).
1638\anchor missing-values
1639### Working with missing values in the dataset
1641In certain situations a dataset might be missing one or more values at one or
1642more of its entries. For example:
1644- If the dataset is composed of multiple files and one or more files is
1645 missing one or more columns required by the analysis.
1646- When joining different datasets horizontally according to some index value
1647 (e.g. the event number), if the index does not find a match in one or more
1648 other datasets for a certain entry.
1650For example, suppose that column "y" does not have a value for entry 42:
1660If the RDataFrame application reads that column, for example if a Take() action
1661was requested, the default behaviour is to throw an exception indicating
1662that that column is missing an entry.
1664The following paragraphs discuss the functionalities provided by RDataFrame to
1665work with missing values in the dataset.
1667#### FilterAvailable and FilterMissing
1669FilterAvailable and FilterMissing are specialized RDataFrame Filter operations.
1670They take as input argument the name of a column of the dataset to watch for
1671missing values. Like Filter, they will either keep or discard an entire entry
1672based on whether a condition returns true or false. Specifically:
1674- FilterAvailable: the condition is whether the value of the column is present.
1675 If so, the entry is kept. Otherwise if the value is missing the entry is
1677- FilterMissing: the condition is whether the value of the column is missing. If
1678 so, the entry is kept. Otherwise if the value is present the entry is
1682df = ROOT.RDataFrame(dataset)
1684# Anytime an entry from "col" is missing, the entire entry will be filtered out
1685df_available = df.FilterAvailable("col")
1686df_available = df_available.Define("twice", "col * 2")
1688# Conversely, if we want to select the entries for which the column has missing
1689# values, we do the following
1690df_missingcol = df.FilterMissing("col")
1691# Following operations in the same branch of the computation graph clearly
1692# cannot access that same column, since there would be no value to read
1693df_missingcol = df_missingcol.Define("observable", "othercolumn * 2")
1697ROOT::RDataFrame df{dataset};
1699// Anytime an entry from "col" is missing, the entire entry will be filtered out
1700auto df_available = df.FilterAvailable("col");
1701auto df_twicecol = df_available.Define("twice", "col * 2");
1703// Conversely, if we want to select the entries for which the column has missing
1704// values, we do the following
1705auto df_missingcol = df.FilterMissing("col");
1706// Following operations in the same branch of the computation graph clearly
1707// cannot access that same column, since there would be no value to read
1708auto df_observable = df_missingcol.Define("observable", "othercolumn * 2");
1713DefaultValueFor creates a node of the computation graph which just forwards the
1714values of the columns necessary for other downstream nodes, when they are
1715available. In case a value of the input column passed to this function is not
1716available, the node will provide the default value passed to this function call
1720df = ROOT.RDataFrame(dataset)
1721# Anytime an entry from "col" is missing, the value will be the default one
1722default_value = ... # Some sensible default value here
1723df = df.DefaultValueFor("col", default_value)
1724df = df.Define("twice", "col * 2")
1728ROOT::RDataFrame df{dataset};
1729// Anytime an entry from "col" is missing, the value will be the default one
1730constexpr auto default_value = ... // Some sensible default value here
1731auto df_default = df.DefaultValueFor("col", default_value);
1732auto df_col = df_default.Define("twice", "col * 2");
1735#### Mixing different strategies to work with missing values in the same RDataFrame
1737All the operations presented above only act on the particular branch of the
1738computation graph where they are called, so that different results can be
1739obtained by mixing and matching the filtering or providing a default value
1743df = ROOT.RDataFrame(dataset)
1744# Anytime an entry from "col" is missing, the value will be the default one
1745default_value = ... # Some sensible default value here
1746df_default = df.DefaultValueFor("col", default_value).Define("twice", "col * 2")
1747df_filtered = df.FilterAvailable("col").Define("twice", "col * 2")
1749# Same number of total entries as the input dataset, with defaulted values
1750df_default.Display(["twice"]).Print()
1751# Only keep the entries where "col" has values
1752df_filtered.Display(["twice"]).Print()
1756ROOT::RDataFrame df{dataset};
1758// Anytime an entry from "col" is missing, the value will be the default one
1759constexpr auto default_value = ... // Some sensible default value here
1760auto df_default = df.DefaultValueFor("col", default_value).Define("twice", "col * 2");
1761auto df_filtered = df.FilterAvailable("col").Define("twice", "col * 2");
1763// Same number of total entries as the input dataset, with defaulted values
1764df_default.Display({"twice"})->Print();
1765// Only keep the entries where "col" has values
1766df_filtered.Display({"twice"})->Print();
1769#### Further considerations
1771Note that working with missing values is currently supported with a TTree-based
1772data source. Support of this functionality for other data sources may come in
1793 : RInterface(std::make_shared<
RDFDetail::RLoopManager>(nullptr, defaultColumns))
1796 auto msg =
"Invalid TDirectory!";
1797 throw std::runtime_error(msg);
1799 const std::string treeNameInt(treeName);
1800 auto tree =
static_cast<TTree *
>(dirPtr->
Get(treeNameInt.c_str()));
1802 auto msg =
"Tree \"" + treeNameInt +
"\" cannot be found!";
1803 throw std::runtime_error(msg);
1805 GetProxiedPtr()->SetTree(std::shared_ptr<TTree>(tree, [](
TTree *) {}));
1821RDataFrame::RDataFrame(std::string_view treeName, std::string_view fileNameGlob,
const ColumnNames_t &defaultColumns)
1822 : RInterface(
ROOT::Detail::RDF::CreateLMFromFile(treeName, fileNameGlob, defaultColumns))
1826RDataFrame::RDataFrame(std::string_view treeName, std::string_view fileNameGlob,
const ColumnNames_t &defaultColumns)
1827 : RInterface(
ROOT::Detail::RDF::CreateLMFromTTree(treeName, fileNameGlob, defaultColumns))
1845 const ColumnNames_t &defaultColumns)
1846 : RInterface(
ROOT::Detail::RDF::CreateLMFromFile(datasetName, fileNameGlobs, defaultColumns))
1852 : RInterface(
ROOT::Detail::RDF::CreateLMFromTTree(datasetName, fileNameGlobs, defaultColumns))
1932namespace Experimental {
1966 const nlohmann::ordered_json fullData = nlohmann::ordered_json::parse(std::ifstream(jsonFile));
1967 if (!fullData.contains(
"samples") || fullData[
"samples"].empty()) {
1968 throw std::runtime_error(
1969 R
"(The input specification does not contain any samples. Please provide the samples in the specification like:
1973 "trees": ["tree1", "tree2"],
1974 "files": ["file1.root", "file2.root"],
1975 "metadata": {"lumi": 1.0, }
1978 "trees": ["tree3", "tree4"],
1979 "files": ["file3.root", "file4.root"],
1980 "metadata": {"lumi": 0.5, }
1988 for (
const auto &keyValue : fullData[
"samples"].items()) {
1989 const std::string &sampleName = keyValue.key();
1990 const auto &sample = keyValue.value();
1993 if (!sample.contains(
"trees")) {
1994 throw std::runtime_error(
"A list of tree names must be provided for sample " + sampleName +
".");
1996 std::vector<std::string> trees = sample[
"trees"];
1997 if (!sample.contains(
"files")) {
1998 throw std::runtime_error(
"A list of files must be provided for sample " + sampleName +
".");
2000 std::vector<std::string> files = sample[
"files"];
2001 if (!sample.contains(
"metadata")) {
2005 for (
const auto &metadata : sample[
"metadata"].items()) {
2006 const auto &val = metadata.value();
2007 if (val.is_string())
2008 m.Add(metadata.key(), val.get<std::string>());
2009 else if (val.is_number_integer())
2010 m.Add(metadata.key(), val.get<
int>());
2011 else if (val.is_number_float())
2012 m.Add(metadata.key(), val.get<
double>());
2014 throw std::logic_error(
"The metadata keys can only be of type [string|int|double].");
2019 if (fullData.contains(
"friends")) {
2020 for (
const auto &friends : fullData[
"friends"].items()) {
2021 std::string alias = friends.key();
2022 std::vector<std::string> trees = friends.value()[
"trees"];
2023 std::vector<std::string> files = friends.value()[
"files"];
2024 if (files.size() != trees.size() && trees.size() > 1)
2025 throw std::runtime_error(
"Mismatch between trees and files in a friend.");
2030 if (fullData.contains(
"range")) {
2031 std::vector<int> range = fullData[
"range"];
2033 if (range.size() == 1)
2035 else if (range.size() == 2)
2060 throw std::runtime_error(
"Cannot print information about this RDataFrame, "
2061 "it was not properly created. It must be discarded.");
2063 auto *
tree = lm->GetTree();
2064 auto defCols = lm->GetDefaultColumnNames();
2066 std::ostringstream ret;
2068 ret <<
"A data frame built on top of the " <<
tree->GetName() <<
" dataset.";
2069 if (!defCols.empty()) {
2070 if (defCols.size() == 1)
2071 ret <<
"\nDefault column: " << defCols[0];
2073 ret <<
"\nDefault columns:\n";
2074 for (
auto &&col : defCols) {
2075 ret <<
" - " << col <<
"\n";
2080 ret <<
"A data frame associated to the data source \"" << cling::printValue(ds) <<
"\"";
2082 ret <<
"An empty data frame that will create " << lm->GetNEmptyEntries() <<
" entries\n";
unsigned long long ULong64_t
The head node of a RDF computation graph.
The dataset specification for RDataFrame.
RDatasetSpec & WithGlobalFriends(const std::string &treeName, const std::string &fileNameGlob, const std::string &alias="")
Add friend tree to RDatasetSpec object.
RDatasetSpec & AddSample(RSample sample)
Add sample (RSample class object) to the RDatasetSpec object.
RDatasetSpec & WithGlobalRange(const RDatasetSpec::REntryRange &entryRange={})
Create an RDatasetSpec object for a given range of entries.
Class representing a sample which is a grouping of trees and their fileglobs, and,...
std::shared_ptr< ROOT::Detail::RDF::RLoopManager > fLoopManager
< The RLoopManager at the root of this computation graph. Never null.
RDataSource * fDataSource
Non-owning pointer to a data-source object. Null if no data-source. RLoopManager has ownership of the...
RDFDetail::RLoopManager * GetLoopManager() const
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
RDataFrame(std::string_view treeName, std::string_view filenameglob, const ColumnNames_t &defaultColumns={})
Build the dataframe.
ROOT::RDF::ColumnNames_t ColumnNames_t
Describe directory structure in memory.
virtual TObject * Get(const char *namecycle)
Return pointer to object identified by namecycle.
A TTree represents a columnar dataset.
ROOT::RDataFrame FromSpec(const std::string &jsonFile)
Factory method to create an RDataFrame from a JSON specification file.
std::vector< std::string > ColumnNames_t
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
std::shared_ptr< const ColumnNames_t > ColumnNamesPtr_t