Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
HistoToWorkspaceFactoryFast.cxx
Go to the documentation of this file.
1// @(#)root/roostats:$Id: cranmer $
2// Author: Kyle Cranmer, Akira Shibata
3/*************************************************************************
4 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
5 * All rights reserved. *
6 * *
7 * For the licensing terms see $ROOTSYS/LICENSE. *
8 * For the list of contributors see $ROOTSYS/README/CREDITS. *
9 *************************************************************************/
10
11////////////////////////////////////////////////////////////////////////////////
12
13/** \class RooStats::HistFactory::HistoToWorkspaceFactoryFast
14 * \ingroup HistFactory
15 * This class provides helper functions for creating likelihood models from histograms.
16 * It is used by RooStats::HistFactory::MakeModelAndMeasurementFast.
17 *
18 * A tutorial showing how to create a HistFactory model is hf001_example.C
19 */
20
21
22#include <RooAddition.h>
23#include <RooBinWidthFunction.h>
24#include <RooBinning.h>
25#include <RooCategory.h>
26#include <RooConstVar.h>
27#include <RooDataHist.h>
28#include <RooDataSet.h>
29#include <RooFit/ModelConfig.h>
30#include <RooFitResult.h>
31#include <RooFormulaVar.h>
32#include <RooGamma.h>
33#include <RooGaussian.h>
34#include <RooGlobalFunc.h>
35#include <RooHelpers.h>
36#include <RooHistFunc.h>
37#include <RooNumIntConfig.h>
38#include <RooPoisson.h>
39#include <RooPolyVar.h>
40#include <RooProdPdf.h>
41#include <RooProduct.h>
42#include <RooRandom.h>
43#include <RooRealSumPdf.h>
44#include <RooRealVar.h>
45#include <RooSimultaneous.h>
46#include <RooWorkspace.h>
47
52
53#include "HFMsgService.h"
54
55#include "TH1.h"
56#include "TStopwatch.h"
57
58// specific to this package
65
66#include <algorithm>
67#include <fstream>
68#include <iomanip>
69#include <memory>
70#include <set>
71#include <utility>
72
73constexpr double alphaLow = -5.0;
74constexpr double alphaHigh = 5.0;
75
76std::vector<double> histToVector(TH1 const &hist)
77{
78 // Must get the full size of the TH1 (No direct method to do this...)
79 int numBins = hist.GetNbinsX() * hist.GetNbinsY() * hist.GetNbinsZ();
80 std::vector<double> out(numBins);
81 int histIndex = 0;
82 for (int i = 0; i < numBins; ++i) {
83 while (hist.IsBinUnderflow(histIndex) || hist.IsBinOverflow(histIndex)) {
84 ++histIndex;
85 }
86 out[i] = hist.GetBinContent(histIndex);
87 ++histIndex;
88 }
89 return out;
90}
91
92// use this order for safety on library loading
93using namespace RooStats;
94using std::string, std::vector;
95
96using namespace RooStats::HistFactory::Detail;
98
99namespace RooStats::HistFactory {
100
105
107 Configuration const& cfg) :
108 fSystToFix( measurement.GetConstantParams() ),
109 fParamValues( measurement.GetParamValues() ),
110 fNomLumi( measurement.GetLumi() ),
111 fLumiError( measurement.GetLumi()*measurement.GetLumiRelErr() ),
112 fLowBin( measurement.GetBinLow() ),
113 fHighBin( measurement.GetBinHigh() ),
114 fCfg{cfg} {
115
116 // Set Preprocess functions
117 SetFunctionsToPreprocess( measurement.GetPreprocessFunctions() );
118
119 }
120
122
123 // Configure a workspace by doing any
124 // necessary post-processing and by
125 // creating a ModelConfig
126
127 // Make a ModelConfig and configure it
128 ModelConfig * proto_config = static_cast<ModelConfig *>(ws_single->obj("ModelConfig"));
129 if( proto_config == nullptr ) {
130 cxcoutFHF << "Error: Did not find 'ModelConfig' object in file: " << ws_single->GetName() << std::endl;
131 throw hf_exc();
132 }
133
134 if( measurement.GetPOIList().empty() ) {
135 cxcoutWHF << "No Parametetrs of interest are set" << std::endl;
136 }
137
138
139 std::stringstream sstream;
140 sstream << "Setting Parameter(s) of Interest as: ";
141 for(auto const& item : measurement.GetPOIList()) {
142 sstream << item << " ";
143 }
144 cxcoutIHF << sstream.str() << std::endl;
145
146 RooArgSet params;
147 for(auto const& poi_name : measurement.GetPOIList()) {
148 if(RooRealVar* poi = (RooRealVar*) ws_single->var(poi_name)){
149 params.add(*poi);
150 }
151 else {
152 cxcoutWHF << "WARNING: Can't find parameter of interest: " << poi_name
153 << " in Workspace. Not setting in ModelConfig." << std::endl;
154 // throw hf_exc();
155 }
156 }
157 proto_config->SetParametersOfInterest(params);
158
159 // Name of an 'edited' model, if necessary
160 std::string NewModelName = "newSimPdf"; // <- This name is hard-coded in HistoToWorkspaceFactoryFast::EditSyt. Probably should be changed to : std::string("new") + ModelName;
161
162 // Get the pdf
163 // Notice that we get the "new" pdf, this is the one that is
164 // used in the creation of these asimov datasets since they
165 // are fitted (or may be, at least).
166 RooAbsPdf* pdf = ws_single->pdf(NewModelName);
167 if( !pdf ) pdf = ws_single->pdf( ModelName );
168 const RooArgSet* observables = ws_single->set("observables");
169
170 // Set the ModelConfig's Params of Interest
171 if(!measurement.GetPOIList().empty()){
172 proto_config->GuessObsAndNuisance(*observables, RooMsgService::instance().isActive(nullptr, RooFit::HistFactory, RooFit::INFO));
173 }
174
175 // Now, let's loop over any additional asimov datasets
176 // that we need to make
177
178 // Create a SnapShot of the nominal values
179 std::string SnapShotName = "NominalParamValues";
180 ws_single->saveSnapshot(SnapShotName, ws_single->allVars());
181
182 for( unsigned int i=0; i<measurement.GetAsimovDatasets().size(); ++i) {
183
184 // Set the variable values and "const" ness with the workspace
185 RooStats::HistFactory::Asimov& asimov = measurement.GetAsimovDatasets().at(i);
186 std::string AsimovName = asimov.GetName();
187
188 cxcoutPHF << "Generating additional Asimov Dataset: " << AsimovName << std::endl;
190 std::unique_ptr<RooAbsData> asimov_dataset{AsymptoticCalculator::GenerateAsimovData(*pdf, *observables)};
191
192 cxcoutPHF << "Importing Asimov dataset" << std::endl;
193 bool failure = ws_single->import(*asimov_dataset, RooFit::Rename(AsimovName.c_str()));
194 if( failure ) {
195 cxcoutFHF << "Error: Failed to import Asimov dataset: " << AsimovName << std::endl;
196 throw hf_exc();
197 }
198
199 // Load the snapshot at the end of every loop iteration
200 // so we start each loop with a "clean" snapshot
201 ws_single->loadSnapshot(SnapShotName.c_str());
202 }
203
204 // Cool, we're done
205 return; // ws_single;
206 }
207
208
209 // We want to eliminate this interface and use the measurement directly
211
212 // This is a pretty light-weight wrapper function
213 //
214 // Take a fully configured measurement as well as
215 // one of its channels
216 //
217 // Return a workspace representing that channel
218 // Do this by first creating a vector of EstimateSummary's
219 // and this by configuring the workspace with any post-processing
220
221 // Get the channel's name
222 string ch_name = channel.GetName();
223
224 // Create a workspace for a SingleChannel from the Measurement Object
225 std::unique_ptr<RooWorkspace> ws_single{this->MakeSingleChannelWorkspace(measurement, channel)};
226 if( ws_single == nullptr ) {
227 cxcoutFHF << "Error: Failed to make Single-Channel workspace for channel: " << ch_name
228 << " and measurement: " << measurement.GetName() << std::endl;
229 throw hf_exc();
230 }
231
232 // Finally, configure that workspace based on
233 // properties of the measurement
235
236 return RooFit::makeOwningPtr(std::move(ws_single));
237
238 }
239
241
242 // This function takes a fully configured measurement
243 // which may contain several channels and returns
244 // a workspace holding the combined model
245 //
246 // This can be used, for example, within a script to produce
247 // a combined workspace on-the-fly
248 //
249 // This is a static function (for now) to make
250 // it a one-liner
251
252
253 Configuration config;
254 return MakeCombinedModel(measurement,config);
255 }
256
258
259 // This function takes a fully configured measurement
260 // which may contain several channels and returns
261 // a workspace holding the combined model
262 //
263 // This can be used, for example, within a script to produce
264 // a combined workspace on-the-fly
265 //
266 // This is a static function (for now) to make
267 // it a one-liner
268
270
271 // First, we create an instance of a HistFactory
273
274 // Loop over the channels and create the individual workspaces
275 std::vector<std::unique_ptr<RooWorkspace>> channel_workspaces;
276 std::vector<std::string> channel_names;
277
278 for(HistFactory::Channel& channel : measurement.GetChannels()) {
279
280 if( ! channel.CheckHistograms() ) {
281 cxcoutFHF << "MakeModelAndMeasurementsFast: Channel: " << channel.GetName()
282 << " has uninitialized histogram pointers" << std::endl;
283 throw hf_exc();
284 }
285
286 string ch_name = channel.GetName();
287 channel_names.push_back(ch_name);
288
289 // GHL: Renaming to 'MakeSingleChannelWorkspace'
290 channel_workspaces.emplace_back(histFactory.MakeSingleChannelModel(measurement, channel));
291 }
292
293
294 // Now, combine the individual channel workspaces to
295 // form the combined workspace
296 std::unique_ptr<RooWorkspace> ws{histFactory.MakeCombinedModel( channel_names, channel_workspaces )};
297
298
299 // Configure the workspace
301
302 // Done. Return the pointer
303 return RooFit::makeOwningPtr(std::move(ws));
304
305 }
306
307namespace {
308
309template <class Arg_t, typename... Args_t>
310Arg_t &emplace(RooWorkspace &ws, std::string const &name, Args_t &&...args)
311{
312 Arg_t arg{name.c_str(), name.c_str(), std::forward<Args_t>(args)...};
314 return *dynamic_cast<Arg_t *>(ws.arg(name));
315}
316
317} // namespace
318
319/// Create observables of type RooRealVar. Creates 1 to 3 observables, depending on the type of the histogram.
321 RooArgList observables;
322
323 for (unsigned int idx=0; idx < fObsNameVec.size(); ++idx) {
324 if (!proto.var(fObsNameVec[idx])) {
325 const TAxis *axis = (idx == 0) ? hist->GetXaxis() : (idx == 1 ? hist->GetYaxis() : hist->GetZaxis());
326 int nbins = axis->GetNbins();
327 // create observable
328 RooRealVar &obs = emplace<RooRealVar>(proto, fObsNameVec[idx], axis->GetXmin(), axis->GetXmax());
329 if(strlen(axis->GetTitle())>0) obs.SetTitle(axis->GetTitle());
330 obs.setBins(nbins);
331 if (axis->IsVariableBinSize()) {
332 RooBinning binning(nbins, axis->GetXbins()->GetArray());
333 obs.setBinning(binning);
334 }
335 }
336
337 observables.add(*proto.var(fObsNameVec[idx]));
338 }
339
340 return observables;
341}
342
343 /// Create the nominal hist function from `hist`, and register it in the workspace.
345 const RooArgList& observables) const {
346 if(hist) {
347 cxcoutI(HistFactory) << "processing hist " << hist->GetName() << std::endl;
348 } else {
349 cxcoutF(HistFactory) << "hist is empty" << std::endl;
350 R__ASSERT(hist != nullptr);
351 return nullptr;
352 }
353
354 // determine histogram dimensionality
355 unsigned int histndim(1);
356 std::string classname = hist->ClassName();
357 if (classname.find("TH1")==0) { histndim=1; }
358 else if (classname.find("TH2")==0) { histndim=2; }
359 else if (classname.find("TH3")==0) { histndim=3; }
360 R__ASSERT( histndim==fObsNameVec.size() );
361
362 prefix += "_Hist_alphanominal";
363
364 RooDataHist histDHist(prefix + "DHist","",observables,hist);
365
366 return &emplace<RooHistFunc>(proto, prefix, observables,histDHist,0);
367 }
368
369 namespace {
370
371 void makeGaussianConstraint(RooAbsArg& param, RooWorkspace& proto, bool isUniform,
372 std::vector<std::string> & constraintTermNames) {
373 std::string paramName = param.GetName();
374 std::string nomName = "nom_" + paramName;
375 std::string constraintName = paramName + "Constraint";
376
377 // do nothing if the constraint term already exists
378 if(proto.pdf(constraintName)) return;
379
380 // case systematic is uniform (assume they are like a Gaussian but with
381 // a large width (100 instead of 1)
382 const double gaussSigma = isUniform ? 100. : 1.0;
383 if (isUniform) {
384 cxcoutIHF << "Added a uniform constraint for " << paramName << " as a Gaussian constraint with a very large sigma " << std::endl;
385 }
386
390 nomParam.setConstant();
392 paramVar.setError(gaussSigma); // give param initial error to match gaussSigma
393 const_cast<RooArgSet*>(proto.set("globalObservables"))->add(nomParam);
394 }
395
396 /// Make list of abstract parameters that interpolate in space of variations.
398 RooArgList params( ("alpha_Hist") );
399
400 for(auto const& histoSys : histoSysList) {
401 params.add(getOrCreate<RooRealVar>(proto, "alpha_" + histoSys.GetName(), alphaLow, alphaHigh));
402 }
403
404 return params;
405 }
406
407 /// Create a linear interpolation object that holds nominal and systematics, import it into the workspace,
408 /// and return a pointer to it.
411 RooWorkspace& proto, const std::vector<HistoSys>& histoSysList,
412 const string& prefix,
413 const RooArgList& obsList) {
414
415 // now make function that linearly interpolates expectation between variations
416 // get low/high variations to interpolate between
417 std::vector<double> low;
418 std::vector<double> high;
421 for(unsigned int j=0; j<histoSysList.size(); ++j){
422 std::string str = prefix + "_" + std::to_string(j);
423
424 const HistoSys& histoSys = histoSysList.at(j);
425 auto lowDHist = std::make_unique<RooDataHist>(str+"lowDHist","",obsList, histoSys.GetHistoLow());
426 auto highDHist = std::make_unique<RooDataHist>(str+"highDHist","",obsList, histoSys.GetHistoHigh());
427 lowSet.addOwned(std::make_unique<RooHistFunc>((str+"low").c_str(),"",obsList,std::move(lowDHist),0));
428 highSet.addOwned(std::make_unique<RooHistFunc>((str+"high").c_str(),"",obsList,std::move(highDHist),0));
429 }
430
431 // this is sigma(params), a piece-wise linear interpolation
433 interp.setPositiveDefinite();
434 interp.setAllInterpCodes(4); // LM: change to 4 (piece-wise linear to 6th order polynomial interpolation + linear extrapolation )
435 // KC: interpo codes 1 etc. don't have proper analytic integral.
437 interp.setBinIntegrator(obsSet);
438 interp.forceNumInt();
439
440 proto.import(interp, RooFit::RecycleConflictNodes()); // individual params have already been imported in first loop of this function
441
442 return proto.arg(prefix);
443 }
444
445 }
446
447 // GHL: Consider passing the NormFactor list instead of the entire sample
448 std::unique_ptr<RooProduct> HistoToWorkspaceFactoryFast::CreateNormFactor(RooWorkspace& proto, string& channel, string& sigmaEpsilon, Sample& sample, bool doRatio){
449
450 std::vector<string> prodNames;
451
452 vector<NormFactor> normList = sample.GetNormFactorList();
455
456 string overallNorm_times_sigmaEpsilon = sample.GetName() + "_" + channel + "_scaleFactors";
457 auto sigEps = proto.arg(sigmaEpsilon);
458 assert(sigEps);
459 auto normFactor = std::make_unique<RooProduct>(overallNorm_times_sigmaEpsilon.c_str(), overallNorm_times_sigmaEpsilon.c_str(), RooArgList(*sigEps));
460
461 if(!normList.empty()){
462
463 for(NormFactor &norm : normList) {
464 string varname = norm.GetName();
465 if(doRatio) {
466 varname += "_" + channel;
467 }
468
469 // GHL: Check that the NormFactor doesn't already exist
470 // (it may have been created as a function expression
471 // during preprocessing)
472 std::stringstream range;
473 range << "[" << norm.GetVal() << "," << norm.GetLow() << "," << norm.GetHigh() << "]";
474
475 if( proto.obj(varname) == nullptr) {
476 cxcoutI(HistFactory) << "making normFactor: " << norm.GetName() << std::endl;
477 // remove "doRatio" and name can be changed when ws gets imported to the combined model.
478 emplace<RooRealVar>(proto, varname, norm.GetVal(), norm.GetLow(), norm.GetHigh());
479 proto.var(varname)->setError(0); // ensure factor is assigned an initial error, even if its zero
480 }
481
482 prodNames.push_back(varname);
483 rangeNames.push_back(range.str());
484 normFactorNames.push_back(varname);
485 }
486
487
488 for (const auto& name : prodNames) {
489 auto arg = proto.arg(name);
490 assert(arg);
491 normFactor->addTerm(arg);
492 }
493
494 }
495
496 unsigned int rangeIndex=0;
497 for( vector<string>::iterator nit = normFactorNames.begin(); nit!=normFactorNames.end(); ++nit){
498 if( count (normFactorNames.begin(), normFactorNames.end(), *nit) > 1 ){
499 cxcoutI(HistFactory) <<"<NormFactor Name =\""<<*nit<<"\"> is duplicated for <Sample Name=\""
500 << sample.GetName() << "\">, but only one factor will be included. \n Instead, define something like"
501 << "\n\t<Function Name=\""<<*nit<<"Squared\" Expression=\""<<*nit<<"*"<<*nit<<"\" Var=\""<<*nit<<rangeNames.at(rangeIndex)
502 << "\"> \nin your top-level XML's <Measurement> entry and use <NormFactor Name=\""<<*nit<<"Squared\" in your channel XML file."<< std::endl;
503 }
504 ++rangeIndex;
505 }
506
507 return normFactor;
508 }
509
511 string interpName,
512 std::vector<OverallSys>& systList,
515
516 // add variables for all the relative overall uncertainties we expect
517 totSystTermNames.push_back(prefix);
518
519 RooArgSet params(prefix.c_str());
522
523 std::map<std::string, double>::iterator itconstr;
524 for(unsigned int i = 0; i < systList.size(); ++i) {
525
526 OverallSys& sys = systList.at(i);
527 std::string strname = sys.GetName();
528 const char * name = strname.c_str();
529
530 // case of no systematic (is it possible)
531 if (meas.GetNoSyst().count(sys.GetName()) > 0 ) {
532 cxcoutI(HistFactory) << "HistoToWorkspaceFast::AddConstraintTerm - skip systematic " << sys.GetName() << std::endl;
533 continue;
534 }
535 // case systematic is a gamma constraint
536 if (meas.GetGammaSyst().count(sys.GetName()) > 0 ) {
537 double relerr = meas.GetGammaSyst().find(sys.GetName() )->second;
538 if (relerr <= 0) {
539 cxcoutI(HistFactory) << "HistoToWorkspaceFast::AddConstraintTerm - zero uncertainty assigned - skip systematic " << sys.GetName() << std::endl;
540 continue;
541 }
542 const double tauVal = 1./(relerr*relerr);
543 const double sqtau = 1./relerr;
544 RooRealVar &beta = emplace<RooRealVar>(proto, "beta_" + strname, 1., 0., 10.);
545 // the global observable (y_s)
546 RooRealVar &yvar = emplace<RooRealVar>(proto, "nom_" + std::string{beta.GetName()}, tauVal, 0., 10.);
547 // the rate of the gamma distribution (theta)
548 RooRealVar &theta = emplace<RooRealVar>(proto, "theta_" + strname, 1./tauVal);
549 // find alpha as function of beta
551
552 // add now the constraint itself Gamma_beta_constraint(beta, y+1, tau, 0 )
553 // build the gamma parameter k = as y_s + 1
554 RooAddition &kappa = emplace<RooAddition>(proto, "k_" + std::string{yvar.GetName()}, RooArgList{yvar, 1.0});
555 RooGamma &gamma = emplace<RooGamma>(proto, std::string{beta.GetName()} + "Constraint", beta, kappa, theta, RooFit::RooConst(0.0));
557 alphaOfBeta.Print("t");
558 gamma.Print("t");
559 }
560 constraintTermNames.push_back(gamma.GetName());
561 // set global observables
562 yvar.setConstant(true);
563 const_cast<RooArgSet*>(proto.set("globalObservables"))->add(yvar);
564
565 // add alphaOfBeta in the list of params to interpolate
566 params.add(alphaOfBeta);
567 cxcoutI(HistFactory) << "Added a gamma constraint for " << name << std::endl;
568
569 }
570 else {
571 RooRealVar& alpha = getOrCreate<RooRealVar>(proto, prefix + sys.GetName(), 0, alphaLow, alphaHigh);
572 // add the Gaussian constraint part
573 const bool isUniform = meas.GetUniformSyst().count(sys.GetName()) > 0;
575
576 // check if exists a log-normal constraint
577 if (meas.GetLogNormSyst().count(sys.GetName()) == 0 && meas.GetGammaSyst().count(sys.GetName()) == 0 ) {
578 // just add the alpha for the parameters of the FlexibleInterpVar function
579 params.add(alpha);
580 }
581 // case systematic is a log-normal constraint
582 if (meas.GetLogNormSyst().count(sys.GetName()) > 0 ) {
583 // log normal constraint for parameter
584 const double relerr = meas.GetLogNormSyst().find(sys.GetName() )->second;
585
587 proto, "alphaOfBeta_" + sys.GetName(), "x[0]*(pow(x[1],x[2])-1.)",
588 RooArgList{emplace<RooRealVar>(proto, "tau_" + sys.GetName(), 1. / relerr),
589 emplace<RooRealVar>(proto, "kappa_" + sys.GetName(), 1. + relerr), alpha});
590
591 cxcoutI(HistFactory) << "Added a log-normal constraint for " << name << std::endl;
593 alphaOfBeta.Print("t");
594 }
595 params.add(alphaOfBeta);
596 }
597
598 }
599 // add low/high vectors
600 lowVec.push_back(sys.GetLow());
601 highVec.push_back(sys.GetHigh());
602
603 } // end sys loop
604
605 if(!systList.empty()){
606 // this is epsilon(alpha_j), a piece-wise linear interpolation
607 // LinInterpVar interp( (interpName).c_str(), "", params, 1., lowVec, highVec);
608
609 assert(!params.empty());
610 assert(lowVec.size() == params.size());
611
612 FlexibleInterpVar interp( (interpName).c_str(), "", params, 1., lowVec, highVec);
613 interp.setAllInterpCodes(4); // LM: change to 4 (piece-wise exponential to 6th order polynomial interpolation + exponential extrapolation )
614 //interp.setAllInterpCodes(0); // simple linear interpolation
615 proto.import(interp); // params have already been imported in first loop of this function
616 } else{
617 // some strange behavior if params,lowVec,highVec are empty.
618 //cout << "WARNING: No OverallSyst terms" << std::endl;
619 emplace<RooConstVar>(proto, interpName, 1.); // params have already been imported in first loop of this function
620 }
621 }
622
623
626 assert(sampleScaleFactors.size() == sampleHistFuncs.size());
627
628 // for ith bin calculate totN_i = lumi * sum_j expected_j * syst_j
629
630 if (fObsNameVec.empty() && !fObsName.empty())
631 throw std::logic_error("HistFactory didn't process the observables correctly. Please file a bug report.");
632
633 auto firstHistFunc = dynamic_cast<const RooHistFunc*>(sampleHistFuncs.front().front());
634 if (!firstHistFunc) {
635 auto piecewiseInt = dynamic_cast<const PiecewiseInterpolation*>(sampleHistFuncs.front().front());
636 firstHistFunc = dynamic_cast<const RooHistFunc*>(piecewiseInt->nominalHist());
637 }
639
640 // Prepare a function to divide all bin contents by bin width to get a density:
641 auto &binWidth = emplace<RooBinWidthFunction>(proto, totName + "_binWidth", *firstHistFunc, true);
642
643 // Loop through samples and create products of their functions:
644 RooArgSet coefList;
646 for (unsigned int i=0; i < sampleHistFuncs.size(); ++i) {
647 assert(!sampleHistFuncs[i].empty());
648 coefList.add(*sampleScaleFactors[i]);
649
650 std::vector<RooAbsArg*>& thisSampleHistFuncs = sampleHistFuncs[i];
651 thisSampleHistFuncs.push_back(&binWidth);
652
653 if (thisSampleHistFuncs.size() == 1) {
654 // Just one function. Book it.
655 shapeList.add(*thisSampleHistFuncs.front());
656 } else {
657 // Have multiple functions. We need to multiply them.
658 std::string name = thisSampleHistFuncs.front()->GetName();
659 auto pos = name.find("Hist_alpha");
660 if (pos != std::string::npos) {
661 name = name.substr(0, pos) + "shapes";
662 } else if ( (pos = name.find("nominal")) != std::string::npos) {
663 name = name.substr(0, pos) + "shapes";
664 }
665
668 shapeList.add(*proto.function(name));
669 }
670 }
671
672 // Sum all samples
673 RooRealSumPdf tot(totName.c_str(), totName.c_str(), shapeList, coefList, true);
674 tot.specialIntegratorConfig(true)->method1D().setLabel("RooBinIntegrator") ;
675 tot.specialIntegratorConfig(true)->method2D().setLabel("RooBinIntegrator") ;
676 tot.specialIntegratorConfig(true)->methodND().setLabel("RooBinIntegrator") ;
677 tot.forceNumInt();
678
679 // for mixed generation in RooSimultaneous
680 tot.setAttribute("GenerateBinned"); // for use with RooSimultaneous::generate in mixed mode
681
682 // Enable the binned likelihood optimization
683 if(fCfg.binnedFitOptimization) {
684 tot.setAttribute("BinnedLikelihood");
685 }
686
688 }
689
690 //////////////////////////////////////////////////////////////////////////////
691
693
694 std::ofstream covFile(filename);
695
696 covFile << " ";
697 for (auto const *myargi : static_range_cast<RooRealVar *>(*params)) {
698 if (myargi->isConstant())
699 continue;
700 covFile << " & " << myargi->GetName();
701 }
702 covFile << "\\\\ \\hline \n";
703 for (auto const *myargi : static_range_cast<RooRealVar *>(*params)) {
704 if(myargi->isConstant()) continue;
705 covFile << myargi->GetName();
706 for (auto const *myargj : static_range_cast<RooRealVar *>(*params)) {
707 if(myargj->isConstant()) continue;
708 std::cout << myargi->GetName() << "," << myargj->GetName();
709 double corr = result->correlation(*myargi, *myargj);
710 covFile << " & " << std::fixed << std::setprecision(2) << corr;
711 }
712 std::cout << std::endl;
713 covFile << " \\\\\n";
714 }
715
716 covFile.close();
717 }
718
719
720 ///////////////////////////////////////////////
722
723 // check inputs (see JIRA-6890 )
724
725 if (channel.GetSamples().empty()) {
726 Error("MakeSingleChannelWorkspace",
727 "The input Channel does not contain any sample - return a nullptr");
728 return nullptr;
729 }
730
731 const TH1* channel_hist_template = channel.GetSamples().front().GetHisto();
732 if (channel_hist_template == nullptr) {
733 channel.CollectHistograms();
734 channel_hist_template = channel.GetSamples().front().GetHisto();
735 }
736 if (channel_hist_template == nullptr) {
737 std::ostringstream stream;
738 stream << "The sample " << channel.GetSamples().front().GetName()
739 << " in channel " << channel.GetName() << " does not contain a histogram. This is the channel:\n";
740 channel.Print(stream);
741 Error("MakeSingleChannelWorkspace", "%s", stream.str().c_str());
742 return nullptr;
743 }
744
745 if( ! channel.CheckHistograms() ) {
746 cxcoutFHF << "MakeSingleChannelWorkspace: Channel: " << channel.GetName()
747 << " has uninitialized histogram pointers" << std::endl;
748 throw hf_exc();
749 }
750
751
752
753 // Set these by hand inside the function
754 vector<string> systToFix = measurement.GetConstantParams();
755 bool doRatio=false;
756
757 // to time the macro
758 TStopwatch t;
759 t.Start();
760 //ES// string channel_name=summary[0].channel;
761 string channel_name = channel.GetName();
762
763 /// MB: reset observable names for each new channel.
764 fObsNameVec.clear();
765
766 /// MB: label observables x,y,z, depending on histogram dimensionality
767 /// GHL: Give it the first sample's nominal histogram as a template
768 /// since the data histogram may not be present
770
771 for ( unsigned int idx=0; idx<fObsNameVec.size(); ++idx ) {
772 fObsNameVec[idx] = "obs_" + fObsNameVec[idx] + "_" + channel_name ;
773 }
774
775 if (fObsNameVec.empty()) {
776 fObsName= "obs_" + channel_name; // set name ov observable
777 fObsNameVec.push_back( fObsName );
778 }
779
780 if (fObsNameVec.empty() || fObsNameVec.size() > 3) {
781 throw hf_exc("HistFactory is limited to 1- to 3-dimensional histograms.");
782 }
783
784 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
785 << "\tStarting to process '"
786 << channel_name << "' channel with " << fObsNameVec.size() << " observables"
787 << "\n-----------------------------------------\n" << std::endl;
788
789 //
790 // our main workspace that we are using to construct the model
791 //
792 auto protoOwner = std::make_unique<RooWorkspace>(channel_name.c_str(), (channel_name+" workspace").c_str());
794 auto proto_config = std::make_unique<ModelConfig>("ModelConfig", &proto);
795
796 // preprocess functions
797 for(auto const& func : fPreprocessFunctions){
798 cxcoutI(HistFactory) << "will preprocess this line: " << func << std::endl;
799 proto.factory(func);
800 proto.Print();
801 }
802
803 RooArgSet likelihoodTerms("likelihoodTerms");
804 RooArgSet constraintTerms("constraintTerms");
808 // All histogram functions to be multiplied in each sample
809 std::vector<std::vector<RooAbsArg*>> allSampleHistFuncs;
810 std::vector<RooProduct*> sampleScaleFactors;
811
812 std::vector<std::pair<string, string>> statNamePairs;
813 std::vector<std::pair<const TH1 *, std::unique_ptr<TH1>>> statHistPairs; // <nominal, error>
814 const std::string statFuncName = "mc_stat_" + channel_name;
815
816 string prefix;
817 string range;
818
819 /////////////////////////////
820 // shared parameters
821 // this is ratio of lumi to nominal lumi. We will include relative uncertainty in model
822 auto &lumiVar = getOrCreate<RooRealVar>(proto, "Lumi", fNomLumi, 0.0, 10 * fNomLumi);
823
824 // only include a lumiConstraint if there's a lumi uncert, otherwise just set the lumi constant
825 if(fLumiError != 0) {
826 auto &nominalLumiVar = emplace<RooRealVar>(proto, "nominalLumi", fNomLumi, 0., fNomLumi + 10. * fLumiError);
828 proto.var("Lumi")->setError(fLumiError/fNomLumi); // give initial error value
829 proto.var("nominalLumi")->setConstant();
830 proto.defineSet("globalObservables","nominalLumi");
831 //likelihoodTermNames.push_back("lumiConstraint");
832 constraintTermNames.push_back("lumiConstraint");
833 } else {
834 proto.var("Lumi")->setConstant();
835 proto.defineSet("globalObservables",RooArgSet()); // create empty set as is assumed it exists later
836 }
837 ///////////////////////////////////
838 // loop through estimates, add expectation, floating bin predictions,
839 // and terms that constrain floating to expectation via uncertainties
840 // GHL: Loop over samples instead, which doesn't contain the data
841 for (Sample& sample : channel.GetSamples()) {
842 string overallSystName = sample.GetName() + "_" + channel_name + "_epsilon";
843
844 string systSourcePrefix = "alpha_";
845
846 // constraintTermNames and totSystTermNames are vectors that are passed
847 // by reference and filled by this method
849 sample.GetOverallSysList(), constraintTermNames , totSystTermNames);
850
851 allSampleHistFuncs.emplace_back();
852 std::vector<RooAbsArg*>& sampleHistFuncs = allSampleHistFuncs.back();
853
854 // GHL: Consider passing the NormFactor list instead of the entire sample
857
858 // Create the string for the object
859 // that is added to the RooRealSumPdf
860 // for this channel
861// string syst_x_expectedPrefix = "";
862
863 // get histogram
864 //ES// TH1* nominal = it->nominal;
865 const TH1* nominal = sample.GetHisto();
866
867 // MB : HACK no option to have both non-hist variations and hist variations ?
868 // get histogram
869 // GHL: Okay, this is going to be non-trivial.
870 // We will loop over histosys's, which contain both
871 // the low hist and the high hist together.
872
873 // Logic:
874 // - If we have no HistoSys's, do part A
875 // - else, if the histo syst's don't match, return (we ignore this case)
876 // - finally, we take the syst's and apply the linear interpolation w/ constraint
877 string expPrefix = sample.GetName() + "_" + channel_name;
878 // create roorealvar observables
879 RooArgList observables = createObservables(sample.GetHisto(), proto);
882
883 if(sample.GetHistoSysList().empty()) {
884 // If no HistoSys
885 cxcoutI(HistFactory) << sample.GetName() + "_" + channel_name + " has no variation histograms " << std::endl;
886
888 } else {
889 // If there ARE HistoSys(s)
890 // name of source for variation
891 string constraintPrefix = sample.GetName() + "_" + channel_name + "_Hist_alpha";
892
893 // make list of abstract parameters that interpolate in space of variations
895
896 // next, create the constraint terms
897 for(std::size_t i = 0; i < interpParams.size(); ++i) {
898 bool isUniform = measurement.GetUniformSyst().count(sample.GetHistoSysList()[i].GetName()) > 0;
900 }
901
902 // finally, create the interpolated function
904 sample.GetHistoSysList(), constraintPrefix, observables) );
905 }
906
907 sampleHistFuncs.front()->SetTitle( (nominal && strlen(nominal->GetTitle())>0) ? nominal->GetTitle() : sample.GetName().c_str() );
908
909 ////////////////////////////////////
910 // Add StatErrors to this Channel //
911 ////////////////////////////////////
912
913 if( sample.GetStatError().GetActivate() ) {
914
915 if( fObsNameVec.size() > 3 ) {
916 cxcoutFHF << "Cannot include Stat Error for histograms of more than 3 dimensions." << std::endl;
917 throw hf_exc();
918 } else {
919
920 // If we are using StatUncertainties, we multiply this object
921 // by the ParamHistFunc and then pass that to the
922 // RooRealSumPdf by appending it's name to the list
923
924 cxcoutI(HistFactory) << "Sample: " << sample.GetName() << " to be included in Stat Error "
925 << "for channel " << channel_name
926 << std::endl;
927
928 string UncertName = sample.GetName() + "_" + channel_name + "_StatAbsolUncert";
929 std::unique_ptr<TH1> statErrorHist;
930
931 if( sample.GetStatError().GetErrorHist() == nullptr ) {
932 // Make the absolute stat error
933 cxcoutI(HistFactory) << "Making Statistical Uncertainty Hist for "
934 << " Channel: " << channel_name
935 << " Sample: " << sample.GetName()
936 << std::endl;
938 } else {
939 // clone the error histograms because in case the sample has not error hist
940 // it is created in MakeAbsolUncertainty
941 // we need later to clean statErrorHist
942 statErrorHist.reset(static_cast<TH1*>(sample.GetStatError().GetErrorHist()->Clone()));
943 // We assume the (relative) error is provided.
944 // We must turn it into an absolute error
945 // using the nominal histogram
946 cxcoutI(HistFactory) << "Using external histogram for Stat Errors for "
947 << "\tChannel: " << channel_name
948 << "\tSample: " << sample.GetName()
949 << "\tError Histogram: " << statErrorHist->GetName() << std::endl;
950 // Multiply the relative stat uncertainty by the
951 // nominal to get the overall stat uncertainty
952 statErrorHist->Multiply( nominal );
953 statErrorHist->SetName( UncertName.c_str() );
954 }
955
956 // Save the nominal and error hists
957 // for the building of constraint terms
958 statHistPairs.emplace_back(nominal, std::move(statErrorHist));
959
960 // To do the 'conservative' version, we would need to do some
961 // intervention here. We would probably need to create a different
962 // ParamHistFunc for each sample in the channel. The would nominally
963 // use the same gamma's, so we haven't increased the number of parameters
964 // However, if a bin in the 'nominal' histogram is 0, we simply need to
965 // change the parameter in that bin in the ParamHistFunc for this sample.
966 // We also need to add a constraint term.
967 // Actually, we'd probably not use the ParamHistFunc...?
968 // we could remove the dependence in this ParamHistFunc on the ith gamma
969 // and then create the poisson term: Pois(tau | n_exp)Pois(data | n_exp)
970
971
972 // Next, try to get the common ParamHistFunc (it may have been
973 // created by another sample in this channel)
974 // or create it if it doesn't yet exist:
975 RooAbsReal* paramHist = dynamic_cast<ParamHistFunc*>(proto.function(statFuncName) );
976 if( paramHist == nullptr ) {
977
978 // Get a RooArgSet of the observables:
979 // Names in the list fObsNameVec:
981 std::vector<std::string>::iterator itr = fObsNameVec.begin();
982 for (int idx=0; itr!=fObsNameVec.end(); ++itr, ++idx ) {
983 theObservables.add( *proto.var(*itr) );
984 }
985
986 // Create the list of terms to
987 // control the bin heights:
988 std::string ParamSetPrefix = "gamma_stat_" + channel_name;
993
996
998
999 paramHist = proto.function( statFuncName);
1000 }
1001
1002 // apply stat function to sample
1003 sampleHistFuncs.push_back(paramHist);
1004 }
1005 } // END: if DoMcStat
1006
1007
1008 ///////////////////////////////////////////
1009 // Create a ShapeFactor for this channel //
1010 ///////////////////////////////////////////
1011
1012 if( !sample.GetShapeFactorList().empty() ) {
1013
1014 if( fObsNameVec.size() > 3 ) {
1015 cxcoutFHF << "Cannot include Stat Error for histograms of more than 3 dimensions." << std::endl;
1016 throw hf_exc();
1017 } else {
1018
1019 cxcoutI(HistFactory) << "Sample: " << sample.GetName() << " in channel: " << channel_name
1020 << " to be include a ShapeFactor."
1021 << std::endl;
1022
1023 for(ShapeFactor& shapeFactor : sample.GetShapeFactorList()) {
1024
1025 std::string funcName = channel_name + "_" + shapeFactor.GetName() + "_shapeFactor";
1026 RooAbsArg *paramHist = proto.function(funcName);
1027 if( paramHist == nullptr ) {
1028
1030 for(std::string const& varName : fObsNameVec) {
1031 theObservables.add( *proto.var(varName) );
1032 }
1033
1034 // Create the Parameters
1035 std::string funcParams = "gamma_" + shapeFactor.GetName();
1036
1037 // GHL: Again, we are putting hard ranges on the gamma's
1038 // We should change this to range from 0 to /inf
1040 funcParams,
1042
1043 // Create the Function
1046
1047 // Set an initial shape, if requested
1048 if( shapeFactor.GetInitialShape() != nullptr ) {
1049 TH1* initialShape = static_cast<TH1*>(shapeFactor.GetInitialShape()->Clone());
1050 cxcoutI(HistFactory) << "Setting Shape Factor: " << shapeFactor.GetName()
1051 << " to have initial shape from hist: "
1052 << initialShape->GetName()
1053 << std::endl;
1054 shapeFactorFunc.setShape( initialShape );
1055 }
1056
1057 // Set the variables constant, if requested
1058 if( shapeFactor.IsConstant() ) {
1059 cxcoutI(HistFactory) << "Setting Shape Factor: " << shapeFactor.GetName()
1060 << " to be constant" << std::endl;
1061 shapeFactorFunc.setConstant(true);
1062 }
1063
1065 paramHist = proto.function(funcName);
1066
1067 } // End: Create ShapeFactor ParamHistFunc
1068
1069 sampleHistFuncs.push_back(paramHist);
1070 } // End loop over ShapeFactor Systematics
1071 }
1072 } // End: if ShapeFactorName!=""
1073
1074
1075 ////////////////////////////////////////
1076 // Create a ShapeSys for this channel //
1077 ////////////////////////////////////////
1078
1079 if( !sample.GetShapeSysList().empty() ) {
1080
1081 if( fObsNameVec.size() > 3 ) {
1082 cxcoutFHF << "Cannot include Stat Error for histograms of more than 3 dimensions.\n";
1083 throw hf_exc();
1084 }
1085
1086 // List of ShapeSys ParamHistFuncs
1087 std::vector<string> ShapeSysNames;
1088
1089 for(RooStats::HistFactory::ShapeSys& shapeSys : sample.GetShapeSysList()) {
1090
1091 // Create the ParamHistFunc's
1092 // Create their constraint terms and add them
1093 // to the list of constraint terms
1094
1095 // Create a single RooProduct over all of these
1096 // paramHistFunc's
1097
1098 // Send the name of that product to the RooRealSumPdf
1099
1100 cxcoutI(HistFactory) << "Sample: " << sample.GetName() << " in channel: " << channel_name
1101 << " to include a ShapeSys." << std::endl;
1102
1103 std::string funcName = channel_name + "_" + shapeSys.GetName() + "_ShapeSys";
1104 ShapeSysNames.push_back( funcName );
1105 auto paramHist = static_cast<ParamHistFunc*>(proto.function(funcName));
1106 if( paramHist == nullptr ) {
1107
1108 //std::string funcParams = "gamma_" + it->shapeFactorName;
1109 //paramHist = CreateParamHistFunc( proto, fObsNameVec, funcParams, funcName );
1110
1112 for(std::string const& varName : fObsNameVec) {
1113 theObservables.add( *proto.var(varName) );
1114 }
1115
1116 // Create the Parameters
1117 std::string funcParams = "gamma_" + shapeSys.GetName();
1119 funcParams,
1121
1122 // Create the Function
1125
1127 paramHist = static_cast<ParamHistFunc*>(proto.function(funcName));
1128
1129 } // End: Create ShapeFactor ParamHistFunc
1130
1131 // Create the constraint terms and add
1132 // them to the workspace (proto)
1133 // as well as the list of constraint terms (constraintTermNames)
1134
1135 // The syst should be a fractional error
1136 const TH1* shapeErrorHist = shapeSys.GetErrorHist();
1137
1138 // Constraint::Type shapeConstraintType = Constraint::Gaussian;
1139 Constraint::Type systype = shapeSys.GetConstraintType();
1142 }
1143 if( systype == Constraint::Poisson ) {
1145 }
1146
1148 paramHist->paramList(), histToVector(*shapeErrorHist),
1150 systype);
1151 for (auto const& term : shapeConstraintsInfo.constraints) {
1153 constraintTermNames.emplace_back(term->GetName());
1154 }
1155 // Add the "observed" value to the list of global observables:
1156 RooArgSet *globalSet = const_cast<RooArgSet *>(proto.set("globalObservables"));
1157 for (RooAbsArg * glob : shapeConstraintsInfo.globalObservables) {
1158 globalSet->add(*proto.var(glob->GetName()));
1159 }
1160
1161
1162 } // End: Loop over ShapeSys vector in this EstimateSummary
1163
1164 // Now that we have the list of ShapeSys ParamHistFunc names,
1165 // we create the total RooProduct
1166 // we multiply the expected function
1167
1168 for(std::string const& name : ShapeSysNames) {
1169 sampleHistFuncs.push_back(proto.function(name));
1170 }
1171
1172 } // End: !GetShapeSysList.empty()
1173
1174
1175 // GHL: This was pretty confusing before,
1176 // hopefully using the measurement directly
1177 // will improve it
1178 RooAbsArg *lumi = proto.arg("Lumi");
1179 if( !sample.GetNormalizeByTheory() ) {
1180 if (!lumi) {
1181 lumi = &emplace<RooRealVar>(proto, "Lumi", measurement.GetLumi());
1182 } else {
1183 static_cast<RooAbsRealLValue*>(lumi)->setVal(measurement.GetLumi());
1184 }
1185 }
1186 assert(lumi);
1187 normFactors->addTerm(lumi);
1188
1189 // Append the name of the "node"
1190 // that is to be summed with the
1191 // RooRealSumPdf
1193 auto normFactorsInWS = dynamic_cast<RooProduct*>(proto.arg(normFactors->GetName()));
1195
1197 } // END: Loop over EstimateSummaries
1198
1199 // If a non-zero number of samples call for
1200 // Stat Uncertainties, create the statFactor functions
1201 if(!statHistPairs.empty()) {
1202
1203 // Create the histogram of (binwise)
1204 // stat uncertainties:
1205 std::unique_ptr<TH1> fracStatError(
1206 MakeScaledUncertaintyHist(channel_name + "_StatUncert" + "_RelErr", statHistPairs));
1207 if( fracStatError == nullptr ) {
1208 cxcoutFHF << "Error: Failed to make ScaledUncertaintyHist for: " << channel_name + "_StatUncert" + "_RelErr\n";
1209 throw hf_exc();
1210 }
1211
1212 // Using this TH1* of fractinal stat errors,
1213 // create a set of constraint terms:
1214 auto chanStatUncertFunc = static_cast<ParamHistFunc*>(proto.function( statFuncName ));
1215 cxcoutI(HistFactory) << "About to create Constraint Terms from: "
1216 << chanStatUncertFunc->GetName()
1217 << " params: " << chanStatUncertFunc->paramList()
1218 << std::endl;
1219
1220 // Get the constraint type and the
1221 // rel error threshold from the (last)
1222 // EstimateSummary looped over (but all
1223 // should be the same)
1224
1225 // Get the type of StatError constraint from the channel
1228 cxcoutI(HistFactory) << "Using Gaussian StatErrors in channel: " << channel.GetName() << std::endl;
1229 }
1231 cxcoutI(HistFactory) << "Using Poisson StatErrors in channel: " << channel.GetName() << std::endl;
1232 }
1233
1239 for (auto const& term : statConstraintsInfo.constraints) {
1241 constraintTermNames.emplace_back(term->GetName());
1242 }
1243 // Add the "observed" value to the list of global observables:
1244 RooArgSet *globalSet = const_cast<RooArgSet *>(proto.set("globalObservables"));
1245 for (RooAbsArg * glob : statConstraintsInfo.globalObservables) {
1246 globalSet->add(*proto.var(glob->GetName()));
1247 }
1248
1249 } // END: Loop over stat Hist Pairs
1250
1251
1252 ///////////////////////////////////
1253 // for ith bin calculate totN_i = lumi * sum_j expected_j * syst_j
1256 likelihoodTermNames.push_back(channel_name+"_model");
1257
1258 //////////////////////////////////////
1259 // fix specified parameters
1260 for(unsigned int i=0; i<systToFix.size(); ++i){
1261 RooRealVar* temp = proto.var(systToFix.at(i));
1262 if(!temp) {
1263 cxcoutW(HistFactory) << "could not find variable " << systToFix.at(i)
1264 << " could not set it to constant" << std::endl;
1265 } else {
1266 // set the parameter constant
1267 temp->setConstant();
1268 }
1269 }
1270
1271 //////////////////////////////////////
1272 // final proto model
1273 for(unsigned int i=0; i<constraintTermNames.size(); ++i){
1275 if( proto_arg==nullptr ) {
1276 cxcoutFHF << "Error: Cannot find arg set: " << constraintTermNames.at(i)
1277 << " in workspace: " << proto.GetName() << std::endl;
1278 throw hf_exc();
1279 }
1280 constraintTerms.add( *proto_arg );
1281 // constraintTerms.add(* proto_arg(proto.arg(constraintTermNames[i].c_str())) );
1282 }
1283 for(unsigned int i=0; i<likelihoodTermNames.size(); ++i){
1285 if( proto_arg==nullptr ) {
1286 cxcoutFHF << "Error: Cannot find arg set: " << likelihoodTermNames.at(i)
1287 << " in workspace: " << proto.GetName() << std::endl;
1288 throw hf_exc();
1289 }
1290 likelihoodTerms.add( *proto_arg );
1291 }
1292 proto.defineSet("constraintTerms",constraintTerms);
1293 proto.defineSet("likelihoodTerms",likelihoodTerms);
1294
1295 // list of observables
1296 RooArgList observables;
1297 std::string observablesStr;
1298
1299 for(std::string const& name : fObsNameVec) {
1300 observables.add( *proto.var(name) );
1301 if (!observablesStr.empty()) { observablesStr += ","; }
1303 }
1304
1305 // We create two sets, one for backwards compatibility
1306 // The other to make a consistent naming convention
1307 // between individual channels and the combined workspace
1308 proto.defineSet("observables", observablesStr.c_str());
1309 proto.defineSet("observablesSet", observablesStr.c_str());
1310
1311 // Create the ParamHistFunc
1312 // after observables have been made
1313 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1314 << "\timport model into workspace"
1315 << "\n-----------------------------------------\n" << std::endl;
1316
1317 auto model = std::make_unique<RooProdPdf>(
1318 ("model_" + channel_name).c_str(), // MB : have changed this into conditional pdf. Much faster for toys!
1319 "product of Poissons across bins for a single channel", constraintTerms,
1320 RooFit::Conditional(likelihoodTerms, observables));
1321 // can give channel a title by setting title of corresponding data histogram
1322 if (channel.GetData().GetHisto() && strlen(channel.GetData().GetHisto()->GetTitle())>0) {
1323 model->SetTitle(channel.GetData().GetHisto()->GetTitle());
1324 }
1325 proto.import(*model,RooFit::RecycleConflictNodes());
1326
1327 proto_config->SetPdf(*model);
1328 proto_config->SetObservables(observables);
1329 proto_config->SetGlobalObservables(*proto.set("globalObservables"));
1330 // proto.writeToFile(("results/model_"+channel+".root").c_str());
1331 // fill out nuisance parameters in model config
1332 // proto_config->GuessObsAndNuisance(*proto.data("asimovData"));
1333 proto.import(*proto_config,proto_config->GetName());
1334 proto.importClassCode();
1335
1336 ///////////////////////////
1337 // make data sets
1338 // THis works and is natural, but the memory size of the simultaneous dataset grows exponentially with channels
1339 // New Asimov Generation: Use the code in the Asymptotic calculator
1340 // Need to get the ModelConfig...
1341 int asymcalcPrintLevel = 0;
1345 if (fCfg.createPerRegionWorkspaces) {
1346 // Creating the per-channel asimov dataset is only meaningful if we
1347 // actually create the files with the stored per-channel workspaces.
1348 // Otherwise, we just spend time calculating something that gets thrown
1349 // away anyway (for the combined workspace, we'll create a new Asimov).
1350 std::unique_ptr<RooAbsData> asimov_dataset(AsymptoticCalculator::GenerateAsimovData(*model, observables));
1351 proto.import(*asimov_dataset, RooFit::Rename("asimovData"));
1352 }
1353
1354 // GHL: Determine to use data if the hist isn't 'nullptr'
1355 if(TH1 const* mnominal = channel.GetData().GetHisto()) {
1356 // This works and is natural, but the memory size of the simultaneous
1357 // dataset grows exponentially with channels.
1358 std::unique_ptr<RooDataSet> dataset;
1359 if(!fCfg.storeDataError){
1360 dataset = std::make_unique<RooDataSet>("obsData","",*proto.set("observables"), RooFit::WeightVar("weightVar"));
1361 } else {
1362 const char* weightErrName="weightErr";
1363 proto.factory(TString::Format("%s[0,-1e10,1e10]",weightErrName));
1364 dataset = std::make_unique<RooDataSet>("obsData","",*proto.set("observables"), RooFit::WeightVar("weightVar"), RooFit::StoreError(*proto.var(weightErrName)));
1365 }
1367 proto.import(*dataset);
1368 } // End: Has non-null 'data' entry
1369
1370
1371 for(auto const& data : channel.GetAdditionalData()) {
1372 if(data.GetName().empty()) {
1373 cxcoutFHF << "Error: Additional Data histogram for channel: " << channel.GetName()
1374 << " has no name! The name always needs to be set for additional datasets, "
1375 << "either via the \"Name\" tag in the XML or via RooStats::HistFactory::Data::SetName().\n";
1376 throw hf_exc();
1377 }
1378 std::string const& dataName = data.GetName();
1379 TH1 const* mnominal = data.GetHisto();
1380 if( !mnominal ) {
1381 cxcoutFHF << "Error: Additional Data histogram for channel: " << channel.GetName()
1382 << " with name: " << dataName << " is nullptr\n";
1383 throw hf_exc();
1384 }
1385
1386 // THis works and is natural, but the memory size of the simultaneous dataset grows exponentially with channels
1387 RooDataSet dataset{dataName, "", *proto.set("observables"), RooFit::WeightVar("weightVar")};
1389 proto.import(dataset);
1390
1391 }
1392
1393 if (RooMsgService::instance().isActive(nullptr, RooFit::HistFactory, RooFit::INFO)) {
1394 proto.Print();
1395 }
1396
1397 return protoOwner;
1398 }
1399
1400
1402 TH1 const& mnominal,
1404 std::vector<std::string> const& obsNameVec) {
1405
1406 // Take a RooDataSet and fill it with the entries
1407 // from a TH1*, using the observable names to
1408 // determine the columns
1409
1410 if (obsNameVec.empty() ) {
1411 Error("ConfigureHistFactoryDataset","Invalid input - return");
1412 return;
1413 }
1414
1415 TAxis const* ax = mnominal.GetXaxis();
1416 TAxis const* ay = mnominal.GetYaxis();
1417 TAxis const* az = mnominal.GetZaxis();
1418
1419 // check whether the dataset needs the errors stored explicitly
1420 const bool storeWeightErr = obsDataUnbinned.weightVar()->getAttribute("StoreError");
1421
1422 for (int i=1; i<=ax->GetNbins(); ++i) { // 1 or more dimension
1423
1424 double xval = ax->GetBinCenter(i);
1425 proto.var( obsNameVec[0] )->setVal( xval );
1426
1427 if(obsNameVec.size()==1) {
1428 double fval = mnominal.GetBinContent(i);
1429 double ferr = storeWeightErr ? mnominal.GetBinError(i) : 0.;
1430 obsDataUnbinned.add( *proto.set("observables"), fval, ferr );
1431 } else { // 2 or more dimensions
1432
1433 for(int j=1; j<=ay->GetNbins(); ++j) {
1434 double yval = ay->GetBinCenter(j);
1435 proto.var( obsNameVec[1] )->setVal( yval );
1436
1437 if(obsNameVec.size()==2) {
1438 double fval = mnominal.GetBinContent(i,j);
1439 double ferr = storeWeightErr ? mnominal.GetBinError(i, j) : 0.;
1440 obsDataUnbinned.add( *proto.set("observables"), fval, ferr );
1441 } else { // 3 dimensions
1442
1443 for(int k=1; k<=az->GetNbins(); ++k) {
1444 double zval = az->GetBinCenter(k);
1445 proto.var( obsNameVec[2] )->setVal( zval );
1446 double fval = mnominal.GetBinContent(i,j,k);
1447 double ferr = storeWeightErr ? mnominal.GetBinError(i, j, k) : 0.;
1448 obsDataUnbinned.add( *proto.set("observables"), fval, ferr );
1449 }
1450 }
1451 }
1452 }
1453 }
1454 }
1455
1457 {
1458 fObsNameVec = std::vector<string>{"x", "y", "z"};
1459 fObsNameVec.resize(hist->GetDimension());
1460 }
1461
1462
1465 std::vector<std::unique_ptr<RooWorkspace>> &chs)
1466 {
1468
1469 // check first the inputs (see JIRA-6890)
1470 if (ch_names.empty() || chs.empty() ) {
1471 Error("MakeCombinedModel","Input vectors are empty - return a nullptr");
1472 return nullptr;
1473 }
1474 if (chs.size() < ch_names.size() ) {
1475 Error("MakeCombinedModel","Input vector of workspace has an invalid size - return a nullptr");
1476 return nullptr;
1477 }
1478 std::set<std::string> ch_names_set{ch_names.begin(), ch_names.end()};
1479 if (ch_names.size() != ch_names_set.size()) {
1480 Error("MakeCombinedModel", "Input vector of channel names has duplicate names - return a nullptr");
1481 return nullptr;
1482 }
1483
1484 //
1485 /// These things were used for debugging. Maybe useful in the future
1486 //
1487
1488 std::map<string, RooAbsPdf *> pdfMap;
1490
1492 for (unsigned int i = 0; i < ch_names.size(); ++i) {
1493 obsList.add(*static_cast<ModelConfig *>(chs[i]->obj("ModelConfig"))->GetObservables());
1494 }
1495 cxcoutI(HistFactory) <<"full list of observables:\n" << obsList << std::endl;
1496
1498 std::map<std::string, int> channelMap;
1499 for(unsigned int i = 0; i< ch_names.size(); ++i){
1500 string channel_name=ch_names[i];
1501 if (i == 0 && isdigit(channel_name[0])) {
1502 throw std::invalid_argument("The first channel name for HistFactory cannot start with a digit. Got " + channel_name);
1503 }
1504 if (channel_name.find(',') != std::string::npos) {
1505 throw std::invalid_argument("Channel names for HistFactory cannot contain ','. Got " + channel_name);
1506 }
1507
1509 RooWorkspace * ch=chs[i].get();
1510
1511 RooAbsPdf* model = ch->pdf("model_"+channel_name);
1512 if (!model) {
1513 cxcoutFHF << "failed to find model for channel\n";
1514 throw hf_exc();
1515 }
1516 models.push_back(model);
1517 auto &modelConfig = *static_cast<ModelConfig *>(chs[i]->obj("ModelConfig"));
1518 // silent because observables might exist in other channel:
1519 globalObs.add(*modelConfig.GetGlobalObservables(), /*silent=*/true);
1520
1521 // constrainedParams->add( * ch->set("constrainedParams") );
1522 pdfMap[channel_name]=model;
1523 }
1524
1525 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1526 << "\tEntering combination"
1527 << "\n-----------------------------------------\n" << std::endl;
1528 auto combined = std::make_unique<RooWorkspace>("combined");
1529
1530
1532
1533 auto simPdf= std::make_unique<RooSimultaneous>("simPdf","",pdfMap, channelCat);
1534 auto combined_config = std::make_unique<ModelConfig>("ModelConfig", combined.get());
1535 combined_config->SetWorkspace(*combined);
1536 // combined_config->SetNuisanceParameters(*constrainedParams);
1537
1538 combined->import(globalObs);
1539 combined->defineSet("globalObservables",globalObs);
1540 combined_config->SetGlobalObservables(*combined->set("globalObservables"));
1541
1542 combined->defineSet("observables",{obsList, channelCat}, /*importMissing=*/true);
1543 combined_config->SetObservables(*combined->set("observables"));
1544
1545
1546 // Now merge the observable datasets across the channels
1547 for(RooAbsData * data : chs[0]->allData()) {
1548 // We are excluding the Asimov data, because it needs to be regenerated
1549 // later after the parameter values are set.
1550 if(std::string("asimovData") == data->GetName()) {
1551 continue;
1552 }
1553 // Loop through channels, get their individual datasets,
1554 // and add them to the combined dataset
1555 std::map<std::string, RooAbsData*> dataMap;
1556 for(unsigned int i = 0; i < ch_names.size(); ++i){
1557 dataMap[ch_names[i]] = chs[i]->data(data->GetName());
1558 }
1559 combined->import(RooDataSet{data->GetName(), "", obsList, RooFit::Index(channelCat),
1560 RooFit::WeightVar("weightVar"), RooFit::Import(dataMap)});
1561 }
1562
1563
1565 combined->Print();
1566
1567 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1568 << "\tImporting combined model"
1569 << "\n-----------------------------------------\n" << std::endl;
1571
1572 for(auto const& param_itr : fParamValues) {
1573 // make sure they are fixed
1574 std::string paramName = param_itr.first;
1575 double paramVal = param_itr.second;
1576
1577 if(RooRealVar* temp = combined->var( paramName )) {
1578 temp->setVal( paramVal );
1579 cxcoutI(HistFactory) <<"setting " << paramName << " to the value: " << paramVal << std::endl;
1580 } else
1581 cxcoutE(HistFactory) << "could not find variable " << paramName << " could not set its value" << std::endl;
1582 }
1583
1584
1585 for(unsigned int i=0; i<fSystToFix.size(); ++i){
1586 // make sure they are fixed
1587 if(RooRealVar* temp = combined->var(fSystToFix[i])) {
1588 temp->setConstant();
1589 cxcoutI(HistFactory) <<"setting " << fSystToFix.at(i) << " constant" << std::endl;
1590 } else
1591 cxcoutE(HistFactory) << "could not find variable " << fSystToFix.at(i) << " could not set it to constant" << std::endl;
1592 }
1593
1594 ///
1595 /// writing out the model in graphViz
1596 ///
1597 // RooAbsPdf* customized=combined->pdf("simPdf");
1598 //combined_config->SetPdf(*customized);
1599 combined_config->SetPdf(*simPdf);
1600 // combined_config->GuessObsAndNuisance(*simData);
1601 // customized->graphVizTree(("results/"+fResultsPrefixStr.str()+"_simul.dot").c_str());
1602 combined->import(*combined_config,combined_config->GetName());
1603 combined->importClassCode();
1604 // combined->writeToFile("results/model_combined.root");
1605
1606
1607 ////////////////////////////////////////////
1608 // Make toy simultaneous dataset
1609 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1610 << "\tcreate toy data"
1611 << "\n-----------------------------------------\n" << std::endl;
1612
1613
1614 // now with weighted datasets
1615 // First Asimov
1616
1617 // Create Asimov data for the combined dataset
1619 *combined->pdf("simPdf"),
1620 obsList)};
1621 if( asimov_combined ) {
1622 combined->import( *asimov_combined, RooFit::Rename("asimovData"));
1623 }
1624 else {
1625 cxcoutFHF << "Error: Failed to create combined asimov dataset\n";
1626 throw hf_exc();
1627 }
1628
1629 return RooFit::makeOwningPtr(std::move(combined));
1630 }
1631
1632
1634
1635 // Take a nominal TH1* and create
1636 // a TH1 representing the binwise
1637 // errors (taken from the nominal TH1)
1638
1639 auto ErrorHist = static_cast<TH1*>(Nominal->Clone( Name.c_str() ));
1640 ErrorHist->Reset();
1641
1642 int numBins = Nominal->GetNbinsX()*Nominal->GetNbinsY()*Nominal->GetNbinsZ();
1643 int binNumber = 0;
1644
1645 // Loop over bins
1646 for( int i_bin = 0; i_bin < numBins; ++i_bin) {
1647
1648 binNumber++;
1649 // Ignore underflow / overflow
1650 while( Nominal->IsBinUnderflow(binNumber) || Nominal->IsBinOverflow(binNumber) ){
1651 binNumber++;
1652 }
1653
1654 double histError = Nominal->GetBinError( binNumber );
1655
1656 // Check that histError != NAN
1657 if( histError != histError ) {
1658 cxcoutFHF << "Warning: In histogram " << Nominal->GetName() << " bin error for bin " << i_bin
1659 << " is NAN. Not using Error!!!\n";
1660 throw hf_exc();
1661 // histError = sqrt( histContent );
1662 // histError = 0;
1663 }
1664
1665 // Check that histError ! < 0
1666 if( histError < 0 ) {
1667 cxcoutWHF << "Warning: In histogram " << Nominal->GetName() << " bin error for bin " << binNumber
1668 << " is < 0. Setting Error to 0" << std::endl;
1669 // histError = sqrt( histContent );
1670 histError = 0;
1671 }
1672
1673 ErrorHist->SetBinContent( binNumber, histError );
1674
1675 }
1676
1677 return ErrorHist;
1678
1679 }
1680
1681 // Take a list of < nominal, absolError > TH1* pairs
1682 // and construct a single histogram representing the
1683 // total fractional error as:
1684
1685 // UncertInQuad(bin i) = Sum: absolUncert*absolUncert
1686 // Total(bin i) = Sum: Value
1687 //
1688 // TotalFracError(bin i) = Sqrt( UncertInQuad(i) ) / TotalBin(i)
1689 std::unique_ptr<TH1> HistoToWorkspaceFactoryFast::MakeScaledUncertaintyHist( const std::string& Name, std::vector< std::pair<const TH1*, std::unique_ptr<TH1>> > const& HistVec ) const {
1690
1691
1692 unsigned int numHists = HistVec.size();
1693
1694 if( numHists == 0 ) {
1695 cxcoutE(HistFactory) << "Warning: Empty Hist Vector, cannot create total uncertainty" << std::endl;
1696 return nullptr;
1697 }
1698
1699 const TH1* HistTemplate = HistVec.at(0).first;
1700 int numBins = HistTemplate->GetNbinsX()*HistTemplate->GetNbinsY()*HistTemplate->GetNbinsZ();
1701
1702 // Check that all histograms
1703 // have the same bins
1704 for( unsigned int i = 0; i < HistVec.size(); ++i ) {
1705
1706 const TH1* nominal = HistVec.at(i).first;
1707 const TH1* error = HistVec.at(i).second.get();
1708
1709 if( nominal->GetNbinsX()*nominal->GetNbinsY()*nominal->GetNbinsZ() != numBins ) {
1710 cxcoutE(HistFactory) << "Error: Provided hists have unequal bins" << std::endl;
1711 return nullptr;
1712 }
1713 if( error->GetNbinsX()*error->GetNbinsY()*error->GetNbinsZ() != numBins ) {
1714 cxcoutE(HistFactory) << "Error: Provided hists have unequal bins" << std::endl;
1715 return nullptr;
1716 }
1717 }
1718
1719 std::vector<double> TotalBinContent( numBins, 0.0);
1720 std::vector<double> HistErrorsSqr( numBins, 0.0);
1721
1722 int binNumber = 0;
1723
1724 // Loop over bins
1725 for( int i_bins = 0; i_bins < numBins; ++i_bins) {
1726
1727 binNumber++;
1728 while( HistTemplate->IsBinUnderflow(binNumber) || HistTemplate->IsBinOverflow(binNumber) ){
1729 binNumber++;
1730 }
1731
1732 for( unsigned int i_hist = 0; i_hist < numHists; ++i_hist ) {
1733
1734 const TH1* nominal = HistVec.at(i_hist).first;
1735 const TH1* error = HistVec.at(i_hist).second.get();
1736
1737 //int binNumber = i_bins + 1;
1738
1739 double histValue = nominal->GetBinContent( binNumber );
1740 double histError = error->GetBinContent( binNumber );
1741
1742 if( histError != histError ) {
1743 cxcoutFHF << "In histogram " << error->GetName() << " bin error for bin " << binNumber
1744 << " is NAN. Not using error!!";
1745 throw hf_exc();
1746 }
1747
1749 HistErrorsSqr.at(i_bins) += histError*histError; // Add in quadrature
1750
1751 }
1752 }
1753
1754 binNumber = 0;
1755
1756 // Creat the output histogram
1757 TH1* ErrorHist = static_cast<TH1*>(HistTemplate->Clone( Name.c_str() ));
1758 ErrorHist->Reset();
1759
1760 // Fill the output histogram
1761 for( int i = 0; i < numBins; ++i) {
1762
1763 // int binNumber = i + 1;
1764 binNumber++;
1765 while( ErrorHist->IsBinUnderflow(binNumber) || ErrorHist->IsBinOverflow(binNumber) ){
1766 binNumber++;
1767 }
1768
1769 double ErrorsSqr = HistErrorsSqr.at(i);
1770 double TotalVal = TotalBinContent.at(i);
1771
1772 if( TotalVal <= 0 ) {
1773 cxcoutW(HistFactory) << "Warning: Sum of histograms for bin: " << binNumber
1774 << " is <= 0. Setting error to 0"
1775 << std::endl;
1776
1777 ErrorHist->SetBinContent( binNumber, 0.0 );
1778 continue;
1779 }
1780
1781 double RelativeError = sqrt(ErrorsSqr) / TotalVal;
1782
1783 // If we otherwise get a NAN
1784 // it's an error
1785 if( RelativeError != RelativeError ) {
1786 cxcoutE(HistFactory) << "Error: bin " << i << " error is NAN\n"
1787 << " HistErrorsSqr: " << ErrorsSqr
1788 << " TotalVal: " << TotalVal;
1789 throw hf_exc();
1790 }
1791
1792 // 0th entry in vector is
1793 // the 1st bin in TH1
1794 // (we ignore underflow)
1795
1796 // Error and bin content are interchanged because for some reason, the other functions
1797 // use the bin content to convey the error ...
1798 ErrorHist->SetBinError(binNumber, TotalVal);
1799 ErrorHist->SetBinContent(binNumber, RelativeError);
1800
1801 cxcoutI(HistFactory) << "Making Total Uncertainty for bin " << binNumber
1802 << " Error = " << sqrt(ErrorsSqr)
1803 << " CentralVal = " << TotalVal
1804 << " RelativeError = " << RelativeError << "\n";
1805
1806 }
1807
1808 return std::unique_ptr<TH1>(ErrorHist);
1809}
1810
1811} // namespace RooStats::HistFactory
#define cxcoutPHF
#define cxcoutFHF
#define cxcoutIHF
#define cxcoutWHF
std::vector< double > histToVector(TH1 const &hist)
constexpr double alphaHigh
constexpr double alphaLow
#define cxcoutI(a)
#define cxcoutW(a)
#define cxcoutF(a)
#define cxcoutE(a)
#define cxcoutP(a)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
Definition TError.h:125
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
char name[80]
Definition TGX11.cxx:110
const char * proto
Definition civetweb.c:18822
A class which maps the current values of a RooRealVar (or a set of RooRealVars) to one of a number of...
static RooArgList createParamSet(RooWorkspace &w, const std::string &, const RooArgList &Vars)
Create the list of RooRealVar parameters which represent the height of the histogram bins.
The PiecewiseInterpolation is a class that can morph distributions into each other,...
const_iterator begin() const
const_iterator end() const
Common abstract base class for objects that represent a value and a "shape" in RooFit.
Definition RooAbsArg.h:76
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
Storage_t::size_type size() const
Abstract base class for binned and unbinned datasets.
Definition RooAbsData.h:57
Abstract interface for all probability density functions.
Definition RooAbsPdf.h:32
Abstract base class for objects that represent a real value that may appear on the left hand side of ...
void setConstant(bool value=true)
Abstract base class for objects that represent a real value and implements functionality common to al...
Definition RooAbsReal.h:63
Calculates the sum of a set of RooAbsReal terms, or when constructed with two sets,...
Definition RooAddition.h:27
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition RooArgList.h:22
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:24
Implements a RooAbsBinning in terms of an array of boundary values, posing no constraints on the choi...
Definition RooBinning.h:27
Object to represent discrete states.
Definition RooCategory.h:28
Container class to hold N-dimensional binned data.
Definition RooDataHist.h:40
Container class to hold unbinned data.
Definition RooDataSet.h:32
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
A RooFormulaVar is a generic implementation of a real-valued object, which takes a RooArgList of serv...
Implementation of the Gamma PDF for RooFit/RooStats.
Definition RooGamma.h:20
Switches the message service to a different level while the instance is alive.
Definition RooHelpers.h:37
A real-valued function sampled from a multidimensional histogram.
Definition RooHistFunc.h:31
static RooMsgService & instance()
Return reference to singleton instance.
A RooAbsReal implementing a polynomial in terms of a list of RooAbsReal coefficients.
Definition RooPolyVar.h:25
Represents the product of a given set of RooAbsReal objects.
Definition RooProduct.h:29
Implements a PDF constructed from a sum of functions:
Variable that can be changed from the outside.
Definition RooRealVar.h:37
void setBinning(const RooAbsBinning &binning, const char *name=nullptr)
Add given binning under name 'name' with this variable.
void setBins(Int_t nBins, const char *name=nullptr)
Create a uniform binning under name 'name' for this variable.
static void SetPrintLevel(int level)
set print level (static function)
static RooAbsData * GenerateAsimovData(const RooAbsPdf &pdf, const RooArgSet &observables)
generate the asimov data for the observables (not the global ones) need to deal with the case of a si...
TODO Here, we are missing some documentation.
Definition Asimov.h:22
void ConfigureWorkspace(RooWorkspace *)
Definition Asimov.cxx:22
This class encapsulates all information for the statistical interpretation of one experiment.
Definition Channel.h:30
std::vector< RooStats::HistFactory::Data > & GetAdditionalData()
retrieve vector of additional data objects
Definition Channel.h:64
void Print(std::ostream &=std::cout)
Definition Channel.cxx:59
HistFactory::StatErrorConfig & GetStatErrorConfig()
get information about threshold for statistical uncertainties and constraint term
Definition Channel.h:71
RooStats::HistFactory::Data & GetData()
get data object
Definition Channel.h:58
std::vector< RooStats::HistFactory::Sample > & GetSamples()
get vector of samples for this channel
Definition Channel.h:76
std::string GetName() const
get name of channel
Definition Channel.h:42
This class provides helper functions for creating likelihood models from histograms.
std::unique_ptr< RooProduct > CreateNormFactor(RooWorkspace &proto, std::string &channel, std::string &sigmaEpsilon, Sample &sample, bool doRatio)
std::unique_ptr< RooWorkspace > MakeSingleChannelWorkspace(Measurement &measurement, Channel &channel)
void MakeTotalExpected(RooWorkspace &proto, const std::string &totName, const std::vector< RooProduct * > &sampleScaleFactors, std::vector< std::vector< RooAbsArg * > > &sampleHistFuncs) const
std::unique_ptr< TH1 > MakeScaledUncertaintyHist(const std::string &Name, std::vector< std::pair< const TH1 *, std::unique_ptr< TH1 > > > const &HistVec) const
RooHistFunc * MakeExpectedHistFunc(const TH1 *hist, RooWorkspace &proto, std::string prefix, const RooArgList &observables) const
Create the nominal hist function from hist, and register it in the workspace.
void SetFunctionsToPreprocess(std::vector< std::string > lines)
RooFit::OwningPtr< RooWorkspace > MakeSingleChannelModel(Measurement &measurement, Channel &channel)
RooFit::OwningPtr< RooWorkspace > MakeCombinedModel(std::vector< std::string >, std::vector< std::unique_ptr< RooWorkspace > > &)
TH1 * MakeAbsolUncertaintyHist(const std::string &Name, const TH1 *Hist)
static void ConfigureWorkspaceForMeasurement(const std::string &ModelName, RooWorkspace *ws_single, Measurement &measurement)
void AddConstraintTerms(RooWorkspace &proto, Measurement &measurement, std::string prefix, std::string interpName, std::vector< OverallSys > &systList, std::vector< std::string > &likelihoodTermNames, std::vector< std::string > &totSystTermNames)
void ConfigureHistFactoryDataset(RooDataSet &obsData, TH1 const &nominal, RooWorkspace &proto, std::vector< std::string > const &obsNameVec)
static void PrintCovarianceMatrix(RooFitResult *result, RooArgSet *params, std::string filename)
RooArgList createObservables(const TH1 *hist, RooWorkspace &proto) const
Create observables of type RooRealVar. Creates 1 to 3 observables, depending on the type of the histo...
The RooStats::HistFactory::Measurement class can be used to construct a model by combining multiple R...
Definition Measurement.h:31
Configuration for an un- constrained overall systematic to scale sample normalisations.
Definition Systematics.h:63
Configuration for a constrained overall systematic to scale sample normalisations.
Definition Systematics.h:35
*Un*constrained bin-by-bin variation of affected histogram.
Constrained bin-by-bin variation of affected histogram.
Constraint::Type GetConstraintType() const
< A class that holds configuration information for a model using a workspace as a store
Definition ModelConfig.h:34
Persistable container for RooFit projects.
RooAbsPdf * pdf(RooStringView name) const
Retrieve p.d.f (RooAbsPdf) with given name. A null pointer is returned if not found.
RooAbsArg * arg(RooStringView name) const
Return RooAbsArg with given name. A null pointer is returned if none is found.
bool import(const RooAbsArg &arg, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}, const RooCmdArg &arg9={})
Import a RooAbsArg object, e.g.
Class to manage histogram axis.
Definition TAxis.h:32
Bool_t IsVariableBinSize() const
Definition TAxis.h:144
const char * GetTitle() const override
Returns title of object.
Definition TAxis.h:137
const TArrayD * GetXbins() const
Definition TAxis.h:138
Double_t GetXmax() const
Definition TAxis.h:142
Double_t GetXmin() const
Definition TAxis.h:141
Int_t GetNbins() const
Definition TAxis.h:127
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:109
TAxis * GetZaxis()
Definition TH1.h:573
virtual Int_t GetNbinsY() const
Definition TH1.h:542
virtual Int_t GetNbinsZ() const
Definition TH1.h:543
virtual Int_t GetDimension() const
Definition TH1.h:527
TAxis * GetXaxis()
Definition TH1.h:571
virtual Int_t GetNbinsX() const
Definition TH1.h:541
TAxis * GetYaxis()
Definition TH1.h:572
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
Definition TH1.cxx:5229
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
Definition TH1.cxx:5197
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:5076
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:173
const char * GetName() const override
Returns name of object.
Definition TNamed.h:49
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:50
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:226
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition TObject.cxx:1088
Stopwatch class.
Definition TStopwatch.h:28
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2384
RooCmdArg RecycleConflictNodes(bool flag=true)
RooCmdArg Rename(const char *suffix)
RooCmdArg Conditional(const RooArgSet &pdfSet, const RooArgSet &depSet, bool depsAreCond=false)
RooConstVar & RooConst(double val)
RooCmdArg Index(RooCategory &icat)
RooCmdArg StoreError(const RooArgSet &aset)
RooCmdArg WeightVar(const char *name="weight", bool reinterpretAsWeight=false)
RooCmdArg Import(const char *state, TH1 &histo)
T * OwningPtr
An alias for raw pointers for indicating that the return type of a RooFit function is an owning point...
Definition Config.h:35
@ ObjectHandling
OwningPtr< T > makeOwningPtr(std::unique_ptr< T > &&ptr)
Internal helper to turn a std::unique_ptr<T> into an OwningPtr.
Definition Config.h:40
CreateGammaConstraintsOutput createGammaConstraints(RooArgList const &paramList, std::span< const double > relSigmas, double minSigma, Constraint::Type type)
Namespace for the RooStats classes.
Definition CodegenImpl.h:61