Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
RInterface.hxx
Go to the documentation of this file.
1// Author: Enrico Guiraud, Danilo Piparo CERN 03/2017
2
3/*************************************************************************
4 * Copyright (C) 1995-2021, Rene Brun and Fons Rademakers. *
5 * All rights reserved. *
6 * *
7 * For the licensing terms see $ROOTSYS/LICENSE. *
8 * For the list of contributors see $ROOTSYS/README/CREDITS. *
9 *************************************************************************/
10
11#ifndef ROOT_RDF_TINTERFACE
12#define ROOT_RDF_TINTERFACE
13
14#include "ROOT/RDataSource.hxx"
20#include "ROOT/RDF/RDefine.hxx"
22#include "ROOT/RDF/RFilter.hxx"
27#include "ROOT/RDF/RRange.hxx"
29#include "ROOT/RDF/Utils.hxx"
32#include "ROOT/RResultPtr.hxx"
34#include <string_view>
35#include "ROOT/RVec.hxx"
36#include "ROOT/TypeTraits.hxx"
37#include "RtypesCore.h" // for ULong64_t
38#include "TDirectory.h"
39#include "TH1.h" // For Histo actions
40#include "TH2.h" // For Histo actions
41#include "TH3.h" // For Histo actions
42#include "THn.h"
43#include "THnSparse.h"
44#include "TProfile.h"
45#include "TProfile2D.h"
46#include "TStatistic.h"
47
48#include <algorithm>
49#include <cstddef>
50#include <initializer_list>
51#include <iterator> // std::back_insterter
52#include <limits>
53#include <memory>
54#include <set>
55#include <sstream>
56#include <stdexcept>
57#include <string>
58#include <type_traits> // is_same, enable_if
59#include <typeinfo>
60#include <unordered_set>
61#include <utility> // std::index_sequence
62#include <vector>
63#include <any>
64
65class TGraph;
66
67// Windows requires a forward decl of printValue to accept it as a valid friend function in RInterface
68namespace ROOT {
72class RDataFrame;
73} // namespace ROOT
74namespace cling {
75std::string printValue(ROOT::RDataFrame *tdf);
76}
77
78namespace ROOT {
79namespace RDF {
82namespace TTraits = ROOT::TypeTraits;
83
84template <typename Proxied, typename DataSource>
85class RInterface;
86
88} // namespace RDF
89
90namespace Internal {
91namespace RDF {
93void ChangeEmptyEntryRange(const ROOT::RDF::RNode &node, std::pair<ULong64_t, ULong64_t> &&newRange);
94void ChangeBeginAndEndEntries(const RNode &node, Long64_t begin, Long64_t end);
97std::string GetDataSourceLabel(const ROOT::RDF::RNode &node);
98void SetTTreeLifeline(ROOT::RDF::RNode &node, std::any lifeline);
99} // namespace RDF
100} // namespace Internal
101
102namespace RDF {
103
104// clang-format off
105/**
106 * \class ROOT::RDF::RInterface
107 * \ingroup dataframe
108 * \brief The public interface to the RDataFrame federation of classes.
109 * \tparam Proxied One of the "node" base types (e.g. RLoopManager, RFilterBase). The user never specifies this type manually.
110 * \tparam DataSource The type of the RDataSource which is providing the data to the data frame. There is no source by default.
111 *
112 * The documentation of each method features a one liner illustrating how to use the method, for example showing how
113 * the majority of the template parameters are automatically deduced requiring no or very little effort by the user.
114 */
115// clang-format on
116template <typename Proxied, typename DataSource = void>
122 friend std::string cling::printValue(::ROOT::RDataFrame *tdf); // For a nice printing at the prompt
124
125 template <typename T, typename W>
126 friend class RInterface;
127
129 friend void RDFInternal::ChangeEmptyEntryRange(const RNode &node, std::pair<ULong64_t, ULong64_t> &&newRange);
130 friend void RDFInternal::ChangeBeginAndEndEntries(const RNode &node, Long64_t start, Long64_t end);
132 friend std::string ROOT::Internal::RDF::GetDataSourceLabel(const RNode &node);
134 std::shared_ptr<Proxied> fProxiedPtr; ///< Smart pointer to the graph node encapsulated by this RInterface.
135
136public:
137 ////////////////////////////////////////////////////////////////////////////
138 /// \brief Copy-assignment operator for RInterface.
139 RInterface &operator=(const RInterface &) = default;
140
141 ////////////////////////////////////////////////////////////////////////////
142 /// \brief Copy-ctor for RInterface.
143 RInterface(const RInterface &) = default;
144
145 ////////////////////////////////////////////////////////////////////////////
146 /// \brief Move-ctor for RInterface.
147 RInterface(RInterface &&) = default;
148
149 ////////////////////////////////////////////////////////////////////////////
150 /// \brief Move-assignment operator for RInterface.
152
153 ////////////////////////////////////////////////////////////////////////////
154 /// \brief Build a RInterface from a RLoopManager.
155 /// This constructor is only available for RInterface<RLoopManager>.
157 RInterface(const std::shared_ptr<RLoopManager> &proxied) : RInterfaceBase(proxied), fProxiedPtr(proxied)
158 {
159 }
160
161 ////////////////////////////////////////////////////////////////////////////
162 /// \brief Cast any RDataFrame node to a common type ROOT::RDF::RNode.
163 /// Different RDataFrame methods return different C++ types. All nodes, however,
164 /// can be cast to this common type at the cost of a small performance penalty.
165 /// This allows, for example, storing RDataFrame nodes in a vector, or passing them
166 /// around via (non-template, C++11) helper functions.
167 /// Example usage:
168 /// ~~~{.cpp}
169 /// // a function that conditionally adds a Range to a RDataFrame node.
170 /// RNode MaybeAddRange(RNode df, bool mustAddRange)
171 /// {
172 /// return mustAddRange ? df.Range(1) : df;
173 /// }
174 /// // use as :
175 /// ROOT::RDataFrame df(10);
176 /// auto maybeRanged = MaybeAddRange(df, true);
177 /// ~~~
178 /// Note that it is not a problem to pass RNode's by value.
179 operator RNode() const
180 {
181 return RNode(std::static_pointer_cast<::ROOT::Detail::RDF::RNodeBase>(fProxiedPtr), *fLoopManager, fColRegister);
182 }
183
184 ////////////////////////////////////////////////////////////////////////////
185 /// \brief Append a filter to the call graph.
186 /// \param[in] f Function, lambda expression, functor class or any other callable object. It must return a `bool`
187 /// signalling whether the event has passed the selection (true) or not (false).
188 /// \param[in] columns Names of the columns/branches in input to the filter function.
189 /// \param[in] name Optional name of this filter. See `Report`.
190 /// \return the filter node of the computation graph.
191 ///
192 /// Append a filter node at the point of the call graph corresponding to the
193 /// object this method is called on.
194 /// The callable `f` should not have side-effects (e.g. modification of an
195 /// external or static variable) to ensure correct results when implicit
196 /// multi-threading is active.
197 ///
198 /// RDataFrame only evaluates filters when necessary: if multiple filters
199 /// are chained one after another, they are executed in order and the first
200 /// one returning false causes the event to be discarded.
201 /// Even if multiple actions or transformations depend on the same filter,
202 /// it is executed once per entry. If its result is requested more than
203 /// once, the cached result is served.
204 ///
205 /// ### Example usage:
206 /// ~~~{.cpp}
207 /// // C++ callable (function, functor class, lambda...) that takes two parameters of the types of "x" and "y"
208 /// auto filtered = df.Filter(myCut, {"x", "y"});
209 ///
210 /// // String: it must contain valid C++ except that column names can be used instead of variable names
211 /// auto filtered = df.Filter("x*y > 0");
212 /// ~~~
213 ///
214 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested
215 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work:
216 /// ~~~{.cpp}
217 /// df.Filter("Sum(Map(vec, [](float e) { return e*e > 0.5; }))")
218 /// ~~~
219 /// but instead this will:
220 /// ~~~{.cpp}
221 /// df.Filter("return Sum(Map(vec, [](float e) { return e*e > 0.5; }))")
222 /// ~~~
225 Filter(F f, const ColumnNames_t &columns = {}, std::string_view name = "")
226 {
227 RDFInternal::CheckFilter(f);
228 using ColTypes_t = typename TTraits::CallableTraits<F>::arg_types;
229 constexpr auto nColumns = ColTypes_t::list_size;
232
234
235 auto filterPtr = std::make_shared<F_t>(std::move(f), validColumnNames, fProxiedPtr, fColRegister, name);
237 }
238
239 ////////////////////////////////////////////////////////////////////////////
240 /// \brief Append a filter to the call graph.
241 /// \param[in] f Function, lambda expression, functor class or any other callable object. It must return a `bool`
242 /// signalling whether the event has passed the selection (true) or not (false).
243 /// \param[in] name Optional name of this filter. See `Report`.
244 /// \return the filter node of the computation graph.
245 ///
246 /// Refer to the first overload of this method for the full documentation.
249 {
250 // The sfinae is there in order to pick up the overloaded method which accepts two strings
251 // rather than this template method.
252 return Filter(f, {}, name);
253 }
254
255 ////////////////////////////////////////////////////////////////////////////
256 /// \brief Append a filter to the call graph.
257 /// \param[in] f Function, lambda expression, functor class or any other callable object. It must return a `bool`
258 /// signalling whether the event has passed the selection (true) or not (false).
259 /// \param[in] columns Names of the columns/branches in input to the filter function.
260 /// \return the filter node of the computation graph.
261 ///
262 /// Refer to the first overload of this method for the full documentation.
263 template <typename F>
264 RInterface<RDFDetail::RFilter<F, Proxied>, DS_t> Filter(F f, const std::initializer_list<std::string> &columns)
265 {
266 return Filter(f, ColumnNames_t{columns});
267 }
268
269 ////////////////////////////////////////////////////////////////////////////
270 /// \brief Append a filter to the call graph.
271 /// \param[in] expression The filter expression in C++
272 /// \param[in] name Optional name of this filter. See `Report`.
273 /// \return the filter node of the computation graph.
274 ///
275 /// The expression is just-in-time compiled and used to filter entries. It must
276 /// be valid C++ syntax in which variable names are substituted with the names
277 /// of branches/columns.
278 ///
279 /// ### Example usage:
280 /// ~~~{.cpp}
281 /// auto filtered_df = df.Filter("myCollection.size() > 3");
282 /// auto filtered_name_df = df.Filter("myCollection.size() > 3", "Minumum collection size");
283 /// ~~~
284 ///
285 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested
286 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work:
287 /// ~~~{.cpp}
288 /// df.Filter("Sum(Map(vec, [](float e) { return e*e > 0.5; }))")
289 /// ~~~
290 /// but instead this will:
291 /// ~~~{.cpp}
292 /// df.Filter("return Sum(Map(vec, [](float e) { return e*e > 0.5; }))")
293 /// ~~~
294 RInterface<RDFDetail::RJittedFilter, DS_t> Filter(std::string_view expression, std::string_view name = "")
295 {
296 // deleted by the jitted call to JitFilterHelper
297 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr));
298 using BaseNodeType_t = typename std::remove_pointer_t<decltype(upcastNodeOnHeap)>::element_type;
300 const auto jittedFilter =
302
304 }
305
306 ////////////////////////////////////////////////////////////////////////////
307 /// \brief Discard entries with missing values
308 /// \param[in] column Column name whose entries with missing values should be discarded
309 /// \return The filter node of the computation graph
310 ///
311 /// This operation is useful in case an entry of the dataset is incomplete,
312 /// i.e. if one or more of the columns do not have valid values. If the value
313 /// of the input column is missing for an entry, the entire entry will be
314 /// discarded from the rest of this branch of the computation graph.
315 ///
316 /// Use cases include:
317 /// * When processing multiple files, one or more of them is missing a column
318 /// * In horizontal joining with entry matching, a certain dataset has no
319 /// match for the current entry.
320 ///
321 /// ### Example usage:
322 ///
323 /// \code{.py}
324 /// # Assume a dataset with columns [idx, x] matching another dataset with
325 /// # columns [idx, y]. For idx == 42, the right-hand dataset has no match
326 /// df = ROOT.RDataFrame(dataset)
327 /// df_nomissing = df.FilterAvailable("idx").Define("z", "x + y")
328 /// colz = df_nomissing.Take[int]("z")
329 /// \endcode
330 ///
331 /// \code{.cpp}
332 /// // Assume a dataset with columns [idx, x] matching another dataset with
333 /// // columns [idx, y]. For idx == 42, the right-hand dataset has no match
334 /// ROOT::RDataFrame df{dataset};
335 /// auto df_nomissing = df.FilterAvailable("idx")
336 /// .Define("z", [](int x, int y) { return x + y; }, {"x", "y"});
337 /// auto colz = df_nomissing.Take<int>("z");
338 /// \endcode
339 ///
340 /// \note See FilterMissing() if you want to keep only the entries with
341 /// missing values instead.
343 {
344 const auto columns = ColumnNames_t{column.data()};
345 // For now disable this functionality in case of an empty data source and
346 // the column name was not defined previously.
347 if (ROOT::Internal::RDF::GetDataSourceLabel(*this) == "EmptyDS")
348 throw std::runtime_error("Unknown column: \"" + std::string(column) + "\"");
350 auto filterPtr = std::make_shared<F_t>(/*discardEntry*/ true, fProxiedPtr, fColRegister, columns);
353 }
354
355 ////////////////////////////////////////////////////////////////////////////
356 /// \brief Keep only the entries that have missing values.
357 /// \param[in] column Column name whose entries with missing values should be kept
358 /// \return The filter node of the computation graph
359 ///
360 /// This operation is useful in case an entry of the dataset is incomplete,
361 /// i.e. if one or more of the columns do not have valid values. It only
362 /// keeps the entries for which the value of the input column is missing.
363 ///
364 /// Use cases include:
365 /// * When processing multiple files, one or more of them is missing a column
366 /// * In horizontal joining with entry matching, a certain dataset has no
367 /// match for the current entry.
368 ///
369 /// ### Example usage:
370 ///
371 /// \code{.py}
372 /// # Assume a dataset made of two files vertically chained together, one has
373 /// # column "x" and the other has column "y"
374 /// df = ROOT.RDataFrame(dataset)
375 /// df_valid_col_x = df.FilterMissing("y")
376 /// df_valid_col_y = df.FilterMissing("x")
377 /// display_x = df_valid_col_x.Display(("x",))
378 /// display_y = df_valid_col_y.Display(("y",))
379 /// \endcode
380 ///
381 /// \code{.cpp}
382 /// // Assume a dataset made of two files vertically chained together, one has
383 /// // column "x" and the other has column "y"
384 /// ROOT.RDataFrame df{dataset};
385 /// auto df_valid_col_x = df.FilterMissing("y");
386 /// auto df_valid_col_y = df.FilterMissing("x");
387 /// auto display_x = df_valid_col_x.Display<int>({"x"});
388 /// auto display_y = df_valid_col_y.Display<int>({"y"});
389 /// \endcode
390 ///
391 /// \note See FilterAvailable() if you want to discard the entries in case
392 /// there is a missing value instead.
394 {
395 const auto columns = ColumnNames_t{column.data()};
396 // For now disable this functionality in case of an empty data source and
397 // the column name was not defined previously.
398 if (ROOT::Internal::RDF::GetDataSourceLabel(*this) == "EmptyDS")
399 throw std::runtime_error("Unknown column: \"" + std::string(column) + "\"");
401 auto filterPtr = std::make_shared<F_t>(/*discardEntry*/ false, fProxiedPtr, fColRegister, columns);
404 }
405
406 // clang-format off
407 ////////////////////////////////////////////////////////////////////////////
408 /// \brief Define a new column.
409 /// \param[in] name The name of the defined column.
410 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
411 /// \param[in] columns Names of the columns/branches in input to the producer function.
412 /// \return the first node of the computation graph for which the new quantity is defined.
413 ///
414 /// Define a column that will be visible from all subsequent nodes
415 /// of the functional chain. The `expression` is only evaluated for entries that pass
416 /// all the preceding filters.
417 /// A new variable is created called `name`, accessible as if it was contained
418 /// in the dataset from subsequent transformations/actions.
419 ///
420 /// Use cases include:
421 /// * caching the results of complex calculations for easy and efficient multiple access
422 /// * extraction of quantities of interest from complex objects
423 ///
424 /// An exception is thrown if the name of the new column is already in use in this branch of the computation graph.
425 ///
426 /// ### Example usage:
427 /// ~~~{.cpp}
428 /// // assuming a function with signature:
429 /// double myComplexCalculation(const RVec<float> &muon_pts);
430 /// // we can pass it directly to Define
431 /// auto df_with_define = df.Define("newColumn", myComplexCalculation, {"muon_pts"});
432 /// // alternatively, we can pass the body of the function as a string, as in Filter:
433 /// auto df_with_define = df.Define("newColumn", "x*x + y*y");
434 /// ~~~
435 ///
436 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested
437 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work:
438 /// ~~~{.cpp}
439 /// df.Define("x2", "Map(v, [](float e) { return e*e; })")
440 /// ~~~
441 /// but instead this will:
442 /// ~~~{.cpp}
443 /// df.Define("x2", "return Map(v, [](float e) { return e*e; })")
444 /// ~~~
446 RInterface<Proxied, DS_t> Define(std::string_view name, F expression, const ColumnNames_t &columns = {})
447 {
448 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::None>(name, std::move(expression), columns, "Define");
449 }
450 // clang-format on
451
452 // clang-format off
453 ////////////////////////////////////////////////////////////////////////////
454 /// \brief Define a new column with a value dependent on the processing slot.
455 /// \param[in] name The name of the defined column.
456 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
457 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding the slot number).
458 /// \return the first node of the computation graph for which the new quantity is defined.
459 ///
460 /// This alternative implementation of `Define` is meant as a helper to evaluate new column values in a thread-safe manner.
461 /// The expression must be a callable of signature R(unsigned int, T1, T2, ...) where `T1, T2...` are the types
462 /// of the columns that the expression takes as input. The first parameter is reserved for an unsigned integer
463 /// representing a "slot number". RDataFrame guarantees that different threads will invoke the expression with
464 /// different slot numbers - slot numbers will range from zero to ROOT::GetThreadPoolSize()-1.
465 /// Note that there is no guarantee as to how often each slot will be reached during the event loop.
466 ///
467 /// The following two calls are equivalent, although `DefineSlot` is slightly more performant:
468 /// ~~~{.cpp}
469 /// int function(unsigned int, double, double);
470 /// df.Define("x", function, {"rdfslot_", "column1", "column2"})
471 /// df.DefineSlot("x", function, {"column1", "column2"})
472 /// ~~~
473 ///
474 /// See Define() for more information.
475 template <typename F>
476 RInterface<Proxied, DS_t> DefineSlot(std::string_view name, F expression, const ColumnNames_t &columns = {})
477 {
478 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::Slot>(name, std::move(expression), columns, "DefineSlot");
479 }
480 // clang-format on
481
482 // clang-format off
483 ////////////////////////////////////////////////////////////////////////////
484 /// \brief Define a new column with a value dependent on the processing slot and the current entry.
485 /// \param[in] name The name of the defined column.
486 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
487 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding slot and entry).
488 /// \return the first node of the computation graph for which the new quantity is defined.
489 ///
490 /// This alternative implementation of `Define` is meant as a helper in writing entry-specific, thread-safe custom
491 /// columns. The expression must be a callable of signature R(unsigned int, ULong64_t, T1, T2, ...) where `T1, T2...`
492 /// are the types of the columns that the expression takes as input. The first parameter is reserved for an unsigned
493 /// integer representing a "slot number". RDataFrame guarantees that different threads will invoke the expression with
494 /// different slot numbers - slot numbers will range from zero to ROOT::GetThreadPoolSize()-1.
495 /// Note that there is no guarantee as to how often each slot will be reached during the event loop.
496 /// The second parameter is reserved for a `ULong64_t` representing the current entry being processed by the current thread.
497 ///
498 /// The following two `Define`s are equivalent, although `DefineSlotEntry` is slightly more performant:
499 /// ~~~{.cpp}
500 /// int function(unsigned int, ULong64_t, double, double);
501 /// Define("x", function, {"rdfslot_", "rdfentry_", "column1", "column2"})
502 /// DefineSlotEntry("x", function, {"column1", "column2"})
503 /// ~~~
504 ///
505 /// See Define() for more information.
506 template <typename F>
507 RInterface<Proxied, DS_t> DefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns = {})
508 {
510 "DefineSlotEntry");
511 }
512 // clang-format on
513
514 ////////////////////////////////////////////////////////////////////////////
515 /// \brief Define a new column.
516 /// \param[in] name The name of the defined column.
517 /// \param[in] expression An expression in C++ which represents the defined value
518 /// \return the first node of the computation graph for which the new quantity is defined.
519 ///
520 /// The expression is just-in-time compiled and used to produce the column entries.
521 /// It must be valid C++ syntax in which variable names are substituted with the names
522 /// of branches/columns.
523 ///
524 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested
525 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work:
526 /// ~~~{.cpp}
527 /// df.Define("x2", "Map(v, [](float e) { return e*e; })")
528 /// ~~~
529 /// but instead this will:
530 /// ~~~{.cpp}
531 /// df.Define("x2", "return Map(v, [](float e) { return e*e; })")
532 /// ~~~
533 ///
534 /// Refer to the first overload of this method for the full documentation.
535 RInterface<Proxied, DS_t> Define(std::string_view name, std::string_view expression)
536 {
537 constexpr auto where = "Define";
539 // these checks must be done before jitting lest we throw exceptions in jitted code
542
543 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr));
544 auto jittedDefine =
546
548 newCols.AddDefine(std::move(jittedDefine));
549
551
552 return newInterface;
553 }
554
555 ////////////////////////////////////////////////////////////////////////////
556 /// \brief Overwrite the value and/or type of an existing column.
557 /// \param[in] name The name of the column to redefine.
558 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
559 /// \param[in] columns Names of the columns/branches in input to the expression.
560 /// \return the first node of the computation graph for which the quantity is redefined.
561 ///
562 /// The old value of the column can be used as an input for the expression.
563 ///
564 /// An exception is thrown in case the column to redefine does not already exist.
565 /// See Define() for more information.
567 RInterface<Proxied, DS_t> Redefine(std::string_view name, F expression, const ColumnNames_t &columns = {})
568 {
569 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::None>(name, std::move(expression), columns, "Redefine");
570 }
571
572 // clang-format off
573 ////////////////////////////////////////////////////////////////////////////
574 /// \brief Overwrite the value and/or type of an existing column.
575 /// \param[in] name The name of the column to redefine.
576 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
577 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding slot).
578 /// \return the first node of the computation graph for which the new quantity is defined.
579 ///
580 /// The old value of the column can be used as an input for the expression.
581 /// An exception is thrown in case the column to redefine does not already exist.
582 ///
583 /// See DefineSlot() for more information.
584 // clang-format on
585 template <typename F>
586 RInterface<Proxied, DS_t> RedefineSlot(std::string_view name, F expression, const ColumnNames_t &columns = {})
587 {
588 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::Slot>(name, std::move(expression), columns, "RedefineSlot");
589 }
590
591 // clang-format off
592 ////////////////////////////////////////////////////////////////////////////
593 /// \brief Overwrite the value and/or type of an existing column.
594 /// \param[in] name The name of the column to redefine.
595 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
596 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding slot and entry).
597 /// \return the first node of the computation graph for which the new quantity is defined.
598 ///
599 /// The old value of the column can be used as an input for the expression.
600 /// An exception is thrown in case the column to re-define does not already exist.
601 ///
602 /// See DefineSlotEntry() for more information.
603 // clang-format on
604 template <typename F>
605 RInterface<Proxied, DS_t> RedefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns = {})
606 {
608 "RedefineSlotEntry");
609 }
610
611 ////////////////////////////////////////////////////////////////////////////
612 /// \brief Overwrite the value and/or type of an existing column.
613 /// \param[in] name The name of the column to redefine.
614 /// \param[in] expression An expression in C++ which represents the defined value
615 /// \return the first node of the computation graph for which the new quantity is defined.
616 ///
617 /// The expression is just-in-time compiled and used to produce the column entries.
618 /// It must be valid C++ syntax in which variable names are substituted with the names
619 /// of branches/columns.
620 ///
621 /// The old value of the column can be used as an input for the expression.
622 /// An exception is thrown in case the column to re-define does not already exist.
623 ///
624 /// Aliases cannot be overridden. See the corresponding Define() overload for more information.
644
645 ////////////////////////////////////////////////////////////////////////////
646 /// \brief In case the value in the given column is missing, provide a default value
647 /// \tparam T The type of the column
648 /// \param[in] column Column name where missing values should be replaced by the given default value
649 /// \param[in] defaultValue Value to provide instead of a missing value
650 /// \return The node of the graph that will provide a default value
651 ///
652 /// This operation is useful in case an entry of the dataset is incomplete,
653 /// i.e. if one or more of the columns do not have valid values. It does not
654 /// modify the values of the column, but in case any entry is missing, it
655 /// will provide the default value to downstream nodes instead.
656 ///
657 /// Use cases include:
658 /// * When processing multiple files, one or more of them is missing a column
659 /// * In horizontal joining with entry matching, a certain dataset has no
660 /// match for the current entry.
661 ///
662 /// ### Example usage:
663 ///
664 /// \code{.cpp}
665 /// // Assume a dataset with columns [idx, x] matching another dataset with
666 /// // columns [idx, y]. For idx == 42, the right-hand dataset has no match
667 /// ROOT::RDataFrame df{dataset};
668 /// auto df_default = df.DefaultValueFor("y", 33)
669 /// .Define("z", [](int x, int y) { return x + y; }, {"x", "y"});
670 /// auto colz = df_default.Take<int>("z");
671 /// \endcode
672 ///
673 /// \code{.py}
674 /// df = ROOT.RDataFrame(dataset)
675 /// df_default = df.DefaultValueFor("y", 33).Define("z", "x + y")
676 /// colz = df_default.Take[int]("z")
677 /// \endcode
678 template <typename T>
679 RInterface<Proxied, DS_t> DefaultValueFor(std::string_view column, const T &defaultValue)
680 {
681 constexpr auto where{"DefaultValueFor"};
683 // For now disable this functionality in case of an empty data source and
684 // the column name was not defined previously.
685 if (ROOT::Internal::RDF::GetDataSourceLabel(*this) == "EmptyDS")
688
689 // Declare return type to the interpreter, for future use by jitted actions
691 if (retTypeName.empty()) {
692 // The type is not known to the interpreter.
693 // We must not error out here, but if/when this column is used in jitted code
694 const auto demangledType = RDFInternal::DemangleTypeIdName(typeid(T));
695 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType;
696 }
697
698 const auto validColumnNames = ColumnNames_t{column.data()};
699 auto newColumn = std::make_shared<ROOT::Internal::RDF::RDefaultValueFor<T>>(
700 column, retTypeName, defaultValue, validColumnNames, fColRegister, *fLoopManager);
702
704 newCols.AddDefine(std::move(newColumn));
705
707
708 return newInterface;
709 }
710
711 // clang-format off
712 ////////////////////////////////////////////////////////////////////////////
713 /// \brief Define a new column that is updated when the input sample changes.
714 /// \param[in] name The name of the defined column.
715 /// \param[in] expression A C++ callable that computes the new value of the defined column.
716 /// \return the first node of the computation graph for which the new quantity is defined.
717 ///
718 /// The signature of the callable passed as second argument should be `T(unsigned int slot, const ROOT::RDF::RSampleInfo &id)`
719 /// where:
720 /// - `T` is the type of the defined column
721 /// - `slot` is a number in the range [0, nThreads) that is different for each processing thread. This can simplify
722 /// the definition of thread-safe callables if you are interested in using parallel capabilities of RDataFrame.
723 /// - `id` is an instance of a ROOT::RDF::RSampleInfo object which contains information about the sample which is
724 /// being processed (see the class docs for more information).
725 ///
726 /// DefinePerSample() is useful to e.g. define a quantity that depends on which TTree in which TFile is being
727 /// processed or to inject a callback into the event loop that is only called when the processing of a new sample
728 /// starts rather than at every entry.
729 ///
730 /// The callable will be invoked once per input TTree or once per multi-thread task, whichever is more often.
731 ///
732 /// ### Example usage:
733 /// ~~~{.cpp}
734 /// ROOT::RDataFrame df{"mytree", {"sample1.root","sample2.root"}};
735 /// df.DefinePerSample("weightbysample",
736 /// [](unsigned int slot, const ROOT::RDF::RSampleInfo &id)
737 /// { return id.Contains("sample1") ? 1.0f : 2.0f; });
738 /// ~~~
739 // clang-format on
740 // TODO we could SFINAE on F's signature to provide friendlier compilation errors in case of signature mismatch
742 RInterface<Proxied, DS_t> DefinePerSample(std::string_view name, F expression)
743 {
744 RDFInternal::CheckValidCppVarName(name, "DefinePerSample");
747
748 auto retTypeName = RDFInternal::TypeID2TypeName(typeid(RetType_t));
749 if (retTypeName.empty()) {
750 // The type is not known to the interpreter.
751 // We must not error out here, but if/when this column is used in jitted code
752 const auto demangledType = RDFInternal::DemangleTypeIdName(typeid(RetType_t));
753 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType;
754 }
755
756 auto newColumn =
757 std::make_shared<RDFDetail::RDefinePerSample<F>>(name, retTypeName, std::move(expression), *fLoopManager);
758
760 newCols.AddDefine(std::move(newColumn));
762 return newInterface;
763 }
764
765 // clang-format off
766 ////////////////////////////////////////////////////////////////////////////
767 /// \brief Define a new column that is updated when the input sample changes.
768 /// \param[in] name The name of the defined column.
769 /// \param[in] expression A valid C++ expression as a string, which will be used to compute the defined value.
770 /// \return the first node of the computation graph for which the new quantity is defined.
771 ///
772 /// The expression is just-in-time compiled and used to produce the column entries.
773 /// It must be valid C++ syntax and the usage of the special variable names `rdfslot_` and `rdfsampleinfo_` is
774 /// permitted, where these variables will take the same values as the `slot` and `id` parameters described at the
775 /// DefinePerSample(std::string_view name, F expression) overload. See the documentation of that overload for more information.
776 ///
777 /// ### Example usage:
778 /// ~~~{.py}
779 /// df = ROOT.RDataFrame('mytree', ['sample1.root','sample2.root'])
780 /// df.DefinePerSample('weightbysample', 'rdfsampleinfo_.Contains("sample1") ? 1.0f : 2.0f')
781 /// ~~~
782 ///
783 /// \note
784 /// If you have declared some C++ function to the interpreter, the correct syntax to call that function with this
785 /// overload of DefinePerSample is by calling it explicitly with the special names `rdfslot_` and `rdfsampleinfo_` as
786 /// input parameters. This is for example the correct way to call this overload when working in PyROOT:
787 /// ~~~{.py}
788 /// ROOT.gInterpreter.Declare(
789 /// """
790 /// float weights(unsigned int slot, const ROOT::RDF::RSampleInfo &id){
791 /// return id.Contains("sample1") ? 1.0f : 2.0f;
792 /// }
793 /// """)
794 /// df = ROOT.RDataFrame("mytree", ["sample1.root","sample2.root"])
795 /// df.DefinePerSample("weightsbysample", "weights(rdfslot_, rdfsampleinfo_)")
796 /// ~~~
797 ///
798 /// \note
799 /// Differently from what happens in Define(), the string expression passed to DefinePerSample cannot contain
800 /// column names other than those mentioned above: the expression is evaluated once before the processing of the
801 /// sample even starts, so column values are not accessible.
802 // clang-format on
803 RInterface<Proxied, DS_t> DefinePerSample(std::string_view name, std::string_view expression)
804 {
805 RDFInternal::CheckValidCppVarName(name, "DefinePerSample");
806 // these checks must be done before jitting lest we throw exceptions in jitted code
809
810 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr));
811 auto jittedDefine =
813
815 newCols.AddDefine(std::move(jittedDefine));
816
818
819 return newInterface;
820 }
821
822 /// \brief Register systematic variations for a single existing column using custom variation tags.
823 /// \param[in] colName name of the column for which varied values are provided.
824 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
825 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
826 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
827 /// \param[in] inputColumns the names of the columns to be passed to the callable.
828 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
829 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
830 ///
831 /// Vary provides a natural and flexible syntax to define systematic variations that automatically propagate to
832 /// Filters, Defines and results. RDataFrame usage of columns with attached variations does not change, but for
833 /// results that depend on any varied quantity, a map/dictionary of varied results can be produced with
834 /// ROOT::RDF::Experimental::VariationsFor (see the example below).
835 ///
836 /// The dictionary will contain a "nominal" value (accessed with the "nominal" key) for the unchanged result, and
837 /// values for each of the systematic variations that affected the result (via upstream Filters or via direct or
838 /// indirect dependencies of the column values on some registered variations). The keys will be a composition of
839 /// variation names and tags, e.g. "pt:up" and "pt:down" for the example below.
840 ///
841 /// In the following example we add up/down variations of pt and fill a histogram with a quantity that depends on pt.
842 /// We automatically obtain three histograms in output ("nominal", "pt:up" and "pt:down"):
843 /// ~~~{.cpp}
844 /// auto nominal_hx =
845 /// df.Vary("pt", [] (double pt) { return RVecD{pt*0.9, pt*1.1}; }, {"down", "up"})
846 /// .Filter("pt > k")
847 /// .Define("x", someFunc, {"pt"})
848 /// .Histo1D("x");
849 ///
850 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
851 /// hx["nominal"].Draw();
852 /// hx["pt:down"].Draw("SAME");
853 /// hx["pt:up"].Draw("SAME");
854 /// ~~~
855 /// RDataFrame computes all variations as part of a single loop over the data.
856 /// In particular, this means that I/O and computation of values shared
857 /// among variations only happen once for all variations. Thus, the event loop
858 /// run-time typically scales much better than linearly with the number of
859 /// variations.
860 ///
861 /// RDataFrame lazily computes the varied values required to produce the
862 /// outputs of \ref ROOT::RDF::Experimental::VariationsFor "VariationsFor()". If \ref
863 /// ROOT::RDF::Experimental::VariationsFor "VariationsFor()" was not called for a result, the computations are only
864 /// run for the nominal case.
865 ///
866 /// See other overloads for examples when variations are added for multiple existing columns,
867 /// or when the tags are auto-generated instead of being directly defined.
868 template <typename F>
869 RInterface<Proxied, DS_t> Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns,
870 const std::vector<std::string> &variationTags, std::string_view variationName = "")
871 {
872 std::vector<std::string> colNames{{std::string(colName)}};
873 const std::string theVariationName{variationName.empty() ? colName : variationName};
874
875 return VaryImpl<true>(std::move(colNames), std::forward<F>(expression), inputColumns, variationTags,
877 }
878
879 /// \brief Register systematic variations for a single existing column using auto-generated variation tags.
880 /// \param[in] colName name of the column for which varied values are provided.
881 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
882 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
883 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
884 /// \param[in] inputColumns the names of the columns to be passed to the callable.
885 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
886 /// `"1"`, etc.
887 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
888 /// colName is used if none is provided.
889 ///
890 /// This overload of Vary takes an nVariations parameter instead of a list of tag names.
891 /// The varied results will be accessible via the keys of the dictionary with the form `variationName:N` where `N`
892 /// is the corresponding sequential tag starting at 0 and going up to `nVariations - 1`.
893 ///
894 /// Example usage:
895 /// ~~~{.cpp}
896 /// auto nominal_hx =
897 /// df.Vary("pt", [] (double pt) { return RVecD{pt*0.9, pt*1.1}; }, 2)
898 /// .Histo1D("x");
899 ///
900 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
901 /// hx["nominal"].Draw();
902 /// hx["x:0"].Draw("SAME");
903 /// hx["x:1"].Draw("SAME");
904 /// ~~~
905 ///
906 /// \note See also This Vary() overload for more information.
907 template <typename F>
908 RInterface<Proxied, DS_t> Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns,
909 std::size_t nVariations, std::string_view variationName = "")
910 {
911 R__ASSERT(nVariations > 0 && "Must have at least one variation.");
912
913 std::vector<std::string> variationTags;
914 variationTags.reserve(nVariations);
915 for (std::size_t i = 0u; i < nVariations; ++i)
916 variationTags.emplace_back(std::to_string(i));
917
918 const std::string theVariationName{variationName.empty() ? colName : variationName};
919
920 return Vary(colName, std::forward<F>(expression), inputColumns, std::move(variationTags), theVariationName);
921 }
922
923 /// \brief Register systematic variations for multiple existing columns using custom variation tags.
924 /// \param[in] colNames set of names of the columns for which varied values are provided.
925 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
926 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
927 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
928 /// \param[in] inputColumns the names of the columns to be passed to the callable.
929 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
930 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`
931 ///
932 /// This overload of Vary takes a list of column names as first argument and
933 /// requires that the expression returns an RVec of RVecs of values: one inner RVec for the variations of each
934 /// affected column. The `variationTags` are defined as `{"down", "up"}`.
935 ///
936 /// Example usage:
937 /// ~~~{.cpp}
938 /// // produce variations "ptAndEta:down" and "ptAndEta:up"
939 /// auto nominal_hx =
940 /// df.Vary({"pt", "eta"}, // the columns that will vary simultaneously
941 /// [](double pt, double eta) { return RVec<RVecF>{{pt*0.9, pt*1.1}, {eta*0.9, eta*1.1}}; },
942 /// {"pt", "eta"}, // inputs to the Vary expression, independent of what columns are varied
943 /// {"down", "up"}, // variation tags
944 /// "ptAndEta") // variation name
945 /// .Histo1D("pt", "eta");
946 ///
947 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
948 /// hx["nominal"].Draw();
949 /// hx["ptAndEta:down"].Draw("SAME");
950 /// hx["ptAndEta:up"].Draw("SAME");
951 /// ~~~
952 ///
953 /// \note See also This Vary() overload for more information.
954
955 template <typename F>
957 Vary(const std::vector<std::string> &colNames, F &&expression, const ColumnNames_t &inputColumns,
958 const std::vector<std::string> &variationTags, std::string_view variationName)
959 {
960 return VaryImpl<false>(colNames, std::forward<F>(expression), inputColumns, variationTags, variationName);
961 }
962
963 /// \brief Register systematic variations for multiple existing columns using custom variation tags.
964 /// \param[in] colNames set of names of the columns for which varied values are provided.
965 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
966 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
967 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
968 /// \param[in] inputColumns the names of the columns to be passed to the callable.
969 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
970 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
971 /// colName is used if none is provided.
972 ///
973 /// \note This overload ensures that the ambiguity between C++20 string, vector<string> construction from init list
974 /// is avoided.
975 ///
976 /// \note See also This Vary() overload for more information.
977 template <typename F>
979 Vary(std::initializer_list<std::string> colNames, F &&expression, const ColumnNames_t &inputColumns,
980 const std::vector<std::string> &variationTags, std::string_view variationName)
981 {
982 return Vary(std::vector<std::string>(colNames), std::forward<F>(expression), inputColumns, variationTags, variationName);
983 }
984
985 /// \brief Register systematic variations for multiple existing columns using auto-generated tags.
986 /// \param[in] colNames set of names of the columns for which varied values are provided.
987 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
988 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
989 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
990 /// \param[in] inputColumns the names of the columns to be passed to the callable.
991 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
992 /// `"1"`, etc.
993 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
994 /// colName is used if none is provided.
995 ///
996 /// This overload of Vary takes a list of column names as first argument.
997 /// It takes an `nVariations` parameter instead of a list of tag names (`variationTags`). Tag names
998 /// will be auto-generated as the sequence 0...``nVariations-1``.
999 ///
1000 /// Example usage:
1001 /// ~~~{.cpp}
1002 /// auto nominal_hx =
1003 /// df.Vary({"pt", "eta"}, // the columns that will vary simultaneously
1004 /// [](double pt, double eta) { return RVec<RVecF>{{pt*0.9, pt*1.1}, {eta*0.9, eta*1.1}}; },
1005 /// {"pt", "eta"}, // inputs to the Vary expression, independent of what columns are varied
1006 /// 2, // auto-generated variation tags
1007 /// "ptAndEta") // variation name
1008 /// .Histo1D("pt", "eta");
1009 ///
1010 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1011 /// hx["nominal"].Draw();
1012 /// hx["ptAndEta:0"].Draw("SAME");
1013 /// hx["ptAndEta:1"].Draw("SAME");
1014 /// ~~~
1015 ///
1016 /// \note See also This Vary() overload for more information.
1017 template <typename F>
1019 Vary(const std::vector<std::string> &colNames, F &&expression, const ColumnNames_t &inputColumns,
1020 std::size_t nVariations, std::string_view variationName)
1021 {
1022 R__ASSERT(nVariations > 0 && "Must have at least one variation.");
1023
1024 std::vector<std::string> variationTags;
1025 variationTags.reserve(nVariations);
1026 for (std::size_t i = 0u; i < nVariations; ++i)
1027 variationTags.emplace_back(std::to_string(i));
1028
1029 return Vary(colNames, std::forward<F>(expression), inputColumns, std::move(variationTags), variationName);
1030 }
1031
1032 /// \brief Register systematic variations for for multiple existing columns using custom variation tags.
1033 /// \param[in] colNames set of names of the columns for which varied values are provided.
1034 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
1035 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
1036 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
1037 /// \param[in] inputColumns the names of the columns to be passed to the callable.
1038 /// \param[in] inputColumns the names of the columns to be passed to the callable.
1039 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
1040 /// `"1"`, etc.
1041 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1042 /// colName is used if none is provided.
1043 ///
1044 /// \note This overload ensures that the ambiguity between C++20 string, vector<string> construction from init list
1045 /// is avoided.
1046 ///
1047 /// \note See also This Vary() overload for more information.
1048 template <typename F>
1050 Vary(std::initializer_list<std::string> colNames, F &&expression, const ColumnNames_t &inputColumns,
1051 std::size_t nVariations, std::string_view variationName)
1052 {
1053 return Vary(std::vector<std::string>(colNames), std::forward<F>(expression), inputColumns, nVariations, variationName);
1054 }
1055
1056 /// \brief Register systematic variations for a single existing column using custom variation tags.
1057 /// \param[in] colName name of the column for which varied values are provided.
1058 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec containing the varied
1059 /// values for the specified column.
1060 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
1061 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1062 /// colName is used if none is provided.
1063 ///
1064 /// This overload adds the possibility for the expression used to evaluate the varied values to be just-in-time
1065 /// compiled. The example below shows how Vary() is used while dealing with a single column. The variation tags are
1066 /// defined as `{"down", "up"}`.
1067 /// ~~~{.cpp}
1068 /// auto nominal_hx =
1069 /// df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", {"down", "up"})
1070 /// .Filter("pt > k")
1071 /// .Define("x", someFunc, {"pt"})
1072 /// .Histo1D("x");
1073 ///
1074 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1075 /// hx["nominal"].Draw();
1076 /// hx["pt:down"].Draw("SAME");
1077 /// hx["pt:up"].Draw("SAME");
1078 /// ~~~
1079 ///
1080 /// \note See also This Vary() overload for more information.
1081 RInterface<Proxied, DS_t> Vary(std::string_view colName, std::string_view expression,
1082 const std::vector<std::string> &variationTags, std::string_view variationName = "")
1083 {
1084 std::vector<std::string> colNames{{std::string(colName)}};
1085 const std::string theVariationName{variationName.empty() ? colName : variationName};
1086
1087 return JittedVaryImpl(colNames, expression, variationTags, theVariationName, /*isSingleColumn=*/true);
1088 }
1089
1090 /// \brief Register systematic variations for a single existing column using auto-generated variation tags.
1091 /// \param[in] colName name of the column for which varied values are provided.
1092 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec containing the varied
1093 /// values for the specified column.
1094 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
1095 /// `"1"`, etc.
1096 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1097 /// colName is used if none is provided.
1098 ///
1099 /// This overload adds the possibility for the expression used to evaluate the varied values to be a just-in-time
1100 /// compiled. The example below shows how Vary() is used while dealing with a single column. The variation tags are
1101 /// auto-generated.
1102 /// ~~~{.cpp}
1103 /// auto nominal_hx =
1104 /// df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", 2)
1105 /// .Histo1D("pt");
1106 ///
1107 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1108 /// hx["nominal"].Draw();
1109 /// hx["pt:0"].Draw("SAME");
1110 /// hx["pt:1"].Draw("SAME");
1111 /// ~~~
1112 ///
1113 /// \note See also This Vary() overload for more information.
1114 RInterface<Proxied, DS_t> Vary(std::string_view colName, std::string_view expression, std::size_t nVariations,
1115 std::string_view variationName = "")
1116 {
1117 std::vector<std::string> variationTags;
1118 variationTags.reserve(nVariations);
1119 for (std::size_t i = 0u; i < nVariations; ++i)
1120 variationTags.emplace_back(std::to_string(i));
1121
1122 return Vary(colName, expression, std::move(variationTags), variationName);
1123 }
1124
1125 /// \brief Register systematic variations for multiple existing columns using auto-generated variation tags.
1126 /// \param[in] colNames set of names of the columns for which varied values are provided.
1127 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec or RVecs containing the varied
1128 /// values for the specified columns.
1129 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
1130 /// `"1"`, etc.
1131 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1132 ///
1133 /// This overload adds the possibility for the expression used to evaluate the varied values to be just-in-time
1134 /// compiled. It takes an nVariations parameter instead of a list of tag names.
1135 /// The varied results will be accessible via the keys of the dictionary with the form `variationName:N` where `N`
1136 /// is the corresponding sequential tag starting at 0 and going up to `nVariations - 1`.
1137 /// The example below shows how Vary() is used while dealing with multiple columns.
1138 ///
1139 /// ~~~{.cpp}
1140 /// auto nominal_hx =
1141 /// df.Vary({"x", "y"}, "ROOT::RVec<ROOT::RVecD>{{x*0.9, x*1.1}, {y*0.9, y*1.1}}", 2, "xy")
1142 /// .Histo1D("x", "y");
1143 ///
1144 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1145 /// hx["nominal"].Draw();
1146 /// hx["xy:0"].Draw("SAME");
1147 /// hx["xy:1"].Draw("SAME");
1148 /// ~~~
1149 ///
1150 /// \note See also This Vary() overload for more information.
1151 RInterface<Proxied, DS_t> Vary(const std::vector<std::string> &colNames, std::string_view expression,
1152 std::size_t nVariations, std::string_view variationName)
1153 {
1154 std::vector<std::string> variationTags;
1155 variationTags.reserve(nVariations);
1156 for (std::size_t i = 0u; i < nVariations; ++i)
1157 variationTags.emplace_back(std::to_string(i));
1158
1159 return Vary(colNames, expression, std::move(variationTags), variationName);
1160 }
1161
1162 /// \brief Register systematic variations for multiple existing columns using auto-generated variation tags.
1163 /// \param[in] colNames set of names of the columns for which varied values are provided.
1164 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec containing the varied
1165 /// values for the specified column.
1166 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
1167 /// `"1"`, etc.
1168 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1169 /// colName is used if none is provided.
1170 ///
1171 /// \note This overload ensures that the ambiguity between C++20 string, vector<string> construction from init list
1172 /// is avoided.
1173 ///
1174 /// \note See also This Vary() overload for more information.
1175 RInterface<Proxied, DS_t> Vary(std::initializer_list<std::string> colNames, std::string_view expression,
1176 std::size_t nVariations, std::string_view variationName)
1177 {
1178 return Vary(std::vector<std::string>(colNames), expression, nVariations, variationName);
1179 }
1180
1181 /// \brief Register systematic variations for multiple existing columns using custom variation tags.
1182 /// \param[in] colNames set of names of the columns for which varied values are provided.
1183 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec or RVecs containing the varied
1184 /// values for the specified columns.
1185 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
1186 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1187 ///
1188 /// This overload adds the possibility for the expression used to evaluate the varied values to be just-in-time
1189 /// compiled. The example below shows how Vary() is used while dealing with multiple columns. The tags are defined as
1190 /// `{"down", "up"}`.
1191 /// ~~~{.cpp}
1192 /// auto nominal_hx =
1193 /// df.Vary({"x", "y"}, "ROOT::RVec<ROOT::RVecD>{{x*0.9, x*1.1}, {y*0.9, y*1.1}}", {"down", "up"}, "xy")
1194 /// .Histo1D("x", "y");
1195 ///
1196 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1197 /// hx["nominal"].Draw();
1198 /// hx["xy:down"].Draw("SAME");
1199 /// hx["xy:up"].Draw("SAME");
1200 /// ~~~
1201 ///
1202 /// \note See also This Vary() overload for more information.
1203 RInterface<Proxied, DS_t> Vary(const std::vector<std::string> &colNames, std::string_view expression,
1204 const std::vector<std::string> &variationTags, std::string_view variationName)
1205 {
1206 return JittedVaryImpl(colNames, expression, variationTags, variationName, /*isSingleColumn=*/false);
1207 }
1208
1209 ////////////////////////////////////////////////////////////////////////////
1210 /// \brief Allow to refer to a column with a different name.
1211 /// \param[in] alias name of the column alias
1212 /// \param[in] columnName of the column to be aliased
1213 /// \return the first node of the computation graph for which the alias is available.
1214 ///
1215 /// Aliasing an alias is supported.
1216 ///
1217 /// ### Example usage:
1218 /// ~~~{.cpp}
1219 /// auto df_with_alias = df.Alias("simple_name", "very_long&complex_name!!!");
1220 /// ~~~
1221 RInterface<Proxied, DS_t> Alias(std::string_view alias, std::string_view columnName)
1222 {
1223 // The symmetry with Define is clear. We want to:
1224 // - Create globally the alias and return this very node, unchanged
1225 // - Make aliases accessible based on chains and not globally
1226
1227 // Helper to find out if a name is a column
1229
1230 constexpr auto where = "Alias";
1232 // If the alias name is a column name, there is a problem
1234
1235 const auto validColumnName = GetValidatedColumnNames(1, {std::string(columnName)})[0];
1236
1238 newCols.AddAlias(alias, validColumnName);
1239
1241
1242 return newInterface;
1243 }
1244
1245 ////////////////////////////////////////////////////////////////////////////
1246 /// \brief Save selected columns to disk, in a new TTree or RNTuple `treename` in file `filename`.
1247 /// \param[in] treename The name of the output TTree or RNTuple.
1248 /// \param[in] filename The name of the output TFile.
1249 /// \param[in] columnList The list of names of the columns/branches/fields to be written.
1250 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree/RNTuple.
1251 /// \return a `RDataFrame` that wraps the snapshotted dataset.
1252 ///
1253 /// This function returns a `RDataFrame` built with the output TTree or RNTuple as a source.
1254 /// The types of the columns are automatically inferred and do not need to be specified.
1255 ///
1256 /// Support for writing of nested branches/fields is limited (although RDataFrame is able to read them) and dot ('.')
1257 /// characters in input column names will be replaced by underscores ('_') in the branches produced by Snapshot.
1258 /// When writing a variable size array through Snapshot, it is required that the column indicating its size is also
1259 /// written out and it appears before the array in the columnList.
1260 ///
1261 /// By default, in case of TTree, TChain or RNTuple inputs, Snapshot will try to write out all top-level branches.
1262 /// For other types of inputs, all columns returned by GetColumnNames() will be written out. Systematic variations of
1263 /// columns will be included if the corresponding flag is set in RSnapshotOptions. See \ref snapshot-with-variations
1264 /// "Snapshot with Variations" for more details. If friend trees or chains are present, by default all friend
1265 /// top-level branches that have names that do not collide with names of branches in the main TTree/TChain will be
1266 /// written out. Since v6.24, Snapshot will also write out friend branches with the same names of branches in the
1267 /// main TTree/TChain with names of the form
1268 /// `<friendname>_<branchname>` in order to differentiate them from the branches in the main tree/chain.
1269 ///
1270 /// ### Writing to a sub-directory
1271 ///
1272 /// Snapshot supports writing the TTree or RNTuple in a sub-directory inside the TFile. It is sufficient to specify
1273 /// the directory path as part of the TTree or RNTuple name, e.g. `df.Snapshot("subdir/t", "f.root")` writes TTree
1274 /// `t` in the sub-directory `subdir` of file `f.root` (creating file and sub-directory as needed).
1275 ///
1276 /// \attention In multi-thread runs (i.e. when EnableImplicitMT() has been called) threads will loop over clusters of
1277 /// entries in an undefined order, so Snapshot will produce outputs in which (clusters of) entries will be shuffled
1278 /// with respect to the input TTree. Using such "shuffled" TTrees as friends of the original trees would result in
1279 /// wrong associations between entries in the main TTree and entries in the "shuffled" friend. Since v6.22, ROOT will
1280 /// error out if such a "shuffled" TTree is used in a friendship.
1281 ///
1282 /// \note In case no events are written out (e.g. because no event passes all filters), Snapshot will still write the
1283 /// requested output TTree or RNTuple to the file, with all the branches requested to preserve the dataset schema.
1284 ///
1285 /// \note Snapshot will refuse to process columns with names of the form `#columnname`. These are special columns
1286 /// made available by some data sources (e.g. RNTupleDS) that represent the size of column `columnname`, and are
1287 /// not meant to be written out with that name (which is not a valid C++ variable name). Instead, go through an
1288 /// Alias(): `df.Alias("nbar", "#bar").Snapshot(..., {"nbar"})`.
1289 ///
1290 /// ### Example invocations:
1291 ///
1292 /// ~~~{.cpp}
1293 /// // No need to specify column types, they are automatically deduced thanks
1294 /// // to information coming from the data source
1295 /// df.Snapshot("outputTree", "outputFile.root", {"x", "y"});
1296 /// ~~~
1297 ///
1298 /// To book a Snapshot without triggering the event loop, one needs to set the appropriate flag in
1299 /// `RSnapshotOptions`:
1300 /// ~~~{.cpp}
1301 /// RSnapshotOptions opts;
1302 /// opts.fLazy = true;
1303 /// df.Snapshot("outputTree", "outputFile.root", {"x"}, opts);
1304 /// ~~~
1305 ///
1306 /// To snapshot to the RNTuple data format, the `fOutputFormat` option in `RSnapshotOptions` needs to be set
1307 /// accordingly:
1308 /// ~~~{.cpp}
1309 /// RSnapshotOptions opts;
1310 /// opts.fOutputFormat = ROOT::RDF::ESnapshotOutputFormat::kRNTuple;
1311 /// df.Snapshot("outputNTuple", "outputFile.root", {"x"}, opts);
1312 /// ~~~
1313 ///
1314 /// Snapshot systematic variations resulting from a Vary() call (see details \ref snapshot-with-variations "here"):
1315 /// ~~~{.cpp}
1316 /// RSnapshotOptions opts;
1317 /// opts.fIncludeVariations = true;
1318 /// df.Snapshot("outputTree", "outputFile.root", {"x"}, opts);
1319 /// ~~~
1322 const RSnapshotOptions &options = RSnapshotOptions())
1323 {
1324 // like columnList but with `#var` columns removed
1326 // like columnListWithoutSizeColumns but with aliases resolved
1329 // like validCols but with missing size branches required by array branches added in the right positions
1330 const auto pairOfColumnLists =
1334
1335 const auto fullTreeName = treename;
1337 treename = parsedTreePath.fTreeName;
1338 const auto &dirname = parsedTreePath.fDirName;
1339
1341
1343
1344 auto retrieveTypeID = [](const std::string &colName, const std::string &colTypeName,
1345 bool isRNTuple = false) -> const std::type_info * {
1346 try {
1348 } catch (const std::runtime_error &err) {
1349 if (isRNTuple)
1351
1352 if (std::string(err.what()).find("Cannot extract type_info of type") != std::string::npos) {
1353 // We could not find RTTI for this column, thus we cannot write it out at the moment.
1354 std::string trueTypeName{colTypeName};
1355 if (colTypeName.rfind("CLING_UNKNOWN_TYPE", 0) == 0)
1356 trueTypeName = colTypeName.substr(19);
1357 std::string msg{"No runtime type information is available for column \"" + colName +
1358 "\" with type name \"" + trueTypeName +
1359 "\". Thus, it cannot be written to disk with Snapshot. Make sure to generate and load "
1360 "ROOT dictionaries for the type of this column."};
1361
1362 throw std::runtime_error(msg);
1363 } else {
1364 throw;
1365 }
1366 }
1367 };
1368
1370
1371 if (options.fOutputFormat == ESnapshotOutputFormat::kRNTuple) {
1372 // The data source of the RNTuple resulting from the Snapshot action does not exist yet here, so we create one
1373 // without a data source for now, and set it once the actual data source can be created (i.e., after
1374 // writing the RNTuple).
1375 auto newRDF = std::make_shared<RInterface<RLoopManager>>(std::make_shared<RLoopManager>(colListNoPoundSizes));
1376
1377 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{
1378 std::string(filename), std::string(dirname), std::string(treename), colListWithAliasesAndSizeBranches,
1379 options, newRDF->GetLoopManager(), GetLoopManager(), true /* fToNTuple */, /*fIncludeVariations=*/false});
1380
1383
1384 const auto nSlots = fLoopManager->GetNSlots();
1385 std::vector<const std::type_info *> colTypeIDs;
1386 colTypeIDs.reserve(nColumns);
1387 for (decltype(nColumns) i{}; i < nColumns; i++) {
1388 const auto &colName = validColumnNames[i];
1390 colName, /*tree*/ nullptr, GetDataSource(), fColRegister.GetDefine(colName), options.fVector2RVec);
1391 const std::type_info *colTypeID = retrieveTypeID(colName, colTypeName, /*isRNTuple*/ true);
1392 colTypeIDs.push_back(colTypeID);
1393 }
1394 // Crucial e.g. if the column names do not correspond to already-available column readers created by the data
1395 // source
1397
1398 auto action =
1400 resPtr = MakeResultPtr(newRDF, *GetLoopManager(), std::move(action));
1401 } else {
1402 if (RDFInternal::GetDataSourceLabel(*this) == "RNTupleDS" &&
1403 options.fOutputFormat == ESnapshotOutputFormat::kDefault) {
1404 Warning("Snapshot",
1405 "The default Snapshot output data format is TTree, but the input data format is RNTuple. If you "
1406 "want to Snapshot to RNTuple or suppress this warning, set the appropriate fOutputFormat option in "
1407 "RSnapshotOptions. Note that this current default behaviour might change in the future.");
1408 }
1409
1410 // We create an RLoopManager without a data source. This needs to be initialised when the output TTree dataset
1411 // has actually been created and written to TFile, i.e. at the end of the Snapshot execution.
1412 auto newRDF = std::make_shared<RInterface<RLoopManager>>(
1413 std::make_shared<RLoopManager>(colListNoAliasesWithSizeBranches));
1414
1415 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{
1416 std::string(filename), std::string(dirname), std::string(treename), colListWithAliasesAndSizeBranches,
1417 options, newRDF->GetLoopManager(), GetLoopManager(), false /* fToRNTuple */, options.fIncludeVariations});
1418
1421
1422 const auto nSlots = fLoopManager->GetNSlots();
1423 std::vector<const std::type_info *> colTypeIDs;
1424 colTypeIDs.reserve(nColumns);
1425 for (decltype(nColumns) i{}; i < nColumns; i++) {
1426 const auto &colName = validColumnNames[i];
1428 colName, /*tree*/ nullptr, GetDataSource(), fColRegister.GetDefine(colName), options.fVector2RVec);
1429 const std::type_info *colTypeID = retrieveTypeID(colName, colTypeName);
1430 colTypeIDs.push_back(colTypeID);
1431 }
1432 // Crucial e.g. if the column names do not correspond to already-available column readers created by the data
1433 // source
1435
1436 auto action =
1438 resPtr = MakeResultPtr(newRDF, *GetLoopManager(), std::move(action));
1439 }
1440
1441 if (!options.fLazy)
1442 *resPtr;
1443 return resPtr;
1444 }
1445
1446 // clang-format off
1447 ////////////////////////////////////////////////////////////////////////////
1448 /// \brief Save selected columns to disk, in a new TTree or RNTuple `treename` in file `filename`.
1449 /// \param[in] treename The name of the output TTree or RNTuple.
1450 /// \param[in] filename The name of the output TFile.
1451 /// \param[in] columnNameRegexp The regular expression to match the column names to be selected. The presence of a '^' and a '$' at the end of the string is implicitly assumed if they are not specified. The dialect supported is PCRE via the TPRegexp class. An empty string signals the selection of all columns.
1452 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree/RNTuple
1453 /// \return a `RDataFrame` that wraps the snapshotted dataset.
1454 ///
1455 /// This function returns a `RDataFrame` built with the output TTree or RNTuple as a source.
1456 /// The types of the columns are automatically inferred and do not need to be specified.
1457 ///
1458 /// See Snapshot(std::string_view, std::string_view, const ColumnNames_t&, const RSnapshotOptions &) for a more complete description and example usages.
1460 std::string_view columnNameRegexp = "",
1461 const RSnapshotOptions &options = RSnapshotOptions())
1462 {
1464
1466 // Ignore R_rdf_sizeof_* columns coming from datasources: we don't want to Snapshot those
1468 std::copy_if(dsColumns.begin(), dsColumns.end(), std::back_inserter(dsColumnsWithoutSizeColumns),
1469 [](const std::string &name) { return name.size() < 13 || name.substr(0, 13) != "R_rdf_sizeof_"; });
1474
1475 // The only way we can get duplicate entries is if a column coming from a tree or data-source is Redefine'd.
1476 // RemoveDuplicates should preserve ordering of the columns: it might be meaningful.
1478
1480
1481 if (RDFInternal::GetDataSourceLabel(*this) == "RNTupleDS") {
1483 }
1484
1485 return Snapshot(treename, filename, selectedColumns, options);
1486 }
1487 // clang-format on
1488
1489 // clang-format off
1490 ////////////////////////////////////////////////////////////////////////////
1491 /// \brief Save selected columns to disk, in a new TTree or RNTuple `treename` in file `filename`.
1492 /// \param[in] treename The name of the output TTree or RNTuple.
1493 /// \param[in] filename The name of the output TFile.
1494 /// \param[in] columnList The list of names of the columns/branches to be written.
1495 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree/RNTuple.
1496 /// \return a `RDataFrame` that wraps the snapshotted dataset.
1497 ///
1498 /// This function returns a `RDataFrame` built with the output TTree or RNTuple as a source.
1499 /// The types of the columns are automatically inferred and do not need to be specified.
1500 ///
1501 /// See Snapshot(std::string_view, std::string_view, const ColumnNames_t&, const RSnapshotOptions &) for a more complete description and example usages.
1503 std::initializer_list<std::string> columnList,
1504 const RSnapshotOptions &options = RSnapshotOptions())
1505 {
1507 return Snapshot(treename, filename, selectedColumns, options);
1508 }
1509 // clang-format on
1510
1511 ////////////////////////////////////////////////////////////////////////////
1512 /// \brief Save selected columns in memory.
1513 /// \tparam ColumnTypes variadic list of branch/column types.
1514 /// \param[in] columnList columns to be cached in memory.
1515 /// \return a `RDataFrame` that wraps the cached dataset.
1516 ///
1517 /// This action returns a new `RDataFrame` object, completely detached from
1518 /// the originating `RDataFrame`. The new dataframe only contains the cached
1519 /// columns and stores their content in memory for fast, zero-copy subsequent access.
1520 ///
1521 /// Use `Cache` if you know you will only need a subset of the (`Filter`ed) data that
1522 /// fits in memory and that will be accessed many times.
1523 ///
1524 /// \note Cache will refuse to process columns with names of the form `#columnname`. These are special columns
1525 /// made available by some data sources (e.g. RNTupleDS) that represent the size of column `columnname`, and are
1526 /// not meant to be written out with that name (which is not a valid C++ variable name). Instead, go through an
1527 /// Alias(): `df.Alias("nbar", "#bar").Cache<std::size_t>(..., {"nbar"})`.
1528 ///
1529 /// ### Example usage:
1530 ///
1531 /// **Types and columns specified:**
1532 /// ~~~{.cpp}
1533 /// auto cache_some_cols_df = df.Cache<double, MyClass, int>({"col0", "col1", "col2"});
1534 /// ~~~
1535 ///
1536 /// **Types inferred and columns specified (this invocation relies on jitting):**
1537 /// ~~~{.cpp}
1538 /// auto cache_some_cols_df = df.Cache({"col0", "col1", "col2"});
1539 /// ~~~
1540 ///
1541 /// **Types inferred and columns selected with a regexp (this invocation relies on jitting):**
1542 /// ~~~{.cpp}
1543 /// auto cache_all_cols_df = df.Cache(myRegexp);
1544 /// ~~~
1545 template <typename... ColumnTypes>
1547 {
1548 auto staticSeq = std::make_index_sequence<sizeof...(ColumnTypes)>();
1550 }
1551
1552 ////////////////////////////////////////////////////////////////////////////
1553 /// \brief Save selected columns in memory.
1554 /// \param[in] columnList columns to be cached in memory
1555 /// \return a `RDataFrame` that wraps the cached dataset.
1556 ///
1557 /// See the previous overloads for more information.
1559 {
1560 // Early return: if the list of columns is empty, just return an empty RDF
1561 // If we proceed, the jitted call will not compile!
1562 if (columnList.empty()) {
1563 auto nEntries = *this->Count();
1564 RInterface<RLoopManager> emptyRDF(std::make_shared<RLoopManager>(nEntries));
1565 return emptyRDF;
1566 }
1567
1568 std::stringstream cacheCall;
1570 RInterface<TTraits::TakeFirstParameter_t<decltype(upcastNode)>> upcastInterface(fProxiedPtr, *fLoopManager,
1571 fColRegister);
1572 // build a string equivalent to
1573 // "(RInterface<nodetype*>*)(this)->Cache<Ts...>(*(ColumnNames_t*)(&columnList))"
1574 RInterface<RLoopManager> resRDF(std::make_shared<ROOT::Detail::RDF::RLoopManager>(0));
1575 cacheCall << "*reinterpret_cast<ROOT::RDF::RInterface<ROOT::Detail::RDF::RLoopManager>*>("
1577 << ") = reinterpret_cast<ROOT::RDF::RInterface<ROOT::Detail::RDF::RNodeBase>*>("
1579
1581
1582 const auto validColumnNames =
1584 const auto colTypes =
1585 GetValidatedArgTypes(validColumnNames, fColRegister, nullptr, GetDataSource(), "Cache", /*vector2RVec=*/false);
1586 for (const auto &colType : colTypes)
1587 cacheCall << colType << ", ";
1588 if (!columnListWithoutSizeColumns.empty())
1589 cacheCall.seekp(-2, cacheCall.cur); // remove the last ",
1590 cacheCall << ">(*reinterpret_cast<std::vector<std::string>*>(" // vector<string> should be ColumnNames_t
1592
1593 // book the code to jit with the RLoopManager and trigger the event loop
1594 fLoopManager->ToJitExec(cacheCall.str());
1595 fLoopManager->Jit();
1596
1597 return resRDF;
1598 }
1599
1600 ////////////////////////////////////////////////////////////////////////////
1601 /// \brief Save selected columns in memory.
1602 /// \param[in] columnNameRegexp The regular expression to match the column names to be selected. The presence of a '^' and a '$' at the end of the string is implicitly assumed if they are not specified. The dialect supported is PCRE via the TPRegexp class. An empty string signals the selection of all columns.
1603 /// \return a `RDataFrame` that wraps the cached dataset.
1604 ///
1605 /// The existing columns are matched against the regular expression. If the string provided
1606 /// is empty, all columns are selected. See the previous overloads for more information.
1608 {
1611 // Ignore R_rdf_sizeof_* columns coming from datasources: we don't want to Snapshot those
1613 std::copy_if(dsColumns.begin(), dsColumns.end(), std::back_inserter(dsColumnsWithoutSizeColumns),
1614 [](const std::string &name) { return name.size() < 13 || name.substr(0, 13) != "R_rdf_sizeof_"; });
1616 columnNames.reserve(definedColumns.size() + dsColumns.size());
1620 return Cache(selectedColumns);
1621 }
1622
1623 ////////////////////////////////////////////////////////////////////////////
1624 /// \brief Save selected columns in memory.
1625 /// \param[in] columnList columns to be cached in memory.
1626 /// \return a `RDataFrame` that wraps the cached dataset.
1627 ///
1628 /// See the previous overloads for more information.
1629 RInterface<RLoopManager> Cache(std::initializer_list<std::string> columnList)
1630 {
1632 return Cache(selectedColumns);
1633 }
1634
1635 // clang-format off
1636 ////////////////////////////////////////////////////////////////////////////
1637 /// \brief Creates a node that filters entries based on range: [begin, end).
1638 /// \param[in] begin Initial entry number considered for this range.
1639 /// \param[in] end Final entry number (excluded) considered for this range. 0 means that the range goes until the end of the dataset.
1640 /// \param[in] stride Process one entry of the [begin, end) range every `stride` entries. Must be strictly greater than 0.
1641 /// \return the first node of the computation graph for which the event loop is limited to a certain range of entries.
1642 ///
1643 /// Note that in case of previous Ranges and Filters the selected range refers to the transformed dataset.
1644 /// Ranges are only available if EnableImplicitMT has _not_ been called. Multi-thread ranges are not supported.
1645 ///
1646 /// ### Example usage:
1647 /// ~~~{.cpp}
1648 /// auto d_0_30 = d.Range(0, 30); // Pick the first 30 entries
1649 /// auto d_15_end = d.Range(15, 0); // Pick all entries from 15 onwards
1650 /// auto d_15_end_3 = d.Range(15, 0, 3); // Stride: from event 15, pick an event every 3
1651 /// ~~~
1652 // clang-format on
1653 RInterface<RDFDetail::RRange<Proxied>, DS_t> Range(unsigned int begin, unsigned int end, unsigned int stride = 1)
1654 {
1655 // check invariants
1656 if (stride == 0 || (end != 0 && end < begin))
1657 throw std::runtime_error("Range: stride must be strictly greater than 0 and end must be greater than begin.");
1658 CheckIMTDisabled("Range");
1659
1660 using Range_t = RDFDetail::RRange<Proxied>;
1661 auto rangePtr = std::make_shared<Range_t>(begin, end, stride, fProxiedPtr);
1663 return newInterface;
1664 }
1665
1666 // clang-format off
1667 ////////////////////////////////////////////////////////////////////////////
1668 /// \brief Creates a node that filters entries based on range.
1669 /// \param[in] end Final entry number (excluded) considered for this range. 0 means that the range goes until the end of the dataset.
1670 /// \return a node of the computation graph for which the range is defined.
1671 ///
1672 /// See the other Range overload for a detailed description.
1673 // clang-format on
1674 RInterface<RDFDetail::RRange<Proxied>, DS_t> Range(unsigned int end) { return Range(0, end, 1); }
1675
1676 // clang-format off
1677 ////////////////////////////////////////////////////////////////////////////
1678 /// \brief Execute a user-defined function on each entry (*instant action*).
1679 /// \param[in] f Function, lambda expression, functor class or any other callable object performing user defined calculations.
1680 /// \param[in] columns Names of the columns/branches in input to the user function.
1681 ///
1682 /// The callable `f` is invoked once per entry. This is an *instant action*:
1683 /// upon invocation, an event loop as well as execution of all scheduled actions
1684 /// is triggered.
1685 /// Users are responsible for the thread-safety of this callable when executing
1686 /// with implicit multi-threading enabled (i.e. ROOT::EnableImplicitMT).
1687 ///
1688 /// ### Example usage:
1689 /// ~~~{.cpp}
1690 /// myDf.Foreach([](int i){ std::cout << i << std::endl;}, {"myIntColumn"});
1691 /// ~~~
1692 // clang-format on
1693 template <typename F>
1694 void Foreach(F f, const ColumnNames_t &columns = {})
1695 {
1696 using arg_types = typename TTraits::CallableTraits<decltype(f)>::arg_types_nodecay;
1697 using ret_type = typename TTraits::CallableTraits<decltype(f)>::ret_type;
1698 ForeachSlot(RDFInternal::AddSlotParameter<ret_type>(f, arg_types()), columns);
1699 }
1700
1701 // clang-format off
1702 ////////////////////////////////////////////////////////////////////////////
1703 /// \brief Execute a user-defined function requiring a processing slot index on each entry (*instant action*).
1704 /// \param[in] f Function, lambda expression, functor class or any other callable object performing user defined calculations.
1705 /// \param[in] columns Names of the columns/branches in input to the user function.
1706 ///
1707 /// Same as `Foreach`, but the user-defined function takes an extra
1708 /// `unsigned int` as its first parameter, the *processing slot index*.
1709 /// This *slot index* will be assigned a different value, `0` to `poolSize - 1`,
1710 /// for each thread of execution.
1711 /// This is meant as a helper in writing thread-safe `Foreach`
1712 /// actions when using `RDataFrame` after `ROOT::EnableImplicitMT()`.
1713 /// The user-defined processing callable is able to follow different
1714 /// *streams of processing* indexed by the first parameter.
1715 /// `ForeachSlot` works just as well with single-thread execution: in that
1716 /// case `slot` will always be `0`.
1717 ///
1718 /// ### Example usage:
1719 /// ~~~{.cpp}
1720 /// myDf.ForeachSlot([](unsigned int s, int i){ std::cout << "Slot " << s << ": "<< i << std::endl;}, {"myIntColumn"});
1721 /// ~~~
1722 // clang-format on
1723 template <typename F>
1724 void ForeachSlot(F f, const ColumnNames_t &columns = {})
1725 {
1727 constexpr auto nColumns = ColTypes_t::list_size;
1728
1731
1732 using Helper_t = RDFInternal::ForeachSlotHelper<F>;
1734
1735 auto action = std::make_unique<Action_t>(Helper_t(std::move(f)), validColumnNames, fProxiedPtr, fColRegister);
1736
1737 fLoopManager->Run();
1738 }
1739
1740 // clang-format off
1741 ////////////////////////////////////////////////////////////////////////////
1742 /// \brief Execute a user-defined reduce operation on the values of a column.
1743 /// \tparam F The type of the reduce callable. Automatically deduced.
1744 /// \tparam T The type of the column to apply the reduction to. Automatically deduced.
1745 /// \param[in] f A callable with signature `T(T,T)`
1746 /// \param[in] columnName The column to be reduced. If omitted, the first default column is used instead.
1747 /// \return the reduced quantity wrapped in a ROOT::RDF:RResultPtr.
1748 ///
1749 /// A reduction takes two values of a column and merges them into one (e.g.
1750 /// by summing them, taking the maximum, etc). This action performs the
1751 /// specified reduction operation on all processed column values, returning
1752 /// a single value of the same type. The callable f must satisfy the general
1753 /// requirements of a *processing function* besides having signature `T(T,T)`
1754 /// where `T` is the type of column columnName.
1755 ///
1756 /// The returned reduced value of each thread (e.g. the initial value of a sum) is initialized to a
1757 /// default-constructed T object. This is commonly expected to be the neutral/identity element for the specific
1758 /// reduction operation `f` (e.g. 0 for a sum, 1 for a product). If a default-constructed T does not satisfy this
1759 /// requirement, users should explicitly specify an initialization value for T by calling the appropriate `Reduce`
1760 /// overload.
1761 ///
1762 /// ### Example usage:
1763 /// ~~~{.cpp}
1764 /// auto sumOfIntCol = d.Reduce([](int x, int y) { return x + y; }, "intCol");
1765 /// ~~~
1766 ///
1767 /// This action is *lazy*: upon invocation of this method the calculation is
1768 /// booked but not executed. Also see RResultPtr.
1769 // clang-format on
1771 RResultPtr<T> Reduce(F f, std::string_view columnName = "")
1772 {
1773 static_assert(
1774 std::is_default_constructible<T>::value,
1775 "reduce object cannot be default-constructed. Please provide an initialisation value (redIdentity)");
1776 return Reduce(std::move(f), columnName, T());
1777 }
1778
1779 ////////////////////////////////////////////////////////////////////////////
1780 /// \brief Execute a user-defined reduce operation on the values of a column.
1781 /// \tparam F The type of the reduce callable. Automatically deduced.
1782 /// \tparam T The type of the column to apply the reduction to. Automatically deduced.
1783 /// \param[in] f A callable with signature `T(T,T)`
1784 /// \param[in] columnName The column to be reduced. If omitted, the first default column is used instead.
1785 /// \param[in] redIdentity The reduced object of each thread is initialized to this value.
1786 /// \return the reduced quantity wrapped in a RResultPtr.
1787 ///
1788 /// ### Example usage:
1789 /// ~~~{.cpp}
1790 /// auto sumOfIntColWithOffset = d.Reduce([](int x, int y) { return x + y; }, "intCol", 42);
1791 /// ~~~
1792 /// See the description of the first Reduce overload for more information.
1794 RResultPtr<T> Reduce(F f, std::string_view columnName, const T &redIdentity)
1795 {
1796 return Aggregate(f, f, columnName, redIdentity);
1797 }
1798
1799 ////////////////////////////////////////////////////////////////////////////
1800 /// \brief Return the number of entries processed (*lazy action*).
1801 /// \return the number of entries wrapped in a RResultPtr.
1802 ///
1803 /// Useful e.g. for counting the number of entries passing a certain filter (see also `Report`).
1804 /// This action is *lazy*: upon invocation of this method the calculation is
1805 /// booked but not executed. Also see RResultPtr.
1806 ///
1807 /// ### Example usage:
1808 /// ~~~{.cpp}
1809 /// auto nEntriesAfterCuts = myFilteredDf.Count();
1810 /// ~~~
1811 ///
1813 {
1814 const auto nSlots = fLoopManager->GetNSlots();
1815 auto cSPtr = std::make_shared<ULong64_t>(0);
1816 using Helper_t = RDFInternal::CountHelper;
1818 auto action = std::make_unique<Action_t>(Helper_t(cSPtr, nSlots), ColumnNames_t({}), fProxiedPtr,
1820 return MakeResultPtr(cSPtr, *fLoopManager, std::move(action));
1821 }
1822
1823 ////////////////////////////////////////////////////////////////////////////
1824 /// \brief Return a collection of values of a column (*lazy action*, returns a std::vector by default).
1825 /// \tparam T The type of the column.
1826 /// \tparam COLL The type of collection used to store the values.
1827 /// \param[in] column The name of the column to collect the values of.
1828 /// \return the content of the selected column wrapped in a RResultPtr.
1829 ///
1830 /// The collection type to be specified for C-style array columns is `RVec<T>`:
1831 /// in this case the returned collection is a `std::vector<RVec<T>>`.
1832 /// ### Example usage:
1833 /// ~~~{.cpp}
1834 /// // In this case intCol is a std::vector<int>
1835 /// auto intCol = rdf.Take<int>("integerColumn");
1836 /// // Same content as above but in this case taken as a RVec<int>
1837 /// auto intColAsRVec = rdf.Take<int, RVec<int>>("integerColumn");
1838 /// // In this case intCol is a std::vector<RVec<int>>, a collection of collections
1839 /// auto cArrayIntCol = rdf.Take<RVec<int>>("cArrayInt");
1840 /// ~~~
1841 /// This action is *lazy*: upon invocation of this method the calculation is
1842 /// booked but not executed. Also see RResultPtr.
1843 template <typename T, typename COLL = std::vector<T>>
1844 RResultPtr<COLL> Take(std::string_view column = "")
1845 {
1846 const auto columns = column.empty() ? ColumnNames_t() : ColumnNames_t({std::string(column)});
1847
1850
1851 using Helper_t = RDFInternal::TakeHelper<T, T, COLL>;
1853 auto valuesPtr = std::make_shared<COLL>();
1854 const auto nSlots = fLoopManager->GetNSlots();
1855
1856 auto action =
1857 std::make_unique<Action_t>(Helper_t(valuesPtr, nSlots), validColumnNames, fProxiedPtr, fColRegister);
1858 return MakeResultPtr(valuesPtr, *fLoopManager, std::move(action));
1859 }
1860
1861 ////////////////////////////////////////////////////////////////////////////
1862 /// \brief Fill and return a one-dimensional histogram with the values of a column (*lazy action*).
1863 /// \tparam V The type of the column used to fill the histogram.
1864 /// \param[in] model The returned histogram will be constructed using this as a model.
1865 /// \param[in] vName The name of the column that will fill the histogram.
1866 /// \return the monodimensional histogram wrapped in a RResultPtr.
1867 ///
1868 /// Columns can be of a container type (e.g. `std::vector<double>`), in which case the histogram
1869 /// is filled with each one of the elements of the container. In case multiple columns of container type
1870 /// are provided (e.g. values and weights) they must have the same length for each one of the events (but
1871 /// possibly different lengths between events).
1872 /// This action is *lazy*: upon invocation of this method the calculation is
1873 /// booked but not executed. Also see RResultPtr.
1874 ///
1875 /// ### Example usage:
1876 /// ~~~{.cpp}
1877 /// // Deduce column type (this invocation needs jitting internally)
1878 /// auto myHist1 = myDf.Histo1D({"histName", "histTitle", 64u, 0., 128.}, "myColumn");
1879 /// // Explicit column type
1880 /// auto myHist2 = myDf.Histo1D<float>({"histName", "histTitle", 64u, 0., 128.}, "myColumn");
1881 /// ~~~
1882 ///
1883 /// \note Differently from other ROOT interfaces, the returned histogram is not associated to gDirectory
1884 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
1885 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
1886 template <typename V = RDFDetail::RInferredType>
1887 RResultPtr<::TH1D> Histo1D(const TH1DModel &model = {"", "", 128u, 0., 0.}, std::string_view vName = "")
1888 {
1889 const auto userColumns = vName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(vName)});
1890
1892
1893 std::shared_ptr<::TH1D> h(nullptr);
1894 {
1895 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
1896 h = model.GetHistogram();
1897 }
1898
1899 if (h->GetXaxis()->GetXmax() == h->GetXaxis()->GetXmin())
1900 h->SetCanExtend(::TH1::kAllAxes);
1902 }
1903
1904 ////////////////////////////////////////////////////////////////////////////
1905 /// \brief Fill and return a one-dimensional histogram with the values of a column (*lazy action*).
1906 /// \tparam V The type of the column used to fill the histogram.
1907 /// \param[in] vName The name of the column that will fill the histogram.
1908 /// \return the monodimensional histogram wrapped in a RResultPtr.
1909 ///
1910 /// This overload uses a default model histogram TH1D(name, title, 128u, 0., 0.).
1911 /// The "name" and "title" strings are built starting from the input column name.
1912 /// See the description of the first Histo1D() overload for more details.
1913 ///
1914 /// ### Example usage:
1915 /// ~~~{.cpp}
1916 /// // Deduce column type (this invocation needs jitting internally)
1917 /// auto myHist1 = myDf.Histo1D("myColumn");
1918 /// // Explicit column type
1919 /// auto myHist2 = myDf.Histo1D<float>("myColumn");
1920 /// ~~~
1921 template <typename V = RDFDetail::RInferredType>
1923 {
1924 const auto h_name = std::string(vName);
1925 const auto h_title = h_name + ";" + h_name + ";count";
1926 return Histo1D<V>({h_name.c_str(), h_title.c_str(), 128u, 0., 0.}, vName);
1927 }
1928
1929 ////////////////////////////////////////////////////////////////////////////
1930 /// \brief Fill and return a one-dimensional histogram with the weighted values of a column (*lazy action*).
1931 /// \tparam V The type of the column used to fill the histogram.
1932 /// \tparam W The type of the column used as weights.
1933 /// \param[in] model The returned histogram will be constructed using this as a model.
1934 /// \param[in] vName The name of the column that will fill the histogram.
1935 /// \param[in] wName The name of the column that will provide the weights.
1936 /// \return the monodimensional histogram wrapped in a RResultPtr.
1937 ///
1938 /// See the description of the first Histo1D() overload for more details.
1939 ///
1940 /// ### Example usage:
1941 /// ~~~{.cpp}
1942 /// // Deduce column type (this invocation needs jitting internally)
1943 /// auto myHist1 = myDf.Histo1D({"histName", "histTitle", 64u, 0., 128.}, "myValue", "myweight");
1944 /// // Explicit column type
1945 /// auto myHist2 = myDf.Histo1D<float, int>({"histName", "histTitle", 64u, 0., 128.}, "myValue", "myweight");
1946 /// ~~~
1947 template <typename V = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
1948 RResultPtr<::TH1D> Histo1D(const TH1DModel &model, std::string_view vName, std::string_view wName)
1949 {
1950 const std::vector<std::string_view> columnViews = {vName, wName};
1952 ? ColumnNames_t()
1954 std::shared_ptr<::TH1D> h(nullptr);
1955 {
1956 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
1957 h = model.GetHistogram();
1958 }
1959
1960 if (h->GetXaxis()->GetXmax() == h->GetXaxis()->GetXmin())
1961 h->SetCanExtend(::TH1::kAllAxes);
1963 }
1964
1965 ////////////////////////////////////////////////////////////////////////////
1966 /// \brief Fill and return a one-dimensional histogram with the weighted values of a column (*lazy action*).
1967 /// \tparam V The type of the column used to fill the histogram.
1968 /// \tparam W The type of the column used as weights.
1969 /// \param[in] vName The name of the column that will fill the histogram.
1970 /// \param[in] wName The name of the column that will provide the weights.
1971 /// \return the monodimensional histogram wrapped in a RResultPtr.
1972 ///
1973 /// This overload uses a default model histogram TH1D(name, title, 128u, 0., 0.).
1974 /// The "name" and "title" strings are built starting from the input column names.
1975 /// See the description of the first Histo1D() overload for more details.
1976 ///
1977 /// ### Example usage:
1978 /// ~~~{.cpp}
1979 /// // Deduce column types (this invocation needs jitting internally)
1980 /// auto myHist1 = myDf.Histo1D("myValue", "myweight");
1981 /// // Explicit column types
1982 /// auto myHist2 = myDf.Histo1D<float, int>("myValue", "myweight");
1983 /// ~~~
1984 template <typename V = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
1985 RResultPtr<::TH1D> Histo1D(std::string_view vName, std::string_view wName)
1986 {
1987 // We build name and title based on the value and weight column names
1988 std::string str_vName{vName};
1989 std::string str_wName{wName};
1990 const auto h_name = str_vName + "_weighted_" + str_wName;
1991 const auto h_title = str_vName + ", weights: " + str_wName + ";" + str_vName + ";count * " + str_wName;
1992 return Histo1D<V, W>({h_name.c_str(), h_title.c_str(), 128u, 0., 0.}, vName, wName);
1993 }
1994
1995 ////////////////////////////////////////////////////////////////////////////
1996 /// \brief Fill and return a one-dimensional histogram with the weighted values of a column (*lazy action*).
1997 /// \tparam V The type of the column used to fill the histogram.
1998 /// \tparam W The type of the column used as weights.
1999 /// \param[in] model The returned histogram will be constructed using this as a model.
2000 /// \return the monodimensional histogram wrapped in a RResultPtr.
2001 ///
2002 /// This overload will use the first two default columns as column names.
2003 /// See the description of the first Histo1D() overload for more details.
2004 template <typename V, typename W>
2005 RResultPtr<::TH1D> Histo1D(const TH1DModel &model = {"", "", 128u, 0., 0.})
2006 {
2007 return Histo1D<V, W>(model, "", "");
2008 }
2009
2010 ////////////////////////////////////////////////////////////////////////////
2011 /// \brief Fill and return a two-dimensional histogram (*lazy action*).
2012 /// \tparam V1 The type of the column used to fill the x axis of the histogram.
2013 /// \tparam V2 The type of the column used to fill the y axis of the histogram.
2014 /// \param[in] model The returned histogram will be constructed using this as a model.
2015 /// \param[in] v1Name The name of the column that will fill the x axis.
2016 /// \param[in] v2Name The name of the column that will fill the y axis.
2017 /// \return the bidimensional histogram wrapped in a RResultPtr.
2018 ///
2019 /// Columns can be of a container type (e.g. std::vector<double>), in which case the histogram
2020 /// is filled with each one of the elements of the container. In case multiple columns of container type
2021 /// are provided (e.g. values and weights) they must have the same length for each one of the events (but
2022 /// possibly different lengths between events).
2023 /// This action is *lazy*: upon invocation of this method the calculation is
2024 /// booked but not executed. Also see RResultPtr.
2025 ///
2026 /// ### Example usage:
2027 /// ~~~{.cpp}
2028 /// // Deduce column types (this invocation needs jitting internally)
2029 /// auto myHist1 = myDf.Histo2D({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY");
2030 /// // Explicit column types
2031 /// auto myHist2 = myDf.Histo2D<float, float>({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY");
2032 /// ~~~
2033 ///
2034 ///
2035 /// \note Differently from other ROOT interfaces, the returned histogram is not associated to gDirectory
2036 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2037 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2038 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType>
2039 RResultPtr<::TH2D> Histo2D(const TH2DModel &model, std::string_view v1Name = "", std::string_view v2Name = "")
2040 {
2041 std::shared_ptr<::TH2D> h(nullptr);
2042 {
2043 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2044 h = model.GetHistogram();
2045 }
2046 if (!RDFInternal::HistoUtils<::TH2D>::HasAxisLimits(*h)) {
2047 throw std::runtime_error("2D histograms with no axes limits are not supported yet.");
2048 }
2049 const std::vector<std::string_view> columnViews = {v1Name, v2Name};
2051 ? ColumnNames_t()
2054 }
2055
2056 ////////////////////////////////////////////////////////////////////////////
2057 /// \brief Fill and return a weighted two-dimensional histogram (*lazy action*).
2058 /// \tparam V1 The type of the column used to fill the x axis of the histogram.
2059 /// \tparam V2 The type of the column used to fill the y axis of the histogram.
2060 /// \tparam W The type of the column used for the weights of the histogram.
2061 /// \param[in] model The returned histogram will be constructed using this as a model.
2062 /// \param[in] v1Name The name of the column that will fill the x axis.
2063 /// \param[in] v2Name The name of the column that will fill the y axis.
2064 /// \param[in] wName The name of the column that will provide the weights.
2065 /// \return the bidimensional histogram wrapped in a RResultPtr.
2066 ///
2067 /// This action is *lazy*: upon invocation of this method the calculation is
2068 /// booked but not executed. Also see RResultPtr.
2069 ///
2070 /// ### Example usage:
2071 /// ~~~{.cpp}
2072 /// // Deduce column types (this invocation needs jitting internally)
2073 /// auto myHist1 = myDf.Histo2D({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY", "myWeight");
2074 /// // Explicit column types
2075 /// auto myHist2 = myDf.Histo2D<float, float, double>({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY", "myWeight");
2076 /// ~~~
2077 ///
2078 /// See the documentation of the first Histo2D() overload for more details.
2079 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2080 typename W = RDFDetail::RInferredType>
2082 Histo2D(const TH2DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName)
2083 {
2084 std::shared_ptr<::TH2D> h(nullptr);
2085 {
2086 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2087 h = model.GetHistogram();
2088 }
2089 if (!RDFInternal::HistoUtils<::TH2D>::HasAxisLimits(*h)) {
2090 throw std::runtime_error("2D histograms with no axes limits are not supported yet.");
2091 }
2092 const std::vector<std::string_view> columnViews = {v1Name, v2Name, wName};
2094 ? ColumnNames_t()
2097 }
2098
2099 template <typename V1, typename V2, typename W>
2101 {
2102 return Histo2D<V1, V2, W>(model, "", "", "");
2103 }
2104
2105 ////////////////////////////////////////////////////////////////////////////
2106 /// \brief Fill and return a three-dimensional histogram (*lazy action*).
2107 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present.
2108 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present.
2109 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present.
2110 /// \param[in] model The returned histogram will be constructed using this as a model.
2111 /// \param[in] v1Name The name of the column that will fill the x axis.
2112 /// \param[in] v2Name The name of the column that will fill the y axis.
2113 /// \param[in] v3Name The name of the column that will fill the z axis.
2114 /// \return the tridimensional histogram wrapped in a RResultPtr.
2115 ///
2116 /// This action is *lazy*: upon invocation of this method the calculation is
2117 /// booked but not executed. Also see RResultPtr.
2118 ///
2119 /// ### Example usage:
2120 /// ~~~{.cpp}
2121 /// // Deduce column types (this invocation needs jitting internally)
2122 /// auto myHist1 = myDf.Histo3D({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.},
2123 /// "myValueX", "myValueY", "myValueZ");
2124 /// // Explicit column types
2125 /// auto myHist2 = myDf.Histo3D<double, double, float>({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.},
2126 /// "myValueX", "myValueY", "myValueZ");
2127 /// ~~~
2128 /// \note If three-dimensional histograms consume too much memory in multithreaded runs, the cloning of TH3D
2129 /// per thread can be reduced using ROOT::RDF::Experimental::ThreadsPerTH3(). See the section "Memory Usage" in
2130 /// the RDataFrame description.
2131 /// \note Differently from other ROOT interfaces, the returned histogram is not associated to gDirectory
2132 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2133 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2134 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2135 typename V3 = RDFDetail::RInferredType>
2136 RResultPtr<::TH3D> Histo3D(const TH3DModel &model, std::string_view v1Name = "", std::string_view v2Name = "",
2137 std::string_view v3Name = "")
2138 {
2139 std::shared_ptr<::TH3D> h(nullptr);
2140 {
2141 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2142 h = model.GetHistogram();
2143 }
2144 if (!RDFInternal::HistoUtils<::TH3D>::HasAxisLimits(*h)) {
2145 throw std::runtime_error("3D histograms with no axes limits are not supported yet.");
2146 }
2147 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name};
2149 ? ColumnNames_t()
2152 }
2153
2154 ////////////////////////////////////////////////////////////////////////////
2155 /// \brief Fill and return a three-dimensional histogram (*lazy action*).
2156 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present.
2157 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present.
2158 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present.
2159 /// \tparam W The type of the column used for the weights of the histogram. Inferred if not present.
2160 /// \param[in] model The returned histogram will be constructed using this as a model.
2161 /// \param[in] v1Name The name of the column that will fill the x axis.
2162 /// \param[in] v2Name The name of the column that will fill the y axis.
2163 /// \param[in] v3Name The name of the column that will fill the z axis.
2164 /// \param[in] wName The name of the column that will provide the weights.
2165 /// \return the tridimensional histogram wrapped in a RResultPtr.
2166 ///
2167 /// This action is *lazy*: upon invocation of this method the calculation is
2168 /// booked but not executed. Also see RResultPtr.
2169 ///
2170 /// ### Example usage:
2171 /// ~~~{.cpp}
2172 /// // Deduce column types (this invocation needs jitting internally)
2173 /// auto myHist1 = myDf.Histo3D({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.},
2174 /// "myValueX", "myValueY", "myValueZ", "myWeight");
2175 /// // Explicit column types
2176 /// using d_t = double;
2177 /// auto myHist2 = myDf.Histo3D<d_t, d_t, float, d_t>({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.},
2178 /// "myValueX", "myValueY", "myValueZ", "myWeight");
2179 /// ~~~
2180 ///
2181 ///
2182 /// See the documentation of the first Histo2D() overload for more details.
2183 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2184 typename V3 = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
2185 RResultPtr<::TH3D> Histo3D(const TH3DModel &model, std::string_view v1Name, std::string_view v2Name,
2186 std::string_view v3Name, std::string_view wName)
2187 {
2188 std::shared_ptr<::TH3D> h(nullptr);
2189 {
2190 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2191 h = model.GetHistogram();
2192 }
2193 if (!RDFInternal::HistoUtils<::TH3D>::HasAxisLimits(*h)) {
2194 throw std::runtime_error("3D histograms with no axes limits are not supported yet.");
2195 }
2196 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name, wName};
2198 ? ColumnNames_t()
2201 }
2202
2203 template <typename V1, typename V2, typename V3, typename W>
2205 {
2206 return Histo3D<V1, V2, V3, W>(model, "", "", "", "");
2207 }
2208
2209 ////////////////////////////////////////////////////////////////////////////
2210 /// \brief Fill and return an N-dimensional histogram (*lazy action*).
2211 /// \tparam FirstColumn The first type of the column the values of which are used to fill the object. Inferred if not
2212 /// present.
2213 /// \tparam OtherColumns A list of the other types of the columns the values of which are used to fill the
2214 /// object.
2215 /// \param[in] model The returned histogram will be constructed using this as a model.
2216 /// \param[in] columnList
2217 /// A list containing the names of the columns that will be passed when calling `Fill`.
2218 /// (N columns for unweighted filling, or N+1 columns for weighted filling)
2219 /// \return the N-dimensional histogram wrapped in a RResultPtr.
2220 ///
2221 /// This action is *lazy*: upon invocation of this method the calculation is
2222 /// booked but not executed. See RResultPtr documentation.
2223 ///
2224 /// ### Example usage:
2225 /// ~~~{.cpp}
2226 /// auto myFilledObj = myDf.HistoND<float, float, float, float>({"name","title", 4,
2227 /// {40,40,40,40}, {20.,20.,20.,20.}, {60.,60.,60.,60.}},
2228 /// {"col0", "col1", "col2", "col3"});
2229 /// ~~~
2230 ///
2231 template <typename FirstColumn, typename... OtherColumns> // need FirstColumn to disambiguate overloads
2233 {
2234 std::shared_ptr<::THnD> h(nullptr);
2235 {
2236 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2237 h = model.GetHistogram();
2238
2239 if (int(columnList.size()) == (h->GetNdimensions() + 1)) {
2240 h->Sumw2();
2241 } else if (int(columnList.size()) != h->GetNdimensions()) {
2242 throw std::runtime_error("Wrong number of columns for the specified number of histogram axes.");
2243 }
2244 }
2245 return CreateAction<RDFInternal::ActionTags::HistoND, FirstColumn, OtherColumns...>(columnList, h, h,
2246 fProxiedPtr);
2247 }
2248
2249 ////////////////////////////////////////////////////////////////////////////
2250 /// \brief Fill and return an N-dimensional histogram (*lazy action*).
2251 /// \param[in] model The returned histogram will be constructed using this as a model.
2252 /// \param[in] columnList A list containing the names of the columns that will be passed when calling `Fill`
2253 /// (N columns for unweighted filling, or N+1 columns for weighted filling)
2254 /// \return the N-dimensional histogram wrapped in a RResultPtr.
2255 ///
2256 /// This action is *lazy*: upon invocation of this method the calculation is
2257 /// booked but not executed. Also see RResultPtr.
2258 ///
2259 /// ### Example usage:
2260 /// ~~~{.cpp}
2261 /// auto myFilledObj = myDf.HistoND({"name","title", 4,
2262 /// {40,40,40,40}, {20.,20.,20.,20.}, {60.,60.,60.,60.}},
2263 /// {"col0", "col1", "col2", "col3"});
2264 /// ~~~
2265 ///
2267 {
2268 std::shared_ptr<::THnD> h(nullptr);
2269 {
2270 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2271 h = model.GetHistogram();
2272
2273 if (int(columnList.size()) == (h->GetNdimensions() + 1)) {
2274 h->Sumw2();
2275 } else if (int(columnList.size()) != h->GetNdimensions()) {
2276 throw std::runtime_error("Wrong number of columns for the specified number of histogram axes.");
2277 }
2278 }
2280 columnList.size());
2281 }
2282
2283 ////////////////////////////////////////////////////////////////////////////
2284 /// \brief Fill and return a sparse N-dimensional histogram (*lazy action*).
2285 /// \tparam FirstColumn The first type of the column the values of which are used to fill the object. Inferred if not
2286 /// present.
2287 /// \tparam OtherColumns A list of the other types of the columns the values of which are used to fill the
2288 /// object.
2289 /// \param[in] model The returned histogram will be constructed using this as a model.
2290 /// \param[in] columnList
2291 /// A list containing the names of the columns that will be passed when calling `Fill`.
2292 /// (N columns for unweighted filling, or N+1 columns for weighted filling)
2293 /// \return the N-dimensional histogram wrapped in a RResultPtr.
2294 ///
2295 /// This action is *lazy*: upon invocation of this method the calculation is
2296 /// booked but not executed. See RResultPtr documentation.
2297 ///
2298 /// ### Example usage:
2299 /// ~~~{.cpp}
2300 /// auto myFilledObj = myDf.HistoNSparseD<float, float, float, float>({"name","title", 4,
2301 /// {40,40,40,40}, {20.,20.,20.,20.}, {60.,60.,60.,60.}},
2302 /// {"col0", "col1", "col2", "col3"});
2303 /// ~~~
2304 ///
2305 template <typename FirstColumn, typename... OtherColumns> // need FirstColumn to disambiguate overloads
2307 {
2308 std::shared_ptr<::THnSparseD> h(nullptr);
2309 {
2310 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2311 h = model.GetHistogram();
2312
2313 if (int(columnList.size()) == (h->GetNdimensions() + 1)) {
2314 h->Sumw2();
2315 } else if (int(columnList.size()) != h->GetNdimensions()) {
2316 throw std::runtime_error("Wrong number of columns for the specified number of histogram axes.");
2317 }
2318 }
2319 return CreateAction<RDFInternal::ActionTags::HistoNSparseD, FirstColumn, OtherColumns...>(columnList, h, h,
2320 fProxiedPtr);
2321 }
2322
2323 ////////////////////////////////////////////////////////////////////////////
2324 /// \brief Fill and return a sparse N-dimensional histogram (*lazy action*).
2325 /// \param[in] model The returned histogram will be constructed using this as a model.
2326 /// \param[in] columnList A list containing the names of the columns that will be passed when calling `Fill`
2327 /// (N columns for unweighted filling, or N+1 columns for weighted filling)
2328 /// \return the N-dimensional histogram wrapped in a RResultPtr.
2329 ///
2330 /// This action is *lazy*: upon invocation of this method the calculation is
2331 /// booked but not executed. Also see RResultPtr.
2332 ///
2333 /// ### Example usage:
2334 /// ~~~{.cpp}
2335 /// auto myFilledObj = myDf.HistoNSparseD({"name","title", 4,
2336 /// {40,40,40,40}, {20.,20.,20.,20.}, {60.,60.,60.,60.}},
2337 /// {"col0", "col1", "col2", "col3"});
2338 /// ~~~
2339 ///
2341 {
2342 std::shared_ptr<::THnSparseD> h(nullptr);
2343 {
2344 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2345 h = model.GetHistogram();
2346
2347 if (int(columnList.size()) == (h->GetNdimensions() + 1)) {
2348 h->Sumw2();
2349 } else if (int(columnList.size()) != h->GetNdimensions()) {
2350 throw std::runtime_error("Wrong number of columns for the specified number of histogram axes.");
2351 }
2352 }
2354 columnList, h, h, fProxiedPtr, columnList.size());
2355 }
2356
2357 ////////////////////////////////////////////////////////////////////////////
2358 /// \brief Fill and return a TGraph object (*lazy action*).
2359 /// \tparam X The type of the column used to fill the x axis.
2360 /// \tparam Y The type of the column used to fill the y axis.
2361 /// \param[in] x The name of the column that will fill the x axis.
2362 /// \param[in] y The name of the column that will fill the y axis.
2363 /// \return the TGraph wrapped in a RResultPtr.
2364 ///
2365 /// Columns can be of a container type (e.g. std::vector<double>), in which case the TGraph
2366 /// is filled with each one of the elements of the container.
2367 /// If Multithreading is enabled, the order in which points are inserted is undefined.
2368 /// If the Graph has to be drawn, it is suggested to the user to sort it on the x before printing.
2369 /// A name and a title to the TGraph is given based on the input column names.
2370 ///
2371 /// This action is *lazy*: upon invocation of this method the calculation is
2372 /// booked but not executed. Also see RResultPtr.
2373 ///
2374 /// ### Example usage:
2375 /// ~~~{.cpp}
2376 /// // Deduce column types (this invocation needs jitting internally)
2377 /// auto myGraph1 = myDf.Graph("xValues", "yValues");
2378 /// // Explicit column types
2379 /// auto myGraph2 = myDf.Graph<int, float>("xValues", "yValues");
2380 /// ~~~
2381 ///
2382 /// \note Differently from other ROOT interfaces, the returned TGraph is not associated to gDirectory
2383 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2384 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2385 template <typename X = RDFDetail::RInferredType, typename Y = RDFDetail::RInferredType>
2386 RResultPtr<::TGraph> Graph(std::string_view x = "", std::string_view y = "")
2387 {
2388 auto graph = std::make_shared<::TGraph>();
2389 const std::vector<std::string_view> columnViews = {x, y};
2391 ? ColumnNames_t()
2393
2395
2396 // We build a default name and title based on the input columns
2397 const auto g_name = validatedColumns[1] + "_vs_" + validatedColumns[0];
2398 const auto g_title = validatedColumns[1] + " vs " + validatedColumns[0];
2399 graph->SetNameTitle(g_name.c_str(), g_title.c_str());
2400 graph->GetXaxis()->SetTitle(validatedColumns[0].c_str());
2401 graph->GetYaxis()->SetTitle(validatedColumns[1].c_str());
2402
2404 }
2405
2406 ////////////////////////////////////////////////////////////////////////////
2407 /// \brief Fill and return a TGraphAsymmErrors object (*lazy action*).
2408 /// \param[in] x The name of the column that will fill the x axis.
2409 /// \param[in] y The name of the column that will fill the y axis.
2410 /// \param[in] exl The name of the column of X low errors
2411 /// \param[in] exh The name of the column of X high errors
2412 /// \param[in] eyl The name of the column of Y low errors
2413 /// \param[in] eyh The name of the column of Y high errors
2414 /// \return the TGraphAsymmErrors wrapped in a RResultPtr.
2415 ///
2416 /// Columns can be of a container type (e.g. std::vector<double>), in which case the graph
2417 /// is filled with each one of the elements of the container.
2418 /// If Multithreading is enabled, the order in which points are inserted is undefined.
2419 ///
2420 /// This action is *lazy*: upon invocation of this method the calculation is
2421 /// booked but not executed. Also see RResultPtr.
2422 ///
2423 /// ### Example usage:
2424 /// ~~~{.cpp}
2425 /// // Deduce column types (this invocation needs jitting internally)
2426 /// auto myGAE1 = myDf.GraphAsymmErrors("xValues", "yValues", "exl", "exh", "eyl", "eyh");
2427 /// // Explicit column types
2428 /// using f = float
2429 /// auto myGAE2 = myDf.GraphAsymmErrors<f, f, f, f, f, f>("xValues", "yValues", "exl", "exh", "eyl", "eyh");
2430 /// ~~~
2431 ///
2432 /// `GraphAsymmErrors` should also be used for the cases in which values associated only with
2433 /// one of the axes have associated errors. For example, only `ey` exist and `ex` are equal to zero.
2434 /// In such cases, user should do the following:
2435 /// ~~~{.cpp}
2436 /// // Create a column of zeros in RDataFrame
2437 /// auto rdf_withzeros = rdf.Define("zero", "0");
2438 /// // or alternatively:
2439 /// auto rdf_withzeros = rdf.Define("zero", []() -> double { return 0.;});
2440 /// // Create the graph with y errors only
2441 /// auto rdf_errorsOnYOnly = rdf_withzeros.GraphAsymmErrors("xValues", "yValues", "zero", "zero", "eyl", "eyh");
2442 /// ~~~
2443 ///
2444 /// \note Differently from other ROOT interfaces, the returned TGraphAsymmErrors is not associated to gDirectory
2445 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2446 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2447 template <typename X = RDFDetail::RInferredType, typename Y = RDFDetail::RInferredType,
2451 GraphAsymmErrors(std::string_view x = "", std::string_view y = "", std::string_view exl = "",
2452 std::string_view exh = "", std::string_view eyl = "", std::string_view eyh = "")
2453 {
2454 auto graph = std::make_shared<::TGraphAsymmErrors>();
2455 const std::vector<std::string_view> columnViews = {x, y, exl, exh, eyl, eyh};
2457 ? ColumnNames_t()
2459
2461
2462 // We build a default name and title based on the input columns
2463 const auto g_name = validatedColumns[1] + "_vs_" + validatedColumns[0];
2464 const auto g_title = validatedColumns[1] + " vs " + validatedColumns[0];
2465 graph->SetNameTitle(g_name.c_str(), g_title.c_str());
2466 graph->GetXaxis()->SetTitle(validatedColumns[0].c_str());
2467 graph->GetYaxis()->SetTitle(validatedColumns[1].c_str());
2468
2470 graph, fProxiedPtr);
2471 }
2472
2473 ////////////////////////////////////////////////////////////////////////////
2474 /// \brief Fill and return a one-dimensional profile (*lazy action*).
2475 /// \tparam V1 The type of the column the values of which are used to fill the profile. Inferred if not present.
2476 /// \tparam V2 The type of the column the values of which are used to fill the profile. Inferred if not present.
2477 /// \param[in] model The model to be considered to build the new return value.
2478 /// \param[in] v1Name The name of the column that will fill the x axis.
2479 /// \param[in] v2Name The name of the column that will fill the y axis.
2480 /// \return the monodimensional profile wrapped in a RResultPtr.
2481 ///
2482 /// This action is *lazy*: upon invocation of this method the calculation is
2483 /// booked but not executed. Also see RResultPtr.
2484 ///
2485 /// ### Example usage:
2486 /// ~~~{.cpp}
2487 /// // Deduce column types (this invocation needs jitting internally)
2488 /// auto myProf1 = myDf.Profile1D({"profName", "profTitle", 64u, -4., 4.}, "xValues", "yValues");
2489 /// // Explicit column types
2490 /// auto myProf2 = myDf.Graph<int, float>({"profName", "profTitle", 64u, -4., 4.}, "xValues", "yValues");
2491 /// ~~~
2492 ///
2493 /// \note Differently from other ROOT interfaces, the returned profile is not associated to gDirectory
2494 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2495 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2496 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType>
2498 Profile1D(const TProfile1DModel &model, std::string_view v1Name = "", std::string_view v2Name = "")
2499 {
2500 std::shared_ptr<::TProfile> h(nullptr);
2501 {
2502 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2503 h = model.GetProfile();
2504 }
2505
2506 if (!RDFInternal::HistoUtils<::TProfile>::HasAxisLimits(*h)) {
2507 throw std::runtime_error("Profiles with no axes limits are not supported yet.");
2508 }
2509 const std::vector<std::string_view> columnViews = {v1Name, v2Name};
2511 ? ColumnNames_t()
2514 }
2515
2516 ////////////////////////////////////////////////////////////////////////////
2517 /// \brief Fill and return a one-dimensional profile (*lazy action*).
2518 /// \tparam V1 The type of the column the values of which are used to fill the profile. Inferred if not present.
2519 /// \tparam V2 The type of the column the values of which are used to fill the profile. Inferred if not present.
2520 /// \tparam W The type of the column the weights of which are used to fill the profile. Inferred if not present.
2521 /// \param[in] model The model to be considered to build the new return value.
2522 /// \param[in] v1Name The name of the column that will fill the x axis.
2523 /// \param[in] v2Name The name of the column that will fill the y axis.
2524 /// \param[in] wName The name of the column that will provide the weights.
2525 /// \return the monodimensional profile wrapped in a RResultPtr.
2526 ///
2527 /// This action is *lazy*: upon invocation of this method the calculation is
2528 /// booked but not executed. Also see RResultPtr.
2529 ///
2530 /// ### Example usage:
2531 /// ~~~{.cpp}
2532 /// // Deduce column types (this invocation needs jitting internally)
2533 /// auto myProf1 = myDf.Profile1D({"profName", "profTitle", 64u, -4., 4.}, "xValues", "yValues", "weight");
2534 /// // Explicit column types
2535 /// auto myProf2 = myDf.Profile1D<int, float, double>({"profName", "profTitle", 64u, -4., 4.},
2536 /// "xValues", "yValues", "weight");
2537 /// ~~~
2538 ///
2539 /// See the first Profile1D() overload for more details.
2540 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2541 typename W = RDFDetail::RInferredType>
2543 Profile1D(const TProfile1DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName)
2544 {
2545 std::shared_ptr<::TProfile> h(nullptr);
2546 {
2547 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2548 h = model.GetProfile();
2549 }
2550
2551 if (!RDFInternal::HistoUtils<::TProfile>::HasAxisLimits(*h)) {
2552 throw std::runtime_error("Profile histograms with no axes limits are not supported yet.");
2553 }
2554 const std::vector<std::string_view> columnViews = {v1Name, v2Name, wName};
2556 ? ColumnNames_t()
2559 }
2560
2561 ////////////////////////////////////////////////////////////////////////////
2562 /// \brief Fill and return a one-dimensional profile (*lazy action*).
2563 /// See the first Profile1D() overload for more details.
2564 template <typename V1, typename V2, typename W>
2566 {
2567 return Profile1D<V1, V2, W>(model, "", "", "");
2568 }
2569
2570 ////////////////////////////////////////////////////////////////////////////
2571 /// \brief Fill and return a two-dimensional profile (*lazy action*).
2572 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present.
2573 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present.
2574 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present.
2575 /// \param[in] model The returned profile will be constructed using this as a model.
2576 /// \param[in] v1Name The name of the column that will fill the x axis.
2577 /// \param[in] v2Name The name of the column that will fill the y axis.
2578 /// \param[in] v3Name The name of the column that will fill the z axis.
2579 /// \return the bidimensional profile wrapped in a RResultPtr.
2580 ///
2581 /// This action is *lazy*: upon invocation of this method the calculation is
2582 /// booked but not executed. Also see RResultPtr.
2583 ///
2584 /// ### Example usage:
2585 /// ~~~{.cpp}
2586 /// // Deduce column types (this invocation needs jitting internally)
2587 /// auto myProf1 = myDf.Profile2D({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20},
2588 /// "xValues", "yValues", "zValues");
2589 /// // Explicit column types
2590 /// auto myProf2 = myDf.Profile2D<int, float, double>({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20},
2591 /// "xValues", "yValues", "zValues");
2592 /// ~~~
2593 ///
2594 /// \note Differently from other ROOT interfaces, the returned profile is not associated to gDirectory
2595 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2596 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2597 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2598 typename V3 = RDFDetail::RInferredType>
2599 RResultPtr<::TProfile2D> Profile2D(const TProfile2DModel &model, std::string_view v1Name = "",
2600 std::string_view v2Name = "", std::string_view v3Name = "")
2601 {
2602 std::shared_ptr<::TProfile2D> h(nullptr);
2603 {
2604 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2605 h = model.GetProfile();
2606 }
2607
2608 if (!RDFInternal::HistoUtils<::TProfile2D>::HasAxisLimits(*h)) {
2609 throw std::runtime_error("2D profiles with no axes limits are not supported yet.");
2610 }
2611 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name};
2613 ? ColumnNames_t()
2616 }
2617
2618 ////////////////////////////////////////////////////////////////////////////
2619 /// \brief Fill and return a two-dimensional profile (*lazy action*).
2620 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present.
2621 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present.
2622 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present.
2623 /// \tparam W The type of the column used for the weights of the histogram. Inferred if not present.
2624 /// \param[in] model The returned histogram will be constructed using this as a model.
2625 /// \param[in] v1Name The name of the column that will fill the x axis.
2626 /// \param[in] v2Name The name of the column that will fill the y axis.
2627 /// \param[in] v3Name The name of the column that will fill the z axis.
2628 /// \param[in] wName The name of the column that will provide the weights.
2629 /// \return the bidimensional profile wrapped in a RResultPtr.
2630 ///
2631 /// This action is *lazy*: upon invocation of this method the calculation is
2632 /// booked but not executed. Also see RResultPtr.
2633 ///
2634 /// ### Example usage:
2635 /// ~~~{.cpp}
2636 /// // Deduce column types (this invocation needs jitting internally)
2637 /// auto myProf1 = myDf.Profile2D({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20},
2638 /// "xValues", "yValues", "zValues", "weight");
2639 /// // Explicit column types
2640 /// auto myProf2 = myDf.Profile2D<int, float, double, int>({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20},
2641 /// "xValues", "yValues", "zValues", "weight");
2642 /// ~~~
2643 ///
2644 /// See the first Profile2D() overload for more details.
2645 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2646 typename V3 = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
2647 RResultPtr<::TProfile2D> Profile2D(const TProfile2DModel &model, std::string_view v1Name, std::string_view v2Name,
2648 std::string_view v3Name, std::string_view wName)
2649 {
2650 std::shared_ptr<::TProfile2D> h(nullptr);
2651 {
2652 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2653 h = model.GetProfile();
2654 }
2655
2656 if (!RDFInternal::HistoUtils<::TProfile2D>::HasAxisLimits(*h)) {
2657 throw std::runtime_error("2D profiles with no axes limits are not supported yet.");
2658 }
2659 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name, wName};
2661 ? ColumnNames_t()
2664 }
2665
2666 /// \brief Fill and return a two-dimensional profile (*lazy action*).
2667 /// See the first Profile2D() overload for more details.
2668 template <typename V1, typename V2, typename V3, typename W>
2670 {
2671 return Profile2D<V1, V2, V3, W>(model, "", "", "", "");
2672 }
2673
2674 ////////////////////////////////////////////////////////////////////////////
2675 /// \brief Return an object of type T on which `T::Fill` will be called once per event (*lazy action*).
2676 ///
2677 /// Type T must provide at least:
2678 /// - a copy-constructor
2679 /// - a `Fill` method that accepts as many arguments and with same types as the column names passed as columnList
2680 /// (these types can also be passed as template parameters to this method)
2681 /// - a `Merge` method with signature `Merge(TCollection *)` or `Merge(const std::vector<T *>&)` that merges the
2682 /// objects passed as argument into the object on which `Merge` was called (an analogous of TH1::Merge). Note that
2683 /// if the signature that takes a `TCollection*` is used, then T must inherit from TObject (to allow insertion in
2684 /// the TCollection*).
2685 ///
2686 /// \tparam FirstColumn The first type of the column the values of which are used to fill the object. Inferred together with OtherColumns if not present.
2687 /// \tparam OtherColumns A list of the other types of the columns the values of which are used to fill the object.
2688 /// \tparam T The type of the object to fill. Automatically deduced.
2689 /// \param[in] model The model to be considered to build the new return value.
2690 /// \param[in] columnList A list containing the names of the columns that will be passed when calling `Fill`
2691 /// \return the filled object wrapped in a RResultPtr.
2692 ///
2693 /// The user gives up ownership of the model object.
2694 /// The list of column names to be used for filling must always be specified.
2695 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed.
2696 /// Also see RResultPtr.
2697 ///
2698 /// ### Example usage:
2699 /// ~~~{.cpp}
2700 /// MyClass obj;
2701 /// // Deduce column types (this invocation needs jitting internally, and in this case
2702 /// // MyClass needs to be known to the interpreter)
2703 /// auto myFilledObj = myDf.Fill(obj, {"col0", "col1"});
2704 /// // explicit column types
2705 /// auto myFilledObj = myDf.Fill<float, float>(obj, {"col0", "col1"});
2706 /// ~~~
2707 ///
2708 template <typename FirstColumn = RDFDetail::RInferredType, typename... OtherColumns, typename T>
2710 {
2711 auto h = std::make_shared<std::decay_t<T>>(std::forward<T>(model));
2712 if (!RDFInternal::HistoUtils<T>::HasAxisLimits(*h)) {
2713 throw std::runtime_error("The absence of axes limits is not supported yet.");
2714 }
2715 return CreateAction<RDFInternal::ActionTags::Fill, FirstColumn, OtherColumns...>(columnList, h, h, fProxiedPtr,
2716 columnList.size());
2717 }
2718
2719 ////////////////////////////////////////////////////////////////////////////
2720 /// \brief Return a TStatistic object, filled once per event (*lazy action*).
2721 ///
2722 /// \tparam V The type of the value column
2723 /// \param[in] value The name of the column with the values to fill the statistics with.
2724 /// \return the filled TStatistic object wrapped in a RResultPtr.
2725 ///
2726 /// ### Example usage:
2727 /// ~~~{.cpp}
2728 /// // Deduce column type (this invocation needs jitting internally)
2729 /// auto stats0 = myDf.Stats("values");
2730 /// // Explicit column type
2731 /// auto stats1 = myDf.Stats<float>("values");
2732 /// ~~~
2733 ///
2734 template <typename V = RDFDetail::RInferredType>
2735 RResultPtr<TStatistic> Stats(std::string_view value = "")
2736 {
2738 if (!value.empty()) {
2739 columns.emplace_back(std::string(value));
2740 }
2742 if (std::is_same<V, RDFDetail::RInferredType>::value) {
2743 return Fill(TStatistic(), validColumnNames);
2744 } else {
2746 }
2747 }
2748
2749 ////////////////////////////////////////////////////////////////////////////
2750 /// \brief Return a TStatistic object, filled once per event (*lazy action*).
2751 ///
2752 /// \tparam V The type of the value column
2753 /// \tparam W The type of the weight column
2754 /// \param[in] value The name of the column with the values to fill the statistics with.
2755 /// \param[in] weight The name of the column with the weights to fill the statistics with.
2756 /// \return the filled TStatistic object wrapped in a RResultPtr.
2757 ///
2758 /// ### Example usage:
2759 /// ~~~{.cpp}
2760 /// // Deduce column types (this invocation needs jitting internally)
2761 /// auto stats0 = myDf.Stats("values", "weights");
2762 /// // Explicit column types
2763 /// auto stats1 = myDf.Stats<int, float>("values", "weights");
2764 /// ~~~
2765 ///
2766 template <typename V = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
2767 RResultPtr<TStatistic> Stats(std::string_view value, std::string_view weight)
2768 {
2769 ColumnNames_t columns{std::string(value), std::string(weight)};
2770 constexpr auto vIsInferred = std::is_same<V, RDFDetail::RInferredType>::value;
2771 constexpr auto wIsInferred = std::is_same<W, RDFDetail::RInferredType>::value;
2773 // We have 3 cases:
2774 // 1. Both types are inferred: we use Fill and let the jit kick in.
2775 // 2. One of the two types is explicit and the other one is inferred: the case is not supported.
2776 // 3. Both types are explicit: we invoke the fully compiled Fill method.
2777 if (vIsInferred && wIsInferred) {
2778 return Fill(TStatistic(), validColumnNames);
2779 } else if (vIsInferred != wIsInferred) {
2780 std::string error("The ");
2781 error += vIsInferred ? "value " : "weight ";
2782 error += "column type is explicit, while the ";
2783 error += vIsInferred ? "weight " : "value ";
2784 error += " is specified to be inferred. This case is not supported: please specify both types or none.";
2785 throw std::runtime_error(error);
2786 } else {
2788 }
2789 }
2790
2791 ////////////////////////////////////////////////////////////////////////////
2792 /// \brief Return the minimum of processed column values (*lazy action*).
2793 /// \tparam T The type of the branch/column.
2794 /// \param[in] columnName The name of the branch/column to be treated.
2795 /// \return the minimum value of the selected column wrapped in a RResultPtr.
2796 ///
2797 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2798 /// template specialization of this method.
2799 /// If the type of the column is inferred, the return type is `double`, the type of the column otherwise.
2800 ///
2801 /// This action is *lazy*: upon invocation of this method the calculation is
2802 /// booked but not executed. Also see RResultPtr.
2803 ///
2804 /// ### Example usage:
2805 /// ~~~{.cpp}
2806 /// // Deduce column type (this invocation needs jitting internally)
2807 /// auto minVal0 = myDf.Min("values");
2808 /// // Explicit column type
2809 /// auto minVal1 = myDf.Min<double>("values");
2810 /// ~~~
2811 ///
2812 template <typename T = RDFDetail::RInferredType>
2814 {
2815 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2816 using RetType_t = RDFDetail::MinReturnType_t<T>;
2817 auto minV = std::make_shared<RetType_t>(std::numeric_limits<RetType_t>::max());
2819 }
2820
2821 ////////////////////////////////////////////////////////////////////////////
2822 /// \brief Return the maximum of processed column values (*lazy action*).
2823 /// \tparam T The type of the branch/column.
2824 /// \param[in] columnName The name of the branch/column to be treated.
2825 /// \return the maximum value of the selected column wrapped in a RResultPtr.
2826 ///
2827 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2828 /// template specialization of this method.
2829 /// If the type of the column is inferred, the return type is `double`, the type of the column otherwise.
2830 ///
2831 /// This action is *lazy*: upon invocation of this method the calculation is
2832 /// booked but not executed. Also see RResultPtr.
2833 ///
2834 /// ### Example usage:
2835 /// ~~~{.cpp}
2836 /// // Deduce column type (this invocation needs jitting internally)
2837 /// auto maxVal0 = myDf.Max("values");
2838 /// // Explicit column type
2839 /// auto maxVal1 = myDf.Max<double>("values");
2840 /// ~~~
2841 ///
2842 template <typename T = RDFDetail::RInferredType>
2844 {
2845 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2846 using RetType_t = RDFDetail::MaxReturnType_t<T>;
2847 auto maxV = std::make_shared<RetType_t>(std::numeric_limits<RetType_t>::lowest());
2849 }
2850
2851 ////////////////////////////////////////////////////////////////////////////
2852 /// \brief Return the mean of processed column values (*lazy action*).
2853 /// \tparam T The type of the branch/column.
2854 /// \param[in] columnName The name of the branch/column to be treated.
2855 /// \return the mean value of the selected column wrapped in a RResultPtr.
2856 ///
2857 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2858 /// template specialization of this method.
2859 /// Note that internally, the summations are executed with Kahan sums in double precision, irrespective
2860 /// of the type of column that is read.
2861 ///
2862 /// This action is *lazy*: upon invocation of this method the calculation is
2863 /// booked but not executed. Also see RResultPtr.
2864 ///
2865 /// ### Example usage:
2866 /// ~~~{.cpp}
2867 /// // Deduce column type (this invocation needs jitting internally)
2868 /// auto meanVal0 = myDf.Mean("values");
2869 /// // Explicit column type
2870 /// auto meanVal1 = myDf.Mean<double>("values");
2871 /// ~~~
2872 ///
2873 template <typename T = RDFDetail::RInferredType>
2874 RResultPtr<double> Mean(std::string_view columnName = "")
2875 {
2876 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2877 auto meanV = std::make_shared<double>(0);
2879 }
2880
2881 ////////////////////////////////////////////////////////////////////////////
2882 /// \brief Return the unbiased standard deviation of processed column values (*lazy action*).
2883 /// \tparam T The type of the branch/column.
2884 /// \param[in] columnName The name of the branch/column to be treated.
2885 /// \return the standard deviation value of the selected column wrapped in a RResultPtr.
2886 ///
2887 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2888 /// template specialization of this method.
2889 ///
2890 /// This action is *lazy*: upon invocation of this method the calculation is
2891 /// booked but not executed. Also see RResultPtr.
2892 ///
2893 /// ### Example usage:
2894 /// ~~~{.cpp}
2895 /// // Deduce column type (this invocation needs jitting internally)
2896 /// auto stdDev0 = myDf.StdDev("values");
2897 /// // Explicit column type
2898 /// auto stdDev1 = myDf.StdDev<double>("values");
2899 /// ~~~
2900 ///
2901 template <typename T = RDFDetail::RInferredType>
2902 RResultPtr<double> StdDev(std::string_view columnName = "")
2903 {
2904 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2905 auto stdDeviationV = std::make_shared<double>(0);
2907 }
2908
2909 // clang-format off
2910 ////////////////////////////////////////////////////////////////////////////
2911 /// \brief Return the sum of processed column values (*lazy action*).
2912 /// \tparam T The type of the branch/column.
2913 /// \param[in] columnName The name of the branch/column.
2914 /// \param[in] initValue Optional initial value for the sum. If not present, the column values must be default-constructible.
2915 /// \return the sum of the selected column wrapped in a RResultPtr.
2916 ///
2917 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2918 /// template specialization of this method.
2919 /// If the type of the column is inferred, the return type is `double`, the type of the column otherwise.
2920 ///
2921 /// This action is *lazy*: upon invocation of this method the calculation is
2922 /// booked but not executed. Also see RResultPtr.
2923 ///
2924 /// ### Example usage:
2925 /// ~~~{.cpp}
2926 /// // Deduce column type (this invocation needs jitting internally)
2927 /// auto sum0 = myDf.Sum("values");
2928 /// // Explicit column type
2929 /// auto sum1 = myDf.Sum<double>("values");
2930 /// ~~~
2931 ///
2932 template <typename T = RDFDetail::RInferredType>
2934 Sum(std::string_view columnName = "",
2935 const RDFDetail::SumReturnType_t<T> &initValue = RDFDetail::SumReturnType_t<T>{})
2936 {
2937 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2938 auto sumV = std::make_shared<RDFDetail::SumReturnType_t<T>>(initValue);
2940 }
2941 // clang-format on
2942
2943 ////////////////////////////////////////////////////////////////////////////
2944 /// \brief Gather filtering statistics.
2945 /// \return the resulting `RCutFlowReport` instance wrapped in a RResultPtr.
2946 ///
2947 /// Calling `Report` on the main `RDataFrame` object gathers stats for
2948 /// all named filters in the call graph. Calling this method on a
2949 /// stored chain state (i.e. a graph node different from the first) gathers
2950 /// the stats for all named filters in the chain section between the original
2951 /// `RDataFrame` and that node (included). Stats are gathered in the same
2952 /// order as the named filters have been added to the graph.
2953 /// A RResultPtr<RCutFlowReport> is returned to allow inspection of the
2954 /// effects cuts had.
2955 ///
2956 /// This action is *lazy*: upon invocation of
2957 /// this method the calculation is booked but not executed. See RResultPtr
2958 /// documentation.
2959 ///
2960 /// ### Example usage:
2961 /// ~~~{.cpp}
2962 /// auto filtered = d.Filter(cut1, {"b1"}, "Cut1").Filter(cut2, {"b2"}, "Cut2");
2963 /// auto cutReport = filtered3.Report();
2964 /// cutReport->Print();
2965 /// ~~~
2966 ///
2968 {
2969 bool returnEmptyReport = false;
2970 // if this is a RInterface<RLoopManager> on which `Define` has been called, users
2971 // are calling `Report` on a chain of the form LoopManager->Define->Define->..., which
2972 // certainly does not contain named filters.
2973 // The number 4 takes into account the implicit columns for entry and slot number
2974 // and their aliases (2 + 2, i.e. {r,t}dfentry_ and {r,t}dfslot_)
2975 if (std::is_same<Proxied, RLoopManager>::value && fColRegister.GenerateColumnNames().size() > 4)
2976 returnEmptyReport = true;
2977
2978 auto rep = std::make_shared<RCutFlowReport>();
2979 using Helper_t = RDFInternal::ReportHelper<Proxied>;
2981
2982 auto action = std::make_unique<Action_t>(Helper_t(rep, fProxiedPtr.get(), returnEmptyReport), ColumnNames_t({}),
2984
2985 return MakeResultPtr(rep, *fLoopManager, std::move(action));
2986 }
2987
2988 /// \brief Returns the names of the filters created.
2989 /// \return the container of filters names.
2990 ///
2991 /// If called on a root node, all the filters in the computation graph will
2992 /// be printed. For any other node, only the filters upstream of that node.
2993 /// Filters without a name are printed as "Unnamed Filter"
2994 /// This is not an action nor a transformation, just a query to the RDataFrame object.
2995 ///
2996 /// ### Example usage:
2997 /// ~~~{.cpp}
2998 /// auto filtNames = d.GetFilterNames();
2999 /// for (auto &&filtName : filtNames) std::cout << filtName << std::endl;
3000 /// ~~~
3001 ///
3002 std::vector<std::string> GetFilterNames() { return RDFInternal::GetFilterNames(fProxiedPtr); }
3003
3004 // clang-format off
3005 ////////////////////////////////////////////////////////////////////////////
3006 /// \brief Execute a user-defined accumulation operation on the processed column values in each processing slot.
3007 /// \tparam F The type of the aggregator callable. Automatically deduced.
3008 /// \tparam U The type of the aggregator variable. Must be default-constructible, copy-constructible and copy-assignable. Automatically deduced.
3009 /// \tparam T The type of the column to apply the reduction to. Automatically deduced.
3010 /// \param[in] aggregator A callable with signature `U(U,T)` or `void(U&,T)`, where T is the type of the column, U is the type of the aggregator variable
3011 /// \param[in] merger A callable with signature `U(U,U)` or `void(std::vector<U>&)` used to merge the results of the accumulations of each thread
3012 /// \param[in] columnName The column to be aggregated. If omitted, the first default column is used instead.
3013 /// \param[in] aggIdentity The aggregator variable of each thread is initialized to this value (or is default-constructed if the parameter is omitted)
3014 /// \return the result of the aggregation wrapped in a RResultPtr.
3015 ///
3016 /// An aggregator callable takes two values, an aggregator variable and a column value. The aggregator variable is
3017 /// initialized to aggIdentity or default-constructed if aggIdentity is omitted.
3018 /// This action calls the aggregator callable for each processed entry, passing in the aggregator variable and
3019 /// the value of the column columnName.
3020 /// If the signature is `U(U,T)` the aggregator variable is then copy-assigned the result of the execution of the callable.
3021 /// Otherwise the signature of aggregator must be `void(U&,T)`.
3022 ///
3023 /// The merger callable is used to merge the partial accumulation results of each processing thread. It is only called in multi-thread executions.
3024 /// If its signature is `U(U,U)` the aggregator variables of each thread are merged two by two.
3025 /// If its signature is `void(std::vector<U>& a)` it is assumed that it merges all aggregators in a[0].
3026 ///
3027 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. Also see RResultPtr.
3028 ///
3029 /// Example usage:
3030 /// ~~~{.cpp}
3031 /// auto aggregator = [](double acc, double x) { return acc * x; };
3032 /// ROOT::EnableImplicitMT();
3033 /// // If multithread is enabled, the aggregator function will be called by more threads
3034 /// // and will produce a vector of partial accumulators.
3035 /// // The merger function performs the final aggregation of these partial results.
3036 /// auto merger = [](std::vector<double> &accumulators) {
3037 /// for (auto i : ROOT::TSeqU(1u, accumulators.size())) {
3038 /// accumulators[0] *= accumulators[i];
3039 /// }
3040 /// };
3041 ///
3042 /// // The accumulator is initialized at this value by every thread.
3043 /// double initValue = 1.;
3044 ///
3045 /// // Multiplies all elements of the column "x"
3046 /// auto result = d.Aggregate(aggregator, merger, "x", initValue);
3047 /// ~~~
3048 // clang-format on
3050 typename ArgTypes = typename TTraits::CallableTraits<AccFun>::arg_types,
3051 typename ArgTypesNoDecay = typename TTraits::CallableTraits<AccFun>::arg_types_nodecay,
3052 typename U = TTraits::TakeFirstParameter_t<ArgTypes>,
3053 typename T = TTraits::TakeFirstParameter_t<TTraits::RemoveFirstParameter_t<ArgTypes>>>
3055 {
3056 RDFInternal::CheckAggregate<R, MergeFun>(ArgTypesNoDecay());
3057 const auto columns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
3058
3061
3062 auto accObjPtr = std::make_shared<U>(aggIdentity);
3063 using Helper_t = RDFInternal::AggregateHelper<AccFun, MergeFun, R, T, U>;
3065 auto action = std::make_unique<Action_t>(
3066 Helper_t(std::move(aggregator), std::move(merger), accObjPtr, fLoopManager->GetNSlots()), validColumnNames,
3068 return MakeResultPtr(accObjPtr, *fLoopManager, std::move(action));
3069 }
3070
3071 // clang-format off
3072 ////////////////////////////////////////////////////////////////////////////
3073 /// \brief Execute a user-defined accumulation operation on the processed column values in each processing slot.
3074 /// \tparam F The type of the aggregator callable. Automatically deduced.
3075 /// \tparam U The type of the aggregator variable. Must be default-constructible, copy-constructible and copy-assignable. Automatically deduced.
3076 /// \tparam T The type of the column to apply the reduction to. Automatically deduced.
3077 /// \param[in] aggregator A callable with signature `U(U,T)` or `void(U,T)`, where T is the type of the column, U is the type of the aggregator variable
3078 /// \param[in] merger A callable with signature `U(U,U)` or `void(std::vector<U>&)` used to merge the results of the accumulations of each thread
3079 /// \param[in] columnName The column to be aggregated. If omitted, the first default column is used instead.
3080 /// \return the result of the aggregation wrapped in a RResultPtr.
3081 ///
3082 /// See previous Aggregate overload for more information.
3083 // clang-format on
3085 typename ArgTypes = typename TTraits::CallableTraits<AccFun>::arg_types,
3086 typename U = TTraits::TakeFirstParameter_t<ArgTypes>,
3087 typename T = TTraits::TakeFirstParameter_t<TTraits::RemoveFirstParameter_t<ArgTypes>>>
3089 {
3090 static_assert(
3091 std::is_default_constructible<U>::value,
3092 "aggregated object cannot be default-constructed. Please provide an initialisation value (aggIdentity)");
3093 return Aggregate(std::move(aggregator), std::move(merger), columnName, U());
3094 }
3095
3096 // clang-format off
3097 ////////////////////////////////////////////////////////////////////////////
3098 /// \brief Book execution of a custom action using a user-defined helper object.
3099 /// \tparam FirstColumn The type of the first column used by this action. Inferred together with OtherColumns if not present.
3100 /// \tparam OtherColumns A list of the types of the other columns used by this action
3101 /// \tparam Helper The type of the user-defined helper. See below for the required interface it should expose.
3102 /// \param[in] helper The Action Helper to be scheduled.
3103 /// \param[in] columns The names of the columns on which the helper acts.
3104 /// \return the result of the helper wrapped in a RResultPtr.
3105 ///
3106 /// This method books a custom action for execution. The behavior of the action is completely dependent on the
3107 /// Helper object provided by the caller. The required interface for the helper is described below (more
3108 /// methods that the ones required can be present, e.g. a constructor that takes the number of worker threads is usually useful):
3109 ///
3110 /// ### Mandatory interface
3111 ///
3112 /// * `Helper` must publicly inherit from `ROOT::Detail::RDF::RActionImpl<Helper>`
3113 /// * `Helper::Result_t`: public alias for the type of the result of this action helper. `Result_t` must be default-constructible.
3114 /// * `Helper(Helper &&)`: a move-constructor is required. Copy-constructors are discouraged.
3115 /// * `std::shared_ptr<Result_t> GetResultPtr() const`: return a shared_ptr to the result of this action (of type
3116 /// Result_t). The RResultPtr returned by Book will point to this object. Note that this method can be called
3117 /// _before_ Initialize(), because the RResultPtr is constructed before the event loop is started.
3118 /// * `void Initialize()`: this method is called once before starting the event-loop. Useful for setup operations.
3119 /// It must reset the state of the helper to the expected state at the beginning of the event loop: the same helper,
3120 /// or copies of it, might be used for multiple event loops (e.g. in the presence of systematic variations).
3121 /// * `void InitTask(TTreeReader *, unsigned int slot)`: each working thread shall call this method during the event
3122 /// loop, before processing a batch of entries. The pointer passed as argument, if not null, will point to the TTreeReader
3123 /// that RDataFrame has set up to read the task's batch of entries. It is passed to the helper to allow certain advanced optimizations
3124 /// it should not usually serve any purpose for the Helper. This method is often no-op for simple helpers.
3125 /// * `void Exec(unsigned int slot, ColumnTypes...columnValues)`: each working thread shall call this method
3126 /// during the event-loop, possibly concurrently. No two threads will ever call Exec with the same 'slot' value:
3127 /// this parameter is there to facilitate writing thread-safe helpers. The other arguments will be the values of
3128 /// the requested columns for the particular entry being processed.
3129 /// * `void Finalize()`: this method is called at the end of the event loop. Commonly used to finalize the contents of the result.
3130 /// * `std::string GetActionName()`: it returns a string identifier for this type of action that RDataFrame will use in
3131 /// diagnostics, SaveGraph(), etc.
3132 ///
3133 /// ### Optional methods
3134 ///
3135 /// If these methods are implemented they enable extra functionality as per the description below.
3136 ///
3137 /// * `Result_t &PartialUpdate(unsigned int slot)`: if present, it must return the value of the partial result of this action for the given 'slot'.
3138 /// Different threads might call this method concurrently, but will do so with different 'slot' numbers.
3139 /// RDataFrame leverages this method to implement RResultPtr::OnPartialResult().
3140 /// * `ROOT::RDF::SampleCallback_t GetSampleCallback()`: if present, it must return a callable with the
3141 /// appropriate signature (see ROOT::RDF::SampleCallback_t) that will be invoked at the beginning of the processing
3142 /// of every sample, as in DefinePerSample().
3143 /// * `Helper MakeNew(void *newResult, std::string_view variation = "nominal")`: if implemented, it enables varying
3144 /// the action's result with VariationsFor(). It takes a type-erased new result that can be safely cast to a
3145 /// `std::shared_ptr<Result_t> *` (a pointer to shared pointer) and should be used as the action's output result.
3146 /// The function optionally takes the name of the current variation which could be useful in customizing its behaviour.
3147 ///
3148 /// In case Book is called without specifying column types as template arguments, corresponding typed code will be just-in-time compiled
3149 /// by RDataFrame. In that case the Helper class needs to be known to the ROOT interpreter.
3150 ///
3151 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. Also see RResultPtr.
3152 ///
3153 /// ### Examples
3154 /// See [this tutorial](https://root.cern/doc/master/df018__customActions_8C.html) for an example implementation of an action helper.
3155 ///
3156 /// It is also possible to inspect the code used by built-in RDataFrame actions at ActionHelpers.hxx.
3157 ///
3158 // clang-format on
3159 template <typename FirstColumn = RDFDetail::RInferredType, typename... OtherColumns, typename Helper>
3161 {
3162 using HelperT = std::decay_t<Helper>;
3163 // TODO add more static sanity checks on Helper
3165 static_assert(std::is_base_of<AH, HelperT>::value && std::is_convertible<HelperT *, AH *>::value,
3166 "Action helper of type T must publicly inherit from ROOT::Detail::RDF::RActionImpl<T>");
3167
3168 auto hPtr = std::make_shared<HelperT>(std::forward<Helper>(helper));
3169 auto resPtr = hPtr->GetResultPtr();
3170
3171 if (std::is_same<FirstColumn, RDFDetail::RInferredType>::value && columns.empty()) {
3173 } else {
3174 return CreateAction<RDFInternal::ActionTags::Book, FirstColumn, OtherColumns...>(columns, resPtr, hPtr,
3175 fProxiedPtr, columns.size());
3176 }
3177 }
3178
3179 ////////////////////////////////////////////////////////////////////////////
3180 /// \brief Provides a representation of the columns in the dataset.
3181 /// \tparam ColumnTypes variadic list of branch/column types.
3182 /// \param[in] columnList Names of the columns to be displayed.
3183 /// \param[in] nRows Number of events for each column to be displayed.
3184 /// \param[in] nMaxCollectionElements Maximum number of collection elements to display per row.
3185 /// \return the `RDisplay` instance wrapped in a RResultPtr.
3186 ///
3187 /// This function returns a `RResultPtr<RDisplay>` containing all the entries to be displayed, organized in a tabular
3188 /// form. RDisplay will either print on the standard output a summarized version through `RDisplay::Print()` or will
3189 /// return a complete version through `RDisplay::AsString()`.
3190 ///
3191 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. Also see
3192 /// RResultPtr.
3193 ///
3194 /// Example usage:
3195 /// ~~~{.cpp}
3196 /// // Preparing the RResultPtr<RDisplay> object with all columns and default number of entries
3197 /// auto d1 = rdf.Display("");
3198 /// // Preparing the RResultPtr<RDisplay> object with two columns and 128 entries
3199 /// auto d2 = d.Display({"x", "y"}, 128);
3200 /// // Printing the short representations, the event loop will run
3201 /// d1->Print();
3202 /// d2->Print();
3203 /// ~~~
3204 template <typename... ColumnTypes>
3206 {
3207 CheckIMTDisabled("Display");
3208 auto newCols = columnList;
3209 newCols.insert(newCols.begin(), "rdfentry_"); // Artificially insert first column
3210 auto displayer = std::make_shared<RDisplay>(newCols, GetColumnTypeNamesList(newCols), nMaxCollectionElements);
3211 using displayHelperArgs_t = std::pair<size_t, std::shared_ptr<RDisplay>>;
3212 // Need to add ULong64_t type corresponding to the first column rdfentry_
3213 return CreateAction<RDFInternal::ActionTags::Display, ULong64_t, ColumnTypes...>(
3214 std::move(newCols), displayer, std::make_shared<displayHelperArgs_t>(nRows, displayer), fProxiedPtr);
3215 }
3216
3217 ////////////////////////////////////////////////////////////////////////////
3218 /// \brief Provides a representation of the columns in the dataset.
3219 /// \param[in] columnList Names of the columns to be displayed.
3220 /// \param[in] nRows Number of events for each column to be displayed.
3221 /// \param[in] nMaxCollectionElements Maximum number of collection elements to display per row.
3222 /// \return the `RDisplay` instance wrapped in a RResultPtr.
3223 ///
3224 /// This overload automatically infers the column types.
3225 /// See the previous overloads for further details.
3226 ///
3227 /// Invoked when no types are specified to Display
3229 {
3230 CheckIMTDisabled("Display");
3231 auto newCols = columnList;
3232 newCols.insert(newCols.begin(), "rdfentry_"); // Artificially insert first column
3233 auto displayer = std::make_shared<RDisplay>(newCols, GetColumnTypeNamesList(newCols), nMaxCollectionElements);
3234 using displayHelperArgs_t = std::pair<size_t, std::shared_ptr<RDisplay>>;
3236 std::move(newCols), displayer, std::make_shared<displayHelperArgs_t>(nRows, displayer), fProxiedPtr,
3237 columnList.size() + 1);
3238 }
3239
3240 ////////////////////////////////////////////////////////////////////////////
3241 /// \brief Provides a representation of the columns in the dataset.
3242 /// \param[in] columnNameRegexp A regular expression to select the columns.
3243 /// \param[in] nRows Number of events for each column to be displayed.
3244 /// \param[in] nMaxCollectionElements Maximum number of collection elements to display per row.
3245 /// \return the `RDisplay` instance wrapped in a RResultPtr.
3246 ///
3247 /// The existing columns are matched against the regular expression. If the string provided
3248 /// is empty, all columns are selected.
3249 /// See the previous overloads for further details.
3251 Display(std::string_view columnNameRegexp = "", size_t nRows = 5, size_t nMaxCollectionElements = 10)
3252 {
3253 const auto columnNames = GetColumnNames();
3256 }
3257
3258 ////////////////////////////////////////////////////////////////////////////
3259 /// \brief Provides a representation of the columns in the dataset.
3260 /// \param[in] columnList Names of the columns to be displayed.
3261 /// \param[in] nRows Number of events for each column to be displayed.
3262 /// \param[in] nMaxCollectionElements Number of maximum elements in collection.
3263 /// \return the `RDisplay` instance wrapped in a RResultPtr.
3264 ///
3265 /// See the previous overloads for further details.
3267 Display(std::initializer_list<std::string> columnList, size_t nRows = 5, size_t nMaxCollectionElements = 10)
3268 {
3271 }
3272
3273private:
3275 std::enable_if_t<std::is_default_constructible<RetType>::value, RInterface<Proxied, DS_t>>
3276 DefineImpl(std::string_view name, F &&expression, const ColumnNames_t &columns, const std::string &where)
3277 {
3278 if (where.compare(0, 8, "Redefine") != 0) { // not a Redefine
3282 } else {
3286 }
3287
3288 using ArgTypes_t = typename TTraits::CallableTraits<F>::arg_types;
3290 std::is_same<DefineType, RDFDetail::ExtraArgsForDefine::Slot>::value, ArgTypes_t>::type;
3292 std::is_same<DefineType, RDFDetail::ExtraArgsForDefine::SlotAndEntry>::value, ColTypesTmp_t>::type;
3293
3294 constexpr auto nColumns = ColTypes_t::list_size;
3295
3298
3299 // Declare return type to the interpreter, for future use by jitted actions
3301 if (retTypeName.empty()) {
3302 // The type is not known to the interpreter.
3303 // We must not error out here, but if/when this column is used in jitted code
3305 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType;
3306 }
3307
3309 auto newColumn = std::make_shared<NewCol_t>(name, retTypeName, std::forward<F>(expression), validColumnNames,
3311
3313 newCols.AddDefine(std::move(newColumn));
3314
3316
3317 return newInterface;
3318 }
3319
3320 // This overload is chosen when the callable passed to Define or DefineSlot returns void.
3321 // It simply fires a compile-time error. This is preferable to a static_assert in the main `Define` overload because
3322 // this way compilation of `Define` has no way to continue after throwing the error.
3324 bool IsFStringConv = std::is_convertible<F, std::string>::value,
3325 bool IsRetTypeDefConstr = std::is_default_constructible<RetType>::value>
3326 std::enable_if_t<!IsFStringConv && !IsRetTypeDefConstr, RInterface<Proxied, DS_t>>
3327 DefineImpl(std::string_view, F, const ColumnNames_t &, const std::string &)
3328 {
3329 static_assert(std::is_default_constructible<typename TTraits::CallableTraits<F>::ret_type>::value,
3330 "Error in `Define`: type returned by expression is not default-constructible");
3331 return *this; // never reached
3332 }
3333
3334 ////////////////////////////////////////////////////////////////////////////
3335 /// \brief Implementation of cache.
3336 template <typename... ColTypes, std::size_t... S>
3338 {
3340
3341 // Check at compile time that the columns types are copy constructible
3342 constexpr bool areCopyConstructible =
3343 RDFInternal::TEvalAnd<std::is_copy_constructible<ColTypes>::value...>::value;
3344 static_assert(areCopyConstructible, "Columns of a type which is not copy constructible cannot be cached yet.");
3345
3347
3348 auto colHolders = std::make_tuple(Take<ColTypes>(columnListWithoutSizeColumns[S])...);
3349 auto ds = std::make_unique<RLazyDS<ColTypes...>>(
3350 std::make_pair(columnListWithoutSizeColumns[S], std::get<S>(colHolders))...);
3351
3352 RInterface<RLoopManager> cachedRDF(std::make_shared<RLoopManager>(std::move(ds), columnListWithoutSizeColumns));
3353
3354 return cachedRDF;
3355 }
3356
3357 template <bool IsSingleColumn, typename F>
3359 VaryImpl(const std::vector<std::string> &colNames, F &&expression, const ColumnNames_t &inputColumns,
3360 const std::vector<std::string> &variationTags, std::string_view variationName)
3361 {
3362 using F_t = std::decay_t<F>;
3363 using ColTypes_t = typename TTraits::CallableTraits<F_t>::arg_types;
3364 using RetType = typename TTraits::CallableTraits<F_t>::ret_type;
3365 constexpr auto nColumns = ColTypes_t::list_size;
3366
3368
3371
3373 if (retTypeName.empty()) {
3374 // The type is not known to the interpreter, but we don't want to error out
3375 // here, rather if/when this column is used in jitted code, so we inject a broken but telling type name.
3377 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType;
3378 }
3379
3380 auto variation = std::make_shared<RDFInternal::RVariation<F_t, IsSingleColumn>>(
3381 colNames, variationName, std::forward<F>(expression), variationTags, retTypeName, fColRegister, *fLoopManager,
3383
3385 newCols.AddVariation(std::move(variation));
3386
3388
3389 return newInterface;
3390 }
3391
3392 RInterface<Proxied, DS_t> JittedVaryImpl(const std::vector<std::string> &colNames, std::string_view expression,
3393 const std::vector<std::string> &variationTags,
3394 std::string_view variationName, bool isSingleColumn)
3395 {
3396 R__ASSERT(!variationTags.empty() && "Must have at least one variation.");
3397 R__ASSERT(!colNames.empty() && "Must have at least one varied column.");
3398 R__ASSERT(!variationName.empty() && "Must provide a variation name.");
3399
3400 for (auto &colName : colNames) {
3404 }
3406
3407 // when varying multiple columns, they must be different columns
3408 if (colNames.size() > 1) {
3409 std::set<std::string> uniqueCols(colNames.begin(), colNames.end());
3410 if (uniqueCols.size() != colNames.size())
3411 throw std::logic_error("A column name was passed to the same Vary invocation multiple times.");
3412 }
3413
3414 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr));
3415 auto jittedVariation =
3418
3420 newColRegister.AddVariation(std::move(jittedVariation));
3421
3423
3424 return newInterface;
3425 }
3426
3427 template <typename Helper, typename ActionResultType>
3428 auto CallCreateActionWithoutColsIfPossible(const std::shared_ptr<ActionResultType> &resPtr,
3429 const std::shared_ptr<Helper> &hPtr,
3431 -> decltype(hPtr->Exec(0u), RResultPtr<ActionResultType>{})
3432 {
3434 }
3435
3436 template <typename Helper, typename ActionResultType, typename... Others>
3438 CallCreateActionWithoutColsIfPossible(const std::shared_ptr<ActionResultType> &,
3439 const std::shared_ptr<Helper>& /*hPtr*/,
3440 Others...)
3441 {
3442 throw std::logic_error(std::string("An action was booked with no input columns, but the action requires "
3443 "columns! The action helper type was ") +
3444 typeid(Helper).name());
3445 return {};
3446 }
3447
3448protected:
3449 RInterface(const std::shared_ptr<Proxied> &proxied, RLoopManager &lm,
3452 {
3453 }
3454
3455 const std::shared_ptr<Proxied> &GetProxiedPtr() const { return fProxiedPtr; }
3456};
3457
3458} // namespace RDF
3459
3460} // namespace ROOT
3461
3462#endif // ROOT_RDF_INTERFACE
#define f(i)
Definition RSha256.hxx:104
#define h(i)
Definition RSha256.hxx:106
Basic types used by ROOT and required by TInterpreter.
unsigned int UInt_t
Unsigned integer 4 bytes (unsigned int)
Definition RtypesCore.h:60
long long Long64_t
Portable signed long integer 8 bytes.
Definition RtypesCore.h:83
unsigned long long ULong64_t
Portable unsigned long integer 8 bytes.
Definition RtypesCore.h:84
#define X(type, name)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
Definition TError.h:125
void Warning(const char *location, const char *msgfmt,...)
Use this function in warning situations.
Definition TError.cxx:252
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char name[80]
Definition TGX11.cxx:110
Base class for action helpers, see RInterface::Book() for more information.
implementation of FilterAvailable and FilterMissing operations
The head node of a RDF computation graph.
Helper class that provides the operation graph nodes.
A RDataFrame node that produces a result.
Definition RAction.hxx:53
A binder for user-defined columns, variations and aliases.
std::vector< std::string_view > GenerateColumnNames() const
Return the list of the names of the defined columns (Defines + Aliases).
RDFDetail::RDefineBase * GetDefine(std::string_view colName) const
Return the RDefine for the requested column name, or nullptr.
The dataset specification for RDataFrame.
virtual const std::vector< std::string > & GetColumnNames() const =0
Returns a reference to the collection of the dataset's column names.
ColumnNames_t GetValidatedColumnNames(const unsigned int nColumns, const ColumnNames_t &columns)
ColumnNames_t GetColumnTypeNamesList(const ColumnNames_t &columnList)
std::shared_ptr< ROOT::Detail::RDF::RLoopManager > fLoopManager
< The RLoopManager at the root of this computation graph. Never null.
RResultPtr< ActionResultType > CreateAction(const ColumnNames_t &columns, const std::shared_ptr< ActionResultType > &r, const std::shared_ptr< HelperArgType > &helperArg, const std::shared_ptr< RDFNode > &proxiedPtr, const int=-1)
Create RAction object, return RResultPtr for the action Overload for the case in which all column typ...
RDataSource * GetDataSource() const
void CheckAndFillDSColumns(ColumnNames_t validCols, TTraits::TypeList< ColumnTypes... > typeList)
void CheckIMTDisabled(std::string_view callerName)
ColumnNames_t GetColumnNames()
Returns the names of the available columns.
RDFDetail::RLoopManager * GetLoopManager() const
RDFInternal::RColumnRegister fColRegister
Contains the columns defined up to this node.
The public interface to the RDataFrame federation of classes.
RResultPtr<::THnD > HistoND(const THnDModel &model, const ColumnNames_t &columnList)
Fill and return an N-dimensional histogram (lazy action).
RInterface(const RInterface &)=default
Copy-ctor for RInterface.
RResultPtr<::TH1D > Histo1D(std::string_view vName, std::string_view wName)
Fill and return a one-dimensional histogram with the weighted values of a column (lazy action).
RInterface(const std::shared_ptr< Proxied > &proxied, RLoopManager &lm, const RDFInternal::RColumnRegister &colRegister)
RResultPtr<::TH1D > Histo1D(const TH1DModel &model={"", "", 128u, 0., 0.})
Fill and return a one-dimensional histogram with the weighted values of a column (lazy action).
RResultPtr<::TH2D > Histo2D(const TH2DModel &model)
RResultPtr<::TProfile > Profile1D(const TProfile1DModel &model, std::string_view v1Name="", std::string_view v2Name="")
Fill and return a one-dimensional profile (lazy action).
RResultPtr<::THnD > HistoND(const THnDModel &model, const ColumnNames_t &columnList)
Fill and return an N-dimensional histogram (lazy action).
std::enable_if_t<!IsFStringConv &&!IsRetTypeDefConstr, RInterface< Proxied, DS_t > > DefineImpl(std::string_view, F, const ColumnNames_t &, const std::string &)
RResultPtr< RInterface< RLoopManager > > Snapshot(std::string_view treename, std::string_view filename, std::string_view columnNameRegexp="", const RSnapshotOptions &options=RSnapshotOptions())
Save selected columns to disk, in a new TTree or RNTuple treename in file filename.
RResultPtr< TStatistic > Stats(std::string_view value="")
Return a TStatistic object, filled once per event (lazy action).
RInterface< Proxied, DS_t > Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns, std::size_t nVariations, std::string_view variationName="")
Register systematic variations for a single existing column using auto-generated variation tags.
RInterface< Proxied, DS_t > Vary(std::string_view colName, std::string_view expression, std::size_t nVariations, std::string_view variationName="")
Register systematic variations for a single existing column using auto-generated variation tags.
RResultPtr<::TGraph > Graph(std::string_view x="", std::string_view y="")
Fill and return a TGraph object (lazy action).
RResultPtr<::THnSparseD > HistoNSparseD(const THnSparseDModel &model, const ColumnNames_t &columnList)
Fill and return a sparse N-dimensional histogram (lazy action).
RResultPtr< ActionResultType > CallCreateActionWithoutColsIfPossible(const std::shared_ptr< ActionResultType > &, const std::shared_ptr< Helper > &, Others...)
RInterface< Proxied, DS_t > DefineSlot(std::string_view name, F expression, const ColumnNames_t &columns={})
Define a new column with a value dependent on the processing slot.
RResultPtr< double > StdDev(std::string_view columnName="")
Return the unbiased standard deviation of processed column values (lazy action).
std::enable_if_t< std::is_default_constructible< RetType >::value, RInterface< Proxied, DS_t > > DefineImpl(std::string_view name, F &&expression, const ColumnNames_t &columns, const std::string &where)
RInterface< Proxied, DS_t > DefinePerSample(std::string_view name, F expression)
Define a new column that is updated when the input sample changes.
RInterface & operator=(RInterface &&)=default
Move-assignment operator for RInterface.
RInterface< Proxied, DS_t > Vary(const std::vector< std::string > &colNames, F &&expression, const ColumnNames_t &inputColumns, std::size_t nVariations, std::string_view variationName)
Register systematic variations for multiple existing columns using auto-generated tags.
void ForeachSlot(F f, const ColumnNames_t &columns={})
Execute a user-defined function requiring a processing slot index on each entry (instant action).
RInterface< Proxied, DS_t > Vary(std::string_view colName, std::string_view expression, const std::vector< std::string > &variationTags, std::string_view variationName="")
Register systematic variations for a single existing column using custom variation tags.
RResultPtr< RDisplay > Display(const ColumnNames_t &columnList, size_t nRows=5, size_t nMaxCollectionElements=10)
Provides a representation of the columns in the dataset.
RInterface< RLoopManager > Cache(const ColumnNames_t &columnList)
Save selected columns in memory.
RInterface< Proxied, DS_t > Define(std::string_view name, F expression, const ColumnNames_t &columns={})
Define a new column.
RResultPtr< TStatistic > Stats(std::string_view value, std::string_view weight)
Return a TStatistic object, filled once per event (lazy action).
RInterface< Proxied, DS_t > Redefine(std::string_view name, std::string_view expression)
Overwrite the value and/or type of an existing column.
auto CallCreateActionWithoutColsIfPossible(const std::shared_ptr< ActionResultType > &resPtr, const std::shared_ptr< Helper > &hPtr, TTraits::TypeList< RDFDetail::RInferredType >) -> decltype(hPtr->Exec(0u), RResultPtr< ActionResultType >{})
RInterface< Proxied, DS_t > Vary(const std::vector< std::string > &colNames, std::string_view expression, std::size_t nVariations, std::string_view variationName)
Register systematic variations for multiple existing columns using auto-generated variation tags.
RResultPtr<::TH2D > Histo2D(const TH2DModel &model, std::string_view v1Name="", std::string_view v2Name="")
Fill and return a two-dimensional histogram (lazy action).
RInterface< Proxied, DS_t > Vary(std::initializer_list< std::string > colNames, F &&expression, const ColumnNames_t &inputColumns, const std::vector< std::string > &variationTags, std::string_view variationName)
Register systematic variations for multiple existing columns using custom variation tags.
RResultPtr<::TProfile > Profile1D(const TProfile1DModel &model)
Fill and return a one-dimensional profile (lazy action).
RInterface(const std::shared_ptr< RLoopManager > &proxied)
Build a RInterface from a RLoopManager.
RInterface< RDFDetail::RFilter< F, Proxied >, DS_t > Filter(F f, const std::initializer_list< std::string > &columns)
Append a filter to the call graph.
RInterface< Proxied, DS_t > DefinePerSample(std::string_view name, std::string_view expression)
Define a new column that is updated when the input sample changes.
RResultPtr< double > Mean(std::string_view columnName="")
Return the mean of processed column values (lazy action).
RResultPtr< RInterface< RLoopManager > > Snapshot(std::string_view treename, std::string_view filename, std::initializer_list< std::string > columnList, const RSnapshotOptions &options=RSnapshotOptions())
Save selected columns to disk, in a new TTree or RNTuple treename in file filename.
RResultPtr< RDisplay > Display(std::initializer_list< std::string > columnList, size_t nRows=5, size_t nMaxCollectionElements=10)
Provides a representation of the columns in the dataset.
RInterface< Proxied, DS_t > Alias(std::string_view alias, std::string_view columnName)
Allow to refer to a column with a different name.
RInterface< RLoopManager > Cache(const ColumnNames_t &columnList)
Save selected columns in memory.
RInterface< Proxied, DS_t > Redefine(std::string_view name, F expression, const ColumnNames_t &columns={})
Overwrite the value and/or type of an existing column.
RInterface< RLoopManager > Cache(std::string_view columnNameRegexp="")
Save selected columns in memory.
RInterface< Proxied, DS_t > VaryImpl(const std::vector< std::string > &colNames, F &&expression, const ColumnNames_t &inputColumns, const std::vector< std::string > &variationTags, std::string_view variationName)
RResultPtr< typename std::decay_t< Helper >::Result_t > Book(Helper &&helper, const ColumnNames_t &columns={})
Book execution of a custom action using a user-defined helper object.
RResultPtr< RDisplay > Display(std::string_view columnNameRegexp="", size_t nRows=5, size_t nMaxCollectionElements=10)
Provides a representation of the columns in the dataset.
RInterface< RDFDetail::RFilterWithMissingValues< Proxied >, DS_t > FilterAvailable(std::string_view column)
Discard entries with missing values.
friend class RDFInternal::GraphDrawing::GraphCreatorHelper
RResultPtr<::TH2D > Histo2D(const TH2DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName)
Fill and return a weighted two-dimensional histogram (lazy action).
RInterface & operator=(const RInterface &)=default
Copy-assignment operator for RInterface.
RResultPtr< RDFDetail::SumReturnType_t< T > > Sum(std::string_view columnName="", const RDFDetail::SumReturnType_t< T > &initValue=RDFDetail::SumReturnType_t< T >{})
Return the sum of processed column values (lazy action).
RInterface< Proxied, DS_t > Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns, const std::vector< std::string > &variationTags, std::string_view variationName="")
Register systematic variations for a single existing column using custom variation tags.
RResultPtr< ULong64_t > Count()
Return the number of entries processed (lazy action).
RInterface< Proxied, DS_t > Vary(const std::vector< std::string > &colNames, std::string_view expression, const std::vector< std::string > &variationTags, std::string_view variationName)
Register systematic variations for multiple existing columns using custom variation tags.
RInterface< Proxied, DS_t > Define(std::string_view name, std::string_view expression)
Define a new column.
std::shared_ptr< Proxied > fProxiedPtr
Smart pointer to the graph node encapsulated by this RInterface.
RResultPtr<::TH1D > Histo1D(std::string_view vName)
Fill and return a one-dimensional histogram with the values of a column (lazy action).
RInterface< Proxied, DS_t > Vary(const std::vector< std::string > &colNames, F &&expression, const ColumnNames_t &inputColumns, const std::vector< std::string > &variationTags, std::string_view variationName)
Register systematic variations for multiple existing columns using custom variation tags.
RInterface< Proxied, DS_t > RedefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns={})
Overwrite the value and/or type of an existing column.
RResultPtr<::TH1D > Histo1D(const TH1DModel &model, std::string_view vName, std::string_view wName)
Fill and return a one-dimensional histogram with the weighted values of a column (lazy action).
RInterface< RLoopManager > CacheImpl(const ColumnNames_t &columnList, std::index_sequence< S... >)
Implementation of cache.
RInterface< RDFDetail::RRange< Proxied >, DS_t > Range(unsigned int end)
Creates a node that filters entries based on range.
RInterface< RDFDetail::RFilterWithMissingValues< Proxied >, DS_t > FilterMissing(std::string_view column)
Keep only the entries that have missing values.
RResultPtr< COLL > Take(std::string_view column="")
Return a collection of values of a column (lazy action, returns a std::vector by default).
RInterface< RLoopManager > Cache(std::initializer_list< std::string > columnList)
Save selected columns in memory.
RResultPtr<::TProfile2D > Profile2D(const TProfile2DModel &model, std::string_view v1Name="", std::string_view v2Name="", std::string_view v3Name="")
Fill and return a two-dimensional profile (lazy action).
const std::shared_ptr< Proxied > & GetProxiedPtr() const
RInterface< Proxied, DS_t > JittedVaryImpl(const std::vector< std::string > &colNames, std::string_view expression, const std::vector< std::string > &variationTags, std::string_view variationName, bool isSingleColumn)
RResultPtr<::TH3D > Histo3D(const TH3DModel &model, std::string_view v1Name="", std::string_view v2Name="", std::string_view v3Name="")
Fill and return a three-dimensional histogram (lazy action).
RResultPtr<::THnSparseD > HistoNSparseD(const THnSparseDModel &model, const ColumnNames_t &columnList)
Fill and return a sparse N-dimensional histogram (lazy action).
RInterface< Proxied, DS_t > Vary(std::initializer_list< std::string > colNames, F &&expression, const ColumnNames_t &inputColumns, std::size_t nVariations, std::string_view variationName)
Register systematic variations for for multiple existing columns using custom variation tags.
RResultPtr< std::decay_t< T > > Fill(T &&model, const ColumnNames_t &columnList)
Return an object of type T on which T::Fill will be called once per event (lazy action).
RResultPtr< RDisplay > Display(const ColumnNames_t &columnList, size_t nRows=5, size_t nMaxCollectionElements=10)
Provides a representation of the columns in the dataset.
RResultPtr< RCutFlowReport > Report()
Gather filtering statistics.
RInterface< Proxied, DS_t > RedefineSlot(std::string_view name, F expression, const ColumnNames_t &columns={})
Overwrite the value and/or type of an existing column.
RResultPtr<::TProfile2D > Profile2D(const TProfile2DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view v3Name, std::string_view wName)
Fill and return a two-dimensional profile (lazy action).
RResultPtr<::TGraphAsymmErrors > GraphAsymmErrors(std::string_view x="", std::string_view y="", std::string_view exl="", std::string_view exh="", std::string_view eyl="", std::string_view eyh="")
Fill and return a TGraphAsymmErrors object (lazy action).
RResultPtr< RInterface< RLoopManager > > Snapshot(std::string_view treename, std::string_view filename, const ColumnNames_t &columnList, const RSnapshotOptions &options=RSnapshotOptions())
Save selected columns to disk, in a new TTree or RNTuple treename in file filename.
RResultPtr< U > Aggregate(AccFun aggregator, MergeFun merger, std::string_view columnName="")
Execute a user-defined accumulation operation on the processed column values in each processing slot.
RInterface< Proxied, DS_t > DefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns={})
Define a new column with a value dependent on the processing slot and the current entry.
RResultPtr< RDFDetail::MinReturnType_t< T > > Min(std::string_view columnName="")
Return the minimum of processed column values (lazy action).
RResultPtr< T > Reduce(F f, std::string_view columnName="")
Execute a user-defined reduce operation on the values of a column.
void Foreach(F f, const ColumnNames_t &columns={})
Execute a user-defined function on each entry (instant action).
RInterface< RDFDetail::RJittedFilter, DS_t > Filter(std::string_view expression, std::string_view name="")
Append a filter to the call graph.
RResultPtr<::TProfile2D > Profile2D(const TProfile2DModel &model)
Fill and return a two-dimensional profile (lazy action).
RInterface< RDFDetail::RFilter< F, Proxied >, DS_t > Filter(F f, const ColumnNames_t &columns={}, std::string_view name="")
Append a filter to the call graph.
RResultPtr< U > Aggregate(AccFun aggregator, MergeFun merger, std::string_view columnName, const U &aggIdentity)
Execute a user-defined accumulation operation on the processed column values in each processing slot.
RInterface(RInterface &&)=default
Move-ctor for RInterface.
RResultPtr< T > Reduce(F f, std::string_view columnName, const T &redIdentity)
Execute a user-defined reduce operation on the values of a column.
RResultPtr<::TH3D > Histo3D(const TH3DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view v3Name, std::string_view wName)
Fill and return a three-dimensional histogram (lazy action).
RInterface< Proxied, DS_t > DefaultValueFor(std::string_view column, const T &defaultValue)
In case the value in the given column is missing, provide a default value.
RInterface< RDFDetail::RFilter< F, Proxied >, DS_t > Filter(F f, std::string_view name)
Append a filter to the call graph.
RInterface< RDFDetail::RRange< Proxied >, DS_t > Range(unsigned int begin, unsigned int end, unsigned int stride=1)
Creates a node that filters entries based on range: [begin, end).
std::vector< std::string > GetFilterNames()
Returns the names of the filters created.
RResultPtr<::TH1D > Histo1D(const TH1DModel &model={"", "", 128u, 0., 0.}, std::string_view vName="")
Fill and return a one-dimensional histogram with the values of a column (lazy action).
RResultPtr<::TProfile > Profile1D(const TProfile1DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName)
Fill and return a one-dimensional profile (lazy action).
RResultPtr<::TH3D > Histo3D(const TH3DModel &model)
RResultPtr< RDFDetail::MaxReturnType_t< T > > Max(std::string_view columnName="")
Return the maximum of processed column values (lazy action).
RInterface< Proxied, DS_t > Vary(std::initializer_list< std::string > colNames, std::string_view expression, std::size_t nVariations, std::string_view variationName)
Register systematic variations for multiple existing columns using auto-generated variation tags.
A RDataSource implementation which is built on top of result proxies.
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
const_iterator begin() const
const_iterator end() const
typename RemoveFirstParameter< T >::type RemoveFirstParameter_t
TDirectory::TContext keeps track and restore the current directory.
Definition TDirectory.h:89
A TGraph is an object made of two arrays X and Y with npoints each.
Definition TGraph.h:41
@ kAllAxes
Definition TH1.h:126
Statistical variable, defined by its mean and variance (RMS).
Definition TStatistic.h:33
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
void CheckForNoVariations(const std::string &where, std::string_view definedColView, const RColumnRegister &colRegister)
Throw if the column has systematic variations attached.
ParsedTreePath ParseTreePath(std::string_view fullTreeName)
const std::type_info & TypeName2TypeID(const std::string &name)
Return the type_info associated to a name.
Definition RDFUtils.cxx:73
void ChangeEmptyEntryRange(const ROOT::RDF::RNode &node, std::pair< ULong64_t, ULong64_t > &&newRange)
std::shared_ptr< RJittedDefine > BookDefineJit(std::string_view name, std::string_view expression, RLoopManager &lm, RDataSource *ds, const RColumnRegister &colRegister, std::shared_ptr< RNodeBase > *upcastNodeOnHeap)
Book the jitting of a Define call.
void CheckValidCppVarName(std::string_view var, const std::string &where)
void ChangeSpec(const ROOT::RDF::RNode &node, ROOT::RDF::Experimental::RDatasetSpec &&spec)
Changes the input dataset specification of an RDataFrame.
const std::vector< std::string > & GetTopLevelFieldNames(const ROOT::RDF::RDataSource &ds)
Definition RDFUtils.cxx:632
void RemoveDuplicates(ColumnNames_t &columnNames)
std::shared_ptr< RNodeBase > UpcastNode(std::shared_ptr< RNodeBase > ptr)
std::string TypeID2TypeName(const std::type_info &id)
Returns the name of a type starting from its type_info An empty string is returned in case of failure...
Definition RDFUtils.cxx:178
void CheckSnapshotOptionsFormatCompatibility(const ROOT::RDF::RSnapshotOptions &opts)
std::shared_ptr< RDFDetail::RJittedFilter > BookFilterJit(std::shared_ptr< RDFDetail::RNodeBase > *prevNodeOnHeap, std::string_view name, std::string_view expression, const RColumnRegister &colRegister, TTree *tree, RDataSource *ds)
Book the jitting of a Filter call.
void CheckForDefinition(const std::string &where, std::string_view definedColView, const RColumnRegister &colRegister, const ColumnNames_t &dataSourceColumns)
Throw if column definedColView is not already there.
std::vector< std::string > GetFilterNames(const std::shared_ptr< RLoopManager > &loopManager)
std::string GetDataSourceLabel(const ROOT::RDF::RNode &node)
std::string PrettyPrintAddr(const void *const addr)
void TriggerRun(ROOT::RDF::RNode node)
Trigger the execution of an RDataFrame computation graph.
void CheckTypesAndPars(unsigned int nTemplateParams, unsigned int nColumnNames)
std::string DemangleTypeIdName(const std::type_info &typeInfo)
bool AtLeastOneEmptyString(const std::vector< std::string_view > strings)
std::pair< std::vector< std::string >, std::vector< std::string > > AddSizeBranches(ROOT::RDF::RDataSource *ds, std::vector< std::string > &&colsWithoutAliases, std::vector< std::string > &&colsWithAliases)
Return copies of colsWithoutAliases and colsWithAliases with size branches for variable-sized array b...
std::string ColumnName2ColumnTypeName(const std::string &colName, TTree *, RDataSource *, RDefineBase *, bool vector2RVec=true)
Return a string containing the type of the given branch.
Definition RDFUtils.cxx:312
void RemoveRNTupleSubFields(ColumnNames_t &columnNames)
void SetTTreeLifeline(ROOT::RDF::RNode &node, std::any lifeline)
ColumnNames_t FilterArraySizeColNames(const ColumnNames_t &columnNames, const std::string &action)
Take a list of column names, return that list with entries starting by '#' filtered out.
std::shared_ptr< RJittedVariation > BookVariationJit(const std::vector< std::string > &colNames, std::string_view variationName, const std::vector< std::string > &variationTags, std::string_view expression, RLoopManager &lm, RDataSource *ds, const RColumnRegister &colRegister, std::shared_ptr< RNodeBase > *upcastNodeOnHeap, bool isSingleColumn)
Book the jitting of a Vary call.
void CheckForDuplicateSnapshotColumns(const ColumnNames_t &cols)
ColumnNames_t ConvertRegexToColumns(const ColumnNames_t &colNames, std::string_view columnNameRegexp, std::string_view callerName)
std::shared_ptr< RJittedDefine > BookDefinePerSampleJit(std::string_view name, std::string_view expression, RLoopManager &lm, const RColumnRegister &colRegister, std::shared_ptr< RNodeBase > *upcastNodeOnHeap)
Book the jitting of a DefinePerSample call.
void CheckForRedefinition(const std::string &where, std::string_view definedColView, const RColumnRegister &colRegister, const ColumnNames_t &dataSourceColumns)
Throw if column definedColView is already there.
void ChangeBeginAndEndEntries(const RNode &node, Long64_t begin, Long64_t end)
RInterface<::ROOT::Detail::RDF::RNodeBase, void > RNode
std::vector< std::string > ColumnNames_t
ROOT type_traits extensions.
void EnableImplicitMT(UInt_t numthreads=0)
Enable ROOT's implicit multi-threading for all objects and methods that provide an internal paralleli...
Definition TROOT.cxx:544
Bool_t IsImplicitMTEnabled()
Returns true if the implicit multi-threading in ROOT is enabled.
Definition TROOT.cxx:600
@ kError
An error.
void DisableImplicitMT()
Disables the implicit multi-threading in ROOT (see EnableImplicitMT).
Definition TROOT.cxx:586
type is TypeList if MustRemove is false, otherwise it is a TypeList with the first type removed
Definition Utils.hxx:153
Tag to let data sources use the native data type when creating a column reader.
Definition Utils.hxx:344
A collection of options to steer the creation of the dataset on disk through Snapshot().
A struct which stores some basic parameters of a TH1D.
std::shared_ptr<::TH1D > GetHistogram() const
A struct which stores some basic parameters of a TH2D.
std::shared_ptr<::TH2D > GetHistogram() const
A struct which stores some basic parameters of a TH3D.
std::shared_ptr<::TH3D > GetHistogram() const
A struct which stores some basic parameters of a THnD.
std::shared_ptr<::THnD > GetHistogram() const
A struct which stores some basic parameters of a THnSparseD.
std::shared_ptr<::THnSparseD > GetHistogram() const
A struct which stores some basic parameters of a TProfile.
std::shared_ptr<::TProfile > GetProfile() const
A struct which stores some basic parameters of a TProfile2D.
std::shared_ptr<::TProfile2D > GetProfile() const
Lightweight storage for a collection of types.