75using std::string, std::unique_ptr;
114 fNLLObs(0), fNLLAsimov(0),
129 oocoutI(
nullptr,InputArguments) <<
"AsymptotiCalculator: Minimum of POI is " <<
muNull->getMin() <<
" corresponds to null snapshot - default configuration is one-sided discovery formulae " << std::endl;
149 oocoutP(
nullptr,Eval) <<
"AsymptoticCalculator::Initialize...." << std::endl;
154 oocoutE(
nullptr,InputArguments) <<
"AsymptoticCalculator::Initialize - ModelConfig has not a pdf defined" << std::endl;
159 oocoutE(
nullptr,InputArguments) <<
"AsymptoticCalculator::Initialize - data set has not been defined" << std::endl;
167 if (!poi || poi->
empty()) {
168 oocoutE(
nullptr,InputArguments) <<
"AsymptoticCalculator::Initialize - ModelConfig has not POI defined." << std::endl;
171 if (poi->
size() > 1) {
172 oocoutW(
nullptr,InputArguments) <<
"AsymptoticCalculator::Initialize - ModelConfig has more than one POI defined \n\t"
173 <<
"The asymptotic calculator works for only one POI - consider as POI only the first parameter"
181 oocoutE(
nullptr,InputArguments) <<
"AsymptoticCalculator::Initialize - Null model needs a snapshot. Set using modelconfig->SetSnapshot(poi)." << std::endl;
204 oocoutP(
nullptr,Eval) <<
"AsymptoticCalculator::Initialize - Find best unconditional NLL on observed data" << std::endl;
211 oocoutP(
nullptr,Eval) <<
"Best fitted POI value = " <<
muBest->getVal() <<
" +/- " <<
muBest->getError() << std::endl;
218 oocoutE(
nullptr,InputArguments) <<
"Alt (Background) model needs a snapshot. Set using modelconfig->SetSnapshot(poi)." << std::endl;
224 oocoutP(
nullptr,Eval) <<
"AsymptoticCalculator: Building Asimov data Set" << std::endl;
235 if (
data.numEntries() !=
xobs->getBins() ) {
237 oocoutW(
nullptr,InputArguments) <<
"AsymptoticCalculator: number of bins in " <<
xobs->GetName() <<
" are different than data bins "
238 <<
" set the same data bins " <<
data.numEntries() <<
" in range "
239 <<
" [ " <<
xobs->getMin() <<
" , " <<
xobs->getMax() <<
" ]" << std::endl;
247 oocoutI(
nullptr,InputArguments) <<
"AsymptoticCalculator: Asimov data will be generated using fitted nuisance parameter values" << std::endl;
255 oocoutI(
nullptr,InputArguments) <<
"AsymptoticCalculator: Asimovdata set will be generated using nominal (current) nuisance parameter values" << std::endl;
261 oocoutE(
nullptr,InputArguments) <<
"AsymptoticCalculator: Error : Asimov data set could not be generated " << std::endl;
284 <<
"AsymptoticCalculator::Initialize Find best conditional NLL on ASIMOV data set for given alt POI ( "
285 <<
muAlt->GetName() <<
" ) = " <<
muAlt->getVal() << std::endl;
337 std::cout <<
"Model with more than one POI are not supported - ignore extra parameters, consider only first one" << std::endl;
376 minim.setEvalErrorWall(config.useEvalErrorWall);
384 minim.optimizeConst(2);
389 std::cout <<
"AsymptoticCalculator::EvaluateNLL ........ using " << minimizer <<
" / " <<
algorithm
390 <<
" with strategy " <<
strategy <<
" and tolerance " <<
tol << std::endl;
401 std::cout <<
" ----> Doing a re-scan first\n";
402 minim.minimize(minimizer,
"Scan");
406 std::cout <<
" ----> trying with strategy = 1\n";
407 minim.setStrategy(1);
413 std::cout <<
" ----> trying with improve\n";
414 minimizer =
"Minuit";
420 std::unique_ptr<RooFitResult>
result;
424 result = std::unique_ptr<RooFitResult>{
minim.save()};
438 oocoutE(
nullptr,Fitting) <<
"FIT FAILED !- return a NaN NLL " << std::endl;
442 minim.optimizeConst(
false);
447 std::cout <<
"AsymptoticCalculator::EvaluateNLL - value = " << val;
450 std::cout <<
" for poi fixed at = " <<
muTest;
453 std::cout <<
"\tfit time : ";
456 std::cout << std::endl;
486 oocoutE(
nullptr,InputArguments) <<
"AsymptoticCalculator::GetHypoTest - Error initializing Asymptotic calculator - return nullptr result " << std::endl;
492 oocoutE(
nullptr,InputArguments) <<
"AsymptoticCalculator::GetHypoTest - Asimov data set has not been generated - return nullptr result " << std::endl;
512 oocoutW(
nullptr,InputArguments) <<
"AsymptoticCalculator::GetHypoTest: snapshot has more than one POI - assume as POI first parameter " << std::endl;
528 std::cout << std::endl;
529 oocoutI(
nullptr,Eval) <<
"AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( " <<
muTest->GetName() <<
" ) = " <<
muTest->getVal() << std::endl;
530 oocoutP(
nullptr,Eval) <<
"AsymptoticCalculator::GetHypoTest - Find best conditional NLL on OBSERVED data set ..... " << std::endl;
541 oocoutP(
nullptr,Eval) <<
"\t OBSERVED DATA : qmu = " << qmu <<
" condNLL = " <<
condNLL <<
" uncond " <<
fNLLObs << std::endl;
549 oocoutW(
nullptr,Minimization) <<
"AsymptoticCalculator: Found a negative value of the qmu - retry to do the unconditional fit "
553 <<
"AsymptoticCalculator: unconditional fit failed before - retry to do it now " << std::endl;
559 oocoutW(
nullptr,Minimization) <<
"AsymptoticCalculator: Found a better unconditional minimum "
560 <<
" old NLL = " <<
fNLLObs <<
" old muHat " <<
muHat->getVal() << std::endl;
572 oocoutW(
nullptr,Minimization) <<
"AsymptoticCalculator: New minimum found for "
573 <<
" NLL = " <<
fNLLObs <<
" muHat " <<
muHat->getVal() << std::endl;
579 oocoutP(
nullptr,Eval) <<
"After unconditional refit, new qmu value is " << qmu << std::endl;
585 oocoutE(
nullptr,Minimization) <<
"AsymptoticCalculator: qmu is still < 0 for mu = "
586 <<
muTest->getVal() <<
" return a dummy result "
591 oocoutE(
nullptr,Minimization) <<
"AsymptoticCalculator: failure in fitting for qmu or qmuA "
592 <<
muTest->getVal() <<
" return a dummy result "
616 if (verbose > 0)
oocoutP(
nullptr,Eval) <<
"AsymptoticCalculator::GetHypoTest -- Find best conditional NLL on ASIMOV data set .... " << std::endl;
630 <<
"AsymptoticCalculator: Found a negative value of the qmu Asimov- retry to do the unconditional fit "
634 <<
"AsymptoticCalculator: Fit failed for unconditional the qmu Asimov- retry unconditional fit "
641 oocoutW(
nullptr,Minimization) <<
"AsymptoticCalculator: Found a better unconditional minimum for Asimov data set"
647 oocoutW(
nullptr,Minimization) <<
"AsymptoticCalculator: New minimum found for "
652 oocoutP(
nullptr,Eval) <<
"After unconditional Asimov refit, new qmu_A value is " <<
qmu_A << std::endl;
658 oocoutE(
nullptr,Minimization) <<
"AsymptoticCalculator: qmu_A is still < 0 for mu = "
659 <<
muTest->getVal() <<
" return a dummy result "
664 oocoutE(
nullptr,Minimization) <<
"AsymptoticCalculator: failure in fitting for qmu or qmuA "
665 <<
muTest->getVal() <<
" return a dummy result "
695 oocoutI(
nullptr,InputArguments) <<
"Minimum of POI is " <<
muTest->getMin() <<
" corresponds to alt snapshot - using qtilde asymptotic formulae " << std::endl;
698 oocoutI(
nullptr,InputArguments) <<
"Minimum of POI is " <<
muTest->getMin() <<
" is different to alt snapshot " <<
muAlt->getVal()
699 <<
" - using standard q asymptotic formulae " << std::endl;
709 oocoutI(
nullptr,Eval) <<
"Using one-sided qmu - setting qmu to zero muHat = " <<
muHat->getVal()
710 <<
" muTest = " <<
muTest->getVal() << std::endl;
716 oocoutI(
nullptr,Eval) <<
"Using one-sided discovery qmu - setting qmu to zero muHat = " <<
muHat->getVal()
717 <<
" muTest = " <<
muTest->getVal() << std::endl;
737 double sqrtqmu = (qmu > 0) ? std::sqrt(qmu) : 0;
745 oocoutI(
nullptr,Eval) <<
"Using one-sided limit asymptotic formula (qmu)" << std::endl;
747 oocoutI(
nullptr, Eval) <<
"Using one-sided discovery asymptotic formula (q0)" << std::endl;
755 if (verbose > 2)
oocoutI(
nullptr,Eval) <<
"Using two-sided asymptotic formula (tmu)" << std::endl;
766 if (verbose > 2)
oocoutI(
nullptr,Eval) <<
"Using qmu_tilde (qmu is greater than qmu_A)" << std::endl;
775 if (verbose > 2)
oocoutI(
nullptr,Eval) <<
"Using tmu_tilde (qmu is greater than qmu_A)" << std::endl;
787 string resultname =
"HypoTestAsymptotic_result";
791 oocoutP(
nullptr, Eval) <<
"poi = " <<
muTest->getVal() <<
" qmu = " << qmu <<
" qmu_A = " <<
qmu_A
793 <<
" CLb = " <<
palt <<
" CLs = " << res->
CLs() << std::endl;
835 brf.SetFunction(
wf, 0, 20);
838 oocoutE(
nullptr,Eval) <<
"Error finding expected p-values - return -1" << std::endl;
846 brf.SetFunction(
wf2,0,20);
849 oocoutE(
nullptr,Eval) <<
"Error finding expected p-values - return -1" << std::endl;
870 if (
debug) std::cout <<
"looping on observable " <<
v->GetName() << std::endl;
871 for (
int i = 0; i <
v->getBins(); ++i) {
876 binVolume *=
v->getBinWidth(i);
887 if (
fval*expectedEvents <= 0)
889 if (
fval*expectedEvents < 0) {
890 oocoutW(
nullptr,InputArguments)
891 <<
"AsymptoticCalculator::" <<
__func__
892 <<
"(): Bin " << i <<
" of " <<
v->GetName() <<
" has negative expected events! Please check your inputs." << std::endl;
895 oocoutW(
nullptr,InputArguments)
896 <<
"AsymptoticCalculator::" <<
__func__
897 <<
"(): Bin " << i <<
" of " <<
v->GetName() <<
" has zero expected events - skip it" << std::endl;
906 std::cout <<
"bin " <<
ibin <<
"\t";
907 for (std::size_t
j=0;
j < obs.
size(); ++
j) { std::cout <<
" " << (
static_cast<RooRealVar&
>( obs[
j])).getVal(); }
908 std::cout <<
" w = " <<
fval*expectedEvents;
909 std::cout << std::endl;
916 std::cout <<
"ending loop on .. " <<
v->GetName() << std::endl;
929 if (
myobs !=
nullptr) {
930 oocoutF(
nullptr,Generation) <<
errPrefix <<
"Has two observables ?? " << std::endl;
934 if (
myobs ==
nullptr) {
935 oocoutF(
nullptr,Generation) <<
errPrefix <<
"Observable is not a RooRealVar??" << std::endl;
939 if (!
a->isConstant() ) {
940 if (
myexp !=
nullptr) {
941 oocoutE(
nullptr,Generation) <<
errPrefix <<
"Has two non-const arguments " << std::endl;
945 if (
myexp ==
nullptr) {
946 oocoutF(
nullptr,Generation) <<
errPrefix <<
"Expected is not a RooAbsReal??" << std::endl;
952 if (
myobs ==
nullptr) {
956 if (
myexp ==
nullptr) {
964 std::cout <<
"SetObsToExpected : setting " <<
myobs->GetName() <<
" to expected value " <<
myexp->getVal() <<
" of " <<
myexp->GetName() << std::endl;
980 std::string
const &
errPrefix =
"AsymptoticCalculator::SetObsExpected( " + std::string{pdf.
ClassName()} +
" ) : ";
981 std::vector<RooAbsArg *> servers;
983 servers.emplace_back(
a);
993 std::string
const &
errPrefix =
"AsymptoticCalculator::SetObsExpected( " + std::string{
mvgauss.ClassName()} +
" ) : ";
994 std::vector<RooAbsArg *> servers{
nullptr,
nullptr};
1011 for (
auto *
a : prod.pdfList()) {
1012 if (!
a->dependsOn(obs))
continue;
1019 pois->setNoRounding(
true);
1020 }
else if ((gauss =
dynamic_cast<RooGaussian *
>(
a)) !=
nullptr) {
1027 oocoutE(
nullptr, InputArguments)
1028 <<
"Illegal term in counting model: "
1029 <<
"the PDF " <<
a->GetName() <<
" depends on the observables, but is not a Poisson, Gaussian or Product"
1051 std::cout <<
"generate counting Asimov data for pdf of type " << pdf.
ClassName() << std::endl;
1054 if (prod !=
nullptr) {
1056 }
else if ((
pois =
dynamic_cast<RooPoisson *
>(&pdf)) !=
nullptr) {
1059 pois->setNoRounding(
true);
1060 }
else if ((gauss =
dynamic_cast<RooGaussian *
>(&pdf)) !=
nullptr) {
1065 oocoutE(
nullptr,InputArguments) <<
"A counting model pdf must be either a RooProdPdf or a RooPoisson or a RooGaussian" << std::endl;
1067 if (!
r)
return nullptr;
1074 "CountingAsimovData" + std::to_string(
icat), obs);
1102 asimovData = std::make_unique<RooDataSet>(
"AsimovData" + std::to_string(
icat),
1103 "combAsimovData" + std::to_string(
icat),
1117 std::cout <<
"Generating Asimov data for pdf " << pdf.
GetName() << std::endl;
1118 std::cout <<
"list of observables " << std::endl;
1123 double binVolume = 1;
1127 std::cout <<
"filled from " << pdf.
GetName() <<
" " << nbins <<
" nbins " <<
" volume is " << binVolume << std::endl;
1150 std::cout <<
"sum entries is nan"<< std::endl;
1169 RooRealVar weightVar{
"binWeightAsimov",
"binWeightAsimov", 1, 0, 1.e30};
1171 if (
printLevel > 1) std::cout <<
" Generate Asimov data for observables"<< std::endl;
1179 std::map<std::string, std::unique_ptr<RooDataSet>>
asimovDataMap;
1185 oocoutW(
nullptr,Generation) <<
"Simultaneous pdf does not contain any categories." << std::endl;
1196 std::cout <<
"on type " <<
channelCat.getCurrentLabel() <<
" " <<
channelCat.getCurrentIndex() << std::endl;
1201 oocoutE(
nullptr,Generation) <<
"Error generating an Asimov data set for pdf " <<
pdftmp->GetName() << std::endl;
1206 oocoutE(
nullptr,Generation) <<
"AsymptoticCalculator::GenerateAsimovData(): The PDF for " <<
channelCat.getCurrentLabel()
1207 <<
" was already defined. It will be overridden. The faulty category definitions follow:" << std::endl;
1213 std::cout <<
"channel: " <<
channelCat.getCurrentLabel() <<
", data: ";
1215 std::cout << std::endl;
1254 std::cout <<
"MakeAsimov: Setting poi " <<
tmpPar->GetName() <<
" to a constant value = " <<
tmpPar->getVal() << std::endl;
1279 std::cout <<
"MakeAsimov: doing a conditional fit for finding best nuisance values " << std::endl;
1282 std::cout <<
"POI values:\n"; poi.
Print(
"v");
1284 std::cout <<
"Nuis param values:\n";
1293 std::vector<RooCmdArg> args{
1304 for (
auto& arg : args) {
1308 if (verbose>0) { std::cout <<
"fit time ";
tw2.Print();}
1312 std::cout <<
"Nuisance parameters after fit for asimov dataset: " << std::endl;
1366 std::cout <<
"Generated Asimov data for observables "; (model.
GetObservables() )->
Print();
1369 std::cout <<
"--- Asimov data values \n";
1370 asimov->
get()->Print(
"v");
1373 std::cout <<
"--- Asimov data numEntries = " << asimov->
numEntries() <<
" sumOfEntries = " << asimov->
sumEntries() << std::endl;
1375 std::cout <<
"\ttime for generating : ";
tw.Print();
1395 std::cout <<
"Generating Asimov data for global observables " << std::endl;
1409 oocoutW(
nullptr,Generation) <<
"AsymptoticCalculator::MakeAsimovData: model does not have nuisance parameters but has global observables"
1410 <<
" set global observables to model values " << std::endl;
1418 oocoutF(
nullptr, Generation) <<
"AsymptoticCalculator::MakeAsimovData: model has nuisance parameters and "
1419 "global obs but no nuisance pdf "
1434 "AsimovUtils: a factor of the nuisance pdf is not a Pdf!");
1442 if (
cgobs->size() > 1) {
1443 oocoutE(
nullptr,Generation) <<
"AsymptoticCalculator::MakeAsimovData: constraint term " <<
cterm->GetName()
1444 <<
" has multiple global observables -cannot generate - skip it" << std::endl;
1447 else if (
cgobs->empty()) {
1449 <<
"AsymptoticCalculator::MakeAsimovData: constraint term " <<
cterm->GetName()
1450 <<
" has no global observables - skip it" << std::endl;
1458 if (
cpars->size() != 1) {
1460 <<
"AsymptoticCalculator::MakeAsimovData:constraint term "
1461 <<
cterm->GetName() <<
" has multiple floating params - cannot generate - skip it " << std::endl;
1469 if (verbose > 2) std::cout <<
"Constraint " <<
cterm->GetName() <<
" of type " <<
cClass->GetName() << std::endl;
1475 <<
"AsymptoticCalculator::MakeAsimovData:constraint term "
1476 <<
cterm->GetName() <<
" of type " << className
1477 <<
" is a non-supported type - result might be not correct " << std::endl;
1484 pois->setNoRounding(
true);
1495 <<
"AsymptoticCalculator::MakeAsimovData:constraint term "
1496 <<
cterm->GetName() <<
" has no direct dependence on global observable- cannot generate it " << std::endl;
1515 <<
"AsymptoticCalculator::MakeAsimovData:constraint term "
1516 <<
cterm->GetName() <<
" is a Gamma distribution and no server named theta is found. Assume that the Gamma scale is 1 " << std::endl;
1518 else if (verbose>2) {
1519 std::cout <<
"Gamma constraint has a scale " <<
thetaGamma->GetName() <<
" = " <<
thetaGamma->getVal() << std::endl;
1524 if (verbose > 2) std::cout <<
"Loop on constraint server term " <<
a2->GetName() << std::endl;
1530 oocoutE(
nullptr,Generation) <<
"AsymptoticCalculator::MakeAsimovData:constraint term "
1531 <<
cterm->GetName() <<
" constraint term has more server depending on nuisance- cannot generate it " <<
1544 std::cout <<
"setting global observable " <<
rrv.GetName() <<
" to value " <<
rrv.getVal()
1545 <<
" which comes from " <<
rrv2->GetName() << std::endl;
1551 oocoutE(
nullptr,Generation) <<
"AsymptoticCalculator::MakeAsimovData - can't find nuisance for constraint term - global observables will not be set to Asimov value " <<
cterm->GetName() << std::endl;
1552 std::cerr <<
"Parameters: " << std::endl;
1554 std::cerr <<
"Observables: " << std::endl;
1570 std::cout <<
"Generated Asimov data for global observables ";
1571 if (verbose == 1)
gobs.Print();
1575 std::cout <<
"\nGlobal observables for data: " << std::endl;
1577 std::cout <<
"\nGlobal observables for asimov: " << std::endl;
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h offset
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
void Print(GNN_Data &d, std::string txt="")
TRObject operator()(const T1 &t1) const
Class for finding the root of a one dimensional function using the Brent algorithm.
static int DefaultPrintLevel()
static double DefaultTolerance()
static const std::string & DefaultMinimizerAlgo()
static int DefaultStrategy()
Template class to wrap any C++ callable object which takes one argument i.e.
Common abstract base class for objects that represent a value and a "shape" in RooFit.
RooFit::OwningPtr< RooArgSet > getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
RooFit::OwningPtr< RooArgSet > getObservables(const RooArgSet &set, bool valueOnly=true) const
Given a set of possible observables, return the observables that this PDF depends on.
RooFit::OwningPtr< RooArgSet > getVariables(bool stripDisconnected=true) const
Return RooArgSet with all variables (tree leaf nodes of expression tree)
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
bool contains(const RooAbsArg &var) const
Check if collection contains an argument with the same name as var.
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
void assign(const RooAbsCollection &other) const
Sets the value, cache and constant attribute of any argument in our set that also appears in the othe...
Storage_t::size_type size() const
RooAbsArg * first() const
void Print(Option_t *options=nullptr) const override
This method must be overridden when a class wants to print itself.
Abstract base class for binned and unbinned datasets.
virtual double sumEntries() const =0
Return effective number of entries in dataset, i.e., sum all weights.
virtual const RooArgSet * get() const
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
Abstract interface for all probability density functions.
virtual double expectedEvents(const RooArgSet *nset) const
Return expected number of events to be used in calculation of extended likelihood.
bool canBeExtended() const
If true, PDF can provide extended likelihood term.
Abstract base class for objects that represent a real value and implements functionality common to al...
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
static void setHideOffset(bool flag)
RooArgList is a container object that can hold multiple RooAbsArg objects.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
RooArgSet * snapshot(bool deepCopy=true) const
Use RooAbsCollection::snapshot(), but return as RooArgSet.
Object to represent discrete states.
Container class to hold unbinned data.
Collection class for internal use, storing a collection of RooAbsArg pointers in a doubly linked list...
virtual void Add(TObject *arg)
Wrapper class around ROOT::Math::Minimizer that provides a seamless interface between the minimizer f...
static RooMsgService & instance()
Return reference to singleton instance.
Multivariate Gaussian p.d.f.
Efficient implementation of a product of PDFs of the form.
const RooArgList & pdfList() const
Variable that can be changed from the outside.
Facilitates simultaneous fitting of multiple PDFs to subsets of a given dataset.
static double GetExpectedPValues(double pnull, double palt, double nsigma, bool usecls, bool oneSided=true)
function given the null and the alt p value - return the expected one given the N - sigma value
static void SetPrintLevel(int level)
set print level (static function)
RooArgSet fAsimovGlobObs
snapshot of Asimov global observables
static RooAbsData * GenerateAsimovData(const RooAbsPdf &pdf, const RooArgSet &observables)
generate the asimov data for the observables (not the global ones) need to deal with the case of a si...
int fUseQTilde
flag to indicate if using qtilde or not (-1 (default based on RooRealVar)), 0 false,...
bool fIsInitialized
! flag to check if calculator is initialized
HypoTestResult * GetHypoTest() const override
re-implement HypoTest computation using the asymptotic
bool fOneSided
for one sided PL test statistic (upper limits)
RooArgSet fBestFitParams
snapshot of all best fitted Parameter values
AsymptoticCalculator(RooAbsData &data, const ModelConfig &altModel, const ModelConfig &nullModel, bool nominalAsimov=false)
constructor for asymptotic calculator from Data set and ModelConfig
bool fOneSidedDiscovery
for one sided PL test statistic (for discovery)
RooAbsData * fAsimovData
asimov data set
RooArgSet fBestFitPoi
snapshot of best fitted POI values
static RooAbsData * MakeAsimovData(RooAbsData &data, const ModelConfig &model, const RooArgSet &poiValues, RooArgSet &globObs, const RooArgSet *genPoiValues=nullptr)
Make Asimov data.
bool fNominalAsimov
make Asimov at nominal parameter values
bool Initialize() const
initialize the calculator by performing a global fit and make the Asimov data set
Common base class for the Hypothesis Test Calculators.
const ModelConfig * GetNullModel(void) const
const ModelConfig * GetAlternateModel(void) const
const RooAbsData * GetData(void) const
HypoTestResult is a base class for results from hypothesis tests.
virtual double CLs() const
is simply (not a method, but a quantity)
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
std::unique_ptr< RooFitResult > fitTo(RooAbsData &data, CmdArgs_t const &...cmdArgs) const
Wrapper around RooAbsPdf::fitTo(), where the pdf and some configuration options are retrieved from th...
const RooArgSet * GetGlobalObservables() const
get RooArgSet for global observables (return nullptr if not existing)
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return nullptr if not existing)
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return nullptr if not existing)
const RooArgSet * GetObservables() const
get RooArgSet for observables (return nullptr if not existing)
RooAbsPdf * GetPdf() const
get model PDF (return nullptr if pdf has not been specified or does not exist)
TClass instances represent classes, structs and namespaces in the ROOT type system.
const char * GetName() const override
Returns name of object.
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
RooCmdArg Index(RooCategory &icat)
RooCmdArg WeightVar(const char *name="weight", bool reinterpretAsWeight=false)
RooCmdArg Import(const char *state, TH1 &histo)
RooCmdArg Offset(std::string const &mode)
RooCmdArg Constrain(const RooArgSet ¶ms)
RooCmdArg Minimizer(const char *type, const char *alg=nullptr)
RooCmdArg Hesse(bool flag=true)
RooCmdArg Strategy(Int_t code)
RooCmdArg EvalErrorWall(bool flag)
RooCmdArg PrintLevel(Int_t code)
double normal_cdf_c(double x, double sigma=1, double x0=0)
Complement of the cumulative distribution function of the normal (Gaussian) distribution (upper tail)...
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
double nll(double pdf, double weight, int binnedL, int doBinOffset)
MsgLevel
Verbosity level for RooMsgService::StreamConfig in RooMsgService.
Namespace for the RooStats classes.
bool SetAllConstant(const RooAbsCollection &coll, bool constant=true)
utility function to set all variable constant in a collection (from G.
void RemoveConstantParameters(RooArgSet *set)
std::string const & NLLOffsetMode()
Test what offsetting mode RooStats should use by default.
RooAbsPdf * MakeNuisancePdf(RooAbsPdf &pdf, const RooArgSet &observables, const char *name)
extract constraint terms from pdf
RooStatsConfig & GetGlobalRooStatsConfig()
Retrieve the config object which can be used to set flags for things like offsetting the likelihood o...
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
PaltFunction(double offset, double pval, int icase)