ROOT
6.06/09
Reference Guide
|
Definition at line 80 of file MethodANNBase.h.
Public Types | |
enum | EEstimator { kMSE =0, kCE } |
Public Types inherited from TMVA::MethodBase | |
enum | EWeightFileType { kROOT =0, kTEXT } |
Public Types inherited from TObject | |
enum | EStatusBits { kCanDelete = BIT(0), kMustCleanup = BIT(3), kObjInCanvas = BIT(3), kIsReferenced = BIT(4), kHasUUID = BIT(5), kCannotPick = BIT(6), kNoContextMenu = BIT(8), kInvalidObject = BIT(13) } |
enum | { kIsOnHeap = 0x01000000, kNotDeleted = 0x02000000, kZombie = 0x04000000, kBitMask = 0x00ffffff } |
enum | { kSingleKey = BIT(0), kOverwrite = BIT(1), kWriteDelete = BIT(2) } |
Public Member Functions | |
MethodANNBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &theData, const TString &theOption, TDirectory *theTargetDir) | |
MethodANNBase (Types::EMVA methodType, DataSetInfo &theData, const TString &theWeightFile, TDirectory *theTargetDir) | |
construct the Method from the weight file More... | |
virtual | ~MethodANNBase () |
destructor More... | |
void | InitANNBase () |
initialize ANNBase object More... | |
void | SetActivation (TActivation *activation) |
void | SetNeuronInputCalculator (TNeuronInput *inputCalculator) |
virtual void | Train ()=0 |
virtual void | PrintNetwork () const |
print network representation, for debugging More... | |
template<typename WriteIterator > | |
void | GetLayerActivation (size_t layer, WriteIterator writeIterator) |
void | AddWeightsXMLTo (void *parent) const |
create XML description of ANN classifier More... | |
void | ReadWeightsFromXML (void *wghtnode) |
read MLP from xml weight file More... | |
virtual void | ReadWeightsFromStream (std::istream &istr) |
destroy/clear the network then read it back in from the weights file More... | |
virtual Double_t | GetMvaValue (Double_t *err=0, Double_t *errUpper=0) |
get the mva value generated by the NN More... | |
virtual const std::vector< Float_t > & | GetRegressionValues () |
get the regression value generated by the NN More... | |
virtual const std::vector< Float_t > & | GetMulticlassValues () |
get the multiclass classification values generated by the NN More... | |
virtual void | WriteMonitoringHistosToFile () const |
write histograms to file More... | |
const Ranking * | CreateRanking () |
compute ranking of input variables by summing function of weights More... | |
virtual void | DeclareOptions () |
define the options (their key words) that can be set in the option string here the options valid for ALL MVA methods are declared. More... | |
virtual void | ProcessOptions () |
do nothing specific at this moment More... | |
Bool_t | Debug () const |
who the hell makes such strange Debug flags that even use "global pointers".. More... | |
Public Member Functions inherited from TMVA::MethodBase | |
MethodBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="", TDirectory *theBaseDir=0) | |
standard constructur More... | |
MethodBase (Types::EMVA methodType, DataSetInfo &dsi, const TString &weightFile, TDirectory *theBaseDir=0) | |
constructor used for Testing + Application of the MVA, only (no training), using given WeightFiles More... | |
virtual | ~MethodBase () |
destructor More... | |
void | SetupMethod () |
setup of methods More... | |
void | ProcessSetup () |
process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) More... | |
virtual void | CheckSetup () |
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) More... | |
void | AddOutput (Types::ETreeType type, Types::EAnalysisType analysisType) |
void | TrainMethod () |
virtual std::map< TString, Double_t > | OptimizeTuningParameters (TString fomType="ROCIntegral", TString fitType="FitGA") |
call the Optimzier with the set of paremeters and ranges that are meant to be tuned. More... | |
virtual void | SetTuneParameters (std::map< TString, Double_t > tuneParameters) |
set the tuning parameters accoding to the argument This is just a dummy . More... | |
void | SetTrainTime (Double_t trainTime) |
Double_t | GetTrainTime () const |
void | SetTestTime (Double_t testTime) |
Double_t | GetTestTime () const |
virtual void | TestClassification () |
initialization More... | |
virtual Double_t | GetKSTrainingVsTest (Char_t SorB, TString opt="X") |
virtual void | TestMulticlass () |
test multiclass classification More... | |
virtual void | TestRegression (Double_t &bias, Double_t &biasT, Double_t &dev, Double_t &devT, Double_t &rms, Double_t &rmsT, Double_t &mInf, Double_t &mInfT, Double_t &corr, Types::ETreeType type) |
calculate <sum-of-deviation-squared> of regression output versus "true" value from test sample More... | |
virtual void | Init ()=0 |
virtual void | DeclareCompatibilityOptions () |
options that are used ONLY for the READER to ensure backward compatibility they are hence without any effect (the reader is only reading the training options that HAD been used at the training of the .xml weightfile at hand More... | |
virtual void | Reset () |
Double_t | GetMvaValue (const TMVA::Event *const ev, Double_t *err=0, Double_t *errUpper=0) |
const std::vector< Float_t > & | GetRegressionValues (const TMVA::Event *const ev) |
virtual Double_t | GetProba (const Event *ev) |
virtual Double_t | GetProba (Double_t mvaVal, Double_t ap_sig) |
compute likelihood ratio More... | |
virtual Double_t | GetRarity (Double_t mvaVal, Types::ESBType reftype=Types::kBackground) const |
compute rarity: R(x) = Integrate_[-oo..x] { PDF(x') dx' } where PDF(x) is the PDF of the classifier's signal or background distribution More... | |
virtual void | MakeClass (const TString &classFileName=TString("")) const |
create reader class for method (classification only at present) More... | |
void | PrintHelpMessage () const |
prints out method-specific help method More... | |
void | WriteStateToFile () const |
write options and weights to file note that each one text file for the main configuration information and one ROOT file for ROOT objects are created More... | |
void | ReadStateFromFile () |
Function to write options and weights to file. More... | |
void | ReadStateFromStream (std::istream &tf) |
read the header from the weight files of the different MVA methods More... | |
void | ReadStateFromStream (TFile &rf) |
write reference MVA distributions (and other information) to a ROOT type weight file More... | |
void | ReadStateFromXMLString (const char *xmlstr) |
for reading from memory More... | |
virtual void | WriteEvaluationHistosToFile (Types::ETreeType treetype) |
writes all MVA evaluation histograms to file More... | |
virtual Double_t | GetEfficiency (const TString &, Types::ETreeType, Double_t &err) |
fill background efficiency (resp. More... | |
virtual Double_t | GetTrainingEfficiency (const TString &) |
virtual std::vector< Float_t > | GetMulticlassEfficiency (std::vector< std::vector< Float_t > > &purity) |
virtual std::vector< Float_t > | GetMulticlassTrainingEfficiency (std::vector< std::vector< Float_t > > &purity) |
virtual Double_t | GetSignificance () const |
compute significance of mean difference significance = |<S> - |/Sqrt(RMS_S2 + RMS_B2) More... | |
virtual Double_t | GetROCIntegral (TH1D *histS, TH1D *histB) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification More... | |
virtual Double_t | GetROCIntegral (PDF *pdfS=0, PDF *pdfB=0) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification More... | |
virtual Double_t | GetMaximumSignificance (Double_t SignalEvents, Double_t BackgroundEvents, Double_t &optimal_significance_value) const |
plot significance, S/Sqrt(S^2 + B^2), curve for given number of signal and background events; returns cut for maximum significance also returned via reference is the maximum significance More... | |
virtual Double_t | GetSeparation (TH1 *, TH1 *) const |
compute "separation" defined as <s2> = (1/2) Int_-oo..+oo { (S(x) - B(x))^2/(S(x) + B(x)) dx } More... | |
virtual Double_t | GetSeparation (PDF *pdfS=0, PDF *pdfB=0) const |
compute "separation" defined as <s2> = (1/2) Int_-oo..+oo { (S(x) - B(x))^2/(S(x) + B(x)) dx } More... | |
virtual void | GetRegressionDeviation (UInt_t tgtNum, Types::ETreeType type, Double_t &stddev, Double_t &stddev90Percent) const |
const TString & | GetJobName () const |
const TString & | GetMethodName () const |
TString | GetMethodTypeName () const |
Types::EMVA | GetMethodType () const |
const char * | GetName () const |
Returns name of object. More... | |
const TString & | GetTestvarName () const |
const TString | GetProbaName () const |
TString | GetWeightFileName () const |
retrieve weight file name More... | |
void | SetTestvarName (const TString &v="") |
UInt_t | GetNvar () const |
UInt_t | GetNVariables () const |
UInt_t | GetNTargets () const |
const TString & | GetInputVar (Int_t i) const |
const TString & | GetInputLabel (Int_t i) const |
const TString & | GetInputTitle (Int_t i) const |
Double_t | GetMean (Int_t ivar) const |
Double_t | GetRMS (Int_t ivar) const |
Double_t | GetXmin (Int_t ivar) const |
Double_t | GetXmax (Int_t ivar) const |
Double_t | GetSignalReferenceCut () const |
Double_t | GetSignalReferenceCutOrientation () const |
void | SetSignalReferenceCut (Double_t cut) |
void | SetSignalReferenceCutOrientation (Double_t cutOrientation) |
TDirectory * | BaseDir () const |
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are stored More... | |
TDirectory * | MethodBaseDir () const |
returns the ROOT directory where all instances of the corresponding MVA method are stored More... | |
void | SetMethodDir (TDirectory *methodDir) |
void | SetBaseDir (TDirectory *methodDir) |
void | SetMethodBaseDir (TDirectory *methodDir) |
UInt_t | GetTrainingTMVAVersionCode () const |
UInt_t | GetTrainingROOTVersionCode () const |
TString | GetTrainingTMVAVersionString () const |
calculates the TMVA version string from the training version code on the fly More... | |
TString | GetTrainingROOTVersionString () const |
calculates the ROOT version string from the training version code on the fly More... | |
TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) |
const TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) const |
void | RerouteTransformationHandler (TransformationHandler *fTargetTransformation) |
DataSet * | Data () const |
DataSetInfo & | DataInfo () const |
UInt_t | GetNEvents () const |
temporary event when testing on a different DataSet than the own one More... | |
const Event * | GetEvent () const |
const Event * | GetEvent (const TMVA::Event *ev) const |
const Event * | GetEvent (Long64_t ievt) const |
const Event * | GetEvent (Long64_t ievt, Types::ETreeType type) const |
const Event * | GetTrainingEvent (Long64_t ievt) const |
const Event * | GetTestingEvent (Long64_t ievt) const |
const std::vector< TMVA::Event * > & | GetEventCollection (Types::ETreeType type) |
returns the event collection (i.e. More... | |
virtual Bool_t | IsSignalLike () |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event would be selected as signal or background More... | |
virtual Bool_t | IsSignalLike (Double_t mvaVal) |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event with this mva output value would tbe selected as signal or background More... | |
Bool_t | HasMVAPdfs () const |
virtual void | SetAnalysisType (Types::EAnalysisType type) |
Types::EAnalysisType | GetAnalysisType () const |
Bool_t | DoRegression () const |
Bool_t | DoMulticlass () const |
void | DisableWriting (Bool_t setter) |
Public Member Functions inherited from TMVA::IMethod | |
IMethod () | |
virtual | ~IMethod () |
virtual Bool_t | HasAnalysisType (Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)=0 |
Public Member Functions inherited from TMVA::Configurable | |
Configurable (const TString &theOption="") | |
virtual | ~Configurable () |
default destructur More... | |
virtual void | ParseOptions () |
options parser More... | |
void | PrintOptions () const |
prints out the options set in the options string and the defaults More... | |
const char * | GetConfigName () const |
const char * | GetConfigDescription () const |
void | SetConfigName (const char *n) |
void | SetConfigDescription (const char *d) |
template<class T > | |
OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc="") |
template<class T > | |
OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc="") |
template<class T > | |
void | AddPreDefVal (const T &) |
template<class T > | |
void | AddPreDefVal (const TString &optname, const T &) |
void | CheckForUnusedOptions () const |
checks for unused options in option string More... | |
const TString & | GetOptions () const |
void | SetOptions (const TString &s) |
void | WriteOptionsToStream (std::ostream &o, const TString &prefix) const |
write options to output stream (e.g. in writing the MVA weight files More... | |
void | ReadOptionsFromStream (std::istream &istr) |
read option back from the weight file More... | |
void | AddOptionsXMLTo (void *parent) const |
write options to XML file More... | |
void | ReadOptionsFromXML (void *node) |
void | SetMsgType (EMsgType t) |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc) |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc) |
Public Member Functions inherited from TObject | |
TObject () | |
TObject (const TObject &object) | |
TObject copy ctor. More... | |
TObject & | operator= (const TObject &rhs) |
TObject assignment operator. More... | |
virtual | ~TObject () |
TObject destructor. More... | |
virtual void | AppendPad (Option_t *option="") |
Append graphics object to current pad. More... | |
virtual void | Browse (TBrowser *b) |
Browse object. May be overridden for another default action. More... | |
virtual const char * | ClassName () const |
Returns name of class to which the object belongs. More... | |
virtual void | Clear (Option_t *="") |
virtual TObject * | Clone (const char *newname="") const |
Make a clone of an object using the Streamer facility. More... | |
virtual Int_t | Compare (const TObject *obj) const |
Compare abstract method. More... | |
virtual void | Copy (TObject &object) const |
Copy this to obj. More... | |
virtual void | Delete (Option_t *option="") |
Delete this object. More... | |
virtual Int_t | DistancetoPrimitive (Int_t px, Int_t py) |
Computes distance from point (px,py) to the object. More... | |
virtual void | Draw (Option_t *option="") |
Default Draw method for all objects. More... | |
virtual void | DrawClass () const |
Draw class inheritance tree of the class to which this object belongs. More... | |
virtual TObject * | DrawClone (Option_t *option="") const |
Draw a clone of this object in the current pad. More... | |
virtual void | Dump () const |
Dump contents of object on stdout. More... | |
virtual void | Execute (const char *method, const char *params, Int_t *error=0) |
Execute method on this object with the given parameter string, e.g. More... | |
virtual void | Execute (TMethod *method, TObjArray *params, Int_t *error=0) |
Execute method on this object with parameters stored in the TObjArray. More... | |
virtual void | ExecuteEvent (Int_t event, Int_t px, Int_t py) |
Execute action corresponding to an event at (px,py). More... | |
virtual TObject * | FindObject (const char *name) const |
Must be redefined in derived classes. More... | |
virtual TObject * | FindObject (const TObject *obj) const |
Must be redefined in derived classes. More... | |
virtual Option_t * | GetDrawOption () const |
Get option used by the graphics system to draw this object. More... | |
virtual UInt_t | GetUniqueID () const |
Return the unique object id. More... | |
virtual const char * | GetIconName () const |
Returns mime type name of object. More... | |
virtual Option_t * | GetOption () const |
virtual char * | GetObjectInfo (Int_t px, Int_t py) const |
Returns string containing info about the object at position (px,py). More... | |
virtual const char * | GetTitle () const |
Returns title of object. More... | |
virtual Bool_t | HandleTimer (TTimer *timer) |
Execute action in response of a timer timing out. More... | |
virtual ULong_t | Hash () const |
Return hash value for this object. More... | |
virtual Bool_t | InheritsFrom (const char *classname) const |
Returns kTRUE if object inherits from class "classname". More... | |
virtual Bool_t | InheritsFrom (const TClass *cl) const |
Returns kTRUE if object inherits from TClass cl. More... | |
virtual void | Inspect () const |
Dump contents of this object in a graphics canvas. More... | |
virtual Bool_t | IsFolder () const |
Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). More... | |
virtual Bool_t | IsEqual (const TObject *obj) const |
Default equal comparison (objects are equal if they have the same address in memory). More... | |
virtual Bool_t | IsSortable () const |
Bool_t | IsOnHeap () const |
Bool_t | IsZombie () const |
virtual Bool_t | Notify () |
This method must be overridden to handle object notification. More... | |
virtual void | ls (Option_t *option="") const |
The ls function lists the contents of a class on stdout. More... | |
virtual void | Paint (Option_t *option="") |
This method must be overridden if a class wants to paint itself. More... | |
virtual void | Pop () |
Pop on object drawn in a pad to the top of the display list. More... | |
virtual void | Print (Option_t *option="") const |
This method must be overridden when a class wants to print itself. More... | |
virtual Int_t | Read (const char *name) |
Read contents of object with specified name from the current directory. More... | |
virtual void | RecursiveRemove (TObject *obj) |
Recursively remove this object from a list. More... | |
virtual void | SaveAs (const char *filename="", Option_t *option="") const |
Save this object in the file specified by filename. More... | |
virtual void | SavePrimitive (std::ostream &out, Option_t *option="") |
Save a primitive as a C++ statement(s) on output stream "out". More... | |
virtual void | SetDrawOption (Option_t *option="") |
Set drawing option for object. More... | |
virtual void | SetUniqueID (UInt_t uid) |
Set the unique object id. More... | |
virtual void | UseCurrentStyle () |
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. More... | |
virtual Int_t | Write (const char *name=0, Int_t option=0, Int_t bufsize=0) |
Write this object to the current directory. More... | |
virtual Int_t | Write (const char *name=0, Int_t option=0, Int_t bufsize=0) const |
Write this object to the current directory. More... | |
void * | operator new (size_t sz) |
void * | operator new[] (size_t sz) |
void * | operator new (size_t sz, void *vp) |
void * | operator new[] (size_t sz, void *vp) |
void | operator delete (void *ptr) |
Operator delete. More... | |
void | operator delete[] (void *ptr) |
Operator delete []. More... | |
void | SetBit (UInt_t f, Bool_t set) |
Set or unset the user status bits as specified in f. More... | |
void | SetBit (UInt_t f) |
void | ResetBit (UInt_t f) |
Bool_t | TestBit (UInt_t f) const |
Int_t | TestBits (UInt_t f) const |
void | InvertBit (UInt_t f) |
virtual void | Info (const char *method, const char *msgfmt,...) const |
Issue info message. More... | |
virtual void | Warning (const char *method, const char *msgfmt,...) const |
Issue warning message. More... | |
virtual void | Error (const char *method, const char *msgfmt,...) const |
Issue error message. More... | |
virtual void | SysError (const char *method, const char *msgfmt,...) const |
Issue system error message. More... | |
virtual void | Fatal (const char *method, const char *msgfmt,...) const |
Issue fatal error message. More... | |
void | AbstractMethod (const char *method) const |
Use this method to implement an "abstract" method that you don't want to leave purely abstract. More... | |
void | MayNotUse (const char *method) const |
Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). More... | |
void | Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const |
Use this method to declare a method obsolete. More... | |
Protected Member Functions | |
virtual void | MakeClassSpecific (std::ostream &, const TString &) const |
write specific classifier response More... | |
std::vector< Int_t > * | ParseLayoutString (TString layerSpec) |
parse layout specification string and return a vector, each entry containing the number of neurons to go in each successive layer More... | |
virtual void | BuildNetwork (std::vector< Int_t > *layout, std::vector< Double_t > *weights=NULL, Bool_t fromFile=kFALSE) |
build network given a layout (number of neurons in each layer) and optional weights array More... | |
void | ForceNetworkInputs (const Event *ev, Int_t ignoreIndex=-1) |
force the input values of the input neurons force the value for each input neuron More... | |
Double_t | GetNetworkOutput () |
void | PrintMessage (TString message, Bool_t force=kFALSE) const |
print messages, turn off printing by setting verbose and debug flag appropriately More... | |
void | ForceNetworkCalculations () |
calculate input values to each neuron More... | |
void | WaitForKeyboard () |
wait for keyboard input, for debugging More... | |
Int_t | NumCycles () |
TNeuron * | GetInputNeuron (Int_t index) |
TNeuron * | GetOutputNeuron (Int_t index=0) |
void | CreateWeightMonitoringHists (const TString &bulkname, std::vector< TH1 * > *hv=0) const |
Protected Member Functions inherited from TMVA::MethodBase | |
void | NoErrorCalc (Double_t *const err, Double_t *const errUpper) |
virtual void | ReadWeightsFromStream (TFile &) |
void | SetWeightFileName (TString) |
set the weight file name (depreciated) More... | |
const TString & | GetWeightFileDir () const |
void | SetWeightFileDir (TString fileDir) |
set directory of weight file More... | |
Bool_t | IsNormalised () const |
void | SetNormalised (Bool_t norm) |
Bool_t | Verbose () const |
Bool_t | Help () const |
const TString & | GetInternalVarName (Int_t ivar) const |
const TString & | GetOriginalVarName (Int_t ivar) const |
Bool_t | HasTrainingTree () const |
virtual void | MakeClassSpecificHeader (std::ostream &, const TString &="") const |
void | Statistics (Types::ETreeType treeType, const TString &theVarName, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &) |
calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as they are or for normalised variables (in the range of 0-1) if "norm" is set to kTRUE More... | |
Bool_t | TxtWeightsOnly () const |
Bool_t | IsConstructedFromWeightFile () const |
Bool_t | IgnoreEventsWithNegWeightsInTraining () const |
Protected Member Functions inherited from TMVA::IMethod | |
virtual void | GetHelpMessage () const =0 |
Protected Member Functions inherited from TMVA::Configurable | |
Bool_t | LooseOptionCheckingEnabled () const |
void | EnableLooseOptions (Bool_t b=kTRUE) |
void | WriteOptionsReferenceToFile () |
write complete options to output stream More... | |
void | ResetSetFlag () |
resets the IsSet falg for all declare options to be called before options are read from stream More... | |
const TString & | GetReferenceFile () const |
MsgLogger & | Log () const |
Protected Member Functions inherited from TObject | |
void | MakeZombie () |
virtual void | DoError (int level, const char *location, const char *fmt, va_list va) const |
Interface to ErrorHandler (protected). More... | |
Protected Attributes | |
TObjArray * | fNetwork |
TObjArray * | fSynapses |
TActivation * | fActivation |
TActivation * | fOutput |
TActivation * | fIdentity |
TRandom3 * | frgen |
TNeuronInput * | fInputCalculator |
std::vector< Int_t > | fRegulatorIdx |
std::vector< Double_t > | fRegulators |
EEstimator | fEstimator |
TString | fEstimatorS |
TH1F * | fEstimatorHistTrain |
TH1F * | fEstimatorHistTest |
std::vector< TH1 * > | fEpochMonHistS |
std::vector< TH1 * > | fEpochMonHistB |
std::vector< TH1 * > | fEpochMonHistW |
TMatrixD | fInvHessian |
bool | fUseRegulator |
Int_t | fRandomSeed |
Int_t | fNcycles |
TString | fNeuronType |
TString | fNeuronInputType |
Protected Attributes inherited from TMVA::MethodBase | |
Ranking * | fRanking |
std::vector< TString > * | fInputVars |
Int_t | fNbins |
Int_t | fNbinsMVAoutput |
Int_t | fNbinsH |
Types::EAnalysisType | fAnalysisType |
std::vector< Float_t > * | fRegressionReturnVal |
std::vector< Float_t > * | fMulticlassReturnVal |
UInt_t | fSignalClass |
UInt_t | fBackgroundClass |
Private Member Functions | |
void | BuildLayers (std::vector< Int_t > *layout, Bool_t from_file=false) |
build the network layers More... | |
void | BuildLayer (Int_t numNeurons, TObjArray *curLayer, TObjArray *prevLayer, Int_t layerIndex, Int_t numLayers, Bool_t from_file=false) |
build a single layer with neurons and synapses connecting this layer to the previous layer More... | |
void | AddPreLinks (TNeuron *neuron, TObjArray *prevLayer) |
add synapses connecting a neuron to its preceding layer More... | |
void | InitWeights () |
initialize the synapse weights randomly More... | |
void | ForceWeights (std::vector< Double_t > *weights) |
force the synapse weights More... | |
void | DeleteNetwork () |
delete/clear network More... | |
void | DeleteNetworkLayer (TObjArray *&layer) |
delete a network layer More... | |
void | PrintLayer (TObjArray *layer) const |
print a single layer, for debugging More... | |
void | PrintNeuron (TNeuron *neuron) const |
print a neuron, for debugging More... | |
Private Attributes | |
TObjArray * | fInputLayer |
std::vector< TNeuron * > | fOutputNeurons |
TString | fLayerSpec |
Static Private Attributes | |
static const Bool_t | fgDEBUG = kTRUE |
Additional Inherited Members | |
Static Public Member Functions inherited from TObject | |
static Long_t | GetDtorOnly () |
Return destructor only flag. More... | |
static void | SetDtorOnly (void *obj) |
Set destructor only flag. More... | |
static Bool_t | GetObjectStat () |
Get status of object stat flag. More... | |
static void | SetObjectStat (Bool_t stat) |
Turn on/off tracking of objects in the TObjectTable. More... | |
Public Attributes inherited from TMVA::MethodBase | |
const Event * | fTmpEvent |
Bool_t | fSetupCompleted |
Static Protected Member Functions inherited from TMVA::MethodBase | |
static MethodBase * | GetThisBase () |
return a pointer the base class of this method More... | |
#include <TMVA/MethodANNBase.h>
Enumerator | |
---|---|
kMSE | |
kCE |
Definition at line 157 of file MethodANNBase.h.
TMVA::MethodANNBase::MethodANNBase | ( | const TString & | jobName, |
Types::EMVA | methodType, | ||
const TString & | methodTitle, | ||
DataSetInfo & | theData, | ||
const TString & | theOption, | ||
TDirectory * | theTargetDir | ||
) |
TMVA::MethodANNBase::MethodANNBase | ( | Types::EMVA | methodType, |
DataSetInfo & | theData, | ||
const TString & | theWeightFile, | ||
TDirectory * | theTargetDir | ||
) |
construct the Method from the weight file
Definition at line 97 of file MethodANNBase.cxx.
|
virtual |
destructor
Definition at line 234 of file MethodANNBase.cxx.
add synapses connecting a neuron to its preceding layer
Definition at line 421 of file MethodANNBase.cxx.
create XML description of ANN classifier
Implements TMVA::MethodBase.
Definition at line 710 of file MethodANNBase.cxx.
|
private |
build a single layer with neurons and synapses connecting this layer to the previous layer
Definition at line 369 of file MethodANNBase.cxx.
|
private |
build the network layers
Definition at line 333 of file MethodANNBase.cxx.
|
protectedvirtual |
build network given a layout (number of neurons in each layer) and optional weights array
Definition at line 289 of file MethodANNBase.cxx.
|
virtual |
compute ranking of input variables by summing function of weights
Implements TMVA::MethodBase.
Definition at line 922 of file MethodANNBase.cxx.
|
protected |
Definition at line 964 of file MethodANNBase.cxx.
Bool_t TMVA::MethodANNBase::Debug | ( | ) | const |
who the hell makes such strange Debug flags that even use "global pointers"..
Definition at line 1165 of file MethodANNBase.cxx.
|
virtual |
define the options (their key words) that can be set in the option string here the options valid for ALL MVA methods are declared.
know options: NCycles=xx :the number of training cycles Normalize=kTRUE,kFALSe :if normalised in put variables should be used HiddenLayser="N-1,N-2" :the specification of the hidden layers NeuronType=sigmoid,tanh,radial,linar : the type of activation function used at the neuronn
Implements TMVA::MethodBase.
Reimplemented in TMVA::MethodMLP.
Definition at line 121 of file MethodANNBase.cxx.
Referenced by MethodANNBase().
|
private |
delete/clear network
Definition at line 242 of file MethodANNBase.cxx.
delete a network layer
Definition at line 273 of file MethodANNBase.cxx.
|
protected |
calculate input values to each neuron
Definition at line 490 of file MethodANNBase.cxx.
force the input values of the input neurons force the value for each input neuron
Definition at line 472 of file MethodANNBase.cxx.
force the synapse weights
Definition at line 456 of file MethodANNBase.cxx.
Definition at line 177 of file MethodANNBase.h.
|
inline |
Definition at line 252 of file MethodANNBase.h.
|
virtual |
get the multiclass classification values generated by the NN
Reimplemented from TMVA::MethodBase.
Definition at line 667 of file MethodANNBase.cxx.
get the mva value generated by the NN
Implements TMVA::MethodBase.
Reimplemented in TMVA::MethodMLP.
Definition at line 593 of file MethodANNBase.cxx.
Referenced by TMVA::MethodMLP::GetMvaValue().
|
inlineprotected |
Definition at line 168 of file MethodANNBase.h.
Definition at line 178 of file MethodANNBase.h.
Referenced by GetNetworkOutput().
|
virtual |
get the regression value generated by the NN
Reimplemented from TMVA::MethodBase.
Definition at line 620 of file MethodANNBase.cxx.
void TMVA::MethodANNBase::InitANNBase | ( | ) |
initialize ANNBase object
Definition at line 205 of file MethodANNBase.cxx.
Referenced by MethodANNBase().
|
private |
initialize the synapse weights randomly
Definition at line 440 of file MethodANNBase.cxx.
|
protectedvirtual |
write specific classifier response
Reimplemented from TMVA::MethodBase.
Reimplemented in TMVA::MethodMLP.
Definition at line 1047 of file MethodANNBase.cxx.
Referenced by TMVA::MethodMLP::MakeClassSpecific().
|
inlineprotected |
Definition at line 176 of file MethodANNBase.h.
Referenced by TMVA::MethodMLP::Train().
parse layout specification string and return a vector, each entry containing the number of neurons to go in each successive layer
Definition at line 168 of file MethodANNBase.cxx.
print a single layer, for debugging
Definition at line 560 of file MethodANNBase.cxx.
print messages, turn off printing by setting verbose and debug flag appropriately
Definition at line 513 of file MethodANNBase.cxx.
|
virtual |
print network representation, for debugging
Definition at line 536 of file MethodANNBase.cxx.
print a neuron, for debugging
Definition at line 576 of file MethodANNBase.cxx.
|
virtual |
do nothing specific at this moment
Implements TMVA::MethodBase.
Reimplemented in TMVA::MethodMLP.
Definition at line 153 of file MethodANNBase.cxx.
Referenced by TMVA::MethodMLP::ProcessOptions().
|
virtual |
destroy/clear the network then read it back in from the weights file
Implements TMVA::MethodBase.
Definition at line 901 of file MethodANNBase.cxx.
read MLP from xml weight file
Implements TMVA::MethodBase.
Definition at line 778 of file MethodANNBase.cxx.
|
inline |
Definition at line 103 of file MethodANNBase.h.
|
inline |
Definition at line 107 of file MethodANNBase.h.
|
pure virtual |
Implements TMVA::MethodBase.
Implemented in TMVA::MethodMLP.
|
protected |
wait for keyboard input, for debugging
Definition at line 521 of file MethodANNBase.cxx.
write histograms to file
Reimplemented from TMVA::MethodBase.
Definition at line 1005 of file MethodANNBase.cxx.
|
protected |
Definition at line 183 of file MethodANNBase.h.
Referenced by SetActivation().
|
protected |
Definition at line 201 of file MethodANNBase.h.
|
protected |
Definition at line 200 of file MethodANNBase.h.
|
protected |
Definition at line 202 of file MethodANNBase.h.
|
protected |
Definition at line 191 of file MethodANNBase.h.
|
protected |
Definition at line 196 of file MethodANNBase.h.
|
protected |
Definition at line 195 of file MethodANNBase.h.
|
protected |
Definition at line 192 of file MethodANNBase.h.
Definition at line 244 of file MethodANNBase.h.
|
protected |
Definition at line 185 of file MethodANNBase.h.
|
protected |
Definition at line 187 of file MethodANNBase.h.
Referenced by SetNeuronInputCalculator().
|
private |
Definition at line 239 of file MethodANNBase.h.
Referenced by GetInputNeuron().
|
protected |
Definition at line 206 of file MethodANNBase.h.
|
private |
Definition at line 241 of file MethodANNBase.h.
|
protected |
Definition at line 212 of file MethodANNBase.h.
Referenced by NumCycles().
|
protected |
Definition at line 181 of file MethodANNBase.h.
Referenced by GetLayerActivation().
|
protected |
Definition at line 215 of file MethodANNBase.h.
|
protected |
Definition at line 214 of file MethodANNBase.h.
|
protected |
Definition at line 184 of file MethodANNBase.h.
|
private |
Definition at line 240 of file MethodANNBase.h.
Referenced by GetOutputNeuron().
|
protected |
Definition at line 210 of file MethodANNBase.h.
|
protected |
Definition at line 189 of file MethodANNBase.h.
|
protected |
Definition at line 190 of file MethodANNBase.h.
|
protected |
Definition at line 186 of file MethodANNBase.h.
|
protected |
Definition at line 182 of file MethodANNBase.h.
|
protected |
Definition at line 207 of file MethodANNBase.h.