Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
HistoToWorkspaceFactoryFast.cxx
Go to the documentation of this file.
1// @(#)root/roostats:$Id: cranmer $
2// Author: Kyle Cranmer, Akira Shibata
3/*************************************************************************
4 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
5 * All rights reserved. *
6 * *
7 * For the licensing terms see $ROOTSYS/LICENSE. *
8 * For the list of contributors see $ROOTSYS/README/CREDITS. *
9 *************************************************************************/
10
11////////////////////////////////////////////////////////////////////////////////
12
13/** \class RooStats::HistFactory::HistoToWorkspaceFactoryFast
14 * \ingroup HistFactory
15 * This class provides helper functions for creating likelihood models from histograms.
16 * It is used by RooStats::HistFactory::MakeModelAndMeasurementFast.
17 *
18 * A tutorial showing how to create a HistFactory model is hf001_example.C
19 */
20
21
22#include <RooAddition.h>
23#include <RooBinWidthFunction.h>
24#include <RooBinning.h>
25#include <RooCategory.h>
26#include <RooConstVar.h>
27#include <RooDataHist.h>
28#include <RooDataSet.h>
29#include <RooFit/ModelConfig.h>
30#include <RooFitResult.h>
31#include <RooFormulaVar.h>
32#include <RooGamma.h>
33#include <RooGaussian.h>
34#include <RooGlobalFunc.h>
35#include <RooHelpers.h>
36#include <RooHistFunc.h>
37#include <RooMultiVarGaussian.h>
38#include <RooNumIntConfig.h>
39#include <RooPoisson.h>
40#include <RooPolyVar.h>
41#include <RooProdPdf.h>
42#include <RooProduct.h>
43#include <RooProfileLL.h>
44#include <RooRandom.h>
45#include <RooRealSumPdf.h>
46#include <RooRealVar.h>
47#include <RooSimultaneous.h>
48#include <RooWorkspace.h>
49
54
55#include "HFMsgService.h"
56
57#include "TH1.h"
58#include "TStopwatch.h"
59#include "TVectorD.h"
60#include "TMatrixDSym.h"
61
62// specific to this package
69
70#include <algorithm>
71#include <memory>
72#include <utility>
73
74constexpr double alphaLow = -5.0;
75constexpr double alphaHigh = 5.0;
76
77std::vector<double> histToVector(TH1 const &hist)
78{
79 // Must get the full size of the TH1 (No direct method to do this...)
80 int numBins = hist.GetNbinsX() * hist.GetNbinsY() * hist.GetNbinsZ();
81 std::vector<double> out(numBins);
82 int histIndex = 0;
83 for (int i = 0; i < numBins; ++i) {
84 while (hist.IsBinUnderflow(histIndex) || hist.IsBinOverflow(histIndex)) {
85 ++histIndex;
86 }
87 out[i] = hist.GetBinContent(histIndex);
88 ++histIndex;
89 }
90 return out;
91}
92
93// use this order for safety on library loading
94using namespace RooStats;
95using std::cout, std::endl, std::string, std::vector, std::make_unique, std::pair, std::unique_ptr, std::map;
96
97using namespace RooStats::HistFactory::Detail;
99
101
102namespace RooStats{
103namespace HistFactory{
104
107
109 Configuration const& cfg) :
110 fSystToFix( measurement.GetConstantParams() ),
111 fParamValues( measurement.GetParamValues() ),
112 fNomLumi( measurement.GetLumi() ),
113 fLumiError( measurement.GetLumi()*measurement.GetLumiRelErr() ),
114 fLowBin( measurement.GetBinLow() ),
115 fHighBin( measurement.GetBinHigh() ),
116 fCfg{cfg} {
117
118 // Set Preprocess functions
120
121 }
122
123 void HistoToWorkspaceFactoryFast::ConfigureWorkspaceForMeasurement( const std::string& ModelName, RooWorkspace* ws_single, Measurement& measurement ) {
124
125 // Configure a workspace by doing any
126 // necessary post-processing and by
127 // creating a ModelConfig
128
129 // Make a ModelConfig and configure it
130 ModelConfig * proto_config = static_cast<ModelConfig *>(ws_single->obj("ModelConfig"));
131 if( proto_config == nullptr ) {
132 std::cout << "Error: Did not find 'ModelConfig' object in file: " << ws_single->GetName()
133 << std::endl;
134 throw hf_exc();
135 }
136
137 if( measurement.GetPOIList().empty() ) {
138 cxcoutWHF << "No Parametetrs of interest are set" << std::endl;
139 }
140
141
142 std::stringstream sstream;
143 sstream << "Setting Parameter(s) of Interest as: ";
144 for(auto const& item : measurement.GetPOIList()) {
145 sstream << item << " ";
146 }
147 cxcoutIHF << sstream.str() << endl;
148
149 RooArgSet params;
150 for(auto const& poi_name : measurement.GetPOIList()) {
151 if(RooRealVar* poi = (RooRealVar*) ws_single->var(poi_name)){
152 params.add(*poi);
153 }
154 else {
155 std::cout << "WARNING: Can't find parameter of interest: " << poi_name
156 << " in Workspace. Not setting in ModelConfig." << std::endl;
157 //throw hf_exc();
158 }
159 }
160 proto_config->SetParametersOfInterest(params);
161
162 // Name of an 'edited' model, if necessary
163 std::string NewModelName = "newSimPdf"; // <- This name is hard-coded in HistoToWorkspaceFactoryFast::EditSyt. Probably should be changed to : std::string("new") + ModelName;
164
165 // Set the ModelConfig's Params of Interest
166 RooAbsData* expData = ws_single->data("asimovData");
167 if( !expData ) {
168 std::cout << "Error: Failed to find dataset: " << expData
169 << " in workspace" << std::endl;
170 throw hf_exc();
171 }
172 if(!measurement.GetPOIList().empty()){
173 proto_config->GuessObsAndNuisance(*expData, RooMsgService::instance().isActive(nullptr, RooFit::HistFactory, RooFit::INFO));
174 }
175
176 // Now, let's loop over any additional asimov datasets
177 // that we need to make
178
179 // Get the pdf
180 // Notice that we get the "new" pdf, this is the one that is
181 // used in the creation of these asimov datasets since they
182 // are fitted (or may be, at least).
183 RooAbsPdf* pdf = ws_single->pdf(NewModelName);
184 if( !pdf ) pdf = ws_single->pdf( ModelName );
185 const RooArgSet* observables = ws_single->set("observables");
186
187 // Create a SnapShot of the nominal values
188 std::string SnapShotName = "NominalParamValues";
189 ws_single->saveSnapshot(SnapShotName, ws_single->allVars());
190
191 for( unsigned int i=0; i<measurement.GetAsimovDatasets().size(); ++i) {
192
193 // Set the variable values and "const" ness with the workspace
194 RooStats::HistFactory::Asimov& asimov = measurement.GetAsimovDatasets().at(i);
195 std::string AsimovName = asimov.GetName();
196
197 cxcoutPHF << "Generating additional Asimov Dataset: " << AsimovName << std::endl;
198 asimov.ConfigureWorkspace(ws_single);
199 std::unique_ptr<RooAbsData> asimov_dataset{AsymptoticCalculator::GenerateAsimovData(*pdf, *observables)};
200
201 cxcoutPHF << "Importing Asimov dataset" << std::endl;
202 bool failure = ws_single->import(*asimov_dataset, RooFit::Rename(AsimovName.c_str()));
203 if( failure ) {
204 std::cout << "Error: Failed to import Asimov dataset: " << AsimovName
205 << std::endl;
206 throw hf_exc();
207 }
208
209 // Load the snapshot at the end of every loop iteration
210 // so we start each loop with a "clean" snapshot
211 ws_single->loadSnapshot(SnapShotName.c_str());
212 }
213
214 // Cool, we're done
215 return; // ws_single;
216 }
217
218
219 // We want to eliminate this interface and use the measurement directly
221
222 // This is a pretty light-weight wrapper function
223 //
224 // Take a fully configured measurement as well as
225 // one of its channels
226 //
227 // Return a workspace representing that channel
228 // Do this by first creating a vector of EstimateSummary's
229 // and this by configuring the workspace with any post-processing
230
231 // Get the channel's name
232 string ch_name = channel.GetName();
233
234 // Create a workspace for a SingleChannel from the Measurement Object
235 std::unique_ptr<RooWorkspace> ws_single{this->MakeSingleChannelWorkspace(measurement, channel)};
236 if( ws_single == nullptr ) {
237 cxcoutF(HistFactory) << "Error: Failed to make Single-Channel workspace for channel: " << ch_name
238 << " and measurement: " << measurement.GetName() << std::endl;
239 throw hf_exc();
240 }
241
242 // Finally, configure that workspace based on
243 // properties of the measurement
244 HistoToWorkspaceFactoryFast::ConfigureWorkspaceForMeasurement( "model_"+ch_name, ws_single.get(), measurement );
245
246 return RooFit::makeOwningPtr(std::move(ws_single));
247
248 }
249
251
252 // This function takes a fully configured measurement
253 // which may contain several channels and returns
254 // a workspace holding the combined model
255 //
256 // This can be used, for example, within a script to produce
257 // a combined workspace on-the-fly
258 //
259 // This is a static function (for now) to make
260 // it a one-liner
261
263
264 // First, we create an instance of a HistFactory
265 HistoToWorkspaceFactoryFast histFactory( measurement );
266
267 // Loop over the channels and create the individual workspaces
268 vector<std::unique_ptr<RooWorkspace>> channel_workspaces;
269 vector<string> channel_names;
270
271 for(HistFactory::Channel& channel : measurement.GetChannels()) {
272
273 if( ! channel.CheckHistograms() ) {
274 cxcoutFHF << "MakeModelAndMeasurementsFast: Channel: " << channel.GetName()
275 << " has uninitialized histogram pointers" << std::endl;
276 throw hf_exc();
277 }
278
279 string ch_name = channel.GetName();
280 channel_names.push_back(ch_name);
281
282 // GHL: Renaming to 'MakeSingleChannelWorkspace'
283 channel_workspaces.emplace_back(histFactory.MakeSingleChannelModel(measurement, channel));
284 }
285
286
287 // Now, combine the individual channel workspaces to
288 // form the combined workspace
289 std::unique_ptr<RooWorkspace> ws{histFactory.MakeCombinedModel( channel_names, channel_workspaces )};
290
291
292 // Configure the workspace
294
295 // Done. Return the pointer
296 return RooFit::makeOwningPtr(std::move(ws));
297
298 }
299
300namespace {
301
302template <class Arg_t, typename... Args_t>
303Arg_t &emplace(RooWorkspace &ws, std::string const &name, Args_t &&...args)
304{
305 Arg_t arg{name.c_str(), name.c_str(), std::forward<Args_t>(args)...};
307 return *dynamic_cast<Arg_t *>(ws.arg(name));
308}
309
310} // namespace
311
312/// Create observables of type RooRealVar. Creates 1 to 3 observables, depending on the type of the histogram.
314 RooArgList observables;
315
316 for (unsigned int idx=0; idx < fObsNameVec.size(); ++idx) {
317 if (!proto.var(fObsNameVec[idx])) {
318 const TAxis *axis = (idx == 0) ? hist->GetXaxis() : (idx == 1 ? hist->GetYaxis() : hist->GetZaxis());
319 int nbins = axis->GetNbins();
320 // create observable
321 RooRealVar &obs = emplace<RooRealVar>(proto, fObsNameVec[idx], axis->GetXmin(), axis->GetXmax());
322 if(strlen(axis->GetTitle())>0) obs.SetTitle(axis->GetTitle());
323 obs.setBins(nbins);
324 if (axis->IsVariableBinSize()) {
325 RooBinning binning(nbins, axis->GetXbins()->GetArray());
326 obs.setBinning(binning);
327 }
328 }
329
330 observables.add(*proto.var(fObsNameVec[idx]));
331 }
332
333 return observables;
334}
335
336 /// Create the nominal hist function from `hist`, and register it in the workspace.
338 const RooArgList& observables) const {
339 if(hist) {
340 cxcoutI(HistFactory) << "processing hist " << hist->GetName() << endl;
341 } else {
342 cxcoutF(HistFactory) << "hist is empty" << endl;
343 R__ASSERT(hist != nullptr);
344 return nullptr;
345 }
346
347 // determine histogram dimensionality
348 unsigned int histndim(1);
349 std::string classname = hist->ClassName();
350 if (classname.find("TH1")==0) { histndim=1; }
351 else if (classname.find("TH2")==0) { histndim=2; }
352 else if (classname.find("TH3")==0) { histndim=3; }
353 R__ASSERT( histndim==fObsNameVec.size() );
354
355 prefix += "_Hist_alphanominal";
356
357 RooDataHist histDHist(prefix + "DHist","",observables,hist);
358
359 return &emplace<RooHistFunc>(proto, prefix, observables,histDHist,0);
360 }
361
362 namespace {
363
364 void makeGaussianConstraint(RooAbsArg& param, RooWorkspace& proto, bool isUniform,
365 std::vector<std::string> & constraintTermNames) {
366 std::string paramName = param.GetName();
367 std::string nomName = "nom_" + paramName;
368 std::string constraintName = paramName + "Constraint";
369
370 // do nothing if the constraint term already exists
371 if(proto.pdf(constraintName)) return;
372
373 // case systematic is uniform (assume they are like a Gaussian but with
374 // a large width (100 instead of 1)
375 const double gaussSigma = isUniform ? 100. : 1.0;
376 if (isUniform) {
377 cxcoutIHF << "Added a uniform constraint for " << paramName << " as a Gaussian constraint with a very large sigma " << std::endl;
378 }
379
380 constraintTermNames.emplace_back(constraintName);
381 RooRealVar &paramVar = *proto.var(paramName);
382 RooRealVar &nomParam = emplace<RooRealVar>(proto, nomName, 0., -10., 10.);
383 nomParam.setConstant();
384 emplace<RooGaussian>(proto, constraintName, paramVar, nomParam, gaussSigma);
385 paramVar.setError(gaussSigma); // give param initial error to match gaussSigma
386 const_cast<RooArgSet*>(proto.set("globalObservables"))->add(nomParam);
387 }
388
389 /// Make list of abstract parameters that interpolate in space of variations.
390 RooArgList makeInterpolationParameters(std::vector<HistoSys> const& histoSysList, RooWorkspace& proto) {
391 RooArgList params( ("alpha_Hist") );
392
393 for(auto const& histoSys : histoSysList) {
394 params.add(getOrCreate<RooRealVar>(proto, "alpha_" + histoSys.GetName(), alphaLow, alphaHigh));
395 }
396
397 return params;
398 }
399
400 /// Create a linear interpolation object that holds nominal and systematics, import it into the workspace,
401 /// and return a pointer to it.
402 RooAbsArg* makeLinInterp(RooArgList const& interpolationParams,
403 RooHistFunc* nominalFunc,
404 RooWorkspace& proto, const std::vector<HistoSys>& histoSysList,
405 const string& prefix,
406 const RooArgList& obsList) {
407
408 // now make function that linearly interpolates expectation between variations
409 // get low/high variations to interpolate between
410 std::vector<double> low;
411 std::vector<double> high;
412 RooArgSet lowSet;
413 RooArgSet highSet;
414 for(unsigned int j=0; j<histoSysList.size(); ++j){
415 std::string str = prefix + "_" + std::to_string(j);
416
417 const HistoSys& histoSys = histoSysList.at(j);
418 auto lowDHist = std::make_unique<RooDataHist>(str+"lowDHist","",obsList, histoSys.GetHistoLow());
419 auto highDHist = std::make_unique<RooDataHist>(str+"highDHist","",obsList, histoSys.GetHistoHigh());
420 lowSet.addOwned(std::make_unique<RooHistFunc>((str+"low").c_str(),"",obsList,std::move(lowDHist),0));
421 highSet.addOwned(std::make_unique<RooHistFunc>((str+"high").c_str(),"",obsList,std::move(highDHist),0));
422 }
423
424 // this is sigma(params), a piece-wise linear interpolation
425 PiecewiseInterpolation interp(prefix.c_str(),"",*nominalFunc,lowSet,highSet,interpolationParams);
426 interp.setPositiveDefinite();
427 interp.setAllInterpCodes(4); // LM: change to 4 (piece-wise linear to 6th order polynomial interpolation + linear extrapolation )
428 // KC: interpo codes 1 etc. don't have proper analytic integral.
429 RooArgSet obsSet(obsList);
430 interp.setBinIntegrator(obsSet);
431 interp.forceNumInt();
432
433 proto.import(interp, RooFit::RecycleConflictNodes()); // individual params have already been imported in first loop of this function
434
435 return proto.arg(prefix);
436 }
437
438 }
439
440 // GHL: Consider passing the NormFactor list instead of the entire sample
441 std::unique_ptr<RooProduct> HistoToWorkspaceFactoryFast::CreateNormFactor(RooWorkspace& proto, string& channel, string& sigmaEpsilon, Sample& sample, bool doRatio){
442
443 std::vector<string> prodNames;
444
445 vector<NormFactor> normList = sample.GetNormFactorList();
446 vector<string> normFactorNames;
447 vector<string> rangeNames;
448
449 string overallNorm_times_sigmaEpsilon = sample.GetName() + "_" + channel + "_scaleFactors";
450 auto sigEps = proto.arg(sigmaEpsilon);
451 assert(sigEps);
452 auto normFactor = std::make_unique<RooProduct>(overallNorm_times_sigmaEpsilon.c_str(), overallNorm_times_sigmaEpsilon.c_str(), RooArgList(*sigEps));
453
454 if(!normList.empty()){
455
456 for(NormFactor &norm : normList) {
457 string varname = norm.GetName();
458 if(doRatio) {
459 varname += "_" + channel;
460 }
461
462 // GHL: Check that the NormFactor doesn't already exist
463 // (it may have been created as a function expression
464 // during preprocessing)
465 std::stringstream range;
466 range << "[" << norm.GetVal() << "," << norm.GetLow() << "," << norm.GetHigh() << "]";
467
468 if( proto.obj(varname) == nullptr) {
469 cxcoutI(HistFactory) << "making normFactor: " << norm.GetName() << endl;
470 // remove "doRatio" and name can be changed when ws gets imported to the combined model.
471 emplace<RooRealVar>(proto, varname, norm.GetVal(), norm.GetLow(), norm.GetHigh());
472 proto.var(varname)->setError(0); // ensure factor is assigned an initial error, even if its zero
473 }
474
475 prodNames.push_back(varname);
476 rangeNames.push_back(range.str());
477 normFactorNames.push_back(varname);
478 }
479
480
481 for (const auto& name : prodNames) {
482 auto arg = proto.arg(name);
483 assert(arg);
484 normFactor->addTerm(arg);
485 }
486
487 }
488
489 unsigned int rangeIndex=0;
490 for( vector<string>::iterator nit = normFactorNames.begin(); nit!=normFactorNames.end(); ++nit){
491 if( count (normFactorNames.begin(), normFactorNames.end(), *nit) > 1 ){
492 cxcoutI(HistFactory) <<"<NormFactor Name =\""<<*nit<<"\"> is duplicated for <Sample Name=\""
493 << sample.GetName() << "\">, but only one factor will be included. \n Instead, define something like"
494 << "\n\t<Function Name=\""<<*nit<<"Squared\" Expression=\""<<*nit<<"*"<<*nit<<"\" Var=\""<<*nit<<rangeNames.at(rangeIndex)
495 << "\"> \nin your top-level XML's <Measurement> entry and use <NormFactor Name=\""<<*nit<<"Squared\" in your channel XML file."<< endl;
496 }
497 ++rangeIndex;
498 }
499
500 return normFactor;
501 }
502
504 string interpName,
505 std::vector<OverallSys>& systList,
506 vector<string>& constraintTermNames,
507 vector<string>& totSystTermNames) {
508
509 // add variables for all the relative overall uncertainties we expect
510 totSystTermNames.push_back(prefix);
511
512 RooArgSet params(prefix.c_str());
513 vector<double> lowVec;
514 vector<double> highVec;
515
516 std::map<std::string, double>::iterator itconstr;
517 for(unsigned int i = 0; i < systList.size(); ++i) {
518
519 OverallSys& sys = systList.at(i);
520 std::string strname = sys.GetName();
521 const char * name = strname.c_str();
522
523 // case of no systematic (is it possible)
524 if (meas.GetNoSyst().count(sys.GetName()) > 0 ) {
525 cxcoutI(HistFactory) << "HistoToWorkspaceFast::AddConstraintTerm - skip systematic " << sys.GetName() << std::endl;
526 continue;
527 }
528 // case systematic is a gamma constraint
529 if (meas.GetGammaSyst().count(sys.GetName()) > 0 ) {
530 double relerr = meas.GetGammaSyst().find(sys.GetName() )->second;
531 if (relerr <= 0) {
532 cxcoutI(HistFactory) << "HistoToWorkspaceFast::AddConstraintTerm - zero uncertainty assigned - skip systematic " << sys.GetName() << std::endl;
533 continue;
534 }
535 const double tauVal = 1./(relerr*relerr);
536 const double sqtau = 1./relerr;
537 RooRealVar &beta = emplace<RooRealVar>(proto, "beta_" + strname, 1., 0., 10.);
538 // the global observable (y_s)
539 RooRealVar &yvar = emplace<RooRealVar>(proto, "nom_" + std::string{beta.GetName()}, tauVal, 0., 10.);
540 // the rate of the gamma distribution (theta)
541 RooRealVar &theta = emplace<RooRealVar>(proto, "theta_" + strname, 1./tauVal);
542 // find alpha as function of beta
543 RooPolyVar &alphaOfBeta = emplace<RooPolyVar>(proto, "alphaOfBeta_" + strname, beta, RooArgList{-sqtau, sqtau});
544
545 // add now the constraint itself Gamma_beta_constraint(beta, y+1, tau, 0 )
546 // build the gamma parameter k = as y_s + 1
547 RooAddition &kappa = emplace<RooAddition>(proto, "k_" + std::string{yvar.GetName()}, RooArgList{yvar, 1.0});
548 RooGamma &gamma = emplace<RooGamma>(proto, std::string{beta.GetName()} + "Constraint", beta, kappa, theta, RooFit::RooConst(0.0));
550 alphaOfBeta.Print("t");
551 gamma.Print("t");
552 }
553 constraintTermNames.push_back(gamma.GetName());
554 // set global observables
555 yvar.setConstant(true);
556 const_cast<RooArgSet*>(proto.set("globalObservables"))->add(yvar);
557
558 // add alphaOfBeta in the list of params to interpolate
559 params.add(alphaOfBeta);
560 cxcoutI(HistFactory) << "Added a gamma constraint for " << name << std::endl;
561
562 }
563 else {
564 RooRealVar& alpha = getOrCreate<RooRealVar>(proto, prefix + sys.GetName(), 0, alphaLow, alphaHigh);
565 // add the Gaussian constraint part
566 const bool isUniform = meas.GetUniformSyst().count(sys.GetName()) > 0;
567 makeGaussianConstraint(alpha, proto, isUniform, constraintTermNames);
568
569 // check if exists a log-normal constraint
570 if (meas.GetLogNormSyst().count(sys.GetName()) == 0 && meas.GetGammaSyst().count(sys.GetName()) == 0 ) {
571 // just add the alpha for the parameters of the FlexibleInterpVar function
572 params.add(alpha);
573 }
574 // case systematic is a log-normal constraint
575 if (meas.GetLogNormSyst().count(sys.GetName()) > 0 ) {
576 // log normal constraint for parameter
577 const double relerr = meas.GetLogNormSyst().find(sys.GetName() )->second;
578
579 RooFormulaVar &alphaOfBeta = emplace<RooFormulaVar>(
580 proto, "alphaOfBeta_" + sys.GetName(), "x[0]*(pow(x[1],x[2])-1.)",
581 RooArgList{emplace<RooRealVar>(proto, "tau_" + sys.GetName(), 1. / relerr),
582 emplace<RooRealVar>(proto, "kappa_" + sys.GetName(), 1. + relerr), alpha});
583
584 cxcoutI(HistFactory) << "Added a log-normal constraint for " << name << std::endl;
586 alphaOfBeta.Print("t");
587 }
588 params.add(alphaOfBeta);
589 }
590
591 }
592 // add low/high vectors
593 lowVec.push_back(sys.GetLow());
594 highVec.push_back(sys.GetHigh());
595
596 } // end sys loop
597
598 if(!systList.empty()){
599 // this is epsilon(alpha_j), a piece-wise linear interpolation
600 // LinInterpVar interp( (interpName).c_str(), "", params, 1., lowVec, highVec);
601
602 assert(!params.empty());
603 assert(lowVec.size() == params.size());
604
605 FlexibleInterpVar interp( (interpName).c_str(), "", params, 1., lowVec, highVec);
606 interp.setAllInterpCodes(4); // LM: change to 4 (piece-wise exponential to 6th order polynomial interpolation + exponential extrapolation )
607 //interp.setAllInterpCodes(0); // simple linear interpolation
608 proto.import(interp); // params have already been imported in first loop of this function
609 } else{
610 // some strange behavior if params,lowVec,highVec are empty.
611 //cout << "WARNING: No OverallSyst terms" << endl;
612 emplace<RooConstVar>(proto, interpName, 1.); // params have already been imported in first loop of this function
613 }
614 }
615
616
618 const vector<RooProduct*>& sampleScaleFactors, std::vector<vector<RooAbsArg*>>& sampleHistFuncs) const {
619 assert(sampleScaleFactors.size() == sampleHistFuncs.size());
620
621 // for ith bin calculate totN_i = lumi * sum_j expected_j * syst_j
622
623 if (fObsNameVec.empty() && !fObsName.empty())
624 throw std::logic_error("HistFactory didn't process the observables correctly. Please file a bug report.");
625
626 auto firstHistFunc = dynamic_cast<const RooHistFunc*>(sampleHistFuncs.front().front());
627 if (!firstHistFunc) {
628 auto piecewiseInt = dynamic_cast<const PiecewiseInterpolation*>(sampleHistFuncs.front().front());
629 firstHistFunc = dynamic_cast<const RooHistFunc*>(piecewiseInt->nominalHist());
630 }
631 assert(firstHistFunc);
632
633 // Prepare a function to divide all bin contents by bin width to get a density:
634 auto &binWidth = emplace<RooBinWidthFunction>(proto, totName + "_binWidth", *firstHistFunc, true);
635
636 // Loop through samples and create products of their functions:
637 RooArgSet coefList;
638 RooArgSet shapeList;
639 for (unsigned int i=0; i < sampleHistFuncs.size(); ++i) {
640 assert(!sampleHistFuncs[i].empty());
641 coefList.add(*sampleScaleFactors[i]);
642
643 std::vector<RooAbsArg*>& thisSampleHistFuncs = sampleHistFuncs[i];
644 thisSampleHistFuncs.push_back(&binWidth);
645
646 if (thisSampleHistFuncs.size() == 1) {
647 // Just one function. Book it.
648 shapeList.add(*thisSampleHistFuncs.front());
649 } else {
650 // Have multiple functions. We need to multiply them.
651 std::string name = thisSampleHistFuncs.front()->GetName();
652 auto pos = name.find("Hist_alpha");
653 if (pos != std::string::npos) {
654 name = name.substr(0, pos) + "shapes";
655 } else if ( (pos = name.find("nominal")) != std::string::npos) {
656 name = name.substr(0, pos) + "shapes";
657 }
658
659 RooProduct shapeProduct(name.c_str(), thisSampleHistFuncs.front()->GetTitle(), RooArgSet(thisSampleHistFuncs.begin(), thisSampleHistFuncs.end()));
660 proto.import(shapeProduct, RooFit::RecycleConflictNodes());
661 shapeList.add(*proto.function(name));
662 }
663 }
664
665 // Sum all samples
666 RooRealSumPdf tot(totName.c_str(), totName.c_str(), shapeList, coefList, true);
667 tot.specialIntegratorConfig(true)->method1D().setLabel("RooBinIntegrator") ;
668 tot.specialIntegratorConfig(true)->method2D().setLabel("RooBinIntegrator") ;
669 tot.specialIntegratorConfig(true)->methodND().setLabel("RooBinIntegrator") ;
670 tot.forceNumInt();
671
672 // for mixed generation in RooSimultaneous
673 tot.setAttribute("GenerateBinned"); // for use with RooSimultaneous::generate in mixed mode
674
675 // Enable the binned likelihood optimization
677 tot.setAttribute("BinnedLikelihood");
678 }
679
680 proto.import(tot, RooFit::RecycleConflictNodes());
681 }
682
683 //////////////////////////////////////////////////////////////////////////////
684
686
687 FILE* covFile = fopen ((filename).c_str(),"w");
688 fprintf(covFile," ") ;
689 for (auto const *myargi : static_range_cast<RooRealVar *>(*params)) {
690 if(myargi->isConstant()) continue;
691 fprintf(covFile," & %s", myargi->GetName());
692 }
693 fprintf(covFile,"\\\\ \\hline \n" );
694 for (auto const *myargi : static_range_cast<RooRealVar *>(*params)) {
695 if(myargi->isConstant()) continue;
696 fprintf(covFile,"%s", myargi->GetName());
697 for (auto const *myargj : static_range_cast<RooRealVar *>(*params)) {
698 if(myargj->isConstant()) continue;
699 cout << myargi->GetName() << "," << myargj->GetName();
700 fprintf(covFile, " & %.2f", result->correlation(*myargi, *myargj));
701 }
702 cout << endl;
703 fprintf(covFile, " \\\\\n");
704 }
705 fclose(covFile);
706
707 }
708
709
710 ///////////////////////////////////////////////
711 std::unique_ptr<RooWorkspace> HistoToWorkspaceFactoryFast::MakeSingleChannelWorkspace(Measurement& measurement, Channel& channel) {
712
713 // check inputs (see JIRA-6890 )
714
715 if (channel.GetSamples().empty()) {
716 Error("MakeSingleChannelWorkspace",
717 "The input Channel does not contain any sample - return a nullptr");
718 return nullptr;
719 }
720
721 const TH1* channel_hist_template = channel.GetSamples().front().GetHisto();
722 if (channel_hist_template == nullptr) {
723 channel.CollectHistograms();
724 channel_hist_template = channel.GetSamples().front().GetHisto();
725 }
726 if (channel_hist_template == nullptr) {
727 std::ostringstream stream;
728 stream << "The sample " << channel.GetSamples().front().GetName()
729 << " in channel " << channel.GetName() << " does not contain a histogram. This is the channel:\n";
730 channel.Print(stream);
731 Error("MakeSingleChannelWorkspace", "%s", stream.str().c_str());
732 return nullptr;
733 }
734
735 if( ! channel.CheckHistograms() ) {
736 std::cout << "MakeSingleChannelWorkspace: Channel: " << channel.GetName()
737 << " has uninitialized histogram pointers" << std::endl;
738 throw hf_exc();
739 }
740
741
742
743 // Set these by hand inside the function
744 vector<string> systToFix = measurement.GetConstantParams();
745 bool doRatio=false;
746
747 // to time the macro
748 TStopwatch t;
749 t.Start();
750 //ES// string channel_name=summary[0].channel;
751 string channel_name = channel.GetName();
752
753 /// MB: reset observable names for each new channel.
754 fObsNameVec.clear();
755
756 /// MB: label observables x,y,z, depending on histogram dimensionality
757 /// GHL: Give it the first sample's nominal histogram as a template
758 /// since the data histogram may not be present
759 if (fObsNameVec.empty()) { GuessObsNameVec(channel_hist_template); }
760
761 for ( unsigned int idx=0; idx<fObsNameVec.size(); ++idx ) {
762 fObsNameVec[idx] = "obs_" + fObsNameVec[idx] + "_" + channel_name ;
763 }
764
765 if (fObsNameVec.empty()) {
766 fObsName= "obs_" + channel_name; // set name ov observable
767 fObsNameVec.push_back( fObsName );
768 }
769
770 if (fObsNameVec.empty() || fObsNameVec.size() > 3) {
771 throw hf_exc("HistFactory is limited to 1- to 3-dimensional histograms.");
772 }
773
774 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
775 << "\tStarting to process '"
776 << channel_name << "' channel with " << fObsNameVec.size() << " observables"
777 << "\n-----------------------------------------\n" << endl;
778
779 //
780 // our main workspace that we are using to construct the model
781 //
782 auto protoOwner = std::make_unique<RooWorkspace>(channel_name.c_str(), (channel_name+" workspace").c_str());
783 RooWorkspace &proto = *protoOwner;
784 auto proto_config = make_unique<ModelConfig>("ModelConfig", &proto);
785 proto_config->SetWorkspace(proto);
786
787 // preprocess functions
788 for(auto const& func : fPreprocessFunctions){
789 cxcoutI(HistFactory) << "will preprocess this line: " << func <<endl;
790 proto.factory(func);
791 proto.Print();
792 }
793
794 RooArgSet likelihoodTerms("likelihoodTerms");
795 RooArgSet constraintTerms("constraintTerms");
796 vector<string> likelihoodTermNames;
797 vector<string> constraintTermNames;
798 vector<string> totSystTermNames;
799 // All histogram functions to be multiplied in each sample
800 std::vector<std::vector<RooAbsArg*>> allSampleHistFuncs;
801 std::vector<RooProduct*> sampleScaleFactors;
802
803 std::vector< pair<string,string> > statNamePairs;
804 std::vector< pair<const TH1*, std::unique_ptr<TH1>> > statHistPairs; // <nominal, error>
805 const std::string statFuncName = "mc_stat_" + channel_name;
806
807 string prefix;
808 string range;
809
810 /////////////////////////////
811 // shared parameters
812 // this is ratio of lumi to nominal lumi. We will include relative uncertainty in model
813 auto &lumiVar = getOrCreate<RooRealVar>(proto, "Lumi", fNomLumi, 0.0, 10 * fNomLumi);
814
815 // only include a lumiConstraint if there's a lumi uncert, otherwise just set the lumi constant
816 if(fLumiError != 0) {
817 auto &nominalLumiVar = emplace<RooRealVar>(proto, "nominalLumi", fNomLumi, 0., fNomLumi + 10. * fLumiError);
818 emplace<RooGaussian>(proto, "lumiConstraint", lumiVar, nominalLumiVar, fLumiError);
819 proto.var("Lumi")->setError(fLumiError/fNomLumi); // give initial error value
820 proto.var("nominalLumi")->setConstant();
821 proto.defineSet("globalObservables","nominalLumi");
822 //likelihoodTermNames.push_back("lumiConstraint");
823 constraintTermNames.push_back("lumiConstraint");
824 } else {
825 proto.var("Lumi")->setConstant();
826 proto.defineSet("globalObservables",RooArgSet()); // create empty set as is assumed it exists later
827 }
828 ///////////////////////////////////
829 // loop through estimates, add expectation, floating bin predictions,
830 // and terms that constrain floating to expectation via uncertainties
831 // GHL: Loop over samples instead, which doesn't contain the data
832 for (Sample& sample : channel.GetSamples()) {
833 string overallSystName = sample.GetName() + "_" + channel_name + "_epsilon";
834
835 string systSourcePrefix = "alpha_";
836
837 // constraintTermNames and totSystTermNames are vectors that are passed
838 // by reference and filled by this method
839 AddConstraintTerms(proto,measurement, systSourcePrefix, overallSystName,
840 sample.GetOverallSysList(), constraintTermNames , totSystTermNames);
841
842 allSampleHistFuncs.emplace_back();
843 std::vector<RooAbsArg*>& sampleHistFuncs = allSampleHistFuncs.back();
844
845 // GHL: Consider passing the NormFactor list instead of the entire sample
846 auto normFactors = CreateNormFactor(proto, channel_name, overallSystName, sample, doRatio);
847 assert(normFactors);
848
849 // Create the string for the object
850 // that is added to the RooRealSumPdf
851 // for this channel
852// string syst_x_expectedPrefix = "";
853
854 // get histogram
855 //ES// TH1* nominal = it->nominal;
856 const TH1* nominal = sample.GetHisto();
857
858 // MB : HACK no option to have both non-hist variations and hist variations ?
859 // get histogram
860 // GHL: Okay, this is going to be non-trivial.
861 // We will loop over histosys's, which contain both
862 // the low hist and the high hist together.
863
864 // Logic:
865 // - If we have no HistoSys's, do part A
866 // - else, if the histo syst's don't match, return (we ignore this case)
867 // - finally, we take the syst's and apply the linear interpolation w/ constraint
868 string expPrefix = sample.GetName() + "_" + channel_name;
869 // create roorealvar observables
870 RooArgList observables = createObservables(sample.GetHisto(), proto);
871 RooHistFunc* nominalHistFunc = MakeExpectedHistFunc(sample.GetHisto(), proto, expPrefix, observables);
872 assert(nominalHistFunc);
873
874 if(sample.GetHistoSysList().empty()) {
875 // If no HistoSys
876 cxcoutI(HistFactory) << sample.GetName() + "_" + channel_name + " has no variation histograms " << endl;
877
878 sampleHistFuncs.push_back(nominalHistFunc);
879 } else {
880 // If there ARE HistoSys(s)
881 // name of source for variation
882 string constraintPrefix = sample.GetName() + "_" + channel_name + "_Hist_alpha";
883
884 // make list of abstract parameters that interpolate in space of variations
885 RooArgList interpParams = makeInterpolationParameters(sample.GetHistoSysList(), proto);
886
887 // next, create the constraint terms
888 for(std::size_t i = 0; i < interpParams.size(); ++i) {
889 bool isUniform = measurement.GetUniformSyst().count(sample.GetHistoSysList()[i].GetName()) > 0;
890 makeGaussianConstraint(interpParams[i], proto, isUniform, constraintTermNames);
891 }
892
893 // finally, create the interpolated function
894 sampleHistFuncs.push_back( makeLinInterp(interpParams, nominalHistFunc, proto,
895 sample.GetHistoSysList(), constraintPrefix, observables) );
896 }
897
898 sampleHistFuncs.front()->SetTitle( (nominal && strlen(nominal->GetTitle())>0) ? nominal->GetTitle() : sample.GetName().c_str() );
899
900 ////////////////////////////////////
901 // Add StatErrors to this Channel //
902 ////////////////////////////////////
903
904 if( sample.GetStatError().GetActivate() ) {
905
906 if( fObsNameVec.size() > 3 ) {
907 cxcoutF(HistFactory) << "Cannot include Stat Error for histograms of more than 3 dimensions."
908 << std::endl;
909 throw hf_exc();
910 } else {
911
912 // If we are using StatUncertainties, we multiply this object
913 // by the ParamHistFunc and then pass that to the
914 // RooRealSumPdf by appending it's name to the list
915
916 cxcoutI(HistFactory) << "Sample: " << sample.GetName() << " to be included in Stat Error "
917 << "for channel " << channel_name
918 << std::endl;
919
920 string UncertName = sample.GetName() + "_" + channel_name + "_StatAbsolUncert";
921 std::unique_ptr<TH1> statErrorHist;
922
923 if( sample.GetStatError().GetErrorHist() == nullptr ) {
924 // Make the absolute stat error
925 cxcoutI(HistFactory) << "Making Statistical Uncertainty Hist for "
926 << " Channel: " << channel_name
927 << " Sample: " << sample.GetName()
928 << std::endl;
929 statErrorHist.reset(MakeAbsolUncertaintyHist( UncertName, nominal));
930 } else {
931 // clone the error histograms because in case the sample has not error hist
932 // it is created in MakeAbsolUncertainty
933 // we need later to clean statErrorHist
934 statErrorHist.reset(static_cast<TH1*>(sample.GetStatError().GetErrorHist()->Clone()));
935 // We assume the (relative) error is provided.
936 // We must turn it into an absolute error
937 // using the nominal histogram
938 cxcoutI(HistFactory) << "Using external histogram for Stat Errors for "
939 << "\tChannel: " << channel_name
940 << "\tSample: " << sample.GetName()
941 << "\tError Histogram: " << statErrorHist->GetName() << std::endl;
942 // Multiply the relative stat uncertainty by the
943 // nominal to get the overall stat uncertainty
944 statErrorHist->Multiply( nominal );
945 statErrorHist->SetName( UncertName.c_str() );
946 }
947
948 // Save the nominal and error hists
949 // for the building of constraint terms
950 statHistPairs.emplace_back(nominal, std::move(statErrorHist));
951
952 // To do the 'conservative' version, we would need to do some
953 // intervention here. We would probably need to create a different
954 // ParamHistFunc for each sample in the channel. The would nominally
955 // use the same gamma's, so we haven't increased the number of parameters
956 // However, if a bin in the 'nominal' histogram is 0, we simply need to
957 // change the parameter in that bin in the ParamHistFunc for this sample.
958 // We also need to add a constraint term.
959 // Actually, we'd probably not use the ParamHistFunc...?
960 // we could remove the dependence in this ParamHistFunc on the ith gamma
961 // and then create the poisson term: Pois(tau | n_exp)Pois(data | n_exp)
962
963
964 // Next, try to get the common ParamHistFunc (it may have been
965 // created by another sample in this channel)
966 // or create it if it doesn't yet exist:
967 RooAbsReal* paramHist = dynamic_cast<ParamHistFunc*>(proto.function(statFuncName) );
968 if( paramHist == nullptr ) {
969
970 // Get a RooArgSet of the observables:
971 // Names in the list fObsNameVec:
972 RooArgList theObservables;
973 std::vector<std::string>::iterator itr = fObsNameVec.begin();
974 for (int idx=0; itr!=fObsNameVec.end(); ++itr, ++idx ) {
975 theObservables.add( *proto.var(*itr) );
976 }
977
978 // Create the list of terms to
979 // control the bin heights:
980 std::string ParamSetPrefix = "gamma_stat_" + channel_name;
982 ParamSetPrefix,
983 theObservables,
985
986 ParamHistFunc statUncertFunc(statFuncName.c_str(), statFuncName.c_str(),
987 theObservables, statFactorParams );
988
989 proto.import( statUncertFunc, RooFit::RecycleConflictNodes() );
990
991 paramHist = proto.function( statFuncName);
992 }
993
994 // apply stat function to sample
995 sampleHistFuncs.push_back(paramHist);
996 }
997 } // END: if DoMcStat
998
999
1000 ///////////////////////////////////////////
1001 // Create a ShapeFactor for this channel //
1002 ///////////////////////////////////////////
1003
1004 if( !sample.GetShapeFactorList().empty() ) {
1005
1006 if( fObsNameVec.size() > 3 ) {
1007 cxcoutF(HistFactory) << "Cannot include Stat Error for histograms of more than 3 dimensions."
1008 << std::endl;
1009 throw hf_exc();
1010 } else {
1011
1012 cxcoutI(HistFactory) << "Sample: " << sample.GetName() << " in channel: " << channel_name
1013 << " to be include a ShapeFactor."
1014 << std::endl;
1015
1016 for(ShapeFactor& shapeFactor : sample.GetShapeFactorList()) {
1017
1018 std::string funcName = channel_name + "_" + shapeFactor.GetName() + "_shapeFactor";
1019 RooAbsArg *paramHist = proto.function(funcName);
1020 if( paramHist == nullptr ) {
1021
1022 RooArgList theObservables;
1023 for(std::string const& varName : fObsNameVec) {
1024 theObservables.add( *proto.var(varName) );
1025 }
1026
1027 // Create the Parameters
1028 std::string funcParams = "gamma_" + shapeFactor.GetName();
1029
1030 // GHL: Again, we are putting hard ranges on the gamma's
1031 // We should change this to range from 0 to /inf
1033 funcParams,
1035
1036 // Create the Function
1037 ParamHistFunc shapeFactorFunc( funcName.c_str(), funcName.c_str(),
1038 theObservables, shapeFactorParams );
1039
1040 // Set an initial shape, if requested
1041 if( shapeFactor.GetInitialShape() != nullptr ) {
1042 TH1* initialShape = static_cast<TH1*>(shapeFactor.GetInitialShape()->Clone());
1043 cxcoutI(HistFactory) << "Setting Shape Factor: " << shapeFactor.GetName()
1044 << " to have initial shape from hist: "
1045 << initialShape->GetName()
1046 << std::endl;
1047 shapeFactorFunc.setShape( initialShape );
1048 }
1049
1050 // Set the variables constant, if requested
1051 if( shapeFactor.IsConstant() ) {
1052 cxcoutI(HistFactory) << "Setting Shape Factor: " << shapeFactor.GetName()
1053 << " to be constant" << std::endl;
1054 shapeFactorFunc.setConstant(true);
1055 }
1056
1057 proto.import( shapeFactorFunc, RooFit::RecycleConflictNodes() );
1058 paramHist = proto.function(funcName);
1059
1060 } // End: Create ShapeFactor ParamHistFunc
1061
1062 sampleHistFuncs.push_back(paramHist);
1063 } // End loop over ShapeFactor Systematics
1064 }
1065 } // End: if ShapeFactorName!=""
1066
1067
1068 ////////////////////////////////////////
1069 // Create a ShapeSys for this channel //
1070 ////////////////////////////////////////
1071
1072 if( !sample.GetShapeSysList().empty() ) {
1073
1074 if( fObsNameVec.size() > 3 ) {
1075 cxcoutF(HistFactory) << "Cannot include Stat Error for histograms of more than 3 dimensions."
1076 << std::endl;
1077 throw hf_exc();
1078 }
1079
1080 // List of ShapeSys ParamHistFuncs
1081 std::vector<string> ShapeSysNames;
1082
1083 for(RooStats::HistFactory::ShapeSys& shapeSys : sample.GetShapeSysList()) {
1084
1085 // Create the ParamHistFunc's
1086 // Create their constraint terms and add them
1087 // to the list of constraint terms
1088
1089 // Create a single RooProduct over all of these
1090 // paramHistFunc's
1091
1092 // Send the name of that product to the RooRealSumPdf
1093
1094 cxcoutI(HistFactory) << "Sample: " << sample.GetName() << " in channel: " << channel_name
1095 << " to include a ShapeSys." << std::endl;
1096
1097 std::string funcName = channel_name + "_" + shapeSys.GetName() + "_ShapeSys";
1098 ShapeSysNames.push_back( funcName );
1099 auto paramHist = static_cast<ParamHistFunc*>(proto.function(funcName));
1100 if( paramHist == nullptr ) {
1101
1102 //std::string funcParams = "gamma_" + it->shapeFactorName;
1103 //paramHist = CreateParamHistFunc( proto, fObsNameVec, funcParams, funcName );
1104
1105 RooArgList theObservables;
1106 for(std::string const& varName : fObsNameVec) {
1107 theObservables.add( *proto.var(varName) );
1108 }
1109
1110 // Create the Parameters
1111 std::string funcParams = "gamma_" + shapeSys.GetName();
1113 funcParams,
1114 theObservables, defaultGammaMin, defaultShapeSysGammaMax);
1115
1116 // Create the Function
1117 ParamHistFunc shapeFactorFunc( funcName.c_str(), funcName.c_str(),
1118 theObservables, shapeFactorParams );
1119
1120 proto.import( shapeFactorFunc, RooFit::RecycleConflictNodes() );
1121 paramHist = static_cast<ParamHistFunc*>(proto.function(funcName));
1122
1123 } // End: Create ShapeFactor ParamHistFunc
1124
1125 // Create the constraint terms and add
1126 // them to the workspace (proto)
1127 // as well as the list of constraint terms (constraintTermNames)
1128
1129 // The syst should be a fractional error
1130 const TH1* shapeErrorHist = shapeSys.GetErrorHist();
1131
1132 // Constraint::Type shapeConstraintType = Constraint::Gaussian;
1133 Constraint::Type systype = shapeSys.GetConstraintType();
1134 if( systype == Constraint::Gaussian) {
1135 systype = Constraint::Gaussian;
1136 }
1137 if( systype == Constraint::Poisson ) {
1138 systype = Constraint::Poisson;
1139 }
1140
1141 auto shapeConstraintsInfo = createGammaConstraints(
1142 paramHist->paramList(), histToVector(*shapeErrorHist),
1144 systype);
1145 for (auto const& term : shapeConstraintsInfo.constraints) {
1146 proto.import(*term, RooFit::RecycleConflictNodes());
1147 constraintTermNames.emplace_back(term->GetName());
1148 }
1149 // Add the "observed" value to the list of global observables:
1150 RooArgSet *globalSet = const_cast<RooArgSet *>(proto.set("globalObservables"));
1151 for (RooAbsArg * glob : shapeConstraintsInfo.globalObservables) {
1152 globalSet->add(*proto.var(glob->GetName()));
1153 }
1154
1155
1156 } // End: Loop over ShapeSys vector in this EstimateSummary
1157
1158 // Now that we have the list of ShapeSys ParamHistFunc names,
1159 // we create the total RooProduct
1160 // we multiply the expected function
1161
1162 for(std::string const& name : ShapeSysNames) {
1163 sampleHistFuncs.push_back(proto.function(name));
1164 }
1165
1166 } // End: !GetShapeSysList.empty()
1167
1168
1169 // GHL: This was pretty confusing before,
1170 // hopefully using the measurement directly
1171 // will improve it
1172 RooAbsArg *lumi = proto.arg("Lumi");
1173 if( !sample.GetNormalizeByTheory() ) {
1174 if (!lumi) {
1175 lumi = &emplace<RooRealVar>(proto, "Lumi", measurement.GetLumi());
1176 } else {
1177 static_cast<RooAbsRealLValue*>(lumi)->setVal(measurement.GetLumi());
1178 }
1179 }
1180 assert(lumi);
1181 normFactors->addTerm(lumi);
1182
1183 // Append the name of the "node"
1184 // that is to be summed with the
1185 // RooRealSumPdf
1186 proto.import(*normFactors, RooFit::RecycleConflictNodes());
1187 auto normFactorsInWS = dynamic_cast<RooProduct*>(proto.arg(normFactors->GetName()));
1188 assert(normFactorsInWS);
1189
1190 sampleScaleFactors.push_back(normFactorsInWS);
1191 } // END: Loop over EstimateSummaries
1192
1193 // If a non-zero number of samples call for
1194 // Stat Uncertainties, create the statFactor functions
1195 if(!statHistPairs.empty()) {
1196
1197 // Create the histogram of (binwise)
1198 // stat uncertainties:
1199 unique_ptr<TH1> fracStatError( MakeScaledUncertaintyHist( channel_name + "_StatUncert" + "_RelErr", statHistPairs) );
1200 if( fracStatError == nullptr ) {
1201 cxcoutE(HistFactory) << "Error: Failed to make ScaledUncertaintyHist for: "
1202 << channel_name + "_StatUncert" + "_RelErr" << std::endl;
1203 throw hf_exc();
1204 }
1205
1206 // Using this TH1* of fractinal stat errors,
1207 // create a set of constraint terms:
1208 auto chanStatUncertFunc = static_cast<ParamHistFunc*>(proto.function( statFuncName ));
1209 cxcoutI(HistFactory) << "About to create Constraint Terms from: "
1210 << chanStatUncertFunc->GetName()
1211 << " params: " << chanStatUncertFunc->paramList()
1212 << std::endl;
1213
1214 // Get the constraint type and the
1215 // rel error threshold from the (last)
1216 // EstimateSummary looped over (but all
1217 // should be the same)
1218
1219 // Get the type of StatError constraint from the channel
1220 Constraint::Type statConstraintType = channel.GetStatErrorConfig().GetConstraintType();
1221 if( statConstraintType == Constraint::Gaussian) {
1222 cxcoutI(HistFactory) << "Using Gaussian StatErrors in channel: " << channel.GetName() << std::endl;
1223 }
1224 if( statConstraintType == Constraint::Poisson ) {
1225 cxcoutI(HistFactory) << "Using Poisson StatErrors in channel: " << channel.GetName() << std::endl;
1226 }
1227
1228 double statRelErrorThreshold = channel.GetStatErrorConfig().GetRelErrorThreshold();
1229 auto statConstraintsInfo = createGammaConstraints(
1230 chanStatUncertFunc->paramList(), histToVector(*fracStatError),
1231 statRelErrorThreshold,
1232 statConstraintType);
1233 for (auto const& term : statConstraintsInfo.constraints) {
1234 proto.import(*term, RooFit::RecycleConflictNodes());
1235 constraintTermNames.emplace_back(term->GetName());
1236 }
1237 // Add the "observed" value to the list of global observables:
1238 RooArgSet *globalSet = const_cast<RooArgSet *>(proto.set("globalObservables"));
1239 for (RooAbsArg * glob : statConstraintsInfo.globalObservables) {
1240 globalSet->add(*proto.var(glob->GetName()));
1241 }
1242
1243 } // END: Loop over stat Hist Pairs
1244
1245
1246 ///////////////////////////////////
1247 // for ith bin calculate totN_i = lumi * sum_j expected_j * syst_j
1248 MakeTotalExpected(proto, channel_name+"_model",
1249 sampleScaleFactors, allSampleHistFuncs);
1250 likelihoodTermNames.push_back(channel_name+"_model");
1251
1252 //////////////////////////////////////
1253 // fix specified parameters
1254 for(unsigned int i=0; i<systToFix.size(); ++i){
1255 RooRealVar* temp = proto.var(systToFix.at(i));
1256 if(!temp) {
1257 cxcoutW(HistFactory) << "could not find variable " << systToFix.at(i)
1258 << " could not set it to constant" << endl;
1259 } else {
1260 // set the parameter constant
1261 temp->setConstant();
1262 }
1263 }
1264
1265 //////////////////////////////////////
1266 // final proto model
1267 for(unsigned int i=0; i<constraintTermNames.size(); ++i){
1268 RooAbsArg* proto_arg = proto.arg(constraintTermNames[i]);
1269 if( proto_arg==nullptr ) {
1270 cxcoutF(HistFactory) << "Error: Cannot find arg set: " << constraintTermNames.at(i)
1271 << " in workspace: " << proto.GetName() << std::endl;
1272 throw hf_exc();
1273 }
1274 constraintTerms.add( *proto_arg );
1275 // constraintTerms.add(* proto_arg(proto.arg(constraintTermNames[i].c_str())) );
1276 }
1277 for(unsigned int i=0; i<likelihoodTermNames.size(); ++i){
1278 RooAbsArg* proto_arg = (proto.arg(likelihoodTermNames[i]));
1279 if( proto_arg==nullptr ) {
1280 cxcoutF(HistFactory) << "Error: Cannot find arg set: " << likelihoodTermNames.at(i)
1281 << " in workspace: " << proto.GetName() << std::endl;
1282 throw hf_exc();
1283 }
1284 likelihoodTerms.add( *proto_arg );
1285 }
1286 proto.defineSet("constraintTerms",constraintTerms);
1287 proto.defineSet("likelihoodTerms",likelihoodTerms);
1288
1289 // list of observables
1290 RooArgList observables;
1291 std::string observablesStr;
1292
1293 for(std::string const& name : fObsNameVec) {
1294 observables.add( *proto.var(name) );
1295 if (!observablesStr.empty()) { observablesStr += ","; }
1296 observablesStr += name;
1297 }
1298
1299 // We create two sets, one for backwards compatibility
1300 // The other to make a consistent naming convention
1301 // between individual channels and the combined workspace
1302 proto.defineSet("observables", observablesStr.c_str());
1303 proto.defineSet("observablesSet", observablesStr.c_str());
1304
1305 // Create the ParamHistFunc
1306 // after observables have been made
1307 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1308 << "\timport model into workspace"
1309 << "\n-----------------------------------------\n" << endl;
1310
1311 auto model = make_unique<RooProdPdf>(
1312 ("model_"+channel_name).c_str(), // MB : have changed this into conditional pdf. Much faster for toys!
1313 "product of Poissons across bins for a single channel",
1314 constraintTerms, RooFit::Conditional(likelihoodTerms,observables));
1315 // can give channel a title by setting title of corresponding data histogram
1316 if (channel.GetData().GetHisto() && strlen(channel.GetData().GetHisto()->GetTitle())>0) {
1317 model->SetTitle(channel.GetData().GetHisto()->GetTitle());
1318 }
1319 proto.import(*model,RooFit::RecycleConflictNodes());
1320
1321 proto_config->SetPdf(*model);
1322 proto_config->SetObservables(observables);
1323 proto_config->SetGlobalObservables(*proto.set("globalObservables"));
1324 // proto.writeToFile(("results/model_"+channel+".root").c_str());
1325 // fill out nuisance parameters in model config
1326 // proto_config->GuessObsAndNuisance(*proto.data("asimovData"));
1327 proto.import(*proto_config,proto_config->GetName());
1328 proto.importClassCode();
1329
1330 ///////////////////////////
1331 // make data sets
1332 // THis works and is natural, but the memory size of the simultaneous dataset grows exponentially with channels
1333 // New Asimov Generation: Use the code in the Asymptotic calculator
1334 // Need to get the ModelConfig...
1335 int asymcalcPrintLevel = 0;
1336 if (RooMsgService::instance().isActive(nullptr, RooFit::HistFactory, RooFit::INFO)) asymcalcPrintLevel = 1;
1337 if (RooMsgService::instance().isActive(nullptr, RooFit::HistFactory, RooFit::DEBUG)) asymcalcPrintLevel = 2;
1338 AsymptoticCalculator::SetPrintLevel(asymcalcPrintLevel);
1339 unique_ptr<RooAbsData> asimov_dataset(AsymptoticCalculator::GenerateAsimovData(*model, observables));
1340 proto.import(*asimov_dataset, RooFit::Rename("asimovData"));
1341
1342 // GHL: Determine to use data if the hist isn't 'nullptr'
1343 if(TH1 const* mnominal = channel.GetData().GetHisto()) {
1344 // This works and is natural, but the memory size of the simultaneous
1345 // dataset grows exponentially with channels.
1346 RooDataSet dataset{"obsData","",*proto.set("observables"), RooFit::WeightVar("weightVar")};
1347 ConfigureHistFactoryDataset( dataset, *mnominal, proto, fObsNameVec );
1348 proto.import(dataset);
1349 } // End: Has non-null 'data' entry
1350
1351
1352 for(auto const& data : channel.GetAdditionalData()) {
1353 if(data.GetName().empty()) {
1354 cxcoutF(HistFactory) << "Error: Additional Data histogram for channel: " << channel.GetName()
1355 << " has no name! The name always needs to be set for additional datasets, "
1356 << "either via the \"Name\" tag in the XML or via RooStats::HistFactory::Data::SetName()." << std::endl;
1357 throw hf_exc();
1358 }
1359 std::string const& dataName = data.GetName();
1360 TH1 const* mnominal = data.GetHisto();
1361 if( !mnominal ) {
1362 cxcoutF(HistFactory) << "Error: Additional Data histogram for channel: " << channel.GetName()
1363 << " with name: " << dataName << " is nullptr" << std::endl;
1364 throw hf_exc();
1365 }
1366
1367 // THis works and is natural, but the memory size of the simultaneous dataset grows exponentially with channels
1368 RooDataSet dataset{dataName, "", *proto.set("observables"), RooFit::WeightVar("weightVar")};
1369 ConfigureHistFactoryDataset( dataset, *mnominal, proto, fObsNameVec );
1370 proto.import(dataset);
1371
1372 }
1373
1374 if (RooMsgService::instance().isActive(nullptr, RooFit::HistFactory, RooFit::INFO)) {
1375 proto.Print();
1376 }
1377
1378 return protoOwner;
1379 }
1380
1381
1383 TH1 const& mnominal,
1385 std::vector<std::string> const& obsNameVec) {
1386
1387 // Take a RooDataSet and fill it with the entries
1388 // from a TH1*, using the observable names to
1389 // determine the columns
1390
1391 if (obsNameVec.empty() ) {
1392 Error("ConfigureHistFactoryDataset","Invalid input - return");
1393 return;
1394 }
1395
1396 TAxis const* ax = mnominal.GetXaxis();
1397 TAxis const* ay = mnominal.GetYaxis();
1398 TAxis const* az = mnominal.GetZaxis();
1399
1400 for (int i=1; i<=ax->GetNbins(); ++i) { // 1 or more dimension
1401
1402 double xval = ax->GetBinCenter(i);
1403 proto.var( obsNameVec[0] )->setVal( xval );
1404
1405 if(obsNameVec.size()==1) {
1406 double fval = mnominal.GetBinContent(i);
1407 obsDataUnbinned.add( *proto.set("observables"), fval );
1408 } else { // 2 or more dimensions
1409
1410 for(int j=1; j<=ay->GetNbins(); ++j) {
1411 double yval = ay->GetBinCenter(j);
1412 proto.var( obsNameVec[1] )->setVal( yval );
1413
1414 if(obsNameVec.size()==2) {
1415 double fval = mnominal.GetBinContent(i,j);
1416 obsDataUnbinned.add( *proto.set("observables"), fval );
1417 } else { // 3 dimensions
1418
1419 for(int k=1; k<=az->GetNbins(); ++k) {
1420 double zval = az->GetBinCenter(k);
1421 proto.var( obsNameVec[2] )->setVal( zval );
1422 double fval = mnominal.GetBinContent(i,j,k);
1423 obsDataUnbinned.add( *proto.set("observables"), fval );
1424 }
1425 }
1426 }
1427 }
1428 }
1429 }
1430
1432 {
1433 fObsNameVec = std::vector<string>{"x", "y", "z"};
1434 fObsNameVec.resize(hist->GetDimension());
1435 }
1436
1437
1439 HistoToWorkspaceFactoryFast::MakeCombinedModel(std::vector<std::string> ch_names,
1440 std::vector<std::unique_ptr<RooWorkspace>> &chs)
1441 {
1443
1444 // check first the inputs (see JIRA-6890)
1445 if (ch_names.empty() || chs.empty() ) {
1446 Error("MakeCombinedModel","Input vectors are empty - return a nullptr");
1447 return nullptr;
1448 }
1449 if (chs.size() < ch_names.size() ) {
1450 Error("MakeCombinedModel","Input vector of workspace has an invalid size - return a nullptr");
1451 return nullptr;
1452 }
1453
1454 //
1455 /// These things were used for debugging. Maybe useful in the future
1456 //
1457
1458 map<string, RooAbsPdf*> pdfMap;
1459 vector<RooAbsPdf*> models;
1460
1461 RooArgList obsList;
1462 for(unsigned int i = 0; i< ch_names.size(); ++i){
1463 obsList.add(*static_cast<ModelConfig *>(chs[i]->obj("ModelConfig"))->GetObservables());
1464 }
1465 cxcoutI(HistFactory) <<"full list of observables:\n" << obsList << std::endl;
1466
1467 RooArgSet globalObs;
1468 std::map<std::string, int> channelMap;
1469 for(unsigned int i = 0; i< ch_names.size(); ++i){
1470 string channel_name=ch_names[i];
1471 if (i == 0 && isdigit(channel_name[0])) {
1472 throw std::invalid_argument("The first channel name for HistFactory cannot start with a digit. Got " + channel_name);
1473 }
1474 if (channel_name.find(',') != std::string::npos) {
1475 throw std::invalid_argument("Channel names for HistFactory cannot contain ','. Got " + channel_name);
1476 }
1477
1478 channelMap[channel_name] = i;
1479 RooWorkspace * ch=chs[i].get();
1480
1481 RooAbsPdf* model = ch->pdf("model_"+channel_name);
1482 if(!model) cout <<"failed to find model for channel"<<endl;
1483 // cout << "int = " << model->createIntegral(*obsN)->getVal() << endl;
1484 models.push_back(model);
1485 globalObs.add(*ch->set("globalObservables"), /*silent=*/true); // silent because observables might exist in other channel.
1486
1487 // constrainedParams->add( * ch->set("constrainedParams") );
1488 pdfMap[channel_name]=model;
1489 }
1490
1491 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1492 << "\tEntering combination"
1493 << "\n-----------------------------------------\n" << endl;
1494 auto combined = std::make_unique<RooWorkspace>("combined");
1495
1496
1497 RooCategory& channelCat = emplace<RooCategory>(*combined, "channelCat", channelMap);
1498
1499 auto simPdf= std::make_unique<RooSimultaneous>("simPdf","",pdfMap, channelCat);
1500 auto combined_config = std::make_unique<ModelConfig>("ModelConfig", combined.get());
1501 combined_config->SetWorkspace(*combined);
1502 // combined_config->SetNuisanceParameters(*constrainedParams);
1503
1504 combined->import(globalObs);
1505 combined->defineSet("globalObservables",globalObs);
1506 combined_config->SetGlobalObservables(*combined->set("globalObservables"));
1507
1508 combined->defineSet("observables",{obsList, channelCat}, /*importMissing=*/true);
1509 combined_config->SetObservables(*combined->set("observables"));
1510
1511
1512 // Now merge the observable datasets across the channels
1513 for(RooAbsData * data : chs[0]->allData()) {
1514 // We are excluding the Asimov data, because it needs to be regenerated
1515 // later after the parameter values are set.
1516 if(std::string("asimovData") == data->GetName()) {
1517 continue;
1518 }
1519 // Loop through channels, get their individual datasets,
1520 // and add them to the combined dataset
1521 std::map<std::string, RooAbsData*> dataMap;
1522 for(unsigned int i = 0; i < ch_names.size(); ++i){
1523 dataMap[ch_names[i]] = chs[i]->data(data->GetName());
1524 }
1525 combined->import(RooDataSet{data->GetName(), "", obsList, RooFit::Index(channelCat),
1526 RooFit::WeightVar("weightVar"), RooFit::Import(dataMap)});
1527 }
1528
1529
1531 combined->Print();
1532
1533 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1534 << "\tImporting combined model"
1535 << "\n-----------------------------------------\n" << endl;
1536 combined->import(*simPdf,RooFit::RecycleConflictNodes());
1537
1538 for(auto const& param_itr : fParamValues) {
1539 // make sure they are fixed
1540 std::string paramName = param_itr.first;
1541 double paramVal = param_itr.second;
1542
1543 if(RooRealVar* temp = combined->var( paramName )) {
1544 temp->setVal( paramVal );
1545 cxcoutI(HistFactory) <<"setting " << paramName << " to the value: " << paramVal << endl;
1546 } else
1547 cxcoutE(HistFactory) << "could not find variable " << paramName << " could not set its value" << endl;
1548 }
1549
1550
1551 for(unsigned int i=0; i<fSystToFix.size(); ++i){
1552 // make sure they are fixed
1553 if(RooRealVar* temp = combined->var(fSystToFix[i])) {
1554 temp->setConstant();
1555 cxcoutI(HistFactory) <<"setting " << fSystToFix.at(i) << " constant" << endl;
1556 } else
1557 cxcoutE(HistFactory) << "could not find variable " << fSystToFix.at(i) << " could not set it to constant" << endl;
1558 }
1559
1560 ///
1561 /// writing out the model in graphViz
1562 ///
1563 // RooAbsPdf* customized=combined->pdf("simPdf");
1564 //combined_config->SetPdf(*customized);
1565 combined_config->SetPdf(*simPdf);
1566 // combined_config->GuessObsAndNuisance(*simData);
1567 // customized->graphVizTree(("results/"+fResultsPrefixStr.str()+"_simul.dot").c_str());
1568 combined->import(*combined_config,combined_config->GetName());
1569 combined->importClassCode();
1570 // combined->writeToFile("results/model_combined.root");
1571
1572
1573 ////////////////////////////////////////////
1574 // Make toy simultaneous dataset
1575 cxcoutP(HistFactory) << "\n-----------------------------------------\n"
1576 << "\tcreate toy data"
1577 << "\n-----------------------------------------\n" << endl;
1578
1579
1580 // now with weighted datasets
1581 // First Asimov
1582
1583 // Create Asimov data for the combined dataset
1584 std::unique_ptr<RooAbsData> asimov_combined{AsymptoticCalculator::GenerateAsimovData(
1585 *combined->pdf("simPdf"),
1586 obsList)};
1587 if( asimov_combined ) {
1588 combined->import( *asimov_combined, RooFit::Rename("asimovData"));
1589 }
1590 else {
1591 std::cout << "Error: Failed to create combined asimov dataset" << std::endl;
1592 throw hf_exc();
1593 }
1594
1595 return RooFit::makeOwningPtr(std::move(combined));
1596 }
1597
1598
1599 TH1* HistoToWorkspaceFactoryFast::MakeAbsolUncertaintyHist( const std::string& Name, const TH1* Nominal ) {
1600
1601 // Take a nominal TH1* and create
1602 // a TH1 representing the binwise
1603 // errors (taken from the nominal TH1)
1604
1605 auto ErrorHist = static_cast<TH1*>(Nominal->Clone( Name.c_str() ));
1606 ErrorHist->Reset();
1607
1608 int numBins = Nominal->GetNbinsX()*Nominal->GetNbinsY()*Nominal->GetNbinsZ();
1609 int binNumber = 0;
1610
1611 // Loop over bins
1612 for( int i_bin = 0; i_bin < numBins; ++i_bin) {
1613
1614 binNumber++;
1615 // Ignore underflow / overflow
1616 while( Nominal->IsBinUnderflow(binNumber) || Nominal->IsBinOverflow(binNumber) ){
1617 binNumber++;
1618 }
1619
1620 double histError = Nominal->GetBinError( binNumber );
1621
1622 // Check that histError != NAN
1623 if( histError != histError ) {
1624 std::cout << "Warning: In histogram " << Nominal->GetName()
1625 << " bin error for bin " << i_bin
1626 << " is NAN. Not using Error!!!"
1627 << std::endl;
1628 throw hf_exc();
1629 //histError = sqrt( histContent );
1630 //histError = 0;
1631 }
1632
1633 // Check that histError ! < 0
1634 if( histError < 0 ) {
1635 std::cout << "Warning: In histogram " << Nominal->GetName()
1636 << " bin error for bin " << binNumber
1637 << " is < 0. Setting Error to 0"
1638 << std::endl;
1639 //histError = sqrt( histContent );
1640 histError = 0;
1641 }
1642
1643 ErrorHist->SetBinContent( binNumber, histError );
1644
1645 }
1646
1647 return ErrorHist;
1648
1649 }
1650
1651 // Take a list of < nominal, absolError > TH1* pairs
1652 // and construct a single histogram representing the
1653 // total fractional error as:
1654
1655 // UncertInQuad(bin i) = Sum: absolUncert*absolUncert
1656 // Total(bin i) = Sum: Value
1657 //
1658 // TotalFracError(bin i) = Sqrt( UncertInQuad(i) ) / TotalBin(i)
1659 std::unique_ptr<TH1> HistoToWorkspaceFactoryFast::MakeScaledUncertaintyHist( const std::string& Name, std::vector< std::pair<const TH1*, std::unique_ptr<TH1>> > const& HistVec ) const {
1660
1661
1662 unsigned int numHists = HistVec.size();
1663
1664 if( numHists == 0 ) {
1665 cxcoutE(HistFactory) << "Warning: Empty Hist Vector, cannot create total uncertainty" << std::endl;
1666 return nullptr;
1667 }
1668
1669 const TH1* HistTemplate = HistVec.at(0).first;
1670 int numBins = HistTemplate->GetNbinsX()*HistTemplate->GetNbinsY()*HistTemplate->GetNbinsZ();
1671
1672 // Check that all histograms
1673 // have the same bins
1674 for( unsigned int i = 0; i < HistVec.size(); ++i ) {
1675
1676 const TH1* nominal = HistVec.at(i).first;
1677 const TH1* error = HistVec.at(i).second.get();
1678
1679 if( nominal->GetNbinsX()*nominal->GetNbinsY()*nominal->GetNbinsZ() != numBins ) {
1680 cxcoutE(HistFactory) << "Error: Provided hists have unequal bins" << std::endl;
1681 return nullptr;
1682 }
1683 if( error->GetNbinsX()*error->GetNbinsY()*error->GetNbinsZ() != numBins ) {
1684 cxcoutE(HistFactory) << "Error: Provided hists have unequal bins" << std::endl;
1685 return nullptr;
1686 }
1687 }
1688
1689 std::vector<double> TotalBinContent( numBins, 0.0);
1690 std::vector<double> HistErrorsSqr( numBins, 0.0);
1691
1692 int binNumber = 0;
1693
1694 // Loop over bins
1695 for( int i_bins = 0; i_bins < numBins; ++i_bins) {
1696
1697 binNumber++;
1698 while( HistTemplate->IsBinUnderflow(binNumber) || HistTemplate->IsBinOverflow(binNumber) ){
1699 binNumber++;
1700 }
1701
1702 for( unsigned int i_hist = 0; i_hist < numHists; ++i_hist ) {
1703
1704 const TH1* nominal = HistVec.at(i_hist).first;
1705 const TH1* error = HistVec.at(i_hist).second.get();
1706
1707 //int binNumber = i_bins + 1;
1708
1709 double histValue = nominal->GetBinContent( binNumber );
1710 double histError = error->GetBinContent( binNumber );
1711
1712 if( histError != histError ) {
1713 cxcoutE(HistFactory) << "In histogram " << error->GetName()
1714 << " bin error for bin " << binNumber
1715 << " is NAN. Not using error!!";
1716 throw hf_exc();
1717 }
1718
1719 TotalBinContent.at(i_bins) += histValue;
1720 HistErrorsSqr.at(i_bins) += histError*histError; // Add in quadrature
1721
1722 }
1723 }
1724
1725 binNumber = 0;
1726
1727 // Creat the output histogram
1728 TH1* ErrorHist = static_cast<TH1*>(HistTemplate->Clone( Name.c_str() ));
1729 ErrorHist->Reset();
1730
1731 // Fill the output histogram
1732 for( int i = 0; i < numBins; ++i) {
1733
1734 // int binNumber = i + 1;
1735 binNumber++;
1736 while( ErrorHist->IsBinUnderflow(binNumber) || ErrorHist->IsBinOverflow(binNumber) ){
1737 binNumber++;
1738 }
1739
1740 double ErrorsSqr = HistErrorsSqr.at(i);
1741 double TotalVal = TotalBinContent.at(i);
1742
1743 if( TotalVal <= 0 ) {
1744 cxcoutW(HistFactory) << "Warning: Sum of histograms for bin: " << binNumber
1745 << " is <= 0. Setting error to 0"
1746 << std::endl;
1747
1748 ErrorHist->SetBinContent( binNumber, 0.0 );
1749 continue;
1750 }
1751
1752 double RelativeError = sqrt(ErrorsSqr) / TotalVal;
1753
1754 // If we otherwise get a NAN
1755 // it's an error
1756 if( RelativeError != RelativeError ) {
1757 cxcoutE(HistFactory) << "Error: bin " << i << " error is NAN\n"
1758 << " HistErrorsSqr: " << ErrorsSqr
1759 << " TotalVal: " << TotalVal;
1760 throw hf_exc();
1761 }
1762
1763 // 0th entry in vector is
1764 // the 1st bin in TH1
1765 // (we ignore underflow)
1766
1767 // Error and bin content are interchanged because for some reason, the other functions
1768 // use the bin content to convey the error ...
1769 ErrorHist->SetBinError(binNumber, TotalVal);
1770 ErrorHist->SetBinContent(binNumber, RelativeError);
1771
1772 cxcoutI(HistFactory) << "Making Total Uncertainty for bin " << binNumber
1773 << " Error = " << sqrt(ErrorsSqr)
1774 << " CentralVal = " << TotalVal
1775 << " RelativeError = " << RelativeError << "\n";
1776
1777 }
1778
1779 return std::unique_ptr<TH1>(ErrorHist);
1780}
1781
1782
1783} // namespace RooStats
1784} // namespace HistFactory
1785
#define cxcoutPHF
#define cxcoutFHF
#define cxcoutIHF
#define cxcoutWHF
std::vector< double > histToVector(TH1 const &hist)
constexpr double alphaHigh
constexpr double alphaLow
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
#define cxcoutI(a)
#define cxcoutW(a)
#define cxcoutF(a)
#define cxcoutE(a)
#define cxcoutP(a)
#define ClassImp(name)
Definition Rtypes.h:382
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
Definition TError.h:125
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
char name[80]
Definition TGX11.cxx:110
const char * proto
Definition civetweb.c:17535
A class which maps the current values of a RooRealVar (or a set of RooRealVars) to one of a number of...
void setConstant(bool constant)
static RooArgList createParamSet(RooWorkspace &w, const std::string &, const RooArgList &Vars)
Create the list of RooRealVar parameters which represent the height of the histogram bins.
void setShape(TH1 *shape)
The PiecewiseInterpolation is a class that can morph distributions into each other,...
Common abstract base class for objects that represent a value and a "shape" in RooFit.
Definition RooAbsArg.h:77
void Print(Option_t *options=nullptr) const override
Print the object to the defaultPrintStream().
Definition RooAbsArg.h:263
void setAttribute(const Text_t *name, bool value=true)
Set (default) or clear a named boolean attribute of this object.
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
Storage_t::size_type size() const
virtual bool addOwned(RooAbsArg &var, bool silent=false)
Add an argument and transfer the ownership to the collection.
const_iterator begin() const
Abstract base class for binned and unbinned datasets.
Definition RooAbsData.h:57
Abstract interface for all probability density functions.
Definition RooAbsPdf.h:40
Abstract base class for objects that represent a real value that may appear on the left hand side of ...
void setConstant(bool value=true)
Abstract base class for objects that represent a real value and implements functionality common to al...
Definition RooAbsReal.h:59
RooNumIntConfig * specialIntegratorConfig() const
Returns the specialized integrator configuration for this RooAbsReal.
virtual void forceNumInt(bool flag=true)
Definition RooAbsReal.h:171
Calculates the sum of a set of RooAbsReal terms, or when constructed with two sets,...
Definition RooAddition.h:27
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition RooArgList.h:22
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:24
Implements a RooAbsBinning in terms of an array of boundary values, posing no constraints on the choi...
Definition RooBinning.h:27
Object to represent discrete states.
Definition RooCategory.h:28
bool setLabel(const char *label, bool printError=true) override
Set value by specifying the name of the desired state.
Container class to hold N-dimensional binned data.
Definition RooDataHist.h:40
Container class to hold unbinned data.
Definition RooDataSet.h:34
void add(const RooArgSet &row, double weight, double weightError)
Add one ore more rows of data.
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
A RooFormulaVar is a generic implementation of a real-valued object, which takes a RooArgList of serv...
Implementation of the Gamma PDF for RooFit/RooStats.
Definition RooGamma.h:20
Switches the message service to a different level while the instance is alive.
Definition RooHelpers.h:37
A real-valued function sampled from a multidimensional histogram.
Definition RooHistFunc.h:31
static RooMsgService & instance()
Return reference to singleton instance.
bool isActive(T self, RooFit::MsgTopic topic, RooFit::MsgLevel level)
Check if logging is active for given object/topic/RooFit::MsgLevel combination.
RooCategory & method2D()
RooCategory & methodND()
RooCategory & method1D()
A RooAbsReal implementing a polynomial in terms of a list of RooAbsReal coefficients.
Definition RooPolyVar.h:25
Represents the product of a given set of RooAbsReal objects.
Definition RooProduct.h:29
Implements a PDF constructed from a sum of functions:
Variable that can be changed from the outside.
Definition RooRealVar.h:37
void setError(double value)
Definition RooRealVar.h:60
void setBinning(const RooAbsBinning &binning, const char *name=nullptr)
Add given binning under name 'name' with this variable.
void setBins(Int_t nBins, const char *name=nullptr)
Create a uniform binning under name 'name' for this variable.
static void SetPrintLevel(int level)
set print level (static function)
static RooAbsData * GenerateAsimovData(const RooAbsPdf &pdf, const RooArgSet &observables)
generate the asimov data for the observables (not the global ones) need to deal with the case of a si...
TODO Here, we are missing some documentation.
Definition Asimov.h:22
void ConfigureWorkspace(RooWorkspace *)
Definition Asimov.cxx:22
This class encapsulates all information for the statistical interpretation of one experiment.
Definition Channel.h:30
std::vector< RooStats::HistFactory::Data > & GetAdditionalData()
retrieve vector of additional data objects
Definition Channel.h:64
void Print(std::ostream &=std::cout)
Definition Channel.cxx:58
HistFactory::StatErrorConfig & GetStatErrorConfig()
get information about threshold for statistical uncertainties and constraint term
Definition Channel.h:71
RooStats::HistFactory::Data & GetData()
get data object
Definition Channel.h:58
std::vector< RooStats::HistFactory::Sample > & GetSamples()
get vector of samples for this channel
Definition Channel.h:76
std::string GetName() const
get name of channel
Definition Channel.h:42
Configuration for a constrained, coherent shape variation of affected samples.
This class provides helper functions for creating likelihood models from histograms.
std::unique_ptr< RooProduct > CreateNormFactor(RooWorkspace &proto, std::string &channel, std::string &sigmaEpsilon, Sample &sample, bool doRatio)
std::unique_ptr< RooWorkspace > MakeSingleChannelWorkspace(Measurement &measurement, Channel &channel)
void MakeTotalExpected(RooWorkspace &proto, const std::string &totName, const std::vector< RooProduct * > &sampleScaleFactors, std::vector< std::vector< RooAbsArg * > > &sampleHistFuncs) const
std::unique_ptr< TH1 > MakeScaledUncertaintyHist(const std::string &Name, std::vector< std::pair< const TH1 *, std::unique_ptr< TH1 > > > const &HistVec) const
RooHistFunc * MakeExpectedHistFunc(const TH1 *hist, RooWorkspace &proto, std::string prefix, const RooArgList &observables) const
Create the nominal hist function from hist, and register it in the workspace.
void SetFunctionsToPreprocess(std::vector< std::string > lines)
RooFit::OwningPtr< RooWorkspace > MakeSingleChannelModel(Measurement &measurement, Channel &channel)
RooFit::OwningPtr< RooWorkspace > MakeCombinedModel(std::vector< std::string >, std::vector< std::unique_ptr< RooWorkspace > > &)
TH1 * MakeAbsolUncertaintyHist(const std::string &Name, const TH1 *Hist)
static void ConfigureWorkspaceForMeasurement(const std::string &ModelName, RooWorkspace *ws_single, Measurement &measurement)
void AddConstraintTerms(RooWorkspace &proto, Measurement &measurement, std::string prefix, std::string interpName, std::vector< OverallSys > &systList, std::vector< std::string > &likelihoodTermNames, std::vector< std::string > &totSystTermNames)
void ConfigureHistFactoryDataset(RooDataSet &obsData, TH1 const &nominal, RooWorkspace &proto, std::vector< std::string > const &obsNameVec)
static void PrintCovarianceMatrix(RooFitResult *result, RooArgSet *params, std::string filename)
RooArgList createObservables(const TH1 *hist, RooWorkspace &proto) const
Create observables of type RooRealVar. Creates 1 to 3 observables, depending on the type of the histo...
The RooStats::HistFactory::Measurement class can be used to construct a model by combining multiple R...
Definition Measurement.h:31
std::map< std::string, double > & GetGammaSyst()
std::map< std::string, double > & GetLogNormSyst()
std::map< std::string, double > & GetNoSyst()
std::vector< std::string > & GetPOIList()
get vector of PoI names
Definition Measurement.h:51
std::map< std::string, double > & GetUniformSyst()
std::vector< std::string > & GetConstantParams()
get vector of all constant parameters
Definition Measurement.h:60
std::vector< RooStats::HistFactory::Channel > & GetChannels()
std::vector< RooStats::HistFactory::Asimov > & GetAsimovDatasets()
get vector of defined Asimov Datasets
Definition Measurement.h:80
std::vector< std::string > GetPreprocessFunctions() const
Returns a list of defined preprocess function expressions.
double GetLumi()
retrieve integrated luminosity
Definition Measurement.h:89
Configuration for an un- constrained overall systematic to scale sample normalisations.
Definition Systematics.h:62
Configuration for a constrained overall systematic to scale sample normalisations.
Definition Systematics.h:34
const std::string & GetName() const
Definition Systematics.h:41
std::string GetName() const
get name of sample
Definition Sample.h:82
std::vector< RooStats::HistFactory::NormFactor > & GetNormFactorList()
Definition Sample.h:109
*Un*constrained bin-by-bin variation of affected histogram.
Constrained bin-by-bin variation of affected histogram.
Constraint::Type GetConstraintType() const
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition ModelConfig.h:35
void GuessObsAndNuisance(const RooAbsData &data, bool printModelConfig=true)
Makes sensible guesses of observables, parameters of interest and nuisance parameters if one or multi...
virtual void SetParametersOfInterest(const RooArgSet &set)
Specify parameters of interest.
Persistable container for RooFit projects.
TObject * obj(RooStringView name) const
Return any type of object (RooAbsArg, RooAbsData or generic object) with given name)
RooAbsPdf * pdf(RooStringView name) const
Retrieve p.d.f (RooAbsPdf) with given name. A null pointer is returned if not found.
RooArgSet allVars() const
Return set with all variable objects.
const RooArgSet * set(RooStringView name)
Return pointer to previously defined named set with given nmame If no such set is found a null pointe...
bool saveSnapshot(RooStringView, const char *paramNames)
Save snapshot of values and attributes (including "Constant") of given parameters.
RooAbsArg * arg(RooStringView name) const
Return RooAbsArg with given name. A null pointer is returned if none is found.
RooRealVar * var(RooStringView name) const
Retrieve real-valued variable (RooRealVar) with given name. A null pointer is returned if not found.
RooAbsData * data(RooStringView name) const
Retrieve dataset (binned or unbinned) with given name. A null pointer is returned if not found.
bool loadSnapshot(const char *name)
Load the values and attributes of the parameters in the snapshot saved with the given name.
bool import(const RooAbsArg &arg, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}, const RooCmdArg &arg9={})
Import a RooAbsArg object, e.g.
const Double_t * GetArray() const
Definition TArrayD.h:43
Class to manage histogram axis.
Definition TAxis.h:32
Bool_t IsVariableBinSize() const
Definition TAxis.h:144
const char * GetTitle() const override
Returns title of object.
Definition TAxis.h:137
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition TAxis.cxx:473
const TArrayD * GetXbins() const
Definition TAxis.h:138
Double_t GetXmax() const
Definition TAxis.h:142
Double_t GetXmin() const
Definition TAxis.h:141
Int_t GetNbins() const
Definition TAxis.h:127
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:59
TAxis * GetZaxis()
Definition TH1.h:338
virtual Int_t GetNbinsY() const
Definition TH1.h:310
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition TH1.cxx:9083
virtual Int_t GetNbinsZ() const
Definition TH1.h:311
virtual Int_t GetDimension() const
Definition TH1.h:295
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition TH1.cxx:7119
TAxis * GetXaxis()
Definition TH1.h:336
virtual Int_t GetNbinsX() const
Definition TH1.h:309
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition TH1.cxx:9226
TAxis * GetYaxis()
Definition TH1.h:337
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
Definition TH1.cxx:5230
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
Definition TH1.cxx:5198
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition TH1.cxx:9242
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:5077
TObject * Clone(const char *newname="") const override
Make a complete copy of the underlying object.
Definition TH1.cxx:2741
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:164
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:48
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:225
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition TObject.cxx:1005
Stopwatch class.
Definition TStopwatch.h:28
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
RooCmdArg RecycleConflictNodes(bool flag=true)
RooCmdArg Rename(const char *suffix)
RooCmdArg Conditional(const RooArgSet &pdfSet, const RooArgSet &depSet, bool depsAreCond=false)
RooConstVar & RooConst(double val)
RooCmdArg Index(RooCategory &icat)
RooCmdArg WeightVar(const char *name="weight", bool reinterpretAsWeight=false)
RooCmdArg Import(const char *state, TH1 &histo)
@ ObjectHandling
OwningPtr< T > makeOwningPtr(std::unique_ptr< T > &&ptr)
Internal helper to turn a std::unique_ptr<T> into an OwningPtr.
Definition Config.h:40
T * OwningPtr
An alias for raw pointers for indicating that the return type of a RooFit function is an owning point...
Definition Config.h:35
CreateGammaConstraintsOutput createGammaConstraints(RooArgList const &paramList, std::span< const double > relSigmas, double minSigma, Constraint::Type type)
Namespace for the RooStats classes.
Definition CodegenImpl.h:58