Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
RInterface.hxx
Go to the documentation of this file.
1// Author: Enrico Guiraud, Danilo Piparo CERN 03/2017
2
3/*************************************************************************
4 * Copyright (C) 1995-2021, Rene Brun and Fons Rademakers. *
5 * All rights reserved. *
6 * *
7 * For the licensing terms see $ROOTSYS/LICENSE. *
8 * For the list of contributors see $ROOTSYS/README/CREDITS. *
9 *************************************************************************/
10
11#ifndef ROOT_RDF_TINTERFACE
12#define ROOT_RDF_TINTERFACE
13
14#include "ROOT/RDataSource.hxx"
20#include "ROOT/RDF/RDefine.hxx"
22#include "ROOT/RDF/RFilter.hxx"
27#include "ROOT/RDF/RRange.hxx"
29#include "ROOT/RDF/Utils.hxx"
32#include "ROOT/RResultPtr.hxx"
34#include <string_view>
35#include "ROOT/RVec.hxx"
36#include "ROOT/TypeTraits.hxx"
37#include "RtypesCore.h" // for ULong64_t
38#include "TDirectory.h"
39#include "TH1.h" // For Histo actions
40#include "TH2.h" // For Histo actions
41#include "TH3.h" // For Histo actions
42#include "THn.h"
43#include "TProfile.h"
44#include "TProfile2D.h"
45#include "TStatistic.h"
46
47#include <algorithm>
48#include <cstddef>
49#include <initializer_list>
50#include <iterator> // std::back_insterter
51#include <limits>
52#include <memory>
53#include <set>
54#include <sstream>
55#include <stdexcept>
56#include <string>
57#include <type_traits> // is_same, enable_if
58#include <typeinfo>
59#include <unordered_set>
60#include <utility> // std::index_sequence
61#include <vector>
62#include <any>
63
64class TGraph;
65
66// Windows requires a forward decl of printValue to accept it as a valid friend function in RInterface
67namespace ROOT {
71class RDataFrame;
72} // namespace ROOT
73namespace cling {
74std::string printValue(ROOT::RDataFrame *tdf);
75}
76
77namespace ROOT {
78namespace RDF {
81namespace TTraits = ROOT::TypeTraits;
82
83template <typename Proxied, typename DataSource>
84class RInterface;
85
87} // namespace RDF
88
89namespace Internal {
90namespace RDF {
92void ChangeEmptyEntryRange(const ROOT::RDF::RNode &node, std::pair<ULong64_t, ULong64_t> &&newRange);
93void ChangeBeginAndEndEntries(const RNode &node, Long64_t begin, Long64_t end);
96std::string GetDataSourceLabel(const ROOT::RDF::RNode &node);
97void SetTTreeLifeline(ROOT::RDF::RNode &node, std::any lifeline);
98} // namespace RDF
99} // namespace Internal
100
101namespace RDF {
102
103// clang-format off
104/**
105 * \class ROOT::RDF::RInterface
106 * \ingroup dataframe
107 * \brief The public interface to the RDataFrame federation of classes.
108 * \tparam Proxied One of the "node" base types (e.g. RLoopManager, RFilterBase). The user never specifies this type manually.
109 * \tparam DataSource The type of the RDataSource which is providing the data to the data frame. There is no source by default.
110 *
111 * The documentation of each method features a one liner illustrating how to use the method, for example showing how
112 * the majority of the template parameters are automatically deduced requiring no or very little effort by the user.
113 */
114// clang-format on
115template <typename Proxied, typename DataSource = void>
121 friend std::string cling::printValue(::ROOT::RDataFrame *tdf); // For a nice printing at the prompt
123
124 template <typename T, typename W>
125 friend class RInterface;
126
128 friend void RDFInternal::ChangeEmptyEntryRange(const RNode &node, std::pair<ULong64_t, ULong64_t> &&newRange);
129 friend void RDFInternal::ChangeBeginAndEndEntries(const RNode &node, Long64_t start, Long64_t end);
131 friend std::string ROOT::Internal::RDF::GetDataSourceLabel(const RNode &node);
133 std::shared_ptr<Proxied> fProxiedPtr; ///< Smart pointer to the graph node encapsulated by this RInterface.
134
135public:
136 ////////////////////////////////////////////////////////////////////////////
137 /// \brief Copy-assignment operator for RInterface.
138 RInterface &operator=(const RInterface &) = default;
139
140 ////////////////////////////////////////////////////////////////////////////
141 /// \brief Copy-ctor for RInterface.
142 RInterface(const RInterface &) = default;
143
144 ////////////////////////////////////////////////////////////////////////////
145 /// \brief Move-ctor for RInterface.
146 RInterface(RInterface &&) = default;
147
148 ////////////////////////////////////////////////////////////////////////////
149 /// \brief Move-assignment operator for RInterface.
151
152 ////////////////////////////////////////////////////////////////////////////
153 /// \brief Build a RInterface from a RLoopManager.
154 /// This constructor is only available for RInterface<RLoopManager>.
156 RInterface(const std::shared_ptr<RLoopManager> &proxied) : RInterfaceBase(proxied), fProxiedPtr(proxied)
157 {
158 }
159
160 ////////////////////////////////////////////////////////////////////////////
161 /// \brief Cast any RDataFrame node to a common type ROOT::RDF::RNode.
162 /// Different RDataFrame methods return different C++ types. All nodes, however,
163 /// can be cast to this common type at the cost of a small performance penalty.
164 /// This allows, for example, storing RDataFrame nodes in a vector, or passing them
165 /// around via (non-template, C++11) helper functions.
166 /// Example usage:
167 /// ~~~{.cpp}
168 /// // a function that conditionally adds a Range to a RDataFrame node.
169 /// RNode MaybeAddRange(RNode df, bool mustAddRange)
170 /// {
171 /// return mustAddRange ? df.Range(1) : df;
172 /// }
173 /// // use as :
174 /// ROOT::RDataFrame df(10);
175 /// auto maybeRanged = MaybeAddRange(df, true);
176 /// ~~~
177 /// Note that it is not a problem to pass RNode's by value.
178 operator RNode() const
179 {
180 return RNode(std::static_pointer_cast<::ROOT::Detail::RDF::RNodeBase>(fProxiedPtr), *fLoopManager, fColRegister);
181 }
182
183 ////////////////////////////////////////////////////////////////////////////
184 /// \brief Append a filter to the call graph.
185 /// \param[in] f Function, lambda expression, functor class or any other callable object. It must return a `bool`
186 /// signalling whether the event has passed the selection (true) or not (false).
187 /// \param[in] columns Names of the columns/branches in input to the filter function.
188 /// \param[in] name Optional name of this filter. See `Report`.
189 /// \return the filter node of the computation graph.
190 ///
191 /// Append a filter node at the point of the call graph corresponding to the
192 /// object this method is called on.
193 /// The callable `f` should not have side-effects (e.g. modification of an
194 /// external or static variable) to ensure correct results when implicit
195 /// multi-threading is active.
196 ///
197 /// RDataFrame only evaluates filters when necessary: if multiple filters
198 /// are chained one after another, they are executed in order and the first
199 /// one returning false causes the event to be discarded.
200 /// Even if multiple actions or transformations depend on the same filter,
201 /// it is executed once per entry. If its result is requested more than
202 /// once, the cached result is served.
203 ///
204 /// ### Example usage:
205 /// ~~~{.cpp}
206 /// // C++ callable (function, functor class, lambda...) that takes two parameters of the types of "x" and "y"
207 /// auto filtered = df.Filter(myCut, {"x", "y"});
208 ///
209 /// // String: it must contain valid C++ except that column names can be used instead of variable names
210 /// auto filtered = df.Filter("x*y > 0");
211 /// ~~~
212 ///
213 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested
214 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work:
215 /// ~~~{.cpp}
216 /// df.Filter("Sum(Map(vec, [](float e) { return e*e > 0.5; }))")
217 /// ~~~
218 /// but instead this will:
219 /// ~~~{.cpp}
220 /// df.Filter("return Sum(Map(vec, [](float e) { return e*e > 0.5; }))")
221 /// ~~~
224 Filter(F f, const ColumnNames_t &columns = {}, std::string_view name = "")
225 {
226 RDFInternal::CheckFilter(f);
227 using ColTypes_t = typename TTraits::CallableTraits<F>::arg_types;
228 constexpr auto nColumns = ColTypes_t::list_size;
231
233
234 auto filterPtr = std::make_shared<F_t>(std::move(f), validColumnNames, fProxiedPtr, fColRegister, name);
236 }
237
238 ////////////////////////////////////////////////////////////////////////////
239 /// \brief Append a filter to the call graph.
240 /// \param[in] f Function, lambda expression, functor class or any other callable object. It must return a `bool`
241 /// signalling whether the event has passed the selection (true) or not (false).
242 /// \param[in] name Optional name of this filter. See `Report`.
243 /// \return the filter node of the computation graph.
244 ///
245 /// Refer to the first overload of this method for the full documentation.
248 {
249 // The sfinae is there in order to pick up the overloaded method which accepts two strings
250 // rather than this template method.
251 return Filter(f, {}, name);
252 }
253
254 ////////////////////////////////////////////////////////////////////////////
255 /// \brief Append a filter to the call graph.
256 /// \param[in] f Function, lambda expression, functor class or any other callable object. It must return a `bool`
257 /// signalling whether the event has passed the selection (true) or not (false).
258 /// \param[in] columns Names of the columns/branches in input to the filter function.
259 /// \return the filter node of the computation graph.
260 ///
261 /// Refer to the first overload of this method for the full documentation.
262 template <typename F>
263 RInterface<RDFDetail::RFilter<F, Proxied>, DS_t> Filter(F f, const std::initializer_list<std::string> &columns)
264 {
265 return Filter(f, ColumnNames_t{columns});
266 }
267
268 ////////////////////////////////////////////////////////////////////////////
269 /// \brief Append a filter to the call graph.
270 /// \param[in] expression The filter expression in C++
271 /// \param[in] name Optional name of this filter. See `Report`.
272 /// \return the filter node of the computation graph.
273 ///
274 /// The expression is just-in-time compiled and used to filter entries. It must
275 /// be valid C++ syntax in which variable names are substituted with the names
276 /// of branches/columns.
277 ///
278 /// ### Example usage:
279 /// ~~~{.cpp}
280 /// auto filtered_df = df.Filter("myCollection.size() > 3");
281 /// auto filtered_name_df = df.Filter("myCollection.size() > 3", "Minumum collection size");
282 /// ~~~
283 ///
284 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested
285 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work:
286 /// ~~~{.cpp}
287 /// df.Filter("Sum(Map(vec, [](float e) { return e*e > 0.5; }))")
288 /// ~~~
289 /// but instead this will:
290 /// ~~~{.cpp}
291 /// df.Filter("return Sum(Map(vec, [](float e) { return e*e > 0.5; }))")
292 /// ~~~
293 RInterface<RDFDetail::RJittedFilter, DS_t> Filter(std::string_view expression, std::string_view name = "")
294 {
295 // deleted by the jitted call to JitFilterHelper
296 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr));
297 using BaseNodeType_t = typename std::remove_pointer_t<decltype(upcastNodeOnHeap)>::element_type;
299 const auto jittedFilter =
301 fLoopManager->GetTree(), GetDataSource());
302
304 }
305
306 ////////////////////////////////////////////////////////////////////////////
307 /// \brief Discard entries with missing values
308 /// \param[in] column Column name whose entries with missing values should be discarded
309 /// \return The filter node of the computation graph
310 ///
311 /// This operation is useful in case an entry of the dataset is incomplete,
312 /// i.e. if one or more of the columns do not have valid values. If the value
313 /// of the input column is missing for an entry, the entire entry will be
314 /// discarded from the rest of this branch of the computation graph.
315 ///
316 /// Use cases include:
317 /// * When processing multiple files, one or more of them is missing a column
318 /// * In horizontal joining with entry matching, a certain dataset has no
319 /// match for the current entry.
320 ///
321 /// ### Example usage:
322 ///
323 /// \code{.py}
324 /// # Assume a dataset with columns [idx, x] matching another dataset with
325 /// # columns [idx, y]. For idx == 42, the right-hand dataset has no match
326 /// df = ROOT.RDataFrame(dataset)
327 /// df_nomissing = df.FilterAvailable("idx").Define("z", "x + y")
328 /// colz = df_nomissing.Take[int]("z")
329 /// \endcode
330 ///
331 /// \code{.cpp}
332 /// // Assume a dataset with columns [idx, x] matching another dataset with
333 /// // columns [idx, y]. For idx == 42, the right-hand dataset has no match
334 /// ROOT::RDataFrame df{dataset};
335 /// auto df_nomissing = df.FilterAvailable("idx")
336 /// .Define("z", [](int x, int y) { return x + y; }, {"x", "y"});
337 /// auto colz = df_nomissing.Take<int>("z");
338 /// \endcode
339 ///
340 /// \note See FilterMissing() if you want to keep only the entries with
341 /// missing values instead.
343 {
344 const auto columns = ColumnNames_t{column.data()};
345 // For now disable this functionality in case of an empty data source and
346 // the column name was not defined previously.
347 if (ROOT::Internal::RDF::GetDataSourceLabel(*this) == "EmptyDS")
348 throw std::runtime_error("Unknown column: \"" + std::string(column) + "\"");
350 auto filterPtr = std::make_shared<F_t>(/*discardEntry*/ true, fProxiedPtr, fColRegister, columns);
353 }
354
355 ////////////////////////////////////////////////////////////////////////////
356 /// \brief Keep only the entries that have missing values.
357 /// \param[in] column Column name whose entries with missing values should be kept
358 /// \return The filter node of the computation graph
359 ///
360 /// This operation is useful in case an entry of the dataset is incomplete,
361 /// i.e. if one or more of the columns do not have valid values. It only
362 /// keeps the entries for which the value of the input column is missing.
363 ///
364 /// Use cases include:
365 /// * When processing multiple files, one or more of them is missing a column
366 /// * In horizontal joining with entry matching, a certain dataset has no
367 /// match for the current entry.
368 ///
369 /// ### Example usage:
370 ///
371 /// \code{.py}
372 /// # Assume a dataset made of two files vertically chained together, one has
373 /// # column "x" and the other has column "y"
374 /// df = ROOT.RDataFrame(dataset)
375 /// df_valid_col_x = df.FilterMissing("y")
376 /// df_valid_col_y = df.FilterMissing("x")
377 /// display_x = df_valid_col_x.Display(("x",))
378 /// display_y = df_valid_col_y.Display(("y",))
379 /// \endcode
380 ///
381 /// \code{.cpp}
382 /// // Assume a dataset made of two files vertically chained together, one has
383 /// // column "x" and the other has column "y"
384 /// ROOT.RDataFrame df{dataset};
385 /// auto df_valid_col_x = df.FilterMissing("y");
386 /// auto df_valid_col_y = df.FilterMissing("x");
387 /// auto display_x = df_valid_col_x.Display<int>({"x"});
388 /// auto display_y = df_valid_col_y.Display<int>({"y"});
389 /// \endcode
390 ///
391 /// \note See FilterAvailable() if you want to discard the entries in case
392 /// there is a missing value instead.
394 {
395 const auto columns = ColumnNames_t{column.data()};
396 // For now disable this functionality in case of an empty data source and
397 // the column name was not defined previously.
398 if (ROOT::Internal::RDF::GetDataSourceLabel(*this) == "EmptyDS")
399 throw std::runtime_error("Unknown column: \"" + std::string(column) + "\"");
401 auto filterPtr = std::make_shared<F_t>(/*discardEntry*/ false, fProxiedPtr, fColRegister, columns);
404 }
405
406 // clang-format off
407 ////////////////////////////////////////////////////////////////////////////
408 /// \brief Define a new column.
409 /// \param[in] name The name of the defined column.
410 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
411 /// \param[in] columns Names of the columns/branches in input to the producer function.
412 /// \return the first node of the computation graph for which the new quantity is defined.
413 ///
414 /// Define a column that will be visible from all subsequent nodes
415 /// of the functional chain. The `expression` is only evaluated for entries that pass
416 /// all the preceding filters.
417 /// A new variable is created called `name`, accessible as if it was contained
418 /// in the dataset from subsequent transformations/actions.
419 ///
420 /// Use cases include:
421 /// * caching the results of complex calculations for easy and efficient multiple access
422 /// * extraction of quantities of interest from complex objects
423 ///
424 /// An exception is thrown if the name of the new column is already in use in this branch of the computation graph.
425 ///
426 /// ### Example usage:
427 /// ~~~{.cpp}
428 /// // assuming a function with signature:
429 /// double myComplexCalculation(const RVec<float> &muon_pts);
430 /// // we can pass it directly to Define
431 /// auto df_with_define = df.Define("newColumn", myComplexCalculation, {"muon_pts"});
432 /// // alternatively, we can pass the body of the function as a string, as in Filter:
433 /// auto df_with_define = df.Define("newColumn", "x*x + y*y");
434 /// ~~~
435 ///
436 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested
437 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work:
438 /// ~~~{.cpp}
439 /// df.Define("x2", "Map(v, [](float e) { return e*e; })")
440 /// ~~~
441 /// but instead this will:
442 /// ~~~{.cpp}
443 /// df.Define("x2", "return Map(v, [](float e) { return e*e; })")
444 /// ~~~
446 RInterface<Proxied, DS_t> Define(std::string_view name, F expression, const ColumnNames_t &columns = {})
447 {
448 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::None>(name, std::move(expression), columns, "Define");
449 }
450 // clang-format on
451
452 // clang-format off
453 ////////////////////////////////////////////////////////////////////////////
454 /// \brief Define a new column with a value dependent on the processing slot.
455 /// \param[in] name The name of the defined column.
456 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
457 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding the slot number).
458 /// \return the first node of the computation graph for which the new quantity is defined.
459 ///
460 /// This alternative implementation of `Define` is meant as a helper to evaluate new column values in a thread-safe manner.
461 /// The expression must be a callable of signature R(unsigned int, T1, T2, ...) where `T1, T2...` are the types
462 /// of the columns that the expression takes as input. The first parameter is reserved for an unsigned integer
463 /// representing a "slot number". RDataFrame guarantees that different threads will invoke the expression with
464 /// different slot numbers - slot numbers will range from zero to ROOT::GetThreadPoolSize()-1.
465 ///
466 /// The following two calls are equivalent, although `DefineSlot` is slightly more performant:
467 /// ~~~{.cpp}
468 /// int function(unsigned int, double, double);
469 /// df.Define("x", function, {"rdfslot_", "column1", "column2"})
470 /// df.DefineSlot("x", function, {"column1", "column2"})
471 /// ~~~
472 ///
473 /// See Define() for more information.
474 template <typename F>
475 RInterface<Proxied, DS_t> DefineSlot(std::string_view name, F expression, const ColumnNames_t &columns = {})
476 {
477 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::Slot>(name, std::move(expression), columns, "DefineSlot");
478 }
479 // clang-format on
480
481 // clang-format off
482 ////////////////////////////////////////////////////////////////////////////
483 /// \brief Define a new column with a value dependent on the processing slot and the current entry.
484 /// \param[in] name The name of the defined column.
485 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
486 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding slot and entry).
487 /// \return the first node of the computation graph for which the new quantity is defined.
488 ///
489 /// This alternative implementation of `Define` is meant as a helper in writing entry-specific, thread-safe custom
490 /// columns. The expression must be a callable of signature R(unsigned int, ULong64_t, T1, T2, ...) where `T1, T2...`
491 /// are the types of the columns that the expression takes as input. The first parameter is reserved for an unsigned
492 /// integer representing a "slot number". RDataFrame guarantees that different threads will invoke the expression with
493 /// different slot numbers - slot numbers will range from zero to ROOT::GetThreadPoolSize()-1. The second parameter
494 /// is reserved for a `ULong64_t` representing the current entry being processed by the current thread.
495 ///
496 /// The following two `Define`s are equivalent, although `DefineSlotEntry` is slightly more performant:
497 /// ~~~{.cpp}
498 /// int function(unsigned int, ULong64_t, double, double);
499 /// Define("x", function, {"rdfslot_", "rdfentry_", "column1", "column2"})
500 /// DefineSlotEntry("x", function, {"column1", "column2"})
501 /// ~~~
502 ///
503 /// See Define() for more information.
504 template <typename F>
505 RInterface<Proxied, DS_t> DefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns = {})
506 {
508 "DefineSlotEntry");
509 }
510 // clang-format on
511
512 ////////////////////////////////////////////////////////////////////////////
513 /// \brief Define a new column.
514 /// \param[in] name The name of the defined column.
515 /// \param[in] expression An expression in C++ which represents the defined value
516 /// \return the first node of the computation graph for which the new quantity is defined.
517 ///
518 /// The expression is just-in-time compiled and used to produce the column entries.
519 /// It must be valid C++ syntax in which variable names are substituted with the names
520 /// of branches/columns.
521 ///
522 /// \note If the body of the string expression contains an explicit `return` statement (even if it is in a nested
523 /// scope), RDataFrame _will not_ add another one in front of the expression. So this will not work:
524 /// ~~~{.cpp}
525 /// df.Define("x2", "Map(v, [](float e) { return e*e; })")
526 /// ~~~
527 /// but instead this will:
528 /// ~~~{.cpp}
529 /// df.Define("x2", "return Map(v, [](float e) { return e*e; })")
530 /// ~~~
531 ///
532 /// Refer to the first overload of this method for the full documentation.
533 RInterface<Proxied, DS_t> Define(std::string_view name, std::string_view expression)
534 {
535 constexpr auto where = "Define";
537 // these checks must be done before jitting lest we throw exceptions in jitted code
540
541 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr));
543 fLoopManager->GetBranchNames(), upcastNodeOnHeap);
544
546 newCols.AddDefine(std::move(jittedDefine));
547
549
550 return newInterface;
551 }
552
553 ////////////////////////////////////////////////////////////////////////////
554 /// \brief Overwrite the value and/or type of an existing column.
555 /// \param[in] name The name of the column to redefine.
556 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
557 /// \param[in] columns Names of the columns/branches in input to the expression.
558 /// \return the first node of the computation graph for which the quantity is redefined.
559 ///
560 /// The old value of the column can be used as an input for the expression.
561 ///
562 /// An exception is thrown in case the column to redefine does not already exist.
563 /// See Define() for more information.
565 RInterface<Proxied, DS_t> Redefine(std::string_view name, F expression, const ColumnNames_t &columns = {})
566 {
567 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::None>(name, std::move(expression), columns, "Redefine");
568 }
569
570 // clang-format off
571 ////////////////////////////////////////////////////////////////////////////
572 /// \brief Overwrite the value and/or type of an existing column.
573 /// \param[in] name The name of the column to redefine.
574 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
575 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding slot).
576 /// \return the first node of the computation graph for which the new quantity is defined.
577 ///
578 /// The old value of the column can be used as an input for the expression.
579 /// An exception is thrown in case the column to redefine does not already exist.
580 ///
581 /// See DefineSlot() for more information.
582 // clang-format on
583 template <typename F>
584 RInterface<Proxied, DS_t> RedefineSlot(std::string_view name, F expression, const ColumnNames_t &columns = {})
585 {
586 return DefineImpl<F, RDFDetail::ExtraArgsForDefine::Slot>(name, std::move(expression), columns, "RedefineSlot");
587 }
588
589 // clang-format off
590 ////////////////////////////////////////////////////////////////////////////
591 /// \brief Overwrite the value and/or type of an existing column.
592 /// \param[in] name The name of the column to redefine.
593 /// \param[in] expression Function, lambda expression, functor class or any other callable object producing the defined value. Returns the value that will be assigned to the defined column.
594 /// \param[in] columns Names of the columns/branches in input to the producer function (excluding slot and entry).
595 /// \return the first node of the computation graph for which the new quantity is defined.
596 ///
597 /// The old value of the column can be used as an input for the expression.
598 /// An exception is thrown in case the column to re-define does not already exist.
599 ///
600 /// See DefineSlotEntry() for more information.
601 // clang-format on
602 template <typename F>
603 RInterface<Proxied, DS_t> RedefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns = {})
604 {
606 "RedefineSlotEntry");
607 }
608
609 ////////////////////////////////////////////////////////////////////////////
610 /// \brief Overwrite the value and/or type of an existing column.
611 /// \param[in] name The name of the column to redefine.
612 /// \param[in] expression An expression in C++ which represents the defined value
613 /// \return the first node of the computation graph for which the new quantity is defined.
614 ///
615 /// The expression is just-in-time compiled and used to produce the column entries.
616 /// It must be valid C++ syntax in which variable names are substituted with the names
617 /// of branches/columns.
618 ///
619 /// The old value of the column can be used as an input for the expression.
620 /// An exception is thrown in case the column to re-define does not already exist.
621 ///
622 /// Aliases cannot be overridden. See the corresponding Define() overload for more information.
623 RInterface<Proxied, DS_t> Redefine(std::string_view name, std::string_view expression)
624 {
625 constexpr auto where = "Redefine";
630
631 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr));
633 fLoopManager->GetBranchNames(), upcastNodeOnHeap);
634
636 newCols.AddDefine(std::move(jittedDefine));
637
639
640 return newInterface;
641 }
642
643 ////////////////////////////////////////////////////////////////////////////
644 /// \brief In case the value in the given column is missing, provide a default value
645 /// \tparam T The type of the column
646 /// \param[in] column Column name where missing values should be replaced by the given default value
647 /// \param[in] defaultValue Value to provide instead of a missing value
648 /// \return The node of the graph that will provide a default value
649 ///
650 /// This operation is useful in case an entry of the dataset is incomplete,
651 /// i.e. if one or more of the columns do not have valid values. It does not
652 /// modify the values of the column, but in case any entry is missing, it
653 /// will provide the default value to downstream nodes instead.
654 ///
655 /// Use cases include:
656 /// * When processing multiple files, one or more of them is missing a column
657 /// * In horizontal joining with entry matching, a certain dataset has no
658 /// match for the current entry.
659 ///
660 /// ### Example usage:
661 ///
662 /// \code{.cpp}
663 /// // Assume a dataset with columns [idx, x] matching another dataset with
664 /// // columns [idx, y]. For idx == 42, the right-hand dataset has no match
665 /// ROOT::RDataFrame df{dataset};
666 /// auto df_default = df.DefaultValueFor("y", 33)
667 /// .Define("z", [](int x, int y) { return x + y; }, {"x", "y"});
668 /// auto colz = df_default.Take<int>("z");
669 /// \endcode
670 ///
671 /// \code{.py}
672 /// df = ROOT.RDataFrame(dataset)
673 /// df_default = df.DefaultValueFor("y", 33).Define("z", "x + y")
674 /// colz = df_default.Take[int]("z")
675 /// \endcode
676 template <typename T>
677 RInterface<Proxied, DS_t> DefaultValueFor(std::string_view column, const T &defaultValue)
678 {
679 constexpr auto where{"DefaultValueFor"};
681 // For now disable this functionality in case of an empty data source and
682 // the column name was not defined previously.
683 if (ROOT::Internal::RDF::GetDataSourceLabel(*this) == "EmptyDS")
686
687 // Declare return type to the interpreter, for future use by jitted actions
689 if (retTypeName.empty()) {
690 // The type is not known to the interpreter.
691 // We must not error out here, but if/when this column is used in jitted code
692 const auto demangledType = RDFInternal::DemangleTypeIdName(typeid(T));
693 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType;
694 }
695
696 const auto validColumnNames = ColumnNames_t{column.data()};
697 auto newColumn = std::make_shared<ROOT::Internal::RDF::RDefaultValueFor<T>>(
698 column, retTypeName, defaultValue, validColumnNames, fColRegister, *fLoopManager);
700
702 newCols.AddDefine(std::move(newColumn));
703
705
706 return newInterface;
707 }
708
709 // clang-format off
710 ////////////////////////////////////////////////////////////////////////////
711 /// \brief Define a new column that is updated when the input sample changes.
712 /// \param[in] name The name of the defined column.
713 /// \param[in] expression A C++ callable that computes the new value of the defined column.
714 /// \return the first node of the computation graph for which the new quantity is defined.
715 ///
716 /// The signature of the callable passed as second argument should be `T(unsigned int slot, const ROOT::RDF::RSampleInfo &id)`
717 /// where:
718 /// - `T` is the type of the defined column
719 /// - `slot` is a number in the range [0, nThreads) that is different for each processing thread. This can simplify
720 /// the definition of thread-safe callables if you are interested in using parallel capabilities of RDataFrame.
721 /// - `id` is an instance of a ROOT::RDF::RSampleInfo object which contains information about the sample which is
722 /// being processed (see the class docs for more information).
723 ///
724 /// DefinePerSample() is useful to e.g. define a quantity that depends on which TTree in which TFile is being
725 /// processed or to inject a callback into the event loop that is only called when the processing of a new sample
726 /// starts rather than at every entry.
727 ///
728 /// The callable will be invoked once per input TTree or once per multi-thread task, whichever is more often.
729 ///
730 /// ### Example usage:
731 /// ~~~{.cpp}
732 /// ROOT::RDataFrame df{"mytree", {"sample1.root","sample2.root"}};
733 /// df.DefinePerSample("weightbysample",
734 /// [](unsigned int slot, const ROOT::RDF::RSampleInfo &id)
735 /// { return id.Contains("sample1") ? 1.0f : 2.0f; });
736 /// ~~~
737 // clang-format on
738 // TODO we could SFINAE on F's signature to provide friendlier compilation errors in case of signature mismatch
740 RInterface<Proxied, DS_t> DefinePerSample(std::string_view name, F expression)
741 {
742 RDFInternal::CheckValidCppVarName(name, "DefinePerSample");
743 RDFInternal::CheckForRedefinition("DefinePerSample", name, fColRegister, fLoopManager->GetBranchNames(),
745
746 auto retTypeName = RDFInternal::TypeID2TypeName(typeid(RetType_t));
747 if (retTypeName.empty()) {
748 // The type is not known to the interpreter.
749 // We must not error out here, but if/when this column is used in jitted code
750 const auto demangledType = RDFInternal::DemangleTypeIdName(typeid(RetType_t));
751 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType;
752 }
753
754 auto newColumn =
755 std::make_shared<RDFDetail::RDefinePerSample<F>>(name, retTypeName, std::move(expression), *fLoopManager);
756
758 newCols.AddDefine(std::move(newColumn));
760 return newInterface;
761 }
762
763 // clang-format off
764 ////////////////////////////////////////////////////////////////////////////
765 /// \brief Define a new column that is updated when the input sample changes.
766 /// \param[in] name The name of the defined column.
767 /// \param[in] expression A valid C++ expression as a string, which will be used to compute the defined value.
768 /// \return the first node of the computation graph for which the new quantity is defined.
769 ///
770 /// The expression is just-in-time compiled and used to produce the column entries.
771 /// It must be valid C++ syntax and the usage of the special variable names `rdfslot_` and `rdfsampleinfo_` is
772 /// permitted, where these variables will take the same values as the `slot` and `id` parameters described at the
773 /// DefinePerSample(std::string_view name, F expression) overload. See the documentation of that overload for more information.
774 ///
775 /// ### Example usage:
776 /// ~~~{.py}
777 /// df = ROOT.RDataFrame('mytree', ['sample1.root','sample2.root'])
778 /// df.DefinePerSample('weightbysample', 'rdfsampleinfo_.Contains("sample1") ? 1.0f : 2.0f')
779 /// ~~~
780 ///
781 /// \note
782 /// If you have declared some C++ function to the interpreter, the correct syntax to call that function with this
783 /// overload of DefinePerSample is by calling it explicitly with the special names `rdfslot_` and `rdfsampleinfo_` as
784 /// input parameters. This is for example the correct way to call this overload when working in PyROOT:
785 /// ~~~{.py}
786 /// ROOT.gInterpreter.Declare(
787 /// """
788 /// float weights(unsigned int slot, const ROOT::RDF::RSampleInfo &id){
789 /// return id.Contains("sample1") ? 1.0f : 2.0f;
790 /// }
791 /// """)
792 /// df = ROOT.RDataFrame("mytree", ["sample1.root","sample2.root"])
793 /// df.DefinePerSample("weightsbysample", "weights(rdfslot_, rdfsampleinfo_)")
794 /// ~~~
795 ///
796 /// \note
797 /// Differently from what happens in Define(), the string expression passed to DefinePerSample cannot contain
798 /// column names other than those mentioned above: the expression is evaluated once before the processing of the
799 /// sample even starts, so column values are not accessible.
800 // clang-format on
801 RInterface<Proxied, DS_t> DefinePerSample(std::string_view name, std::string_view expression)
802 {
803 RDFInternal::CheckValidCppVarName(name, "DefinePerSample");
804 // these checks must be done before jitting lest we throw exceptions in jitted code
805 RDFInternal::CheckForRedefinition("DefinePerSample", name, fColRegister, fLoopManager->GetBranchNames(),
807
808 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr));
809 auto jittedDefine =
811
813 newCols.AddDefine(std::move(jittedDefine));
814
816
817 return newInterface;
818 }
819
820 /// \brief Register systematic variations for a single existing column using custom variation tags.
821 /// \param[in] colName name of the column for which varied values are provided.
822 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
823 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
824 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
825 /// \param[in] inputColumns the names of the columns to be passed to the callable.
826 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
827 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
828 ///
829 /// Vary provides a natural and flexible syntax to define systematic variations that automatically propagate to
830 /// Filters, Defines and results. RDataFrame usage of columns with attached variations does not change, but for
831 /// results that depend on any varied quantity, a map/dictionary of varied results can be produced with
832 /// ROOT::RDF::Experimental::VariationsFor (see the example below).
833 ///
834 /// The dictionary will contain a "nominal" value (accessed with the "nominal" key) for the unchanged result, and
835 /// values for each of the systematic variations that affected the result (via upstream Filters or via direct or
836 /// indirect dependencies of the column values on some registered variations). The keys will be a composition of
837 /// variation names and tags, e.g. "pt:up" and "pt:down" for the example below.
838 ///
839 /// In the following example we add up/down variations of pt and fill a histogram with a quantity that depends on pt.
840 /// We automatically obtain three histograms in output ("nominal", "pt:up" and "pt:down"):
841 /// ~~~{.cpp}
842 /// auto nominal_hx =
843 /// df.Vary("pt", [] (double pt) { return RVecD{pt*0.9, pt*1.1}; }, {"down", "up"})
844 /// .Filter("pt > k")
845 /// .Define("x", someFunc, {"pt"})
846 /// .Histo1D("x");
847 ///
848 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
849 /// hx["nominal"].Draw();
850 /// hx["pt:down"].Draw("SAME");
851 /// hx["pt:up"].Draw("SAME");
852 /// ~~~
853 /// RDataFrame computes all variations as part of a single loop over the data.
854 /// In particular, this means that I/O and computation of values shared
855 /// among variations only happen once for all variations. Thus, the event loop
856 /// run-time typically scales much better than linearly with the number of
857 /// variations.
858 ///
859 /// RDataFrame lazily computes the varied values required to produce the
860 /// outputs of \ref ROOT::RDF::Experimental::VariationsFor "VariationsFor()". If \ref
861 /// ROOT::RDF::Experimental::VariationsFor "VariationsFor()" was not called for a result, the computations are only
862 /// run for the nominal case.
863 ///
864 /// See other overloads for examples when variations are added for multiple existing columns,
865 /// or when the tags are auto-generated instead of being directly defined.
866 template <typename F>
867 RInterface<Proxied, DS_t> Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns,
868 const std::vector<std::string> &variationTags, std::string_view variationName = "")
869 {
870 std::vector<std::string> colNames{{std::string(colName)}};
871 const std::string theVariationName{variationName.empty() ? colName : variationName};
872
873 return VaryImpl<true>(std::move(colNames), std::forward<F>(expression), inputColumns, variationTags,
875 }
876
877 /// \brief Register systematic variations for a single existing column using auto-generated variation tags.
878 /// \param[in] colName name of the column for which varied values are provided.
879 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
880 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
881 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
882 /// \param[in] inputColumns the names of the columns to be passed to the callable.
883 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
884 /// `"1"`, etc.
885 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
886 /// colName is used if none is provided.
887 ///
888 /// This overload of Vary takes an nVariations parameter instead of a list of tag names.
889 /// The varied results will be accessible via the keys of the dictionary with the form `variationName:N` where `N`
890 /// is the corresponding sequential tag starting at 0 and going up to `nVariations - 1`.
891 ///
892 /// Example usage:
893 /// ~~~{.cpp}
894 /// auto nominal_hx =
895 /// df.Vary("pt", [] (double pt) { return RVecD{pt*0.9, pt*1.1}; }, 2)
896 /// .Histo1D("x");
897 ///
898 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
899 /// hx["nominal"].Draw();
900 /// hx["x:0"].Draw("SAME");
901 /// hx["x:1"].Draw("SAME");
902 /// ~~~
903 ///
904 /// \note See also This Vary() overload for more information.
905 template <typename F>
906 RInterface<Proxied, DS_t> Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns,
907 std::size_t nVariations, std::string_view variationName = "")
908 {
909 R__ASSERT(nVariations > 0 && "Must have at least one variation.");
910
911 std::vector<std::string> variationTags;
912 variationTags.reserve(nVariations);
913 for (std::size_t i = 0u; i < nVariations; ++i)
914 variationTags.emplace_back(std::to_string(i));
915
916 const std::string theVariationName{variationName.empty() ? colName : variationName};
917
918 return Vary(colName, std::forward<F>(expression), inputColumns, std::move(variationTags), theVariationName);
919 }
920
921 /// \brief Register systematic variations for multiple existing columns using custom variation tags.
922 /// \param[in] colNames set of names of the columns for which varied values are provided.
923 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
924 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
925 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
926 /// \param[in] inputColumns the names of the columns to be passed to the callable.
927 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
928 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`
929 ///
930 /// This overload of Vary takes a list of column names as first argument and
931 /// requires that the expression returns an RVec of RVecs of values: one inner RVec for the variations of each
932 /// affected column. The `variationTags` are defined as `{"down", "up"}`.
933 ///
934 /// Example usage:
935 /// ~~~{.cpp}
936 /// // produce variations "ptAndEta:down" and "ptAndEta:up"
937 /// auto nominal_hx =
938 /// df.Vary({"pt", "eta"}, // the columns that will vary simultaneously
939 /// [](double pt, double eta) { return RVec<RVecF>{{pt*0.9, pt*1.1}, {eta*0.9, eta*1.1}}; },
940 /// {"pt", "eta"}, // inputs to the Vary expression, independent of what columns are varied
941 /// {"down", "up"}, // variation tags
942 /// "ptAndEta") // variation name
943 /// .Histo1D("pt", "eta");
944 ///
945 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
946 /// hx["nominal"].Draw();
947 /// hx["ptAndEta:down"].Draw("SAME");
948 /// hx["ptAndEta:up"].Draw("SAME");
949 /// ~~~
950 ///
951 /// \note See also This Vary() overload for more information.
952
953 template <typename F>
955 Vary(const std::vector<std::string> &colNames, F &&expression, const ColumnNames_t &inputColumns,
956 const std::vector<std::string> &variationTags, std::string_view variationName)
957 {
958 return VaryImpl<false>(colNames, std::forward<F>(expression), inputColumns, variationTags, variationName);
959 }
960
961 /// \brief Register systematic variations for multiple existing columns using custom variation tags.
962 /// \param[in] colNames set of names of the columns for which varied values are provided.
963 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
964 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
965 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
966 /// \param[in] inputColumns the names of the columns to be passed to the callable.
967 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
968 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
969 /// colName is used if none is provided.
970 ///
971 /// \note This overload ensures that the ambiguity between C++20 string, vector<string> construction from init list
972 /// is avoided.
973 ///
974 /// \note See also This Vary() overload for more information.
975 template <typename F>
977 Vary(std::initializer_list<std::string> colNames, F &&expression, const ColumnNames_t &inputColumns,
978 const std::vector<std::string> &variationTags, std::string_view variationName)
979 {
980 return Vary(std::vector<std::string>(colNames), std::forward<F>(expression), inputColumns, variationTags, variationName);
981 }
982
983 /// \brief Register systematic variations for multiple existing columns using auto-generated tags.
984 /// \param[in] colNames set of names of the columns for which varied values are provided.
985 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
986 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
987 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
988 /// \param[in] inputColumns the names of the columns to be passed to the callable.
989 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
990 /// `"1"`, etc.
991 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
992 /// colName is used if none is provided.
993 ///
994 /// This overload of Vary takes a list of column names as first argument.
995 /// It takes an `nVariations` parameter instead of a list of tag names (`variationTags`). Tag names
996 /// will be auto-generated as the sequence 0...``nVariations-1``.
997 ///
998 /// Example usage:
999 /// ~~~{.cpp}
1000 /// auto nominal_hx =
1001 /// df.Vary({"pt", "eta"}, // the columns that will vary simultaneously
1002 /// [](double pt, double eta) { return RVec<RVecF>{{pt*0.9, pt*1.1}, {eta*0.9, eta*1.1}}; },
1003 /// {"pt", "eta"}, // inputs to the Vary expression, independent of what columns are varied
1004 /// 2, // auto-generated variation tags
1005 /// "ptAndEta") // variation name
1006 /// .Histo1D("pt", "eta");
1007 ///
1008 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1009 /// hx["nominal"].Draw();
1010 /// hx["ptAndEta:0"].Draw("SAME");
1011 /// hx["ptAndEta:1"].Draw("SAME");
1012 /// ~~~
1013 ///
1014 /// \note See also This Vary() overload for more information.
1015 template <typename F>
1017 Vary(const std::vector<std::string> &colNames, F &&expression, const ColumnNames_t &inputColumns,
1018 std::size_t nVariations, std::string_view variationName)
1019 {
1020 R__ASSERT(nVariations > 0 && "Must have at least one variation.");
1021
1022 std::vector<std::string> variationTags;
1023 variationTags.reserve(nVariations);
1024 for (std::size_t i = 0u; i < nVariations; ++i)
1025 variationTags.emplace_back(std::to_string(i));
1026
1027 return Vary(colNames, std::forward<F>(expression), inputColumns, std::move(variationTags), variationName);
1028 }
1029
1030 /// \brief Register systematic variations for for multiple existing columns using custom variation tags.
1031 /// \param[in] colNames set of names of the columns for which varied values are provided.
1032 /// \param[in] expression a callable that evaluates the varied values for the specified columns. The callable can
1033 /// take any column values as input, similarly to what happens during Filter and Define calls. It must
1034 /// return an RVec of varied values, one for each variation tag, in the same order as the tags.
1035 /// \param[in] inputColumns the names of the columns to be passed to the callable.
1036 /// \param[in] inputColumns the names of the columns to be passed to the callable.
1037 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
1038 /// `"1"`, etc.
1039 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1040 /// colName is used if none is provided.
1041 ///
1042 /// \note This overload ensures that the ambiguity between C++20 string, vector<string> construction from init list
1043 /// is avoided.
1044 ///
1045 /// \note See also This Vary() overload for more information.
1046 template <typename F>
1048 Vary(std::initializer_list<std::string> colNames, F &&expression, const ColumnNames_t &inputColumns,
1049 std::size_t nVariations, std::string_view variationName)
1050 {
1051 return Vary(std::vector<std::string>(colNames), std::forward<F>(expression), inputColumns, nVariations, variationName);
1052 }
1053
1054 /// \brief Register systematic variations for a single existing column using custom variation tags.
1055 /// \param[in] colName name of the column for which varied values are provided.
1056 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec containing the varied
1057 /// values for the specified column.
1058 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
1059 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1060 /// colName is used if none is provided.
1061 ///
1062 /// This overload adds the possibility for the expression used to evaluate the varied values to be just-in-time
1063 /// compiled. The example below shows how Vary() is used while dealing with a single column. The variation tags are
1064 /// defined as `{"down", "up"}`.
1065 /// ~~~{.cpp}
1066 /// auto nominal_hx =
1067 /// df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", {"down", "up"})
1068 /// .Filter("pt > k")
1069 /// .Define("x", someFunc, {"pt"})
1070 /// .Histo1D("x");
1071 ///
1072 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1073 /// hx["nominal"].Draw();
1074 /// hx["pt:down"].Draw("SAME");
1075 /// hx["pt:up"].Draw("SAME");
1076 /// ~~~
1077 ///
1078 /// \note See also This Vary() overload for more information.
1079 RInterface<Proxied, DS_t> Vary(std::string_view colName, std::string_view expression,
1080 const std::vector<std::string> &variationTags, std::string_view variationName = "")
1081 {
1082 std::vector<std::string> colNames{{std::string(colName)}};
1083 const std::string theVariationName{variationName.empty() ? colName : variationName};
1084
1085 return JittedVaryImpl(colNames, expression, variationTags, theVariationName, /*isSingleColumn=*/true);
1086 }
1087
1088 /// \brief Register systematic variations for a single existing column using auto-generated variation tags.
1089 /// \param[in] colName name of the column for which varied values are provided.
1090 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec containing the varied
1091 /// values for the specified column.
1092 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
1093 /// `"1"`, etc.
1094 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1095 /// colName is used if none is provided.
1096 ///
1097 /// This overload adds the possibility for the expression used to evaluate the varied values to be a just-in-time
1098 /// compiled. The example below shows how Vary() is used while dealing with a single column. The variation tags are
1099 /// auto-generated.
1100 /// ~~~{.cpp}
1101 /// auto nominal_hx =
1102 /// df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", 2)
1103 /// .Histo1D("pt");
1104 ///
1105 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1106 /// hx["nominal"].Draw();
1107 /// hx["pt:0"].Draw("SAME");
1108 /// hx["pt:1"].Draw("SAME");
1109 /// ~~~
1110 ///
1111 /// \note See also This Vary() overload for more information.
1112 RInterface<Proxied, DS_t> Vary(std::string_view colName, std::string_view expression, std::size_t nVariations,
1113 std::string_view variationName = "")
1114 {
1115 std::vector<std::string> variationTags;
1116 variationTags.reserve(nVariations);
1117 for (std::size_t i = 0u; i < nVariations; ++i)
1118 variationTags.emplace_back(std::to_string(i));
1119
1120 return Vary(colName, expression, std::move(variationTags), variationName);
1121 }
1122
1123 /// \brief Register systematic variations for multiple existing columns using auto-generated variation tags.
1124 /// \param[in] colNames set of names of the columns for which varied values are provided.
1125 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec or RVecs containing the varied
1126 /// values for the specified columns.
1127 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
1128 /// `"1"`, etc.
1129 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1130 ///
1131 /// This overload adds the possibility for the expression used to evaluate the varied values to be just-in-time
1132 /// compiled. It takes an nVariations parameter instead of a list of tag names.
1133 /// The varied results will be accessible via the keys of the dictionary with the form `variationName:N` where `N`
1134 /// is the corresponding sequential tag starting at 0 and going up to `nVariations - 1`.
1135 /// The example below shows how Vary() is used while dealing with multiple columns.
1136 ///
1137 /// ~~~{.cpp}
1138 /// auto nominal_hx =
1139 /// df.Vary({"x", "y"}, "ROOT::RVec<ROOT::RVecD>{{x*0.9, x*1.1}, {y*0.9, y*1.1}}", 2, "xy")
1140 /// .Histo1D("x", "y");
1141 ///
1142 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1143 /// hx["nominal"].Draw();
1144 /// hx["xy:0"].Draw("SAME");
1145 /// hx["xy:1"].Draw("SAME");
1146 /// ~~~
1147 ///
1148 /// \note See also This Vary() overload for more information.
1149 RInterface<Proxied, DS_t> Vary(const std::vector<std::string> &colNames, std::string_view expression,
1150 std::size_t nVariations, std::string_view variationName)
1151 {
1152 std::vector<std::string> variationTags;
1153 variationTags.reserve(nVariations);
1154 for (std::size_t i = 0u; i < nVariations; ++i)
1155 variationTags.emplace_back(std::to_string(i));
1156
1157 return Vary(colNames, expression, std::move(variationTags), variationName);
1158 }
1159
1160 /// \brief Register systematic variations for multiple existing columns using auto-generated variation tags.
1161 /// \param[in] colNames set of names of the columns for which varied values are provided.
1162 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec containing the varied
1163 /// values for the specified column.
1164 /// \param[in] nVariations number of variations returned by the expression. The corresponding tags will be `"0"`,
1165 /// `"1"`, etc.
1166 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1167 /// colName is used if none is provided.
1168 ///
1169 /// \note This overload ensures that the ambiguity between C++20 string, vector<string> construction from init list
1170 /// is avoided.
1171 ///
1172 /// \note See also This Vary() overload for more information.
1173 RInterface<Proxied, DS_t> Vary(std::initializer_list<std::string> colNames, std::string_view expression,
1174 std::size_t nVariations, std::string_view variationName)
1175 {
1176 return Vary(std::vector<std::string>(colNames), expression, nVariations, variationName);
1177 }
1178
1179 /// \brief Register systematic variations for multiple existing columns using custom variation tags.
1180 /// \param[in] colNames set of names of the columns for which varied values are provided.
1181 /// \param[in] expression a string containing valid C++ code that evaluates to an RVec or RVecs containing the varied
1182 /// values for the specified columns.
1183 /// \param[in] variationTags names for each of the varied values, e.g. `"up"` and `"down"`.
1184 /// \param[in] variationName a generic name for this set of varied values, e.g. `"ptvariation"`.
1185 ///
1186 /// This overload adds the possibility for the expression used to evaluate the varied values to be just-in-time
1187 /// compiled. The example below shows how Vary() is used while dealing with multiple columns. The tags are defined as
1188 /// `{"down", "up"}`.
1189 /// ~~~{.cpp}
1190 /// auto nominal_hx =
1191 /// df.Vary({"x", "y"}, "ROOT::RVec<ROOT::RVecD>{{x*0.9, x*1.1}, {y*0.9, y*1.1}}", {"down", "up"}, "xy")
1192 /// .Histo1D("x", "y");
1193 ///
1194 /// auto hx = ROOT::RDF::Experimental::VariationsFor(nominal_hx);
1195 /// hx["nominal"].Draw();
1196 /// hx["xy:down"].Draw("SAME");
1197 /// hx["xy:up"].Draw("SAME");
1198 /// ~~~
1199 ///
1200 /// \note See also This Vary() overload for more information.
1201 RInterface<Proxied, DS_t> Vary(const std::vector<std::string> &colNames, std::string_view expression,
1202 const std::vector<std::string> &variationTags, std::string_view variationName)
1203 {
1204 return JittedVaryImpl(colNames, expression, variationTags, variationName, /*isSingleColumn=*/false);
1205 }
1206
1207 ////////////////////////////////////////////////////////////////////////////
1208 /// \brief Allow to refer to a column with a different name.
1209 /// \param[in] alias name of the column alias
1210 /// \param[in] columnName of the column to be aliased
1211 /// \return the first node of the computation graph for which the alias is available.
1212 ///
1213 /// Aliasing an alias is supported.
1214 ///
1215 /// ### Example usage:
1216 /// ~~~{.cpp}
1217 /// auto df_with_alias = df.Alias("simple_name", "very_long&complex_name!!!");
1218 /// ~~~
1219 RInterface<Proxied, DS_t> Alias(std::string_view alias, std::string_view columnName)
1220 {
1221 // The symmetry with Define is clear. We want to:
1222 // - Create globally the alias and return this very node, unchanged
1223 // - Make aliases accessible based on chains and not globally
1224
1225 // Helper to find out if a name is a column
1227
1228 constexpr auto where = "Alias";
1230 // If the alias name is a column name, there is a problem
1232
1233 const auto validColumnName = GetValidatedColumnNames(1, {std::string(columnName)})[0];
1234
1236 newCols.AddAlias(alias, validColumnName);
1237
1239
1240 return newInterface;
1241 }
1242
1243 ////////////////////////////////////////////////////////////////////////////
1244 /// \brief Save selected columns to disk, in a new TTree `treename` in file `filename`.
1245 /// \tparam ColumnTypes variadic list of branch/column types.
1246 /// \param[in] treename The name of the output TTree.
1247 /// \param[in] filename The name of the output TFile.
1248 /// \param[in] columnList The list of names of the columns/branches to be written.
1249 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree.
1250 /// \return a `RDataFrame` that wraps the snapshotted dataset.
1251 ///
1252 /// Support for writing of nested branches is limited (although RDataFrame is able to read them) and dot ('.')
1253 /// characters in input column names will be replaced by underscores ('_') in the branches produced by Snapshot.
1254 /// When writing a variable size array through Snapshot, it is required that the column indicating its size is also
1255 /// written out and it appears before the array in the columnList.
1256 ///
1257 /// By default, in case of TTree or TChain inputs, Snapshot will try to write out all top-level branches. For other
1258 /// types of inputs, all columns returned by GetColumnNames() will be written out. If friend trees or chains are
1259 /// present, by default all friend top-level branches that have names that do not collide with
1260 /// names of branches in the main TTree/TChain will be written out. Since v6.24, Snapshot will also write out
1261 /// friend branches with the same names of branches in the main TTree/TChain with names of the form
1262 /// `<friendname>_<branchname>` in order to differentiate them from the branches in the main tree/chain.
1263 ///
1264 /// ### Writing to a sub-directory
1265 ///
1266 /// Snapshot supports writing the TTree in a sub-directory inside the TFile. It is sufficient to specify the path to
1267 /// the TTree as part of the TTree name, e.g. `df.Snapshot("subdir/t", "f.root")` write TTree `t` in the
1268 /// sub-directory `subdir` of file `f.root` (creating file and sub-directory as needed).
1269 ///
1270 /// \attention In multi-thread runs (i.e. when EnableImplicitMT() has been called) threads will loop over clusters of
1271 /// entries in an undefined order, so Snapshot will produce outputs in which (clusters of) entries will be shuffled with
1272 /// respect to the input TTree. Using such "shuffled" TTrees as friends of the original trees would result in wrong
1273 /// associations between entries in the main TTree and entries in the "shuffled" friend. Since v6.22, ROOT will
1274 /// error out if such a "shuffled" TTree is used in a friendship.
1275 ///
1276 /// \note In case no events are written out (e.g. because no event passes all filters) the behavior of Snapshot in
1277 /// single-thread and multi-thread runs is different: in single-thread runs, Snapshot will write out a TTree with
1278 /// the specified name and zero entries; in multi-thread runs, no TTree object will be written out to disk.
1279 ///
1280 /// \note Snapshot will refuse to process columns with names of the form `#columnname`. These are special columns
1281 /// made available by some data sources (e.g. RNTupleDS) that represent the size of column `columnname`, and are
1282 /// not meant to be written out with that name (which is not a valid C++ variable name). Instead, go through an
1283 /// Alias(): `df.Alias("nbar", "#bar").Snapshot(..., {"nbar"})`.
1284 ///
1285 /// ### Example invocations:
1286 ///
1287 /// ~~~{.cpp}
1288 /// // without specifying template parameters (column types automatically deduced)
1289 /// df.Snapshot("outputTree", "outputFile.root", {"x", "y"});
1290 ///
1291 /// // specifying template parameters ("x" is `int`, "y" is `float`)
1292 /// df.Snapshot<int, float>("outputTree", "outputFile.root", {"x", "y"});
1293 /// ~~~
1294 ///
1295 /// To book a Snapshot without triggering the event loop, one needs to set the appropriate flag in
1296 /// `RSnapshotOptions`:
1297 /// ~~~{.cpp}
1298 /// RSnapshotOptions opts;
1299 /// opts.fLazy = true;
1300 /// df.Snapshot("outputTree", "outputFile.root", {"x"}, opts);
1301 /// ~~~
1302 template <typename... ColumnTypes>
1304 Snapshot(std::string_view treename, std::string_view filename, const ColumnNames_t &columnList,
1305 const RSnapshotOptions &options = RSnapshotOptions())
1306 {
1307 return SnapshotImpl<ColumnTypes...>(treename, filename, columnList, options);
1308 }
1309
1310 ////////////////////////////////////////////////////////////////////////////
1311 /// \brief Save selected columns to disk, in a new TTree `treename` in file `filename`.
1312 /// \param[in] treename The name of the output TTree.
1313 /// \param[in] filename The name of the output TFile.
1314 /// \param[in] columnList The list of names of the columns/branches to be written.
1315 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree.
1316 /// \return a `RDataFrame` that wraps the snapshotted dataset.
1317 ///
1318 /// This function returns a `RDataFrame` built with the output tree as a source.
1319 /// The types of the columns are automatically inferred and do not need to be specified.
1320 ///
1321 /// See above for a more complete description and example usages.
1324 const RSnapshotOptions &options = RSnapshotOptions())
1325 {
1326 // like columnList but with `#var` columns removed
1328 // like columnListWithoutSizeColumns but with aliases resolved
1331 // like validCols but with missing size branches required by array branches added in the right positions
1333 fLoopManager->GetBranchNames(), GetDataSource(), std::move(colListNoAliases), std::move(colListNoPoundSizes));
1336
1337 const auto fullTreeName = treename;
1339 treename = parsedTreePath.fTreeName;
1340 const auto &dirname = parsedTreePath.fDirName;
1341
1343
1345
1346 if (options.fOutputFormat == ESnapshotOutputFormat::kRNTuple) {
1347#ifdef R__HAS_ROOT7
1348 if (RDFInternal::GetDataSourceLabel(*this) == "TTreeDS") {
1349 throw std::runtime_error("Snapshotting from TTree to RNTuple is not yet supported. The current recommended "
1350 "way to convert TTrees to RNTuple is through the RNTupleImporter.");
1351 }
1352
1353 // The data source of the RNTuple resulting from the Snapshot action does not exist yet here, so we create one
1354 // without a data source for now, and set it once the actual data source can be created (i.e., after
1355 // writing the RNTuple).
1356 auto newRDF = std::make_shared<RInterface<RLoopManager>>(std::make_shared<RLoopManager>(colListNoPoundSizes));
1357
1358 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{
1359 std::string(filename), std::string(dirname), std::string(treename), colListWithAliasesAndSizeBranches,
1360 options, newRDF->GetLoopManager(), GetDataSource(), true /* fToNTuple */});
1361
1362 // The Snapshot helper will use colListNoAliasesWithSizeBranches (with aliases resolved) as input columns, and
1363 // colListWithAliasesAndSizeBranches (still with aliases in it, passed through snapHelperArgs) as output column
1364 // names.
1368#else
1369 throw std::runtime_error(
1370 "RDataFrame: Cannot snapshot to RNTuple - this installation of ROOT has not been build with ROOT7 "
1371 "components enabled.");
1372#endif
1373 } else {
1374 if (RDFInternal::GetDataSourceLabel(*this) == "RNTupleDS" &&
1375 options.fOutputFormat == ESnapshotOutputFormat::kDefault) {
1376 Warning("Snapshot",
1377 "The default Snapshot output data format is TTree, but the input data format is RNTuple. If you "
1378 "want to Snapshot to RNTuple or suppress this warning, set the appropriate fOutputFormat option in "
1379 "RSnapshotOptions. Note that this current default behaviour might change in the future.");
1380 }
1381
1382 // We create an RLoopManager without a data source. This needs to be initialised when the output TTree dataset
1383 // has actually been created and written to TFile, i.e. at the end of the Snapshot execution.
1384 auto newRDF = std::make_shared<RInterface<RLoopManager>>(
1385 std::make_shared<RLoopManager>(colListNoAliasesWithSizeBranches));
1386
1387 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{
1388 std::string(filename), std::string(dirname), std::string(treename), colListWithAliasesAndSizeBranches,
1389 options, newRDF->GetLoopManager(), GetDataSource(), false /* fToRNTuple */});
1390
1393 colListNoAliasesWithSizeBranches.size(), options.fVector2RVec);
1394 }
1395
1396 if (!options.fLazy)
1397 *resPtr;
1398 return resPtr;
1399 }
1400
1401 // clang-format off
1402 ////////////////////////////////////////////////////////////////////////////
1403 /// \brief Save selected columns to disk, in a new TTree `treename` in file `filename`.
1404 /// \param[in] treename The name of the output TTree.
1405 /// \param[in] filename The name of the output TFile.
1406 /// \param[in] columnNameRegexp The regular expression to match the column names to be selected. The presence of a '^' and a '$' at the end of the string is implicitly assumed if they are not specified. The dialect supported is PCRE via the TPRegexp class. An empty string signals the selection of all columns.
1407 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree
1408 /// \return a `RDataFrame` that wraps the snapshotted dataset.
1409 ///
1410 /// This function returns a `RDataFrame` built with the output tree as a source.
1411 /// The types of the columns are automatically inferred and do not need to be specified.
1412 ///
1413 /// See above for a more complete description and example usages.
1415 std::string_view columnNameRegexp = "",
1416 const RSnapshotOptions &options = RSnapshotOptions())
1417 {
1419 auto *tree = fLoopManager->GetTree();
1420
1423 // Ignore R_rdf_sizeof_* columns coming from datasources: we don't want to Snapshot those
1425 std::copy_if(dsColumns.begin(), dsColumns.end(), std::back_inserter(dsColumnsWithoutSizeColumns),
1426 [](const std::string &name) { return name.size() < 13 || name.substr(0, 13) != "R_rdf_sizeof_"; });
1432
1433 // The only way we can get duplicate entries is if a column coming from a tree or data-source is Redefine'd.
1434 // RemoveDuplicates should preserve ordering of the columns: it might be meaningful.
1436
1438
1439 if (RDFInternal::GetDataSourceLabel(*this) == "RNTupleDS") {
1440 RDFInternal::RemoveRNTupleSubFields(selectedColumns);
1441 }
1442
1443 return Snapshot(treename, filename, selectedColumns, options);
1444 }
1445 // clang-format on
1446
1447 // clang-format off
1448 ////////////////////////////////////////////////////////////////////////////
1449 /// \brief Save selected columns to disk, in a new TTree `treename` in file `filename`.
1450 /// \param[in] treename The name of the output TTree.
1451 /// \param[in] filename The name of the output TFile.
1452 /// \param[in] columnList The list of names of the columns/branches to be written.
1453 /// \param[in] options RSnapshotOptions struct with extra options to pass to TFile and TTree.
1454 /// \return a `RDataFrame` that wraps the snapshotted dataset.
1455 ///
1456 /// This function returns a `RDataFrame` built with the output tree as a source.
1457 /// The types of the columns are automatically inferred and do not need to be specified.
1458 ///
1459 /// See above for a more complete description and example usages.
1461 std::initializer_list<std::string> columnList,
1462 const RSnapshotOptions &options = RSnapshotOptions())
1463 {
1465 return Snapshot(treename, filename, selectedColumns, options);
1466 }
1467 // clang-format on
1468
1469 ////////////////////////////////////////////////////////////////////////////
1470 /// \brief Save selected columns in memory.
1471 /// \tparam ColumnTypes variadic list of branch/column types.
1472 /// \param[in] columnList columns to be cached in memory.
1473 /// \return a `RDataFrame` that wraps the cached dataset.
1474 ///
1475 /// This action returns a new `RDataFrame` object, completely detached from
1476 /// the originating `RDataFrame`. The new dataframe only contains the cached
1477 /// columns and stores their content in memory for fast, zero-copy subsequent access.
1478 ///
1479 /// Use `Cache` if you know you will only need a subset of the (`Filter`ed) data that
1480 /// fits in memory and that will be accessed many times.
1481 ///
1482 /// \note Cache will refuse to process columns with names of the form `#columnname`. These are special columns
1483 /// made available by some data sources (e.g. RNTupleDS) that represent the size of column `columnname`, and are
1484 /// not meant to be written out with that name (which is not a valid C++ variable name). Instead, go through an
1485 /// Alias(): `df.Alias("nbar", "#bar").Cache<std::size_t>(..., {"nbar"})`.
1486 ///
1487 /// ### Example usage:
1488 ///
1489 /// **Types and columns specified:**
1490 /// ~~~{.cpp}
1491 /// auto cache_some_cols_df = df.Cache<double, MyClass, int>({"col0", "col1", "col2"});
1492 /// ~~~
1493 ///
1494 /// **Types inferred and columns specified (this invocation relies on jitting):**
1495 /// ~~~{.cpp}
1496 /// auto cache_some_cols_df = df.Cache({"col0", "col1", "col2"});
1497 /// ~~~
1498 ///
1499 /// **Types inferred and columns selected with a regexp (this invocation relies on jitting):**
1500 /// ~~~{.cpp}
1501 /// auto cache_all_cols_df = df.Cache(myRegexp);
1502 /// ~~~
1503 template <typename... ColumnTypes>
1505 {
1506 auto staticSeq = std::make_index_sequence<sizeof...(ColumnTypes)>();
1508 }
1509
1510 ////////////////////////////////////////////////////////////////////////////
1511 /// \brief Save selected columns in memory.
1512 /// \param[in] columnList columns to be cached in memory
1513 /// \return a `RDataFrame` that wraps the cached dataset.
1514 ///
1515 /// See the previous overloads for more information.
1517 {
1518 // Early return: if the list of columns is empty, just return an empty RDF
1519 // If we proceed, the jitted call will not compile!
1520 if (columnList.empty()) {
1521 auto nEntries = *this->Count();
1522 RInterface<RLoopManager> emptyRDF(std::make_shared<RLoopManager>(nEntries));
1523 return emptyRDF;
1524 }
1525
1526 std::stringstream cacheCall;
1528 RInterface<TTraits::TakeFirstParameter_t<decltype(upcastNode)>> upcastInterface(fProxiedPtr, *fLoopManager,
1529 fColRegister);
1530 // build a string equivalent to
1531 // "(RInterface<nodetype*>*)(this)->Cache<Ts...>(*(ColumnNames_t*)(&columnList))"
1532 RInterface<RLoopManager> resRDF(std::make_shared<ROOT::Detail::RDF::RLoopManager>(0));
1533 cacheCall << "*reinterpret_cast<ROOT::RDF::RInterface<ROOT::Detail::RDF::RLoopManager>*>("
1535 << ") = reinterpret_cast<ROOT::RDF::RInterface<ROOT::Detail::RDF::RNodeBase>*>("
1537
1539
1540 const auto validColumnNames =
1542 const auto colTypes = GetValidatedArgTypes(validColumnNames, fColRegister, fLoopManager->GetTree(),
1543 GetDataSource(), "Cache", /*vector2RVec=*/false);
1544 for (const auto &colType : colTypes)
1545 cacheCall << colType << ", ";
1546 if (!columnListWithoutSizeColumns.empty())
1547 cacheCall.seekp(-2, cacheCall.cur); // remove the last ",
1548 cacheCall << ">(*reinterpret_cast<std::vector<std::string>*>(" // vector<string> should be ColumnNames_t
1550
1551 // book the code to jit with the RLoopManager and trigger the event loop
1552 fLoopManager->ToJitExec(cacheCall.str());
1553 fLoopManager->Jit();
1554
1555 return resRDF;
1556 }
1557
1558 ////////////////////////////////////////////////////////////////////////////
1559 /// \brief Save selected columns in memory.
1560 /// \param[in] columnNameRegexp The regular expression to match the column names to be selected. The presence of a '^' and a '$' at the end of the string is implicitly assumed if they are not specified. The dialect supported is PCRE via the TPRegexp class. An empty string signals the selection of all columns.
1561 /// \return a `RDataFrame` that wraps the cached dataset.
1562 ///
1563 /// The existing columns are matched against the regular expression. If the string provided
1564 /// is empty, all columns are selected. See the previous overloads for more information.
1566 {
1568 auto *tree = fLoopManager->GetTree();
1569 const auto treeBranchNames =
1572 // Ignore R_rdf_sizeof_* columns coming from datasources: we don't want to Snapshot those
1574 std::copy_if(dsColumns.begin(), dsColumns.end(), std::back_inserter(dsColumnsWithoutSizeColumns),
1575 [](const std::string &name) { return name.size() < 13 || name.substr(0, 13) != "R_rdf_sizeof_"; });
1577 columnNames.reserve(definedColumns.size() + treeBranchNames.size() + dsColumns.size());
1582 return Cache(selectedColumns);
1583 }
1584
1585 ////////////////////////////////////////////////////////////////////////////
1586 /// \brief Save selected columns in memory.
1587 /// \param[in] columnList columns to be cached in memory.
1588 /// \return a `RDataFrame` that wraps the cached dataset.
1589 ///
1590 /// See the previous overloads for more information.
1591 RInterface<RLoopManager> Cache(std::initializer_list<std::string> columnList)
1592 {
1594 return Cache(selectedColumns);
1595 }
1596
1597 // clang-format off
1598 ////////////////////////////////////////////////////////////////////////////
1599 /// \brief Creates a node that filters entries based on range: [begin, end).
1600 /// \param[in] begin Initial entry number considered for this range.
1601 /// \param[in] end Final entry number (excluded) considered for this range. 0 means that the range goes until the end of the dataset.
1602 /// \param[in] stride Process one entry of the [begin, end) range every `stride` entries. Must be strictly greater than 0.
1603 /// \return the first node of the computation graph for which the event loop is limited to a certain range of entries.
1604 ///
1605 /// Note that in case of previous Ranges and Filters the selected range refers to the transformed dataset.
1606 /// Ranges are only available if EnableImplicitMT has _not_ been called. Multi-thread ranges are not supported.
1607 ///
1608 /// ### Example usage:
1609 /// ~~~{.cpp}
1610 /// auto d_0_30 = d.Range(0, 30); // Pick the first 30 entries
1611 /// auto d_15_end = d.Range(15, 0); // Pick all entries from 15 onwards
1612 /// auto d_15_end_3 = d.Range(15, 0, 3); // Stride: from event 15, pick an event every 3
1613 /// ~~~
1614 // clang-format on
1615 RInterface<RDFDetail::RRange<Proxied>, DS_t> Range(unsigned int begin, unsigned int end, unsigned int stride = 1)
1616 {
1617 // check invariants
1618 if (stride == 0 || (end != 0 && end < begin))
1619 throw std::runtime_error("Range: stride must be strictly greater than 0 and end must be greater than begin.");
1620 CheckIMTDisabled("Range");
1621
1622 using Range_t = RDFDetail::RRange<Proxied>;
1623 auto rangePtr = std::make_shared<Range_t>(begin, end, stride, fProxiedPtr);
1625 return newInterface;
1626 }
1627
1628 // clang-format off
1629 ////////////////////////////////////////////////////////////////////////////
1630 /// \brief Creates a node that filters entries based on range.
1631 /// \param[in] end Final entry number (excluded) considered for this range. 0 means that the range goes until the end of the dataset.
1632 /// \return a node of the computation graph for which the range is defined.
1633 ///
1634 /// See the other Range overload for a detailed description.
1635 // clang-format on
1636 RInterface<RDFDetail::RRange<Proxied>, DS_t> Range(unsigned int end) { return Range(0, end, 1); }
1637
1638 // clang-format off
1639 ////////////////////////////////////////////////////////////////////////////
1640 /// \brief Execute a user-defined function on each entry (*instant action*).
1641 /// \param[in] f Function, lambda expression, functor class or any other callable object performing user defined calculations.
1642 /// \param[in] columns Names of the columns/branches in input to the user function.
1643 ///
1644 /// The callable `f` is invoked once per entry. This is an *instant action*:
1645 /// upon invocation, an event loop as well as execution of all scheduled actions
1646 /// is triggered.
1647 /// Users are responsible for the thread-safety of this callable when executing
1648 /// with implicit multi-threading enabled (i.e. ROOT::EnableImplicitMT).
1649 ///
1650 /// ### Example usage:
1651 /// ~~~{.cpp}
1652 /// myDf.Foreach([](int i){ std::cout << i << std::endl;}, {"myIntColumn"});
1653 /// ~~~
1654 // clang-format on
1655 template <typename F>
1656 void Foreach(F f, const ColumnNames_t &columns = {})
1657 {
1658 using arg_types = typename TTraits::CallableTraits<decltype(f)>::arg_types_nodecay;
1659 using ret_type = typename TTraits::CallableTraits<decltype(f)>::ret_type;
1660 ForeachSlot(RDFInternal::AddSlotParameter<ret_type>(f, arg_types()), columns);
1661 }
1662
1663 // clang-format off
1664 ////////////////////////////////////////////////////////////////////////////
1665 /// \brief Execute a user-defined function requiring a processing slot index on each entry (*instant action*).
1666 /// \param[in] f Function, lambda expression, functor class or any other callable object performing user defined calculations.
1667 /// \param[in] columns Names of the columns/branches in input to the user function.
1668 ///
1669 /// Same as `Foreach`, but the user-defined function takes an extra
1670 /// `unsigned int` as its first parameter, the *processing slot index*.
1671 /// This *slot index* will be assigned a different value, `0` to `poolSize - 1`,
1672 /// for each thread of execution.
1673 /// This is meant as a helper in writing thread-safe `Foreach`
1674 /// actions when using `RDataFrame` after `ROOT::EnableImplicitMT()`.
1675 /// The user-defined processing callable is able to follow different
1676 /// *streams of processing* indexed by the first parameter.
1677 /// `ForeachSlot` works just as well with single-thread execution: in that
1678 /// case `slot` will always be `0`.
1679 ///
1680 /// ### Example usage:
1681 /// ~~~{.cpp}
1682 /// myDf.ForeachSlot([](unsigned int s, int i){ std::cout << "Slot " << s << ": "<< i << std::endl;}, {"myIntColumn"});
1683 /// ~~~
1684 // clang-format on
1685 template <typename F>
1686 void ForeachSlot(F f, const ColumnNames_t &columns = {})
1687 {
1689 constexpr auto nColumns = ColTypes_t::list_size;
1690
1693
1694 using Helper_t = RDFInternal::ForeachSlotHelper<F>;
1696
1697 auto action = std::make_unique<Action_t>(Helper_t(std::move(f)), validColumnNames, fProxiedPtr, fColRegister);
1698
1699 fLoopManager->Run();
1700 }
1701
1702 // clang-format off
1703 ////////////////////////////////////////////////////////////////////////////
1704 /// \brief Execute a user-defined reduce operation on the values of a column.
1705 /// \tparam F The type of the reduce callable. Automatically deduced.
1706 /// \tparam T The type of the column to apply the reduction to. Automatically deduced.
1707 /// \param[in] f A callable with signature `T(T,T)`
1708 /// \param[in] columnName The column to be reduced. If omitted, the first default column is used instead.
1709 /// \return the reduced quantity wrapped in a ROOT::RDF:RResultPtr.
1710 ///
1711 /// A reduction takes two values of a column and merges them into one (e.g.
1712 /// by summing them, taking the maximum, etc). This action performs the
1713 /// specified reduction operation on all processed column values, returning
1714 /// a single value of the same type. The callable f must satisfy the general
1715 /// requirements of a *processing function* besides having signature `T(T,T)`
1716 /// where `T` is the type of column columnName.
1717 ///
1718 /// The returned reduced value of each thread (e.g. the initial value of a sum) is initialized to a
1719 /// default-constructed T object. This is commonly expected to be the neutral/identity element for the specific
1720 /// reduction operation `f` (e.g. 0 for a sum, 1 for a product). If a default-constructed T does not satisfy this
1721 /// requirement, users should explicitly specify an initialization value for T by calling the appropriate `Reduce`
1722 /// overload.
1723 ///
1724 /// ### Example usage:
1725 /// ~~~{.cpp}
1726 /// auto sumOfIntCol = d.Reduce([](int x, int y) { return x + y; }, "intCol");
1727 /// ~~~
1728 ///
1729 /// This action is *lazy*: upon invocation of this method the calculation is
1730 /// booked but not executed. Also see RResultPtr.
1731 // clang-format on
1733 RResultPtr<T> Reduce(F f, std::string_view columnName = "")
1734 {
1735 static_assert(
1736 std::is_default_constructible<T>::value,
1737 "reduce object cannot be default-constructed. Please provide an initialisation value (redIdentity)");
1738 return Reduce(std::move(f), columnName, T());
1739 }
1740
1741 ////////////////////////////////////////////////////////////////////////////
1742 /// \brief Execute a user-defined reduce operation on the values of a column.
1743 /// \tparam F The type of the reduce callable. Automatically deduced.
1744 /// \tparam T The type of the column to apply the reduction to. Automatically deduced.
1745 /// \param[in] f A callable with signature `T(T,T)`
1746 /// \param[in] columnName The column to be reduced. If omitted, the first default column is used instead.
1747 /// \param[in] redIdentity The reduced object of each thread is initialized to this value.
1748 /// \return the reduced quantity wrapped in a RResultPtr.
1749 ///
1750 /// ### Example usage:
1751 /// ~~~{.cpp}
1752 /// auto sumOfIntColWithOffset = d.Reduce([](int x, int y) { return x + y; }, "intCol", 42);
1753 /// ~~~
1754 /// See the description of the first Reduce overload for more information.
1756 RResultPtr<T> Reduce(F f, std::string_view columnName, const T &redIdentity)
1757 {
1758 return Aggregate(f, f, columnName, redIdentity);
1759 }
1760
1761 ////////////////////////////////////////////////////////////////////////////
1762 /// \brief Return the number of entries processed (*lazy action*).
1763 /// \return the number of entries wrapped in a RResultPtr.
1764 ///
1765 /// Useful e.g. for counting the number of entries passing a certain filter (see also `Report`).
1766 /// This action is *lazy*: upon invocation of this method the calculation is
1767 /// booked but not executed. Also see RResultPtr.
1768 ///
1769 /// ### Example usage:
1770 /// ~~~{.cpp}
1771 /// auto nEntriesAfterCuts = myFilteredDf.Count();
1772 /// ~~~
1773 ///
1775 {
1776 const auto nSlots = fLoopManager->GetNSlots();
1777 auto cSPtr = std::make_shared<ULong64_t>(0);
1778 using Helper_t = RDFInternal::CountHelper;
1780 auto action = std::make_unique<Action_t>(Helper_t(cSPtr, nSlots), ColumnNames_t({}), fProxiedPtr,
1782 return MakeResultPtr(cSPtr, *fLoopManager, std::move(action));
1783 }
1784
1785 ////////////////////////////////////////////////////////////////////////////
1786 /// \brief Return a collection of values of a column (*lazy action*, returns a std::vector by default).
1787 /// \tparam T The type of the column.
1788 /// \tparam COLL The type of collection used to store the values.
1789 /// \param[in] column The name of the column to collect the values of.
1790 /// \return the content of the selected column wrapped in a RResultPtr.
1791 ///
1792 /// The collection type to be specified for C-style array columns is `RVec<T>`:
1793 /// in this case the returned collection is a `std::vector<RVec<T>>`.
1794 /// ### Example usage:
1795 /// ~~~{.cpp}
1796 /// // In this case intCol is a std::vector<int>
1797 /// auto intCol = rdf.Take<int>("integerColumn");
1798 /// // Same content as above but in this case taken as a RVec<int>
1799 /// auto intColAsRVec = rdf.Take<int, RVec<int>>("integerColumn");
1800 /// // In this case intCol is a std::vector<RVec<int>>, a collection of collections
1801 /// auto cArrayIntCol = rdf.Take<RVec<int>>("cArrayInt");
1802 /// ~~~
1803 /// This action is *lazy*: upon invocation of this method the calculation is
1804 /// booked but not executed. Also see RResultPtr.
1805 template <typename T, typename COLL = std::vector<T>>
1806 RResultPtr<COLL> Take(std::string_view column = "")
1807 {
1808 const auto columns = column.empty() ? ColumnNames_t() : ColumnNames_t({std::string(column)});
1809
1812
1813 using Helper_t = RDFInternal::TakeHelper<T, T, COLL>;
1815 auto valuesPtr = std::make_shared<COLL>();
1816 const auto nSlots = fLoopManager->GetNSlots();
1817
1818 auto action =
1819 std::make_unique<Action_t>(Helper_t(valuesPtr, nSlots), validColumnNames, fProxiedPtr, fColRegister);
1820 return MakeResultPtr(valuesPtr, *fLoopManager, std::move(action));
1821 }
1822
1823 ////////////////////////////////////////////////////////////////////////////
1824 /// \brief Fill and return a one-dimensional histogram with the values of a column (*lazy action*).
1825 /// \tparam V The type of the column used to fill the histogram.
1826 /// \param[in] model The returned histogram will be constructed using this as a model.
1827 /// \param[in] vName The name of the column that will fill the histogram.
1828 /// \return the monodimensional histogram wrapped in a RResultPtr.
1829 ///
1830 /// Columns can be of a container type (e.g. `std::vector<double>`), in which case the histogram
1831 /// is filled with each one of the elements of the container. In case multiple columns of container type
1832 /// are provided (e.g. values and weights) they must have the same length for each one of the events (but
1833 /// possibly different lengths between events).
1834 /// This action is *lazy*: upon invocation of this method the calculation is
1835 /// booked but not executed. Also see RResultPtr.
1836 ///
1837 /// ### Example usage:
1838 /// ~~~{.cpp}
1839 /// // Deduce column type (this invocation needs jitting internally)
1840 /// auto myHist1 = myDf.Histo1D({"histName", "histTitle", 64u, 0., 128.}, "myColumn");
1841 /// // Explicit column type
1842 /// auto myHist2 = myDf.Histo1D<float>({"histName", "histTitle", 64u, 0., 128.}, "myColumn");
1843 /// ~~~
1844 ///
1845 /// \note Differently from other ROOT interfaces, the returned histogram is not associated to gDirectory
1846 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
1847 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
1848 template <typename V = RDFDetail::RInferredType>
1849 RResultPtr<::TH1D> Histo1D(const TH1DModel &model = {"", "", 128u, 0., 0.}, std::string_view vName = "")
1850 {
1851 const auto userColumns = vName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(vName)});
1852
1854
1855 std::shared_ptr<::TH1D> h(nullptr);
1856 {
1857 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
1858 h = model.GetHistogram();
1859 h->SetDirectory(nullptr);
1860 }
1861
1862 if (h->GetXaxis()->GetXmax() == h->GetXaxis()->GetXmin())
1863 RDFInternal::HistoUtils<::TH1D>::SetCanExtendAllAxes(*h);
1865 }
1866
1867 ////////////////////////////////////////////////////////////////////////////
1868 /// \brief Fill and return a one-dimensional histogram with the values of a column (*lazy action*).
1869 /// \tparam V The type of the column used to fill the histogram.
1870 /// \param[in] vName The name of the column that will fill the histogram.
1871 /// \return the monodimensional histogram wrapped in a RResultPtr.
1872 ///
1873 /// This overload uses a default model histogram TH1D(name, title, 128u, 0., 0.).
1874 /// The "name" and "title" strings are built starting from the input column name.
1875 /// See the description of the first Histo1D() overload for more details.
1876 ///
1877 /// ### Example usage:
1878 /// ~~~{.cpp}
1879 /// // Deduce column type (this invocation needs jitting internally)
1880 /// auto myHist1 = myDf.Histo1D("myColumn");
1881 /// // Explicit column type
1882 /// auto myHist2 = myDf.Histo1D<float>("myColumn");
1883 /// ~~~
1884 template <typename V = RDFDetail::RInferredType>
1886 {
1887 const auto h_name = std::string(vName);
1888 const auto h_title = h_name + ";" + h_name + ";count";
1889 return Histo1D<V>({h_name.c_str(), h_title.c_str(), 128u, 0., 0.}, vName);
1890 }
1891
1892 ////////////////////////////////////////////////////////////////////////////
1893 /// \brief Fill and return a one-dimensional histogram with the weighted values of a column (*lazy action*).
1894 /// \tparam V The type of the column used to fill the histogram.
1895 /// \tparam W The type of the column used as weights.
1896 /// \param[in] model The returned histogram will be constructed using this as a model.
1897 /// \param[in] vName The name of the column that will fill the histogram.
1898 /// \param[in] wName The name of the column that will provide the weights.
1899 /// \return the monodimensional histogram wrapped in a RResultPtr.
1900 ///
1901 /// See the description of the first Histo1D() overload for more details.
1902 ///
1903 /// ### Example usage:
1904 /// ~~~{.cpp}
1905 /// // Deduce column type (this invocation needs jitting internally)
1906 /// auto myHist1 = myDf.Histo1D({"histName", "histTitle", 64u, 0., 128.}, "myValue", "myweight");
1907 /// // Explicit column type
1908 /// auto myHist2 = myDf.Histo1D<float, int>({"histName", "histTitle", 64u, 0., 128.}, "myValue", "myweight");
1909 /// ~~~
1910 template <typename V = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
1911 RResultPtr<::TH1D> Histo1D(const TH1DModel &model, std::string_view vName, std::string_view wName)
1912 {
1913 const std::vector<std::string_view> columnViews = {vName, wName};
1915 ? ColumnNames_t()
1917 std::shared_ptr<::TH1D> h(nullptr);
1918 {
1919 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
1920 h = model.GetHistogram();
1921 }
1923 }
1924
1925 ////////////////////////////////////////////////////////////////////////////
1926 /// \brief Fill and return a one-dimensional histogram with the weighted values of a column (*lazy action*).
1927 /// \tparam V The type of the column used to fill the histogram.
1928 /// \tparam W The type of the column used as weights.
1929 /// \param[in] vName The name of the column that will fill the histogram.
1930 /// \param[in] wName The name of the column that will provide the weights.
1931 /// \return the monodimensional histogram wrapped in a RResultPtr.
1932 ///
1933 /// This overload uses a default model histogram TH1D(name, title, 128u, 0., 0.).
1934 /// The "name" and "title" strings are built starting from the input column names.
1935 /// See the description of the first Histo1D() overload for more details.
1936 ///
1937 /// ### Example usage:
1938 /// ~~~{.cpp}
1939 /// // Deduce column types (this invocation needs jitting internally)
1940 /// auto myHist1 = myDf.Histo1D("myValue", "myweight");
1941 /// // Explicit column types
1942 /// auto myHist2 = myDf.Histo1D<float, int>("myValue", "myweight");
1943 /// ~~~
1944 template <typename V = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
1945 RResultPtr<::TH1D> Histo1D(std::string_view vName, std::string_view wName)
1946 {
1947 // We build name and title based on the value and weight column names
1948 std::string str_vName{vName};
1949 std::string str_wName{wName};
1950 const auto h_name = str_vName + "_weighted_" + str_wName;
1951 const auto h_title = str_vName + ", weights: " + str_wName + ";" + str_vName + ";count * " + str_wName;
1952 return Histo1D<V, W>({h_name.c_str(), h_title.c_str(), 128u, 0., 0.}, vName, wName);
1953 }
1954
1955 ////////////////////////////////////////////////////////////////////////////
1956 /// \brief Fill and return a one-dimensional histogram with the weighted values of a column (*lazy action*).
1957 /// \tparam V The type of the column used to fill the histogram.
1958 /// \tparam W The type of the column used as weights.
1959 /// \param[in] model The returned histogram will be constructed using this as a model.
1960 /// \return the monodimensional histogram wrapped in a RResultPtr.
1961 ///
1962 /// This overload will use the first two default columns as column names.
1963 /// See the description of the first Histo1D() overload for more details.
1964 template <typename V, typename W>
1965 RResultPtr<::TH1D> Histo1D(const TH1DModel &model = {"", "", 128u, 0., 0.})
1966 {
1967 return Histo1D<V, W>(model, "", "");
1968 }
1969
1970 ////////////////////////////////////////////////////////////////////////////
1971 /// \brief Fill and return a two-dimensional histogram (*lazy action*).
1972 /// \tparam V1 The type of the column used to fill the x axis of the histogram.
1973 /// \tparam V2 The type of the column used to fill the y axis of the histogram.
1974 /// \param[in] model The returned histogram will be constructed using this as a model.
1975 /// \param[in] v1Name The name of the column that will fill the x axis.
1976 /// \param[in] v2Name The name of the column that will fill the y axis.
1977 /// \return the bidimensional histogram wrapped in a RResultPtr.
1978 ///
1979 /// Columns can be of a container type (e.g. std::vector<double>), in which case the histogram
1980 /// is filled with each one of the elements of the container. In case multiple columns of container type
1981 /// are provided (e.g. values and weights) they must have the same length for each one of the events (but
1982 /// possibly different lengths between events).
1983 /// This action is *lazy*: upon invocation of this method the calculation is
1984 /// booked but not executed. Also see RResultPtr.
1985 ///
1986 /// ### Example usage:
1987 /// ~~~{.cpp}
1988 /// // Deduce column types (this invocation needs jitting internally)
1989 /// auto myHist1 = myDf.Histo2D({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY");
1990 /// // Explicit column types
1991 /// auto myHist2 = myDf.Histo2D<float, float>({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY");
1992 /// ~~~
1993 ///
1994 ///
1995 /// \note Differently from other ROOT interfaces, the returned histogram is not associated to gDirectory
1996 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
1997 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
1998 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType>
1999 RResultPtr<::TH2D> Histo2D(const TH2DModel &model, std::string_view v1Name = "", std::string_view v2Name = "")
2000 {
2001 std::shared_ptr<::TH2D> h(nullptr);
2002 {
2003 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2004 h = model.GetHistogram();
2005 }
2006 if (!RDFInternal::HistoUtils<::TH2D>::HasAxisLimits(*h)) {
2007 throw std::runtime_error("2D histograms with no axes limits are not supported yet.");
2008 }
2009 const std::vector<std::string_view> columnViews = {v1Name, v2Name};
2011 ? ColumnNames_t()
2014 }
2015
2016 ////////////////////////////////////////////////////////////////////////////
2017 /// \brief Fill and return a weighted two-dimensional histogram (*lazy action*).
2018 /// \tparam V1 The type of the column used to fill the x axis of the histogram.
2019 /// \tparam V2 The type of the column used to fill the y axis of the histogram.
2020 /// \tparam W The type of the column used for the weights of the histogram.
2021 /// \param[in] model The returned histogram will be constructed using this as a model.
2022 /// \param[in] v1Name The name of the column that will fill the x axis.
2023 /// \param[in] v2Name The name of the column that will fill the y axis.
2024 /// \param[in] wName The name of the column that will provide the weights.
2025 /// \return the bidimensional histogram wrapped in a RResultPtr.
2026 ///
2027 /// This action is *lazy*: upon invocation of this method the calculation is
2028 /// booked but not executed. Also see RResultPtr.
2029 ///
2030 /// ### Example usage:
2031 /// ~~~{.cpp}
2032 /// // Deduce column types (this invocation needs jitting internally)
2033 /// auto myHist1 = myDf.Histo2D({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY", "myWeight");
2034 /// // Explicit column types
2035 /// auto myHist2 = myDf.Histo2D<float, float, double>({"histName", "histTitle", 64u, 0., 128., 32u, -4., 4.}, "myValueX", "myValueY", "myWeight");
2036 /// ~~~
2037 ///
2038 /// See the documentation of the first Histo2D() overload for more details.
2039 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2040 typename W = RDFDetail::RInferredType>
2042 Histo2D(const TH2DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName)
2043 {
2044 std::shared_ptr<::TH2D> h(nullptr);
2045 {
2046 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2047 h = model.GetHistogram();
2048 }
2049 if (!RDFInternal::HistoUtils<::TH2D>::HasAxisLimits(*h)) {
2050 throw std::runtime_error("2D histograms with no axes limits are not supported yet.");
2051 }
2052 const std::vector<std::string_view> columnViews = {v1Name, v2Name, wName};
2054 ? ColumnNames_t()
2057 }
2058
2059 template <typename V1, typename V2, typename W>
2061 {
2062 return Histo2D<V1, V2, W>(model, "", "", "");
2063 }
2064
2065 ////////////////////////////////////////////////////////////////////////////
2066 /// \brief Fill and return a three-dimensional histogram (*lazy action*).
2067 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present.
2068 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present.
2069 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present.
2070 /// \param[in] model The returned histogram will be constructed using this as a model.
2071 /// \param[in] v1Name The name of the column that will fill the x axis.
2072 /// \param[in] v2Name The name of the column that will fill the y axis.
2073 /// \param[in] v3Name The name of the column that will fill the z axis.
2074 /// \return the tridimensional histogram wrapped in a RResultPtr.
2075 ///
2076 /// This action is *lazy*: upon invocation of this method the calculation is
2077 /// booked but not executed. Also see RResultPtr.
2078 ///
2079 /// ### Example usage:
2080 /// ~~~{.cpp}
2081 /// // Deduce column types (this invocation needs jitting internally)
2082 /// auto myHist1 = myDf.Histo3D({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.},
2083 /// "myValueX", "myValueY", "myValueZ");
2084 /// // Explicit column types
2085 /// auto myHist2 = myDf.Histo3D<double, double, float>({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.},
2086 /// "myValueX", "myValueY", "myValueZ");
2087 /// ~~~
2088 ///
2089 /// \note Differently from other ROOT interfaces, the returned histogram is not associated to gDirectory
2090 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2091 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2092 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2093 typename V3 = RDFDetail::RInferredType>
2094 RResultPtr<::TH3D> Histo3D(const TH3DModel &model, std::string_view v1Name = "", std::string_view v2Name = "",
2095 std::string_view v3Name = "")
2096 {
2097 std::shared_ptr<::TH3D> h(nullptr);
2098 {
2099 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2100 h = model.GetHistogram();
2101 }
2102 if (!RDFInternal::HistoUtils<::TH3D>::HasAxisLimits(*h)) {
2103 throw std::runtime_error("3D histograms with no axes limits are not supported yet.");
2104 }
2105 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name};
2107 ? ColumnNames_t()
2110 }
2111
2112 ////////////////////////////////////////////////////////////////////////////
2113 /// \brief Fill and return a three-dimensional histogram (*lazy action*).
2114 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present.
2115 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present.
2116 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present.
2117 /// \tparam W The type of the column used for the weights of the histogram. Inferred if not present.
2118 /// \param[in] model The returned histogram will be constructed using this as a model.
2119 /// \param[in] v1Name The name of the column that will fill the x axis.
2120 /// \param[in] v2Name The name of the column that will fill the y axis.
2121 /// \param[in] v3Name The name of the column that will fill the z axis.
2122 /// \param[in] wName The name of the column that will provide the weights.
2123 /// \return the tridimensional histogram wrapped in a RResultPtr.
2124 ///
2125 /// This action is *lazy*: upon invocation of this method the calculation is
2126 /// booked but not executed. Also see RResultPtr.
2127 ///
2128 /// ### Example usage:
2129 /// ~~~{.cpp}
2130 /// // Deduce column types (this invocation needs jitting internally)
2131 /// auto myHist1 = myDf.Histo3D({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.},
2132 /// "myValueX", "myValueY", "myValueZ", "myWeight");
2133 /// // Explicit column types
2134 /// using d_t = double;
2135 /// auto myHist2 = myDf.Histo3D<d_t, d_t, float, d_t>({"name", "title", 64u, 0., 128., 32u, -4., 4., 8u, -2., 2.},
2136 /// "myValueX", "myValueY", "myValueZ", "myWeight");
2137 /// ~~~
2138 ///
2139 ///
2140 /// See the documentation of the first Histo2D() overload for more details.
2141 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2142 typename V3 = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
2143 RResultPtr<::TH3D> Histo3D(const TH3DModel &model, std::string_view v1Name, std::string_view v2Name,
2144 std::string_view v3Name, std::string_view wName)
2145 {
2146 std::shared_ptr<::TH3D> h(nullptr);
2147 {
2148 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2149 h = model.GetHistogram();
2150 }
2151 if (!RDFInternal::HistoUtils<::TH3D>::HasAxisLimits(*h)) {
2152 throw std::runtime_error("3D histograms with no axes limits are not supported yet.");
2153 }
2154 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name, wName};
2156 ? ColumnNames_t()
2159 }
2160
2161 template <typename V1, typename V2, typename V3, typename W>
2163 {
2164 return Histo3D<V1, V2, V3, W>(model, "", "", "", "");
2165 }
2166
2167 ////////////////////////////////////////////////////////////////////////////
2168 /// \brief Fill and return an N-dimensional histogram (*lazy action*).
2169 /// \tparam FirstColumn The first type of the column the values of which are used to fill the object. Inferred if not
2170 /// present.
2171 /// \tparam OtherColumns A list of the other types of the columns the values of which are used to fill the
2172 /// object.
2173 /// \param[in] model The returned histogram will be constructed using this as a model.
2174 /// \param[in] columnList
2175 /// A list containing the names of the columns that will be passed when calling `Fill`.
2176 /// (N columns for unweighted filling, or N+1 columns for weighted filling)
2177 /// \return the N-dimensional histogram wrapped in a RResultPtr.
2178 ///
2179 /// This action is *lazy*: upon invocation of this method the calculation is
2180 /// booked but not executed. See RResultPtr documentation.
2181 ///
2182 /// ### Example usage:
2183 /// ~~~{.cpp}
2184 /// auto myFilledObj = myDf.HistoND<float, float, float, float>({"name","title", 4,
2185 /// {40,40,40,40}, {20.,20.,20.,20.}, {60.,60.,60.,60.}},
2186 /// {"col0", "col1", "col2", "col3"});
2187 /// ~~~
2188 ///
2189 template <typename FirstColumn, typename... OtherColumns> // need FirstColumn to disambiguate overloads
2191 {
2192 std::shared_ptr<::THnD> h(nullptr);
2193 {
2194 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2195 h = model.GetHistogram();
2196
2197 if (int(columnList.size()) == (h->GetNdimensions() + 1)) {
2198 h->Sumw2();
2199 } else if (int(columnList.size()) != h->GetNdimensions()) {
2200 throw std::runtime_error("Wrong number of columns for the specified number of histogram axes.");
2201 }
2202 }
2203 return CreateAction<RDFInternal::ActionTags::HistoND, FirstColumn, OtherColumns...>(columnList, h, h,
2204 fProxiedPtr);
2205 }
2206
2207 ////////////////////////////////////////////////////////////////////////////
2208 /// \brief Fill and return an N-dimensional histogram (*lazy action*).
2209 /// \param[in] model The returned histogram will be constructed using this as a model.
2210 /// \param[in] columnList A list containing the names of the columns that will be passed when calling `Fill`
2211 /// (N columns for unweighted filling, or N+1 columns for weighted filling)
2212 /// \return the N-dimensional histogram wrapped in a RResultPtr.
2213 ///
2214 /// This action is *lazy*: upon invocation of this method the calculation is
2215 /// booked but not executed. Also see RResultPtr.
2216 ///
2217 /// ### Example usage:
2218 /// ~~~{.cpp}
2219 /// auto myFilledObj = myDf.HistoND({"name","title", 4,
2220 /// {40,40,40,40}, {20.,20.,20.,20.}, {60.,60.,60.,60.}},
2221 /// {"col0", "col1", "col2", "col3"});
2222 /// ~~~
2223 ///
2225 {
2226 std::shared_ptr<::THnD> h(nullptr);
2227 {
2228 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2229 h = model.GetHistogram();
2230
2231 if (int(columnList.size()) == (h->GetNdimensions() + 1)) {
2232 h->Sumw2();
2233 } else if (int(columnList.size()) != h->GetNdimensions()) {
2234 throw std::runtime_error("Wrong number of columns for the specified number of histogram axes.");
2235 }
2236 }
2238 columnList.size());
2239 }
2240
2241 ////////////////////////////////////////////////////////////////////////////
2242 /// \brief Fill and return a TGraph object (*lazy action*).
2243 /// \tparam X The type of the column used to fill the x axis.
2244 /// \tparam Y The type of the column used to fill the y axis.
2245 /// \param[in] x The name of the column that will fill the x axis.
2246 /// \param[in] y The name of the column that will fill the y axis.
2247 /// \return the TGraph wrapped in a RResultPtr.
2248 ///
2249 /// Columns can be of a container type (e.g. std::vector<double>), in which case the TGraph
2250 /// is filled with each one of the elements of the container.
2251 /// If Multithreading is enabled, the order in which points are inserted is undefined.
2252 /// If the Graph has to be drawn, it is suggested to the user to sort it on the x before printing.
2253 /// A name and a title to the TGraph is given based on the input column names.
2254 ///
2255 /// This action is *lazy*: upon invocation of this method the calculation is
2256 /// booked but not executed. Also see RResultPtr.
2257 ///
2258 /// ### Example usage:
2259 /// ~~~{.cpp}
2260 /// // Deduce column types (this invocation needs jitting internally)
2261 /// auto myGraph1 = myDf.Graph("xValues", "yValues");
2262 /// // Explicit column types
2263 /// auto myGraph2 = myDf.Graph<int, float>("xValues", "yValues");
2264 /// ~~~
2265 ///
2266 /// \note Differently from other ROOT interfaces, the returned TGraph is not associated to gDirectory
2267 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2268 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2269 template <typename X = RDFDetail::RInferredType, typename Y = RDFDetail::RInferredType>
2270 RResultPtr<::TGraph> Graph(std::string_view x = "", std::string_view y = "")
2271 {
2272 auto graph = std::make_shared<::TGraph>();
2273 const std::vector<std::string_view> columnViews = {x, y};
2275 ? ColumnNames_t()
2277
2279
2280 // We build a default name and title based on the input columns
2281 const auto g_name = validatedColumns[1] + "_vs_" + validatedColumns[0];
2282 const auto g_title = validatedColumns[1] + " vs " + validatedColumns[0];
2283 graph->SetNameTitle(g_name.c_str(), g_title.c_str());
2284 graph->GetXaxis()->SetTitle(validatedColumns[0].c_str());
2285 graph->GetYaxis()->SetTitle(validatedColumns[1].c_str());
2286
2288 }
2289
2290 ////////////////////////////////////////////////////////////////////////////
2291 /// \brief Fill and return a TGraphAsymmErrors object (*lazy action*).
2292 /// \param[in] x The name of the column that will fill the x axis.
2293 /// \param[in] y The name of the column that will fill the y axis.
2294 /// \param[in] exl The name of the column of X low errors
2295 /// \param[in] exh The name of the column of X high errors
2296 /// \param[in] eyl The name of the column of Y low errors
2297 /// \param[in] eyh The name of the column of Y high errors
2298 /// \return the TGraphAsymmErrors wrapped in a RResultPtr.
2299 ///
2300 /// Columns can be of a container type (e.g. std::vector<double>), in which case the graph
2301 /// is filled with each one of the elements of the container.
2302 /// If Multithreading is enabled, the order in which points are inserted is undefined.
2303 ///
2304 /// This action is *lazy*: upon invocation of this method the calculation is
2305 /// booked but not executed. Also see RResultPtr.
2306 ///
2307 /// ### Example usage:
2308 /// ~~~{.cpp}
2309 /// // Deduce column types (this invocation needs jitting internally)
2310 /// auto myGAE1 = myDf.GraphAsymmErrors("xValues", "yValues", "exl", "exh", "eyl", "eyh");
2311 /// // Explicit column types
2312 /// using f = float
2313 /// auto myGAE2 = myDf.GraphAsymmErrors<f, f, f, f, f, f>("xValues", "yValues", "exl", "exh", "eyl", "eyh");
2314 /// ~~~
2315 ///
2316 /// `GraphAssymErrors` should also be used for the cases in which values associated only with
2317 /// one of the axes have associated errors. For example, only `ey` exist and `ex` are equal to zero.
2318 /// In such cases, user should do the following:
2319 /// ~~~{.cpp}
2320 /// // Create a column of zeros in RDataFrame
2321 /// auto rdf_withzeros = rdf.Define("zero", "0");
2322 /// // or alternatively:
2323 /// auto rdf_withzeros = rdf.Define("zero", []() -> double { return 0.;});
2324 /// // Create the graph with y errors only
2325 /// auto rdf_errorsOnYOnly = rdf_withzeros.GraphAsymmErrors("xValues", "yValues", "zero", "zero", "eyl", "eyh");
2326 /// ~~~
2327 ///
2328 /// \note Differently from other ROOT interfaces, the returned TGraphAsymmErrors is not associated to gDirectory
2329 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2330 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2331 template <typename X = RDFDetail::RInferredType, typename Y = RDFDetail::RInferredType,
2335 GraphAsymmErrors(std::string_view x = "", std::string_view y = "", std::string_view exl = "",
2336 std::string_view exh = "", std::string_view eyl = "", std::string_view eyh = "")
2337 {
2338 auto graph = std::make_shared<::TGraphAsymmErrors>();
2339 const std::vector<std::string_view> columnViews = {x, y, exl, exh, eyl, eyh};
2341 ? ColumnNames_t()
2343
2345
2346 // We build a default name and title based on the input columns
2347 const auto g_name = validatedColumns[1] + "_vs_" + validatedColumns[0];
2348 const auto g_title = validatedColumns[1] + " vs " + validatedColumns[0];
2349 graph->SetNameTitle(g_name.c_str(), g_title.c_str());
2350 graph->GetXaxis()->SetTitle(validatedColumns[0].c_str());
2351 graph->GetYaxis()->SetTitle(validatedColumns[1].c_str());
2352
2354 graph, fProxiedPtr);
2355 }
2356
2357 ////////////////////////////////////////////////////////////////////////////
2358 /// \brief Fill and return a one-dimensional profile (*lazy action*).
2359 /// \tparam V1 The type of the column the values of which are used to fill the profile. Inferred if not present.
2360 /// \tparam V2 The type of the column the values of which are used to fill the profile. Inferred if not present.
2361 /// \param[in] model The model to be considered to build the new return value.
2362 /// \param[in] v1Name The name of the column that will fill the x axis.
2363 /// \param[in] v2Name The name of the column that will fill the y axis.
2364 /// \return the monodimensional profile wrapped in a RResultPtr.
2365 ///
2366 /// This action is *lazy*: upon invocation of this method the calculation is
2367 /// booked but not executed. Also see RResultPtr.
2368 ///
2369 /// ### Example usage:
2370 /// ~~~{.cpp}
2371 /// // Deduce column types (this invocation needs jitting internally)
2372 /// auto myProf1 = myDf.Profile1D({"profName", "profTitle", 64u, -4., 4.}, "xValues", "yValues");
2373 /// // Explicit column types
2374 /// auto myProf2 = myDf.Graph<int, float>({"profName", "profTitle", 64u, -4., 4.}, "xValues", "yValues");
2375 /// ~~~
2376 ///
2377 /// \note Differently from other ROOT interfaces, the returned profile is not associated to gDirectory
2378 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2379 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2380 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType>
2382 Profile1D(const TProfile1DModel &model, std::string_view v1Name = "", std::string_view v2Name = "")
2383 {
2384 std::shared_ptr<::TProfile> h(nullptr);
2385 {
2386 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2387 h = model.GetProfile();
2388 }
2389
2390 if (!RDFInternal::HistoUtils<::TProfile>::HasAxisLimits(*h)) {
2391 throw std::runtime_error("Profiles with no axes limits are not supported yet.");
2392 }
2393 const std::vector<std::string_view> columnViews = {v1Name, v2Name};
2395 ? ColumnNames_t()
2398 }
2399
2400 ////////////////////////////////////////////////////////////////////////////
2401 /// \brief Fill and return a one-dimensional profile (*lazy action*).
2402 /// \tparam V1 The type of the column the values of which are used to fill the profile. Inferred if not present.
2403 /// \tparam V2 The type of the column the values of which are used to fill the profile. Inferred if not present.
2404 /// \tparam W The type of the column the weights of which are used to fill the profile. Inferred if not present.
2405 /// \param[in] model The model to be considered to build the new return value.
2406 /// \param[in] v1Name The name of the column that will fill the x axis.
2407 /// \param[in] v2Name The name of the column that will fill the y axis.
2408 /// \param[in] wName The name of the column that will provide the weights.
2409 /// \return the monodimensional profile wrapped in a RResultPtr.
2410 ///
2411 /// This action is *lazy*: upon invocation of this method the calculation is
2412 /// booked but not executed. Also see RResultPtr.
2413 ///
2414 /// ### Example usage:
2415 /// ~~~{.cpp}
2416 /// // Deduce column types (this invocation needs jitting internally)
2417 /// auto myProf1 = myDf.Profile1D({"profName", "profTitle", 64u, -4., 4.}, "xValues", "yValues", "weight");
2418 /// // Explicit column types
2419 /// auto myProf2 = myDf.Profile1D<int, float, double>({"profName", "profTitle", 64u, -4., 4.},
2420 /// "xValues", "yValues", "weight");
2421 /// ~~~
2422 ///
2423 /// See the first Profile1D() overload for more details.
2424 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2425 typename W = RDFDetail::RInferredType>
2427 Profile1D(const TProfile1DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName)
2428 {
2429 std::shared_ptr<::TProfile> h(nullptr);
2430 {
2431 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2432 h = model.GetProfile();
2433 }
2434
2435 if (!RDFInternal::HistoUtils<::TProfile>::HasAxisLimits(*h)) {
2436 throw std::runtime_error("Profile histograms with no axes limits are not supported yet.");
2437 }
2438 const std::vector<std::string_view> columnViews = {v1Name, v2Name, wName};
2440 ? ColumnNames_t()
2443 }
2444
2445 ////////////////////////////////////////////////////////////////////////////
2446 /// \brief Fill and return a one-dimensional profile (*lazy action*).
2447 /// See the first Profile1D() overload for more details.
2448 template <typename V1, typename V2, typename W>
2450 {
2451 return Profile1D<V1, V2, W>(model, "", "", "");
2452 }
2453
2454 ////////////////////////////////////////////////////////////////////////////
2455 /// \brief Fill and return a two-dimensional profile (*lazy action*).
2456 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present.
2457 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present.
2458 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present.
2459 /// \param[in] model The returned profile will be constructed using this as a model.
2460 /// \param[in] v1Name The name of the column that will fill the x axis.
2461 /// \param[in] v2Name The name of the column that will fill the y axis.
2462 /// \param[in] v3Name The name of the column that will fill the z axis.
2463 /// \return the bidimensional profile wrapped in a RResultPtr.
2464 ///
2465 /// This action is *lazy*: upon invocation of this method the calculation is
2466 /// booked but not executed. Also see RResultPtr.
2467 ///
2468 /// ### Example usage:
2469 /// ~~~{.cpp}
2470 /// // Deduce column types (this invocation needs jitting internally)
2471 /// auto myProf1 = myDf.Profile2D({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20},
2472 /// "xValues", "yValues", "zValues");
2473 /// // Explicit column types
2474 /// auto myProf2 = myDf.Profile2D<int, float, double>({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20},
2475 /// "xValues", "yValues", "zValues");
2476 /// ~~~
2477 ///
2478 /// \note Differently from other ROOT interfaces, the returned profile is not associated to gDirectory
2479 /// and the caller is responsible for its lifetime (in particular, a typical source of confusion is that
2480 /// if result histograms go out of scope before the end of the program, ROOT might display a blank canvas).
2481 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2482 typename V3 = RDFDetail::RInferredType>
2483 RResultPtr<::TProfile2D> Profile2D(const TProfile2DModel &model, std::string_view v1Name = "",
2484 std::string_view v2Name = "", std::string_view v3Name = "")
2485 {
2486 std::shared_ptr<::TProfile2D> h(nullptr);
2487 {
2488 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2489 h = model.GetProfile();
2490 }
2491
2492 if (!RDFInternal::HistoUtils<::TProfile2D>::HasAxisLimits(*h)) {
2493 throw std::runtime_error("2D profiles with no axes limits are not supported yet.");
2494 }
2495 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name};
2497 ? ColumnNames_t()
2500 }
2501
2502 ////////////////////////////////////////////////////////////////////////////
2503 /// \brief Fill and return a two-dimensional profile (*lazy action*).
2504 /// \tparam V1 The type of the column used to fill the x axis of the histogram. Inferred if not present.
2505 /// \tparam V2 The type of the column used to fill the y axis of the histogram. Inferred if not present.
2506 /// \tparam V3 The type of the column used to fill the z axis of the histogram. Inferred if not present.
2507 /// \tparam W The type of the column used for the weights of the histogram. Inferred if not present.
2508 /// \param[in] model The returned histogram will be constructed using this as a model.
2509 /// \param[in] v1Name The name of the column that will fill the x axis.
2510 /// \param[in] v2Name The name of the column that will fill the y axis.
2511 /// \param[in] v3Name The name of the column that will fill the z axis.
2512 /// \param[in] wName The name of the column that will provide the weights.
2513 /// \return the bidimensional profile wrapped in a RResultPtr.
2514 ///
2515 /// This action is *lazy*: upon invocation of this method the calculation is
2516 /// booked but not executed. Also see RResultPtr.
2517 ///
2518 /// ### Example usage:
2519 /// ~~~{.cpp}
2520 /// // Deduce column types (this invocation needs jitting internally)
2521 /// auto myProf1 = myDf.Profile2D({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20},
2522 /// "xValues", "yValues", "zValues", "weight");
2523 /// // Explicit column types
2524 /// auto myProf2 = myDf.Profile2D<int, float, double, int>({"profName", "profTitle", 40, -4, 4, 40, -4, 4, 0, 20},
2525 /// "xValues", "yValues", "zValues", "weight");
2526 /// ~~~
2527 ///
2528 /// See the first Profile2D() overload for more details.
2529 template <typename V1 = RDFDetail::RInferredType, typename V2 = RDFDetail::RInferredType,
2530 typename V3 = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
2531 RResultPtr<::TProfile2D> Profile2D(const TProfile2DModel &model, std::string_view v1Name, std::string_view v2Name,
2532 std::string_view v3Name, std::string_view wName)
2533 {
2534 std::shared_ptr<::TProfile2D> h(nullptr);
2535 {
2536 ROOT::Internal::RDF::RIgnoreErrorLevelRAII iel(kError);
2537 h = model.GetProfile();
2538 }
2539
2540 if (!RDFInternal::HistoUtils<::TProfile2D>::HasAxisLimits(*h)) {
2541 throw std::runtime_error("2D profiles with no axes limits are not supported yet.");
2542 }
2543 const std::vector<std::string_view> columnViews = {v1Name, v2Name, v3Name, wName};
2545 ? ColumnNames_t()
2548 }
2549
2550 /// \brief Fill and return a two-dimensional profile (*lazy action*).
2551 /// See the first Profile2D() overload for more details.
2552 template <typename V1, typename V2, typename V3, typename W>
2554 {
2555 return Profile2D<V1, V2, V3, W>(model, "", "", "", "");
2556 }
2557
2558 ////////////////////////////////////////////////////////////////////////////
2559 /// \brief Return an object of type T on which `T::Fill` will be called once per event (*lazy action*).
2560 ///
2561 /// Type T must provide at least:
2562 /// - a copy-constructor
2563 /// - a `Fill` method that accepts as many arguments and with same types as the column names passed as columnList
2564 /// (these types can also be passed as template parameters to this method)
2565 /// - a `Merge` method with signature `Merge(TCollection *)` or `Merge(const std::vector<T *>&)` that merges the
2566 /// objects passed as argument into the object on which `Merge` was called (an analogous of TH1::Merge). Note that
2567 /// if the signature that takes a `TCollection*` is used, then T must inherit from TObject (to allow insertion in
2568 /// the TCollection*).
2569 ///
2570 /// \tparam FirstColumn The first type of the column the values of which are used to fill the object. Inferred together with OtherColumns if not present.
2571 /// \tparam OtherColumns A list of the other types of the columns the values of which are used to fill the object.
2572 /// \tparam T The type of the object to fill. Automatically deduced.
2573 /// \param[in] model The model to be considered to build the new return value.
2574 /// \param[in] columnList A list containing the names of the columns that will be passed when calling `Fill`
2575 /// \return the filled object wrapped in a RResultPtr.
2576 ///
2577 /// The user gives up ownership of the model object.
2578 /// The list of column names to be used for filling must always be specified.
2579 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed.
2580 /// Also see RResultPtr.
2581 ///
2582 /// ### Example usage:
2583 /// ~~~{.cpp}
2584 /// MyClass obj;
2585 /// // Deduce column types (this invocation needs jitting internally, and in this case
2586 /// // MyClass needs to be known to the interpreter)
2587 /// auto myFilledObj = myDf.Fill(obj, {"col0", "col1"});
2588 /// // explicit column types
2589 /// auto myFilledObj = myDf.Fill<float, float>(obj, {"col0", "col1"});
2590 /// ~~~
2591 ///
2592 template <typename FirstColumn = RDFDetail::RInferredType, typename... OtherColumns, typename T>
2594 {
2595 auto h = std::make_shared<std::decay_t<T>>(std::forward<T>(model));
2596 if (!RDFInternal::HistoUtils<T>::HasAxisLimits(*h)) {
2597 throw std::runtime_error("The absence of axes limits is not supported yet.");
2598 }
2599 return CreateAction<RDFInternal::ActionTags::Fill, FirstColumn, OtherColumns...>(columnList, h, h, fProxiedPtr,
2600 columnList.size());
2601 }
2602
2603 ////////////////////////////////////////////////////////////////////////////
2604 /// \brief Return a TStatistic object, filled once per event (*lazy action*).
2605 ///
2606 /// \tparam V The type of the value column
2607 /// \param[in] value The name of the column with the values to fill the statistics with.
2608 /// \return the filled TStatistic object wrapped in a RResultPtr.
2609 ///
2610 /// ### Example usage:
2611 /// ~~~{.cpp}
2612 /// // Deduce column type (this invocation needs jitting internally)
2613 /// auto stats0 = myDf.Stats("values");
2614 /// // Explicit column type
2615 /// auto stats1 = myDf.Stats<float>("values");
2616 /// ~~~
2617 ///
2618 template <typename V = RDFDetail::RInferredType>
2619 RResultPtr<TStatistic> Stats(std::string_view value = "")
2620 {
2622 if (!value.empty()) {
2623 columns.emplace_back(std::string(value));
2624 }
2626 if (std::is_same<V, RDFDetail::RInferredType>::value) {
2627 return Fill(TStatistic(), validColumnNames);
2628 } else {
2630 }
2631 }
2632
2633 ////////////////////////////////////////////////////////////////////////////
2634 /// \brief Return a TStatistic object, filled once per event (*lazy action*).
2635 ///
2636 /// \tparam V The type of the value column
2637 /// \tparam W The type of the weight column
2638 /// \param[in] value The name of the column with the values to fill the statistics with.
2639 /// \param[in] weight The name of the column with the weights to fill the statistics with.
2640 /// \return the filled TStatistic object wrapped in a RResultPtr.
2641 ///
2642 /// ### Example usage:
2643 /// ~~~{.cpp}
2644 /// // Deduce column types (this invocation needs jitting internally)
2645 /// auto stats0 = myDf.Stats("values", "weights");
2646 /// // Explicit column types
2647 /// auto stats1 = myDf.Stats<int, float>("values", "weights");
2648 /// ~~~
2649 ///
2650 template <typename V = RDFDetail::RInferredType, typename W = RDFDetail::RInferredType>
2651 RResultPtr<TStatistic> Stats(std::string_view value, std::string_view weight)
2652 {
2653 ColumnNames_t columns{std::string(value), std::string(weight)};
2654 constexpr auto vIsInferred = std::is_same<V, RDFDetail::RInferredType>::value;
2655 constexpr auto wIsInferred = std::is_same<W, RDFDetail::RInferredType>::value;
2657 // We have 3 cases:
2658 // 1. Both types are inferred: we use Fill and let the jit kick in.
2659 // 2. One of the two types is explicit and the other one is inferred: the case is not supported.
2660 // 3. Both types are explicit: we invoke the fully compiled Fill method.
2661 if (vIsInferred && wIsInferred) {
2662 return Fill(TStatistic(), validColumnNames);
2663 } else if (vIsInferred != wIsInferred) {
2664 std::string error("The ");
2665 error += vIsInferred ? "value " : "weight ";
2666 error += "column type is explicit, while the ";
2667 error += vIsInferred ? "weight " : "value ";
2668 error += " is specified to be inferred. This case is not supported: please specify both types or none.";
2669 throw std::runtime_error(error);
2670 } else {
2672 }
2673 }
2674
2675 ////////////////////////////////////////////////////////////////////////////
2676 /// \brief Return the minimum of processed column values (*lazy action*).
2677 /// \tparam T The type of the branch/column.
2678 /// \param[in] columnName The name of the branch/column to be treated.
2679 /// \return the minimum value of the selected column wrapped in a RResultPtr.
2680 ///
2681 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2682 /// template specialization of this method.
2683 /// If the type of the column is inferred, the return type is `double`, the type of the column otherwise.
2684 ///
2685 /// This action is *lazy*: upon invocation of this method the calculation is
2686 /// booked but not executed. Also see RResultPtr.
2687 ///
2688 /// ### Example usage:
2689 /// ~~~{.cpp}
2690 /// // Deduce column type (this invocation needs jitting internally)
2691 /// auto minVal0 = myDf.Min("values");
2692 /// // Explicit column type
2693 /// auto minVal1 = myDf.Min<double>("values");
2694 /// ~~~
2695 ///
2696 template <typename T = RDFDetail::RInferredType>
2698 {
2699 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2700 using RetType_t = RDFDetail::MinReturnType_t<T>;
2701 auto minV = std::make_shared<RetType_t>(std::numeric_limits<RetType_t>::max());
2703 }
2704
2705 ////////////////////////////////////////////////////////////////////////////
2706 /// \brief Return the maximum of processed column values (*lazy action*).
2707 /// \tparam T The type of the branch/column.
2708 /// \param[in] columnName The name of the branch/column to be treated.
2709 /// \return the maximum value of the selected column wrapped in a RResultPtr.
2710 ///
2711 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2712 /// template specialization of this method.
2713 /// If the type of the column is inferred, the return type is `double`, the type of the column otherwise.
2714 ///
2715 /// This action is *lazy*: upon invocation of this method the calculation is
2716 /// booked but not executed. Also see RResultPtr.
2717 ///
2718 /// ### Example usage:
2719 /// ~~~{.cpp}
2720 /// // Deduce column type (this invocation needs jitting internally)
2721 /// auto maxVal0 = myDf.Max("values");
2722 /// // Explicit column type
2723 /// auto maxVal1 = myDf.Max<double>("values");
2724 /// ~~~
2725 ///
2726 template <typename T = RDFDetail::RInferredType>
2728 {
2729 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2730 using RetType_t = RDFDetail::MaxReturnType_t<T>;
2731 auto maxV = std::make_shared<RetType_t>(std::numeric_limits<RetType_t>::lowest());
2733 }
2734
2735 ////////////////////////////////////////////////////////////////////////////
2736 /// \brief Return the mean of processed column values (*lazy action*).
2737 /// \tparam T The type of the branch/column.
2738 /// \param[in] columnName The name of the branch/column to be treated.
2739 /// \return the mean value of the selected column wrapped in a RResultPtr.
2740 ///
2741 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2742 /// template specialization of this method.
2743 ///
2744 /// This action is *lazy*: upon invocation of this method the calculation is
2745 /// booked but not executed. Also see RResultPtr.
2746 ///
2747 /// ### Example usage:
2748 /// ~~~{.cpp}
2749 /// // Deduce column type (this invocation needs jitting internally)
2750 /// auto meanVal0 = myDf.Mean("values");
2751 /// // Explicit column type
2752 /// auto meanVal1 = myDf.Mean<double>("values");
2753 /// ~~~
2754 ///
2755 template <typename T = RDFDetail::RInferredType>
2756 RResultPtr<double> Mean(std::string_view columnName = "")
2757 {
2758 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2759 auto meanV = std::make_shared<double>(0);
2761 }
2762
2763 ////////////////////////////////////////////////////////////////////////////
2764 /// \brief Return the unbiased standard deviation of processed column values (*lazy action*).
2765 /// \tparam T The type of the branch/column.
2766 /// \param[in] columnName The name of the branch/column to be treated.
2767 /// \return the standard deviation value of the selected column wrapped in a RResultPtr.
2768 ///
2769 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2770 /// template specialization of this method.
2771 ///
2772 /// This action is *lazy*: upon invocation of this method the calculation is
2773 /// booked but not executed. Also see RResultPtr.
2774 ///
2775 /// ### Example usage:
2776 /// ~~~{.cpp}
2777 /// // Deduce column type (this invocation needs jitting internally)
2778 /// auto stdDev0 = myDf.StdDev("values");
2779 /// // Explicit column type
2780 /// auto stdDev1 = myDf.StdDev<double>("values");
2781 /// ~~~
2782 ///
2783 template <typename T = RDFDetail::RInferredType>
2784 RResultPtr<double> StdDev(std::string_view columnName = "")
2785 {
2786 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2787 auto stdDeviationV = std::make_shared<double>(0);
2789 }
2790
2791 // clang-format off
2792 ////////////////////////////////////////////////////////////////////////////
2793 /// \brief Return the sum of processed column values (*lazy action*).
2794 /// \tparam T The type of the branch/column.
2795 /// \param[in] columnName The name of the branch/column.
2796 /// \param[in] initValue Optional initial value for the sum. If not present, the column values must be default-constructible.
2797 /// \return the sum of the selected column wrapped in a RResultPtr.
2798 ///
2799 /// If T is not specified, RDataFrame will infer it from the data and just-in-time compile the correct
2800 /// template specialization of this method.
2801 /// If the type of the column is inferred, the return type is `double`, the type of the column otherwise.
2802 ///
2803 /// This action is *lazy*: upon invocation of this method the calculation is
2804 /// booked but not executed. Also see RResultPtr.
2805 ///
2806 /// ### Example usage:
2807 /// ~~~{.cpp}
2808 /// // Deduce column type (this invocation needs jitting internally)
2809 /// auto sum0 = myDf.Sum("values");
2810 /// // Explicit column type
2811 /// auto sum1 = myDf.Sum<double>("values");
2812 /// ~~~
2813 ///
2814 template <typename T = RDFDetail::RInferredType>
2816 Sum(std::string_view columnName = "",
2817 const RDFDetail::SumReturnType_t<T> &initValue = RDFDetail::SumReturnType_t<T>{})
2818 {
2819 const auto userColumns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2820 auto sumV = std::make_shared<RDFDetail::SumReturnType_t<T>>(initValue);
2822 }
2823 // clang-format on
2824
2825 ////////////////////////////////////////////////////////////////////////////
2826 /// \brief Gather filtering statistics.
2827 /// \return the resulting `RCutFlowReport` instance wrapped in a RResultPtr.
2828 ///
2829 /// Calling `Report` on the main `RDataFrame` object gathers stats for
2830 /// all named filters in the call graph. Calling this method on a
2831 /// stored chain state (i.e. a graph node different from the first) gathers
2832 /// the stats for all named filters in the chain section between the original
2833 /// `RDataFrame` and that node (included). Stats are gathered in the same
2834 /// order as the named filters have been added to the graph.
2835 /// A RResultPtr<RCutFlowReport> is returned to allow inspection of the
2836 /// effects cuts had.
2837 ///
2838 /// This action is *lazy*: upon invocation of
2839 /// this method the calculation is booked but not executed. See RResultPtr
2840 /// documentation.
2841 ///
2842 /// ### Example usage:
2843 /// ~~~{.cpp}
2844 /// auto filtered = d.Filter(cut1, {"b1"}, "Cut1").Filter(cut2, {"b2"}, "Cut2");
2845 /// auto cutReport = filtered3.Report();
2846 /// cutReport->Print();
2847 /// ~~~
2848 ///
2850 {
2851 bool returnEmptyReport = false;
2852 // if this is a RInterface<RLoopManager> on which `Define` has been called, users
2853 // are calling `Report` on a chain of the form LoopManager->Define->Define->..., which
2854 // certainly does not contain named filters.
2855 // The number 4 takes into account the implicit columns for entry and slot number
2856 // and their aliases (2 + 2, i.e. {r,t}dfentry_ and {r,t}dfslot_)
2857 if (std::is_same<Proxied, RLoopManager>::value && fColRegister.GenerateColumnNames().size() > 4)
2858 returnEmptyReport = true;
2859
2860 auto rep = std::make_shared<RCutFlowReport>();
2861 using Helper_t = RDFInternal::ReportHelper<Proxied>;
2863
2864 auto action = std::make_unique<Action_t>(Helper_t(rep, fProxiedPtr.get(), returnEmptyReport), ColumnNames_t({}),
2866
2867 return MakeResultPtr(rep, *fLoopManager, std::move(action));
2868 }
2869
2870 /// \brief Returns the names of the filters created.
2871 /// \return the container of filters names.
2872 ///
2873 /// If called on a root node, all the filters in the computation graph will
2874 /// be printed. For any other node, only the filters upstream of that node.
2875 /// Filters without a name are printed as "Unnamed Filter"
2876 /// This is not an action nor a transformation, just a query to the RDataFrame object.
2877 ///
2878 /// ### Example usage:
2879 /// ~~~{.cpp}
2880 /// auto filtNames = d.GetFilterNames();
2881 /// for (auto &&filtName : filtNames) std::cout << filtName << std::endl;
2882 /// ~~~
2883 ///
2884 std::vector<std::string> GetFilterNames() { return RDFInternal::GetFilterNames(fProxiedPtr); }
2885
2886 // clang-format off
2887 ////////////////////////////////////////////////////////////////////////////
2888 /// \brief Execute a user-defined accumulation operation on the processed column values in each processing slot.
2889 /// \tparam F The type of the aggregator callable. Automatically deduced.
2890 /// \tparam U The type of the aggregator variable. Must be default-constructible, copy-constructible and copy-assignable. Automatically deduced.
2891 /// \tparam T The type of the column to apply the reduction to. Automatically deduced.
2892 /// \param[in] aggregator A callable with signature `U(U,T)` or `void(U&,T)`, where T is the type of the column, U is the type of the aggregator variable
2893 /// \param[in] merger A callable with signature `U(U,U)` or `void(std::vector<U>&)` used to merge the results of the accumulations of each thread
2894 /// \param[in] columnName The column to be aggregated. If omitted, the first default column is used instead.
2895 /// \param[in] aggIdentity The aggregator variable of each thread is initialized to this value (or is default-constructed if the parameter is omitted)
2896 /// \return the result of the aggregation wrapped in a RResultPtr.
2897 ///
2898 /// An aggregator callable takes two values, an aggregator variable and a column value. The aggregator variable is
2899 /// initialized to aggIdentity or default-constructed if aggIdentity is omitted.
2900 /// This action calls the aggregator callable for each processed entry, passing in the aggregator variable and
2901 /// the value of the column columnName.
2902 /// If the signature is `U(U,T)` the aggregator variable is then copy-assigned the result of the execution of the callable.
2903 /// Otherwise the signature of aggregator must be `void(U&,T)`.
2904 ///
2905 /// The merger callable is used to merge the partial accumulation results of each processing thread. It is only called in multi-thread executions.
2906 /// If its signature is `U(U,U)` the aggregator variables of each thread are merged two by two.
2907 /// If its signature is `void(std::vector<U>& a)` it is assumed that it merges all aggregators in a[0].
2908 ///
2909 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. Also see RResultPtr.
2910 ///
2911 /// Example usage:
2912 /// ~~~{.cpp}
2913 /// auto aggregator = [](double acc, double x) { return acc * x; };
2914 /// ROOT::EnableImplicitMT();
2915 /// // If multithread is enabled, the aggregator function will be called by more threads
2916 /// // and will produce a vector of partial accumulators.
2917 /// // The merger function performs the final aggregation of these partial results.
2918 /// auto merger = [](std::vector<double> &accumulators) {
2919 /// for (auto i : ROOT::TSeqU(1u, accumulators.size())) {
2920 /// accumulators[0] *= accumulators[i];
2921 /// }
2922 /// };
2923 ///
2924 /// // The accumulator is initialized at this value by every thread.
2925 /// double initValue = 1.;
2926 ///
2927 /// // Multiplies all elements of the column "x"
2928 /// auto result = d.Aggregate(aggregator, merger, "x", initValue);
2929 /// ~~~
2930 // clang-format on
2932 typename ArgTypes = typename TTraits::CallableTraits<AccFun>::arg_types,
2933 typename ArgTypesNoDecay = typename TTraits::CallableTraits<AccFun>::arg_types_nodecay,
2934 typename U = TTraits::TakeFirstParameter_t<ArgTypes>,
2935 typename T = TTraits::TakeFirstParameter_t<TTraits::RemoveFirstParameter_t<ArgTypes>>>
2937 {
2938 RDFInternal::CheckAggregate<R, MergeFun>(ArgTypesNoDecay());
2939 const auto columns = columnName.empty() ? ColumnNames_t() : ColumnNames_t({std::string(columnName)});
2940
2943
2944 auto accObjPtr = std::make_shared<U>(aggIdentity);
2945 using Helper_t = RDFInternal::AggregateHelper<AccFun, MergeFun, R, T, U>;
2947 auto action = std::make_unique<Action_t>(
2948 Helper_t(std::move(aggregator), std::move(merger), accObjPtr, fLoopManager->GetNSlots()), validColumnNames,
2950 return MakeResultPtr(accObjPtr, *fLoopManager, std::move(action));
2951 }
2952
2953 // clang-format off
2954 ////////////////////////////////////////////////////////////////////////////
2955 /// \brief Execute a user-defined accumulation operation on the processed column values in each processing slot.
2956 /// \tparam F The type of the aggregator callable. Automatically deduced.
2957 /// \tparam U The type of the aggregator variable. Must be default-constructible, copy-constructible and copy-assignable. Automatically deduced.
2958 /// \tparam T The type of the column to apply the reduction to. Automatically deduced.
2959 /// \param[in] aggregator A callable with signature `U(U,T)` or `void(U,T)`, where T is the type of the column, U is the type of the aggregator variable
2960 /// \param[in] merger A callable with signature `U(U,U)` or `void(std::vector<U>&)` used to merge the results of the accumulations of each thread
2961 /// \param[in] columnName The column to be aggregated. If omitted, the first default column is used instead.
2962 /// \return the result of the aggregation wrapped in a RResultPtr.
2963 ///
2964 /// See previous Aggregate overload for more information.
2965 // clang-format on
2967 typename ArgTypes = typename TTraits::CallableTraits<AccFun>::arg_types,
2968 typename U = TTraits::TakeFirstParameter_t<ArgTypes>,
2969 typename T = TTraits::TakeFirstParameter_t<TTraits::RemoveFirstParameter_t<ArgTypes>>>
2971 {
2972 static_assert(
2973 std::is_default_constructible<U>::value,
2974 "aggregated object cannot be default-constructed. Please provide an initialisation value (aggIdentity)");
2975 return Aggregate(std::move(aggregator), std::move(merger), columnName, U());
2976 }
2977
2978 // clang-format off
2979 ////////////////////////////////////////////////////////////////////////////
2980 /// \brief Book execution of a custom action using a user-defined helper object.
2981 /// \tparam FirstColumn The type of the first column used by this action. Inferred together with OtherColumns if not present.
2982 /// \tparam OtherColumns A list of the types of the other columns used by this action
2983 /// \tparam Helper The type of the user-defined helper. See below for the required interface it should expose.
2984 /// \param[in] helper The Action Helper to be scheduled.
2985 /// \param[in] columns The names of the columns on which the helper acts.
2986 /// \return the result of the helper wrapped in a RResultPtr.
2987 ///
2988 /// This method books a custom action for execution. The behavior of the action is completely dependent on the
2989 /// Helper object provided by the caller. The required interface for the helper is described below (more
2990 /// methods that the ones required can be present, e.g. a constructor that takes the number of worker threads is usually useful):
2991 ///
2992 /// ### Mandatory interface
2993 ///
2994 /// * `Helper` must publicly inherit from `ROOT::Detail::RDF::RActionImpl<Helper>`
2995 /// * `Helper::Result_t`: public alias for the type of the result of this action helper. `Result_t` must be default-constructible.
2996 /// * `Helper(Helper &&)`: a move-constructor is required. Copy-constructors are discouraged.
2997 /// * `std::shared_ptr<Result_t> GetResultPtr() const`: return a shared_ptr to the result of this action (of type
2998 /// Result_t). The RResultPtr returned by Book will point to this object. Note that this method can be called
2999 /// _before_ Initialize(), because the RResultPtr is constructed before the event loop is started.
3000 /// * `void Initialize()`: this method is called once before starting the event-loop. Useful for setup operations.
3001 /// It must reset the state of the helper to the expected state at the beginning of the event loop: the same helper,
3002 /// or copies of it, might be used for multiple event loops (e.g. in the presence of systematic variations).
3003 /// * `void InitTask(TTreeReader *, unsigned int slot)`: each working thread shall call this method during the event
3004 /// loop, before processing a batch of entries. The pointer passed as argument, if not null, will point to the TTreeReader
3005 /// that RDataFrame has set up to read the task's batch of entries. It is passed to the helper to allow certain advanced optimizations
3006 /// it should not usually serve any purpose for the Helper. This method is often no-op for simple helpers.
3007 /// * `void Exec(unsigned int slot, ColumnTypes...columnValues)`: each working thread shall call this method
3008 /// during the event-loop, possibly concurrently. No two threads will ever call Exec with the same 'slot' value:
3009 /// this parameter is there to facilitate writing thread-safe helpers. The other arguments will be the values of
3010 /// the requested columns for the particular entry being processed.
3011 /// * `void Finalize()`: this method is called at the end of the event loop. Commonly used to finalize the contents of the result.
3012 /// * `std::string GetActionName()`: it returns a string identifier for this type of action that RDataFrame will use in
3013 /// diagnostics, SaveGraph(), etc.
3014 ///
3015 /// ### Optional methods
3016 ///
3017 /// If these methods are implemented they enable extra functionality as per the description below.
3018 ///
3019 /// * `Result_t &PartialUpdate(unsigned int slot)`: if present, it must return the value of the partial result of this action for the given 'slot'.
3020 /// Different threads might call this method concurrently, but will do so with different 'slot' numbers.
3021 /// RDataFrame leverages this method to implement RResultPtr::OnPartialResult().
3022 /// * `ROOT::RDF::SampleCallback_t GetSampleCallback()`: if present, it must return a callable with the
3023 /// appropriate signature (see ROOT::RDF::SampleCallback_t) that will be invoked at the beginning of the processing
3024 /// of every sample, as in DefinePerSample().
3025 /// * `Helper MakeNew(void *newResult, std::string_view variation = "nominal")`: if implemented, it enables varying
3026 /// the action's result with VariationsFor(). It takes a type-erased new result that can be safely cast to a
3027 /// `std::shared_ptr<Result_t> *` (a pointer to shared pointer) and should be used as the action's output result.
3028 /// The function optionally takes the name of the current variation which could be useful in customizing its behaviour.
3029 ///
3030 /// In case Book is called without specifying column types as template arguments, corresponding typed code will be just-in-time compiled
3031 /// by RDataFrame. In that case the Helper class needs to be known to the ROOT interpreter.
3032 ///
3033 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. Also see RResultPtr.
3034 ///
3035 /// ### Examples
3036 /// See [this tutorial](https://root.cern/doc/master/df018__customActions_8C.html) for an example implementation of an action helper.
3037 ///
3038 /// It is also possible to inspect the code used by built-in RDataFrame actions at ActionHelpers.hxx.
3039 ///
3040 // clang-format on
3041 template <typename FirstColumn = RDFDetail::RInferredType, typename... OtherColumns, typename Helper>
3043 {
3044 using HelperT = std::decay_t<Helper>;
3045 // TODO add more static sanity checks on Helper
3047 static_assert(std::is_base_of<AH, HelperT>::value && std::is_convertible<HelperT *, AH *>::value,
3048 "Action helper of type T must publicly inherit from ROOT::Detail::RDF::RActionImpl<T>");
3049
3050 auto hPtr = std::make_shared<HelperT>(std::forward<Helper>(helper));
3051 auto resPtr = hPtr->GetResultPtr();
3052
3053 if (std::is_same<FirstColumn, RDFDetail::RInferredType>::value && columns.empty()) {
3055 } else {
3056 return CreateAction<RDFInternal::ActionTags::Book, FirstColumn, OtherColumns...>(columns, resPtr, hPtr,
3057 fProxiedPtr, columns.size());
3058 }
3059 }
3060
3061 ////////////////////////////////////////////////////////////////////////////
3062 /// \brief Provides a representation of the columns in the dataset.
3063 /// \tparam ColumnTypes variadic list of branch/column types.
3064 /// \param[in] columnList Names of the columns to be displayed.
3065 /// \param[in] nRows Number of events for each column to be displayed.
3066 /// \param[in] nMaxCollectionElements Maximum number of collection elements to display per row.
3067 /// \return the `RDisplay` instance wrapped in a RResultPtr.
3068 ///
3069 /// This function returns a `RResultPtr<RDisplay>` containing all the entries to be displayed, organized in a tabular
3070 /// form. RDisplay will either print on the standard output a summarized version through `RDisplay::Print()` or will
3071 /// return a complete version through `RDisplay::AsString()`.
3072 ///
3073 /// This action is *lazy*: upon invocation of this method the calculation is booked but not executed. Also see
3074 /// RResultPtr.
3075 ///
3076 /// Example usage:
3077 /// ~~~{.cpp}
3078 /// // Preparing the RResultPtr<RDisplay> object with all columns and default number of entries
3079 /// auto d1 = rdf.Display("");
3080 /// // Preparing the RResultPtr<RDisplay> object with two columns and 128 entries
3081 /// auto d2 = d.Display({"x", "y"}, 128);
3082 /// // Printing the short representations, the event loop will run
3083 /// d1->Print();
3084 /// d2->Print();
3085 /// ~~~
3086 template <typename... ColumnTypes>
3088 {
3089 CheckIMTDisabled("Display");
3090 auto newCols = columnList;
3091 newCols.insert(newCols.begin(), "rdfentry_"); // Artificially insert first column
3092 auto displayer = std::make_shared<RDisplay>(newCols, GetColumnTypeNamesList(newCols), nMaxCollectionElements);
3093 using displayHelperArgs_t = std::pair<size_t, std::shared_ptr<RDisplay>>;
3094 // Need to add ULong64_t type corresponding to the first column rdfentry_
3095 return CreateAction<RDFInternal::ActionTags::Display, ULong64_t, ColumnTypes...>(
3096 std::move(newCols), displayer, std::make_shared<displayHelperArgs_t>(nRows, displayer), fProxiedPtr);
3097 }
3098
3099 ////////////////////////////////////////////////////////////////////////////
3100 /// \brief Provides a representation of the columns in the dataset.
3101 /// \param[in] columnList Names of the columns to be displayed.
3102 /// \param[in] nRows Number of events for each column to be displayed.
3103 /// \param[in] nMaxCollectionElements Maximum number of collection elements to display per row.
3104 /// \return the `RDisplay` instance wrapped in a RResultPtr.
3105 ///
3106 /// This overload automatically infers the column types.
3107 /// See the previous overloads for further details.
3108 ///
3109 /// Invoked when no types are specified to Display
3111 {
3112 CheckIMTDisabled("Display");
3113 auto newCols = columnList;
3114 newCols.insert(newCols.begin(), "rdfentry_"); // Artificially insert first column
3115 auto displayer = std::make_shared<RDisplay>(newCols, GetColumnTypeNamesList(newCols), nMaxCollectionElements);
3116 using displayHelperArgs_t = std::pair<size_t, std::shared_ptr<RDisplay>>;
3118 std::move(newCols), displayer, std::make_shared<displayHelperArgs_t>(nRows, displayer), fProxiedPtr,
3119 columnList.size() + 1);
3120 }
3121
3122 ////////////////////////////////////////////////////////////////////////////
3123 /// \brief Provides a representation of the columns in the dataset.
3124 /// \param[in] columnNameRegexp A regular expression to select the columns.
3125 /// \param[in] nRows Number of events for each column to be displayed.
3126 /// \param[in] nMaxCollectionElements Maximum number of collection elements to display per row.
3127 /// \return the `RDisplay` instance wrapped in a RResultPtr.
3128 ///
3129 /// The existing columns are matched against the regular expression. If the string provided
3130 /// is empty, all columns are selected.
3131 /// See the previous overloads for further details.
3133 Display(std::string_view columnNameRegexp = "", size_t nRows = 5, size_t nMaxCollectionElements = 10)
3134 {
3135 const auto columnNames = GetColumnNames();
3138 }
3139
3140 ////////////////////////////////////////////////////////////////////////////
3141 /// \brief Provides a representation of the columns in the dataset.
3142 /// \param[in] columnList Names of the columns to be displayed.
3143 /// \param[in] nRows Number of events for each column to be displayed.
3144 /// \param[in] nMaxCollectionElements Number of maximum elements in collection.
3145 /// \return the `RDisplay` instance wrapped in a RResultPtr.
3146 ///
3147 /// See the previous overloads for further details.
3149 Display(std::initializer_list<std::string> columnList, size_t nRows = 5, size_t nMaxCollectionElements = 10)
3150 {
3153 }
3154
3155private:
3157 std::enable_if_t<std::is_default_constructible<RetType>::value, RInterface<Proxied, DS_t>>
3158 DefineImpl(std::string_view name, F &&expression, const ColumnNames_t &columns, const std::string &where)
3159 {
3160 if (where.compare(0, 8, "Redefine") != 0) { // not a Redefine
3164 } else {
3168 }
3169
3170 using ArgTypes_t = typename TTraits::CallableTraits<F>::arg_types;
3172 std::is_same<DefineType, RDFDetail::ExtraArgsForDefine::Slot>::value, ArgTypes_t>::type;
3174 std::is_same<DefineType, RDFDetail::ExtraArgsForDefine::SlotAndEntry>::value, ColTypesTmp_t>::type;
3175
3176 constexpr auto nColumns = ColTypes_t::list_size;
3177
3180
3181 // Declare return type to the interpreter, for future use by jitted actions
3183 if (retTypeName.empty()) {
3184 // The type is not known to the interpreter.
3185 // We must not error out here, but if/when this column is used in jitted code
3187 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType;
3188 }
3189
3191 auto newColumn = std::make_shared<NewCol_t>(name, retTypeName, std::forward<F>(expression), validColumnNames,
3193
3195 newCols.AddDefine(std::move(newColumn));
3196
3198
3199 return newInterface;
3200 }
3201
3202 // This overload is chosen when the callable passed to Define or DefineSlot returns void.
3203 // It simply fires a compile-time error. This is preferable to a static_assert in the main `Define` overload because
3204 // this way compilation of `Define` has no way to continue after throwing the error.
3206 bool IsFStringConv = std::is_convertible<F, std::string>::value,
3207 bool IsRetTypeDefConstr = std::is_default_constructible<RetType>::value>
3208 std::enable_if_t<!IsFStringConv && !IsRetTypeDefConstr, RInterface<Proxied, DS_t>>
3209 DefineImpl(std::string_view, F, const ColumnNames_t &, const std::string &)
3210 {
3211 static_assert(std::is_default_constructible<typename TTraits::CallableTraits<F>::ret_type>::value,
3212 "Error in `Define`: type returned by expression is not default-constructible");
3213 return *this; // never reached
3214 }
3215
3216 template <typename... ColumnTypes>
3218 const ColumnNames_t &columnList, const RSnapshotOptions &options)
3219 {
3221
3223 // validCols has aliases resolved, while columnListWithoutSizeColumns still has aliases in it.
3227
3229 const auto &treename = parsedTreePath.fTreeName;
3230 const auto &dirname = parsedTreePath.fDirName;
3231
3233
3235
3237#ifdef R__HAS_ROOT7
3238 if (RDFInternal::GetDataSourceLabel(*this) == "TTreeDS") {
3239 throw std::runtime_error("Snapshotting from TTree to RNTuple is not yet supported. The current recommended "
3240 "way to convert TTrees to RNTuple is through the RNTupleImporter.");
3241 }
3242
3243 auto newRDF =
3244 std::make_shared<RInterface<RLoopManager>>(std::make_shared<RLoopManager>(columnListWithoutSizeColumns));
3245
3246 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{
3247 std::string(filename), std::string(dirname), std::string(treename), columnListWithoutSizeColumns, options,
3248 newRDF->GetLoopManager(), GetDataSource(), true /* fToRNTuple */});
3249
3250 // The Snapshot helper will use validCols (with aliases resolved) as input columns, and
3251 // columnListWithoutSizeColumns (still with aliases in it, passed through snapHelperArgs) as output column
3252 // names.
3253 resPtr = CreateAction<RDFInternal::ActionTags::Snapshot, ColumnTypes...>(validCols, newRDF, snapHelperArgs,
3254 fProxiedPtr);
3255#else
3256 throw std::runtime_error(
3257 "RDataFrame: Cannot snapshot to RNTuple - this installation of ROOT has not been build with ROOT7 "
3258 "components enabled.");
3259#endif
3260 } else {
3261 if (RDFInternal::GetDataSourceLabel(*this) == "RNTupleDS" &&
3263 Warning("Snapshot",
3264 "The default Snapshot output data format is TTree, but the input data format is RNTuple. If you "
3265 "want to Snapshot to RNTuple or suppress this warning, set the appropriate fOutputFormat option in "
3266 "RSnapshotOptions. Note that this current default behaviour might change in the future.");
3267 }
3268
3269 // We create an RLoopManager without a data source. This needs to be initialised when the output TTree dataset
3270 // has actually been created and written to TFile, i.e. at the end of the Snapshot execution.
3271 auto newRDF =
3272 std::make_shared<RInterface<RLoopManager>>(std::make_shared<RLoopManager>(columnListWithoutSizeColumns));
3273
3274 auto snapHelperArgs = std::make_shared<RDFInternal::SnapshotHelperArgs>(RDFInternal::SnapshotHelperArgs{
3275 std::string(filename), std::string(dirname), std::string(treename), columnListWithoutSizeColumns, options,
3276 newRDF->GetLoopManager(), GetDataSource(), false /* fToRNTuple */});
3277
3278 // The Snapshot helper will use validCols (with aliases resolved) as input columns, and
3279 // columnListWithoutSizeColumns (still with aliases in it, passed through snapHelperArgs) as output column
3280 // names.
3281 resPtr = CreateAction<RDFInternal::ActionTags::Snapshot, ColumnTypes...>(validCols, newRDF, snapHelperArgs,
3282 fProxiedPtr);
3283 }
3284
3285 if (!options.fLazy)
3286 *resPtr;
3287 return resPtr;
3288 }
3289
3290 ////////////////////////////////////////////////////////////////////////////
3291 /// \brief Implementation of cache.
3292 template <typename... ColTypes, std::size_t... S>
3294 {
3296
3297 // Check at compile time that the columns types are copy constructible
3298 constexpr bool areCopyConstructible =
3299 RDFInternal::TEvalAnd<std::is_copy_constructible<ColTypes>::value...>::value;
3300 static_assert(areCopyConstructible, "Columns of a type which is not copy constructible cannot be cached yet.");
3301
3303
3304 auto colHolders = std::make_tuple(Take<ColTypes>(columnListWithoutSizeColumns[S])...);
3305 auto ds = std::make_unique<RLazyDS<ColTypes...>>(
3306 std::make_pair(columnListWithoutSizeColumns[S], std::get<S>(colHolders))...);
3307
3308 RInterface<RLoopManager> cachedRDF(std::make_shared<RLoopManager>(std::move(ds), columnListWithoutSizeColumns));
3309
3310 return cachedRDF;
3311 }
3312
3313 template <bool IsSingleColumn, typename F>
3315 VaryImpl(const std::vector<std::string> &colNames, F &&expression, const ColumnNames_t &inputColumns,
3316 const std::vector<std::string> &variationTags, std::string_view variationName)
3317 {
3318 using F_t = std::decay_t<F>;
3319 using ColTypes_t = typename TTraits::CallableTraits<F_t>::arg_types;
3320 using RetType = typename TTraits::CallableTraits<F_t>::ret_type;
3321 constexpr auto nColumns = ColTypes_t::list_size;
3322
3324
3327
3329 if (retTypeName.empty()) {
3330 // The type is not known to the interpreter, but we don't want to error out
3331 // here, rather if/when this column is used in jitted code, so we inject a broken but telling type name.
3333 retTypeName = "CLING_UNKNOWN_TYPE_" + demangledType;
3334 }
3335
3336 auto variation = std::make_shared<RDFInternal::RVariation<F_t, IsSingleColumn>>(
3337 colNames, variationName, std::forward<F>(expression), variationTags, retTypeName, fColRegister, *fLoopManager,
3339
3341 newCols.AddVariation(std::move(variation));
3342
3344
3345 return newInterface;
3346 }
3347
3348 RInterface<Proxied, DS_t> JittedVaryImpl(const std::vector<std::string> &colNames, std::string_view expression,
3349 const std::vector<std::string> &variationTags,
3350 std::string_view variationName, bool isSingleColumn)
3351 {
3352 R__ASSERT(!variationTags.empty() && "Must have at least one variation.");
3353 R__ASSERT(!colNames.empty() && "Must have at least one varied column.");
3354 R__ASSERT(!variationName.empty() && "Must provide a variation name.");
3355
3356 for (auto &colName : colNames) {
3360 }
3362
3363 // when varying multiple columns, they must be different columns
3364 if (colNames.size() > 1) {
3365 std::set<std::string> uniqueCols(colNames.begin(), colNames.end());
3366 if (uniqueCols.size() != colNames.size())
3367 throw std::logic_error("A column name was passed to the same Vary invocation multiple times.");
3368 }
3369
3370 auto upcastNodeOnHeap = RDFInternal::MakeSharedOnHeap(RDFInternal::UpcastNode(fProxiedPtr));
3373 fLoopManager->GetBranchNames(), upcastNodeOnHeap, isSingleColumn);
3374
3376 newColRegister.AddVariation(std::move(jittedVariation));
3377
3379
3380 return newInterface;
3381 }
3382
3383 template <typename Helper, typename ActionResultType>
3384 auto CallCreateActionWithoutColsIfPossible(const std::shared_ptr<ActionResultType> &resPtr,
3385 const std::shared_ptr<Helper> &hPtr,
3387 -> decltype(hPtr->Exec(0u), RResultPtr<ActionResultType>{})
3388 {
3390 }
3391
3392 template <typename Helper, typename ActionResultType, typename... Others>
3394 CallCreateActionWithoutColsIfPossible(const std::shared_ptr<ActionResultType> &,
3395 const std::shared_ptr<Helper>& /*hPtr*/,
3396 Others...)
3397 {
3398 throw std::logic_error(std::string("An action was booked with no input columns, but the action requires "
3399 "columns! The action helper type was ") +
3400 typeid(Helper).name());
3401 return {};
3402 }
3403
3404protected:
3405 RInterface(const std::shared_ptr<Proxied> &proxied, RLoopManager &lm,
3408 {
3409 }
3410
3411 const std::shared_ptr<Proxied> &GetProxiedPtr() const { return fProxiedPtr; }
3412};
3413
3414} // namespace RDF
3415
3416} // namespace ROOT
3417
3418#endif // ROOT_RDF_INTERFACE
#define f(i)
Definition RSha256.hxx:104
#define h(i)
Definition RSha256.hxx:106
unsigned int UInt_t
Definition RtypesCore.h:46
long long Long64_t
Definition RtypesCore.h:69
unsigned long long ULong64_t
Definition RtypesCore.h:70
#define X(type, name)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
Definition TError.h:125
void Warning(const char *location, const char *msgfmt,...)
Use this function in warning situations.
Definition TError.cxx:229
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char name[80]
Definition TGX11.cxx:110
Base class for action helpers, see RInterface::Book() for more information.
implementation of FilterAvailable and FilterMissing operations
The head node of a RDF computation graph.
Helper class that provides the operation graph nodes.
A RDataFrame node that produces a result.
Definition RAction.hxx:53
A binder for user-defined columns, variations and aliases.
std::vector< std::string_view > GenerateColumnNames() const
Return the list of the names of the defined columns (Defines + Aliases).
The dataset specification for RDataFrame.
virtual const std::vector< std::string > & GetColumnNames() const =0
Returns a reference to the collection of the dataset's column names.
ColumnNames_t GetValidatedColumnNames(const unsigned int nColumns, const ColumnNames_t &columns)
ColumnNames_t GetColumnTypeNamesList(const ColumnNames_t &columnList)
std::shared_ptr< ROOT::Detail::RDF::RLoopManager > fLoopManager
< The RLoopManager at the root of this computation graph. Never null.
RResultPtr< ActionResultType > CreateAction(const ColumnNames_t &columns, const std::shared_ptr< ActionResultType > &r, const std::shared_ptr< HelperArgType > &helperArg, const std::shared_ptr< RDFNode > &proxiedPtr, const int=-1)
Create RAction object, return RResultPtr for the action Overload for the case in which all column typ...
RDataSource * GetDataSource() const
void CheckAndFillDSColumns(ColumnNames_t validCols, TTraits::TypeList< ColumnTypes... > typeList)
void CheckIMTDisabled(std::string_view callerName)
ColumnNames_t GetColumnNames()
Returns the names of the available columns.
RDFInternal::RColumnRegister fColRegister
Contains the columns defined up to this node.
The public interface to the RDataFrame federation of classes.
RResultPtr<::THnD > HistoND(const THnDModel &model, const ColumnNames_t &columnList)
Fill and return an N-dimensional histogram (lazy action).
RInterface(const RInterface &)=default
Copy-ctor for RInterface.
RResultPtr<::TH1D > Histo1D(std::string_view vName, std::string_view wName)
Fill and return a one-dimensional histogram with the weighted values of a column (lazy action).
RInterface(const std::shared_ptr< Proxied > &proxied, RLoopManager &lm, const RDFInternal::RColumnRegister &colRegister)
RResultPtr<::TH1D > Histo1D(const TH1DModel &model={"", "", 128u, 0., 0.})
Fill and return a one-dimensional histogram with the weighted values of a column (lazy action).
RResultPtr<::TH2D > Histo2D(const TH2DModel &model)
RResultPtr<::TProfile > Profile1D(const TProfile1DModel &model, std::string_view v1Name="", std::string_view v2Name="")
Fill and return a one-dimensional profile (lazy action).
RResultPtr<::THnD > HistoND(const THnDModel &model, const ColumnNames_t &columnList)
Fill and return an N-dimensional histogram (lazy action).
std::enable_if_t<!IsFStringConv &&!IsRetTypeDefConstr, RInterface< Proxied, DS_t > > DefineImpl(std::string_view, F, const ColumnNames_t &, const std::string &)
RResultPtr< RInterface< RLoopManager > > Snapshot(std::string_view treename, std::string_view filename, std::string_view columnNameRegexp="", const RSnapshotOptions &options=RSnapshotOptions())
Save selected columns to disk, in a new TTree treename in file filename.
RResultPtr< TStatistic > Stats(std::string_view value="")
Return a TStatistic object, filled once per event (lazy action).
RInterface< Proxied, DS_t > Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns, std::size_t nVariations, std::string_view variationName="")
Register systematic variations for a single existing column using auto-generated variation tags.
RInterface< Proxied, DS_t > Vary(std::string_view colName, std::string_view expression, std::size_t nVariations, std::string_view variationName="")
Register systematic variations for a single existing column using auto-generated variation tags.
RResultPtr<::TGraph > Graph(std::string_view x="", std::string_view y="")
Fill and return a TGraph object (lazy action).
RResultPtr< ActionResultType > CallCreateActionWithoutColsIfPossible(const std::shared_ptr< ActionResultType > &, const std::shared_ptr< Helper > &, Others...)
RInterface< Proxied, DS_t > DefineSlot(std::string_view name, F expression, const ColumnNames_t &columns={})
Define a new column with a value dependent on the processing slot.
RResultPtr< double > StdDev(std::string_view columnName="")
Return the unbiased standard deviation of processed column values (lazy action).
std::enable_if_t< std::is_default_constructible< RetType >::value, RInterface< Proxied, DS_t > > DefineImpl(std::string_view name, F &&expression, const ColumnNames_t &columns, const std::string &where)
RInterface< Proxied, DS_t > DefinePerSample(std::string_view name, F expression)
Define a new column that is updated when the input sample changes.
RInterface & operator=(RInterface &&)=default
Move-assignment operator for RInterface.
RInterface< Proxied, DS_t > Vary(const std::vector< std::string > &colNames, F &&expression, const ColumnNames_t &inputColumns, std::size_t nVariations, std::string_view variationName)
Register systematic variations for multiple existing columns using auto-generated tags.
void ForeachSlot(F f, const ColumnNames_t &columns={})
Execute a user-defined function requiring a processing slot index on each entry (instant action).
RInterface< Proxied, DS_t > Vary(std::string_view colName, std::string_view expression, const std::vector< std::string > &variationTags, std::string_view variationName="")
Register systematic variations for a single existing column using custom variation tags.
RResultPtr< RDisplay > Display(const ColumnNames_t &columnList, size_t nRows=5, size_t nMaxCollectionElements=10)
Provides a representation of the columns in the dataset.
RInterface< RLoopManager > Cache(const ColumnNames_t &columnList)
Save selected columns in memory.
RInterface< Proxied, DS_t > Define(std::string_view name, F expression, const ColumnNames_t &columns={})
Define a new column.
RResultPtr< TStatistic > Stats(std::string_view value, std::string_view weight)
Return a TStatistic object, filled once per event (lazy action).
RInterface< Proxied, DS_t > Redefine(std::string_view name, std::string_view expression)
Overwrite the value and/or type of an existing column.
auto CallCreateActionWithoutColsIfPossible(const std::shared_ptr< ActionResultType > &resPtr, const std::shared_ptr< Helper > &hPtr, TTraits::TypeList< RDFDetail::RInferredType >) -> decltype(hPtr->Exec(0u), RResultPtr< ActionResultType >{})
RInterface< Proxied, DS_t > Vary(const std::vector< std::string > &colNames, std::string_view expression, std::size_t nVariations, std::string_view variationName)
Register systematic variations for multiple existing columns using auto-generated variation tags.
RResultPtr<::TH2D > Histo2D(const TH2DModel &model, std::string_view v1Name="", std::string_view v2Name="")
Fill and return a two-dimensional histogram (lazy action).
RResultPtr< RInterface< RLoopManager > > SnapshotImpl(std::string_view fullTreeName, std::string_view filename, const ColumnNames_t &columnList, const RSnapshotOptions &options)
RInterface< Proxied, DS_t > Vary(std::initializer_list< std::string > colNames, F &&expression, const ColumnNames_t &inputColumns, const std::vector< std::string > &variationTags, std::string_view variationName)
Register systematic variations for multiple existing columns using custom variation tags.
RResultPtr<::TProfile > Profile1D(const TProfile1DModel &model)
Fill and return a one-dimensional profile (lazy action).
RInterface(const std::shared_ptr< RLoopManager > &proxied)
Build a RInterface from a RLoopManager.
RInterface< RDFDetail::RFilter< F, Proxied >, DS_t > Filter(F f, const std::initializer_list< std::string > &columns)
Append a filter to the call graph.
RInterface< Proxied, DS_t > DefinePerSample(std::string_view name, std::string_view expression)
Define a new column that is updated when the input sample changes.
RResultPtr< double > Mean(std::string_view columnName="")
Return the mean of processed column values (lazy action).
RResultPtr< RInterface< RLoopManager > > Snapshot(std::string_view treename, std::string_view filename, std::initializer_list< std::string > columnList, const RSnapshotOptions &options=RSnapshotOptions())
Save selected columns to disk, in a new TTree treename in file filename.
RResultPtr< RDisplay > Display(std::initializer_list< std::string > columnList, size_t nRows=5, size_t nMaxCollectionElements=10)
Provides a representation of the columns in the dataset.
RInterface< Proxied, DS_t > Alias(std::string_view alias, std::string_view columnName)
Allow to refer to a column with a different name.
RInterface< RLoopManager > Cache(const ColumnNames_t &columnList)
Save selected columns in memory.
RInterface< Proxied, DS_t > Redefine(std::string_view name, F expression, const ColumnNames_t &columns={})
Overwrite the value and/or type of an existing column.
RInterface< RLoopManager > Cache(std::string_view columnNameRegexp="")
Save selected columns in memory.
RInterface< Proxied, DS_t > VaryImpl(const std::vector< std::string > &colNames, F &&expression, const ColumnNames_t &inputColumns, const std::vector< std::string > &variationTags, std::string_view variationName)
RResultPtr< typename std::decay_t< Helper >::Result_t > Book(Helper &&helper, const ColumnNames_t &columns={})
Book execution of a custom action using a user-defined helper object.
RResultPtr< RDisplay > Display(std::string_view columnNameRegexp="", size_t nRows=5, size_t nMaxCollectionElements=10)
Provides a representation of the columns in the dataset.
RInterface< RDFDetail::RFilterWithMissingValues< Proxied >, DS_t > FilterAvailable(std::string_view column)
Discard entries with missing values.
friend class RDFInternal::GraphDrawing::GraphCreatorHelper
RResultPtr<::TH2D > Histo2D(const TH2DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName)
Fill and return a weighted two-dimensional histogram (lazy action).
RInterface & operator=(const RInterface &)=default
Copy-assignment operator for RInterface.
RResultPtr< RDFDetail::SumReturnType_t< T > > Sum(std::string_view columnName="", const RDFDetail::SumReturnType_t< T > &initValue=RDFDetail::SumReturnType_t< T >{})
Return the sum of processed column values (lazy action).
RInterface< Proxied, DS_t > Vary(std::string_view colName, F &&expression, const ColumnNames_t &inputColumns, const std::vector< std::string > &variationTags, std::string_view variationName="")
Register systematic variations for a single existing column using custom variation tags.
RResultPtr< ULong64_t > Count()
Return the number of entries processed (lazy action).
RInterface< Proxied, DS_t > Vary(const std::vector< std::string > &colNames, std::string_view expression, const std::vector< std::string > &variationTags, std::string_view variationName)
Register systematic variations for multiple existing columns using custom variation tags.
RInterface< Proxied, DS_t > Define(std::string_view name, std::string_view expression)
Define a new column.
std::shared_ptr< Proxied > fProxiedPtr
Smart pointer to the graph node encapsulated by this RInterface.
RResultPtr<::TH1D > Histo1D(std::string_view vName)
Fill and return a one-dimensional histogram with the values of a column (lazy action).
RInterface< Proxied, DS_t > Vary(const std::vector< std::string > &colNames, F &&expression, const ColumnNames_t &inputColumns, const std::vector< std::string > &variationTags, std::string_view variationName)
Register systematic variations for multiple existing columns using custom variation tags.
RInterface< Proxied, DS_t > RedefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns={})
Overwrite the value and/or type of an existing column.
RResultPtr<::TH1D > Histo1D(const TH1DModel &model, std::string_view vName, std::string_view wName)
Fill and return a one-dimensional histogram with the weighted values of a column (lazy action).
RInterface< RLoopManager > CacheImpl(const ColumnNames_t &columnList, std::index_sequence< S... >)
Implementation of cache.
RInterface< RDFDetail::RRange< Proxied >, DS_t > Range(unsigned int end)
Creates a node that filters entries based on range.
RInterface< RDFDetail::RFilterWithMissingValues< Proxied >, DS_t > FilterMissing(std::string_view column)
Keep only the entries that have missing values.
RResultPtr< COLL > Take(std::string_view column="")
Return a collection of values of a column (lazy action, returns a std::vector by default).
RInterface< RLoopManager > Cache(std::initializer_list< std::string > columnList)
Save selected columns in memory.
RResultPtr<::TProfile2D > Profile2D(const TProfile2DModel &model, std::string_view v1Name="", std::string_view v2Name="", std::string_view v3Name="")
Fill and return a two-dimensional profile (lazy action).
const std::shared_ptr< Proxied > & GetProxiedPtr() const
RInterface< Proxied, DS_t > JittedVaryImpl(const std::vector< std::string > &colNames, std::string_view expression, const std::vector< std::string > &variationTags, std::string_view variationName, bool isSingleColumn)
RResultPtr<::TH3D > Histo3D(const TH3DModel &model, std::string_view v1Name="", std::string_view v2Name="", std::string_view v3Name="")
Fill and return a three-dimensional histogram (lazy action).
RInterface< Proxied, DS_t > Vary(std::initializer_list< std::string > colNames, F &&expression, const ColumnNames_t &inputColumns, std::size_t nVariations, std::string_view variationName)
Register systematic variations for for multiple existing columns using custom variation tags.
RResultPtr< std::decay_t< T > > Fill(T &&model, const ColumnNames_t &columnList)
Return an object of type T on which T::Fill will be called once per event (lazy action).
RResultPtr< RInterface< RLoopManager > > Snapshot(std::string_view treename, std::string_view filename, const ColumnNames_t &columnList, const RSnapshotOptions &options=RSnapshotOptions())
Save selected columns to disk, in a new TTree treename in file filename.
RResultPtr< RDisplay > Display(const ColumnNames_t &columnList, size_t nRows=5, size_t nMaxCollectionElements=10)
Provides a representation of the columns in the dataset.
RResultPtr< RCutFlowReport > Report()
Gather filtering statistics.
RInterface< Proxied, DS_t > RedefineSlot(std::string_view name, F expression, const ColumnNames_t &columns={})
Overwrite the value and/or type of an existing column.
RResultPtr<::TProfile2D > Profile2D(const TProfile2DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view v3Name, std::string_view wName)
Fill and return a two-dimensional profile (lazy action).
RResultPtr<::TGraphAsymmErrors > GraphAsymmErrors(std::string_view x="", std::string_view y="", std::string_view exl="", std::string_view exh="", std::string_view eyl="", std::string_view eyh="")
Fill and return a TGraphAsymmErrors object (lazy action).
RResultPtr< RInterface< RLoopManager > > Snapshot(std::string_view treename, std::string_view filename, const ColumnNames_t &columnList, const RSnapshotOptions &options=RSnapshotOptions())
Save selected columns to disk, in a new TTree treename in file filename.
RResultPtr< U > Aggregate(AccFun aggregator, MergeFun merger, std::string_view columnName="")
Execute a user-defined accumulation operation on the processed column values in each processing slot.
RInterface< Proxied, DS_t > DefineSlotEntry(std::string_view name, F expression, const ColumnNames_t &columns={})
Define a new column with a value dependent on the processing slot and the current entry.
RResultPtr< RDFDetail::MinReturnType_t< T > > Min(std::string_view columnName="")
Return the minimum of processed column values (lazy action).
RResultPtr< T > Reduce(F f, std::string_view columnName="")
Execute a user-defined reduce operation on the values of a column.
void Foreach(F f, const ColumnNames_t &columns={})
Execute a user-defined function on each entry (instant action).
RInterface< RDFDetail::RJittedFilter, DS_t > Filter(std::string_view expression, std::string_view name="")
Append a filter to the call graph.
RResultPtr<::TProfile2D > Profile2D(const TProfile2DModel &model)
Fill and return a two-dimensional profile (lazy action).
RInterface< RDFDetail::RFilter< F, Proxied >, DS_t > Filter(F f, const ColumnNames_t &columns={}, std::string_view name="")
Append a filter to the call graph.
RResultPtr< U > Aggregate(AccFun aggregator, MergeFun merger, std::string_view columnName, const U &aggIdentity)
Execute a user-defined accumulation operation on the processed column values in each processing slot.
RInterface(RInterface &&)=default
Move-ctor for RInterface.
RResultPtr< T > Reduce(F f, std::string_view columnName, const T &redIdentity)
Execute a user-defined reduce operation on the values of a column.
RResultPtr<::TH3D > Histo3D(const TH3DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view v3Name, std::string_view wName)
Fill and return a three-dimensional histogram (lazy action).
RInterface< Proxied, DS_t > DefaultValueFor(std::string_view column, const T &defaultValue)
In case the value in the given column is missing, provide a default value.
RInterface< RDFDetail::RFilter< F, Proxied >, DS_t > Filter(F f, std::string_view name)
Append a filter to the call graph.
RInterface< RDFDetail::RRange< Proxied >, DS_t > Range(unsigned int begin, unsigned int end, unsigned int stride=1)
Creates a node that filters entries based on range: [begin, end).
std::vector< std::string > GetFilterNames()
Returns the names of the filters created.
RResultPtr<::TH1D > Histo1D(const TH1DModel &model={"", "", 128u, 0., 0.}, std::string_view vName="")
Fill and return a one-dimensional histogram with the values of a column (lazy action).
RResultPtr<::TProfile > Profile1D(const TProfile1DModel &model, std::string_view v1Name, std::string_view v2Name, std::string_view wName)
Fill and return a one-dimensional profile (lazy action).
RResultPtr<::TH3D > Histo3D(const TH3DModel &model)
RResultPtr< RDFDetail::MaxReturnType_t< T > > Max(std::string_view columnName="")
Return the maximum of processed column values (lazy action).
RInterface< Proxied, DS_t > Vary(std::initializer_list< std::string > colNames, std::string_view expression, std::size_t nVariations, std::string_view variationName)
Register systematic variations for multiple existing columns using auto-generated variation tags.
A RDataSource implementation which is built on top of result proxies.
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
const_iterator begin() const
const_iterator end() const
typename RemoveFirstParameter< T >::type RemoveFirstParameter_t
TDirectory::TContext keeps track and restore the current directory.
Definition TDirectory.h:89
A TGraph is an object made of two arrays X and Y with npoints each.
Definition TGraph.h:41
Statistical variable, defined by its mean and variance (RMS).
Definition TStatistic.h:33
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
void CheckForNoVariations(const std::string &where, std::string_view definedColView, const RColumnRegister &colRegister)
Throw if the column has systematic variations attached.
ParsedTreePath ParseTreePath(std::string_view fullTreeName)
void CheckForRedefinition(const std::string &where, std::string_view definedColView, const RColumnRegister &colRegister, const ColumnNames_t &treeColumns, const ColumnNames_t &dataSourceColumns)
Throw if column definedColView is already there.
void CheckForDefinition(const std::string &where, std::string_view definedColView, const RColumnRegister &colRegister, const ColumnNames_t &treeColumns, const ColumnNames_t &dataSourceColumns)
Throw if column definedColView is not already there.
void ChangeEmptyEntryRange(const ROOT::RDF::RNode &node, std::pair< ULong64_t, ULong64_t > &&newRange)
std::shared_ptr< RJittedDefine > BookDefineJit(std::string_view name, std::string_view expression, RLoopManager &lm, RDataSource *ds, const RColumnRegister &colRegister, const ColumnNames_t &branches, std::shared_ptr< RNodeBase > *upcastNodeOnHeap)
Book the jitting of a Define call.
void CheckValidCppVarName(std::string_view var, const std::string &where)
void ChangeSpec(const ROOT::RDF::RNode &node, ROOT::RDF::Experimental::RDatasetSpec &&spec)
Changes the input dataset specification of an RDataFrame.
const std::vector< std::string > & GetTopLevelFieldNames(const ROOT::RDF::RDataSource &ds)
Definition RDFUtils.cxx:553
void RemoveDuplicates(ColumnNames_t &columnNames)
std::shared_ptr< RNodeBase > UpcastNode(std::shared_ptr< RNodeBase > ptr)
std::string TypeID2TypeName(const std::type_info &id)
Returns the name of a type starting from its type_info An empty string is returned in case of failure...
Definition RDFUtils.cxx:123
std::vector< std::string > GetFilterNames(const std::shared_ptr< RLoopManager > &loopManager)
std::string GetDataSourceLabel(const ROOT::RDF::RNode &node)
std::string PrettyPrintAddr(const void *const addr)
void TriggerRun(ROOT::RDF::RNode node)
Trigger the execution of an RDataFrame computation graph.
void CheckTypesAndPars(unsigned int nTemplateParams, unsigned int nColumnNames)
std::string DemangleTypeIdName(const std::type_info &typeInfo)
bool AtLeastOneEmptyString(const std::vector< std::string_view > strings)
std::pair< std::vector< std::string >, std::vector< std::string > > AddSizeBranches(const std::vector< std::string > &branches, ROOT::RDF::RDataSource *ds, std::vector< std::string > &&colsWithoutAliases, std::vector< std::string > &&colsWithAliases)
Return copies of colsWithoutAliases and colsWithAliases with size branches for variable-sized array b...
void SetTTreeLifeline(ROOT::RDF::RNode &node, std::any lifeline)
std::shared_ptr< RDFDetail::RJittedFilter > BookFilterJit(std::shared_ptr< RDFDetail::RNodeBase > *prevNodeOnHeap, std::string_view name, std::string_view expression, const ColumnNames_t &branches, const RColumnRegister &colRegister, TTree *tree, RDataSource *ds)
Book the jitting of a Filter call.
ColumnNames_t FilterArraySizeColNames(const ColumnNames_t &columnNames, const std::string &action)
Take a list of column names, return that list with entries starting by '#' filtered out.
std::shared_ptr< RJittedVariation > BookVariationJit(const std::vector< std::string > &colNames, std::string_view variationName, const std::vector< std::string > &variationTags, std::string_view expression, RLoopManager &lm, RDataSource *ds, const RColumnRegister &colRegister, const ColumnNames_t &branches, std::shared_ptr< RNodeBase > *upcastNodeOnHeap, bool isSingleColumn)
Book the jitting of a Vary call.
void CheckForDuplicateSnapshotColumns(const ColumnNames_t &cols)
ColumnNames_t ConvertRegexToColumns(const ColumnNames_t &colNames, std::string_view columnNameRegexp, std::string_view callerName)
std::shared_ptr< RJittedDefine > BookDefinePerSampleJit(std::string_view name, std::string_view expression, RLoopManager &lm, const RColumnRegister &colRegister, std::shared_ptr< RNodeBase > *upcastNodeOnHeap)
Book the jitting of a DefinePerSample call.
void ChangeBeginAndEndEntries(const RNode &node, Long64_t begin, Long64_t end)
std::vector< std::string > GetTopLevelBranchNames(TTree &t)
Get all the top-level branches names, including the ones of the friend trees.
RInterface<::ROOT::Detail::RDF::RNodeBase, void > RNode
std::vector< std::string > ColumnNames_t
ROOT type_traits extensions.
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
void EnableImplicitMT(UInt_t numthreads=0)
Enable ROOT's implicit multi-threading for all objects and methods that provide an internal paralleli...
Definition TROOT.cxx:539
Bool_t IsImplicitMTEnabled()
Returns true if the implicit multi-threading in ROOT is enabled.
Definition TROOT.cxx:570
@ kError
An error.
void DisableImplicitMT()
Disables the implicit multi-threading in ROOT (see EnableImplicitMT).
Definition TROOT.cxx:556
type is TypeList if MustRemove is false, otherwise it is a TypeList with the first type removed
Definition Utils.hxx:144
A collection of options to steer the creation of the dataset on file.
ESnapshotOutputFormat fOutputFormat
Which data format to write to.
bool fLazy
Do not start the event loop when Snapshot is called.
A struct which stores the parameters of a TH1D.
std::shared_ptr<::TH1D > GetHistogram() const
A struct which stores the parameters of a TH2D.
std::shared_ptr<::TH2D > GetHistogram() const
A struct which stores the parameters of a TH3D.
std::shared_ptr<::TH3D > GetHistogram() const
A struct which stores the parameters of a THnD.
std::shared_ptr<::THnD > GetHistogram() const
A struct which stores the parameters of a TProfile.
std::shared_ptr<::TProfile > GetProfile() const
A struct which stores the parameters of a TProfile2D.
std::shared_ptr<::TProfile2D > GetProfile() const
Lightweight storage for a collection of types.