ROOT  6.06/09
Reference Guide
MethodANNBase.h
Go to the documentation of this file.
1 // @(#)root/tmva $Id$
2 // Author: Andreas Hoecker, Peter Speckmayer, Matt Jachowski, Jan Therhaag
3 
4 /**********************************************************************************
5  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6  * Package: TMVA *
7  * Class : MethodANNBase *
8  * Web : http://tmva.sourceforge.net *
9  * *
10  * Description: *
11  * Artificial neural network base class for the discrimination of signal *
12  * from background. *
13  * *
14  * Authors (alphabetical): *
15  * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
16  * Matt Jachowski <jachowski@stanford.edu> - Stanford University, USA *
17  * Peter Speckmayer <Peter.Speckmayer@cern.ch> - CERN, Switzerland *
18  * Joerg Stelzer <Joerg.Stelzer@cern.ch> - CERN, Switzerland *
19  * Jan Therhaag <Jan.Therhaag@cern.ch> - U of Bonn, Germany *
20  * *
21  * Small changes (regression): *
22  * Krzysztof Danielowski <danielow@cern.ch> - IFJ PAN & AGH, Poland *
23  * Kamil Kraszewski <kalq@cern.ch> - IFJ PAN & UJ , Poland *
24  * Maciej Kruk <mkruk@cern.ch> - IFJ PAN & AGH, Poland *
25  * *
26  * Copyright (c) 2005-2011: *
27  * CERN, Switzerland *
28  * *
29  * Redistribution and use in source and binary forms, with or without *
30  * modification, are permitted according to the terms listed in LICENSE *
31  * (http://tmva.sourceforge.net/LICENSE) *
32  **********************************************************************************/
33 
34 #ifndef ROOT_TMVA_MethodANNBase
35 #define ROOT_TMVA_MethodANNBase
36 
37 //////////////////////////////////////////////////////////////////////////
38 // //
39 // MethodANNBase //
40 // //
41 // Base class for all TMVA methods using artificial neural networks //
42 // //
43 //////////////////////////////////////////////////////////////////////////
44 
45 #ifndef ROOT_TString
46 #include "TString.h"
47 #endif
48 #include <vector>
49 #ifndef ROOT_TTree
50 #include "TTree.h"
51 #endif
52 #ifndef ROOT_TObjArray
53 #include "TObjArray.h"
54 #endif
55 #ifndef ROOT_TRandom3
56 #include "TRandom3.h"
57 #endif
58 #ifndef ROOT_TMatrix
59 #include "TMatrix.h"
60 #endif
61 
62 #ifndef ROOT_TMVA_MethodBase
63 #include "TMVA/MethodBase.h"
64 #endif
65 #ifndef ROOT_TMVA_TActivation
66 #include "TMVA/TActivation.h"
67 #endif
68 #ifndef ROOT_TMVA_TNeuron
69 #include "TMVA/TNeuron.h"
70 #endif
71 #ifndef ROOT_TMVA_TNeuronInput
72 #include "TMVA/TNeuronInput.h"
73 #endif
74 
75 class TH1;
76 class TH1F;
77 
78 namespace TMVA {
79 
80  class MethodANNBase : public MethodBase {
81 
82  public:
83 
84  // constructors dictated by subclassing off of MethodBase
85  MethodANNBase( const TString& jobName,
86  Types::EMVA methodType,
87  const TString& methodTitle,
88  DataSetInfo& theData,
89  const TString& theOption,
90  TDirectory* theTargetDir );
91 
92  MethodANNBase( Types::EMVA methodType,
93  DataSetInfo& theData,
94  const TString& theWeightFile,
95  TDirectory* theTargetDir );
96 
97  virtual ~MethodANNBase();
98 
99  // this does the real initialization work
100  void InitANNBase();
101 
102  // setters for subclasses
103  void SetActivation(TActivation* activation) {
104  if (fActivation != nullptr) delete fActivation;
105  fActivation = activation;
106  }
107  void SetNeuronInputCalculator(TNeuronInput* inputCalculator) {
108  if (fInputCalculator != nullptr) delete fInputCalculator;
109  fInputCalculator = inputCalculator;
110  }
111 
112  // this will have to be overridden by every subclass
113  virtual void Train() = 0;
114 
115  // print network, for debugging
116  virtual void PrintNetwork() const;
117 
118 
119  // call this function like that:
120  // ...
121  // MethodMLP* mlp = dynamic_cast<MethodMLP*>(method);
122  // std::vector<float> layerValues;
123  // mlp->GetLayerActivation (2, std::back_inserter(layerValues));
124  // ... do now something with the layerValues
125  //
126  template <typename WriteIterator>
127  void GetLayerActivation (size_t layer, WriteIterator writeIterator);
128 
130 
131  // write weights to file
132  void AddWeightsXMLTo( void* parent ) const;
133  void ReadWeightsFromXML( void* wghtnode );
134 
135  // read weights from file
136  virtual void ReadWeightsFromStream( std::istream& istr );
137 
138  // calculate the MVA value
139  virtual Double_t GetMvaValue( Double_t* err = 0, Double_t* errUpper = 0 );
140 
141  virtual const std::vector<Float_t> &GetRegressionValues();
142 
143  virtual const std::vector<Float_t> &GetMulticlassValues();
144 
145  // write method specific histos to target file
146  virtual void WriteMonitoringHistosToFile() const;
147 
148  // ranking of input variables
149  const Ranking* CreateRanking();
150 
151  // the option handling methods
152  virtual void DeclareOptions();
153  virtual void ProcessOptions();
154 
155  Bool_t Debug() const;
156 
157  enum EEstimator { kMSE=0,kCE};
158 
159 
160  protected:
161 
162  virtual void MakeClassSpecific( std::ostream&, const TString& ) const;
163 
164  std::vector<Int_t>* ParseLayoutString( TString layerSpec );
165  virtual void BuildNetwork( std::vector<Int_t>* layout, std::vector<Double_t>* weights=NULL,
166  Bool_t fromFile = kFALSE );
167  void ForceNetworkInputs( const Event* ev, Int_t ignoreIndex = -1 );
169 
170  // debugging utilities
171  void PrintMessage( TString message, Bool_t force = kFALSE ) const;
173  void WaitForKeyboard();
174 
175  // accessors
176  Int_t NumCycles() { return fNcycles; }
177  TNeuron* GetInputNeuron (Int_t index) { return (TNeuron*)fInputLayer->At(index); }
178  TNeuron* GetOutputNeuron(Int_t index = 0) { return fOutputNeurons.at(index); }
179 
180  // protected variables
181  TObjArray* fNetwork; // TObjArray of TObjArrays representing network
182  TObjArray* fSynapses; // array of pointers to synapses, no structural data
183  TActivation* fActivation; // activation function to be used for hidden layers
184  TActivation* fOutput; // activation function to be used for output layers, depending on estimator
185  TActivation* fIdentity; // activation for input and output layers
186  TRandom3* frgen; // random number generator for various uses
187  TNeuronInput* fInputCalculator; // input calculator for all neurons
188 
189  std::vector<Int_t> fRegulatorIdx; //index to different priors from every synapses
190  std::vector<Double_t> fRegulators; //the priors as regulator
193 
194  // monitoring histograms
195  TH1F* fEstimatorHistTrain; // monitors convergence of training sample
196  TH1F* fEstimatorHistTest; // monitors convergence of independent test sample
197 
198  // monitoring histograms (not available for regression)
199  void CreateWeightMonitoringHists( const TString& bulkname, std::vector<TH1*>* hv = 0 ) const;
200  std::vector<TH1*> fEpochMonHistS; // epoch monitoring hitograms for signal
201  std::vector<TH1*> fEpochMonHistB; // epoch monitoring hitograms for background
202  std::vector<TH1*> fEpochMonHistW; // epoch monitoring hitograms for weights
203 
204 
205  // general
207  bool fUseRegulator; // zjh
208 
209  protected:
210  Int_t fRandomSeed; // random seed for initial synapse weights
211 
212  Int_t fNcycles; // number of epochs to train
213 
214  TString fNeuronType; // name of neuron activation function class
215  TString fNeuronInputType; // name of neuron input calculator class
216 
217 
218  private:
219 
220  // helper functions for building network
221  void BuildLayers(std::vector<Int_t>* layout, Bool_t from_file = false);
222  void BuildLayer(Int_t numNeurons, TObjArray* curLayer, TObjArray* prevLayer,
223  Int_t layerIndex, Int_t numLayers, Bool_t from_file = false);
224  void AddPreLinks(TNeuron* neuron, TObjArray* prevLayer);
225 
226  // helper functions for weight initialization
227  void InitWeights();
228  void ForceWeights(std::vector<Double_t>* weights);
229 
230  // helper functions for deleting network
231  void DeleteNetwork();
232  void DeleteNetworkLayer(TObjArray*& layer);
233 
234  // debugging utilities
235  void PrintLayer(TObjArray* layer) const;
236  void PrintNeuron(TNeuron* neuron) const;
237 
238  // private variables
239  TObjArray* fInputLayer; // cache this for fast access
240  std::vector<TNeuron*> fOutputNeurons; // cache this for fast access
241  TString fLayerSpec; // layout specification option
242 
243  // some static flags
244  static const Bool_t fgDEBUG = kTRUE; // debug flag
245 
246  ClassDef(MethodANNBase,0) // Base class for TMVA ANNs
247  };
248 
249 
250 
251  template <typename WriteIterator>
252  inline void MethodANNBase::GetLayerActivation (size_t layerNumber, WriteIterator writeIterator)
253  {
254  // get the activation values of the nodes in layer "layer"
255  // write the node activation values into the writeIterator
256  // assumes, that the network has been computed already (by calling
257  // "GetRegressionValues")
258 
259  if (layerNumber >= (size_t)fNetwork->GetEntriesFast())
260  return;
261 
262  TObjArray* layer = (TObjArray*)fNetwork->At(layerNumber);
263  UInt_t nNodes = layer->GetEntriesFast();
264  for (UInt_t iNode = 0; iNode < nNodes; iNode++)
265  {
266  (*writeIterator) = ((TNeuron*)layer->At(iNode))->GetActivationValue();
267  ++writeIterator;
268  }
269  }
270 
271 
272 } // namespace TMVA
273 
274 #endif
void WaitForKeyboard()
wait for keyboard input, for debugging
virtual Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
get the mva value generated by the NN
void BuildLayer(Int_t numNeurons, TObjArray *curLayer, TObjArray *prevLayer, Int_t layerIndex, Int_t numLayers, Bool_t from_file=false)
build a single layer with neurons and synapses connecting this layer to the previous layer ...
void AddWeightsXMLTo(void *parent) const
create XML description of ANN classifier
An array of TObjects.
Definition: TObjArray.h:39
Random number generator class based on M.
Definition: TRandom3.h:29
void SetActivation(TActivation *activation)
void ForceNetworkCalculations()
calculate input values to each neuron
void DeleteNetwork()
delete/clear network
TActivation * fActivation
void AddPreLinks(TNeuron *neuron, TObjArray *prevLayer)
add synapses connecting a neuron to its preceding layer
const Ranking * CreateRanking()
compute ranking of input variables by summing function of weights
virtual void ReadWeightsFromStream(std::istream &istr)
destroy/clear the network then read it back in from the weights file
TNeuronInput * fInputCalculator
TObjArray * fInputLayer
Basic string class.
Definition: TString.h:137
1-D histogram with a float per channel (see TH1 documentation)}
Definition: TH1.h:570
int Int_t
Definition: RtypesCore.h:41
bool Bool_t
Definition: RtypesCore.h:59
const Bool_t kFALSE
Definition: Rtypes.h:92
void GetLayerActivation(size_t layer, WriteIterator writeIterator)
Int_t GetEntriesFast() const
Definition: TObjArray.h:66
virtual void DeclareOptions()
define the options (their key words) that can be set in the option string here the options valid for ...
static const Bool_t fgDEBUG
void ForceWeights(std::vector< Double_t > *weights)
force the synapse weights
TActivation * fOutput
#define ClassDef(name, id)
Definition: Rtypes.h:254
std::vector< TH1 * > fEpochMonHistB
void PrintLayer(TObjArray *layer) const
print a single layer, for debugging
TObjArray * fNetwork
void PrintMessage(TString message, Bool_t force=kFALSE) const
print messages, turn off printing by setting verbose and debug flag appropriately ...
virtual void ProcessOptions()
do nothing specific at this moment
TActivation * fIdentity
virtual void BuildNetwork(std::vector< Int_t > *layout, std::vector< Double_t > *weights=NULL, Bool_t fromFile=kFALSE)
build network given a layout (number of neurons in each layer) and optional weights array ...
void SetNeuronInputCalculator(TNeuronInput *inputCalculator)
void ReadWeightsFromXML(void *wghtnode)
read MLP from xml weight file
TObjArray * fSynapses
Double_t GetActivationValue() const
Definition: TNeuron.h:117
virtual void WriteMonitoringHistosToFile() const
write histograms to file
Bool_t Debug() const
who the hell makes such strange Debug flags that even use "global pointers"..
unsigned int UInt_t
Definition: RtypesCore.h:42
std::vector< TH1 * > fEpochMonHistW
std::vector< Double_t > fRegulators
TNeuron * GetInputNeuron(Int_t index)
void CreateWeightMonitoringHists(const TString &bulkname, std::vector< TH1 * > *hv=0) const
std::vector< Int_t > fRegulatorIdx
void InitWeights()
initialize the synapse weights randomly
std::vector< Int_t > * ParseLayoutString(TString layerSpec)
parse layout specification string and return a vector, each entry containing the number of neurons to...
double Double_t
Definition: RtypesCore.h:55
virtual const std::vector< Float_t > & GetMulticlassValues()
get the multiclass classification values generated by the NN
TNeuron * GetOutputNeuron(Int_t index=0)
Describe directory structure in memory.
Definition: TDirectory.h:41
void ForceNetworkInputs(const Event *ev, Int_t ignoreIndex=-1)
force the input values of the input neurons force the value for each input neuron ...
The TH1 histogram class.
Definition: TH1.h:80
std::vector< TNeuron * > fOutputNeurons
virtual ~MethodANNBase()
destructor
virtual void PrintNetwork() const
print network representation, for debugging
Double_t GetNetworkOutput()
Abstract ClassifierFactory template that handles arbitrary types.
MethodANNBase(const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &theData, const TString &theOption, TDirectory *theTargetDir)
virtual const std::vector< Float_t > & GetRegressionValues()
get the regression value generated by the NN
#define NULL
Definition: Rtypes.h:82
std::vector< TH1 * > fEpochMonHistS
TObject * At(Int_t idx) const
Definition: TObjArray.h:167
string message
Definition: ROOT.py:94
void DeleteNetworkLayer(TObjArray *&layer)
delete a network layer
virtual void ReadWeightsFromStream(std::istream &)=0
const Bool_t kTRUE
Definition: Rtypes.h:91
void BuildLayers(std::vector< Int_t > *layout, Bool_t from_file=false)
build the network layers
virtual void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void PrintNeuron(TNeuron *neuron) const
print a neuron, for debugging
virtual void Train()=0
void InitANNBase()
initialize ANNBase object