ROOT  6.06/09
Reference Guide
Public Types | Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
TMVA::MethodMLP Class Reference

Definition at line 93 of file MethodMLP.h.

Public Types

enum  ETrainingMethod { kBP =0, kBFGS, kGA }
 
enum  EBPTrainingMode { kSequential =0, kBatch }
 
- Public Types inherited from TMVA::MethodANNBase
enum  EEstimator { kMSE =0, kCE }
 
- Public Types inherited from TMVA::MethodBase
enum  EWeightFileType { kROOT =0, kTEXT }
 
- Public Types inherited from TObject
enum  EStatusBits {
  kCanDelete = BIT(0), kMustCleanup = BIT(3), kObjInCanvas = BIT(3), kIsReferenced = BIT(4),
  kHasUUID = BIT(5), kCannotPick = BIT(6), kNoContextMenu = BIT(8), kInvalidObject = BIT(13)
}
 
enum  { kIsOnHeap = 0x01000000, kNotDeleted = 0x02000000, kZombie = 0x04000000, kBitMask = 0x00ffffff }
 
enum  { kSingleKey = BIT(0), kOverwrite = BIT(1), kWriteDelete = BIT(2) }
 

Public Member Functions

 MethodMLP (const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption, TDirectory *theTargetDir=0)
 
 MethodMLP (DataSetInfo &theData, const TString &theWeightFile, TDirectory *theTargetDir=0)
 constructor from a weight file More...
 
virtual ~MethodMLP ()
 destructor nothing to be done More...
 
virtual Bool_t HasAnalysisType (Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
 MLP can handle classification with 2 classes and regression with one regression-target. More...
 
void Train ()
 
Double_t ComputeEstimator (std::vector< Double_t > &parameters)
 this function is called by GeneticANN for GA optimization More...
 
Double_t EstimatorFunction (std::vector< Double_t > &parameters)
 interface to the estimate More...
 
bool HasInverseHessian ()
 
Double_t GetMvaValue (Double_t *err=0, Double_t *errUpper=0)
 get the mva value generated by the NN More...
 
- Public Member Functions inherited from TMVA::MethodANNBase
 MethodANNBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &theData, const TString &theOption, TDirectory *theTargetDir)
 
 MethodANNBase (Types::EMVA methodType, DataSetInfo &theData, const TString &theWeightFile, TDirectory *theTargetDir)
 construct the Method from the weight file More...
 
virtual ~MethodANNBase ()
 destructor More...
 
void InitANNBase ()
 initialize ANNBase object More...
 
void SetActivation (TActivation *activation)
 
void SetNeuronInputCalculator (TNeuronInput *inputCalculator)
 
virtual void PrintNetwork () const
 print network representation, for debugging More...
 
template<typename WriteIterator >
void GetLayerActivation (size_t layer, WriteIterator writeIterator)
 
void AddWeightsXMLTo (void *parent) const
 create XML description of ANN classifier More...
 
void ReadWeightsFromXML (void *wghtnode)
 read MLP from xml weight file More...
 
virtual void ReadWeightsFromStream (std::istream &istr)
 destroy/clear the network then read it back in from the weights file More...
 
virtual const std::vector< Float_t > & GetRegressionValues ()
 get the regression value generated by the NN More...
 
virtual const std::vector< Float_t > & GetMulticlassValues ()
 get the multiclass classification values generated by the NN More...
 
virtual void WriteMonitoringHistosToFile () const
 write histograms to file More...
 
const RankingCreateRanking ()
 compute ranking of input variables by summing function of weights More...
 
Bool_t Debug () const
 who the hell makes such strange Debug flags that even use "global pointers".. More...
 
- Public Member Functions inherited from TMVA::MethodBase
 MethodBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="", TDirectory *theBaseDir=0)
 standard constructur More...
 
 MethodBase (Types::EMVA methodType, DataSetInfo &dsi, const TString &weightFile, TDirectory *theBaseDir=0)
 constructor used for Testing + Application of the MVA, only (no training), using given WeightFiles More...
 
virtual ~MethodBase ()
 destructor More...
 
void SetupMethod ()
 setup of methods More...
 
void ProcessSetup ()
 process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) More...
 
virtual void CheckSetup ()
 check may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) More...
 
void AddOutput (Types::ETreeType type, Types::EAnalysisType analysisType)
 
void TrainMethod ()
 
virtual std::map< TString, Double_tOptimizeTuningParameters (TString fomType="ROCIntegral", TString fitType="FitGA")
 call the Optimzier with the set of paremeters and ranges that are meant to be tuned. More...
 
virtual void SetTuneParameters (std::map< TString, Double_t > tuneParameters)
 set the tuning parameters accoding to the argument This is just a dummy . More...
 
void SetTrainTime (Double_t trainTime)
 
Double_t GetTrainTime () const
 
void SetTestTime (Double_t testTime)
 
Double_t GetTestTime () const
 
virtual void TestClassification ()
 initialization More...
 
virtual Double_t GetKSTrainingVsTest (Char_t SorB, TString opt="X")
 
virtual void TestMulticlass ()
 test multiclass classification More...
 
virtual void TestRegression (Double_t &bias, Double_t &biasT, Double_t &dev, Double_t &devT, Double_t &rms, Double_t &rmsT, Double_t &mInf, Double_t &mInfT, Double_t &corr, Types::ETreeType type)
 calculate <sum-of-deviation-squared> of regression output versus "true" value from test sample More...
 
virtual void DeclareCompatibilityOptions ()
 options that are used ONLY for the READER to ensure backward compatibility they are hence without any effect (the reader is only reading the training options that HAD been used at the training of the .xml weightfile at hand More...
 
virtual void Reset ()
 
Double_t GetMvaValue (const TMVA::Event *const ev, Double_t *err=0, Double_t *errUpper=0)
 
const std::vector< Float_t > & GetRegressionValues (const TMVA::Event *const ev)
 
virtual Double_t GetProba (const Event *ev)
 
virtual Double_t GetProba (Double_t mvaVal, Double_t ap_sig)
 compute likelihood ratio More...
 
virtual Double_t GetRarity (Double_t mvaVal, Types::ESBType reftype=Types::kBackground) const
 compute rarity: R(x) = Integrate_[-oo..x] { PDF(x') dx' } where PDF(x) is the PDF of the classifier's signal or background distribution More...
 
virtual void MakeClass (const TString &classFileName=TString("")) const
 create reader class for method (classification only at present) More...
 
void PrintHelpMessage () const
 prints out method-specific help method More...
 
void WriteStateToFile () const
 write options and weights to file note that each one text file for the main configuration information and one ROOT file for ROOT objects are created More...
 
void ReadStateFromFile ()
 Function to write options and weights to file. More...
 
void ReadStateFromStream (std::istream &tf)
 read the header from the weight files of the different MVA methods More...
 
void ReadStateFromStream (TFile &rf)
 write reference MVA distributions (and other information) to a ROOT type weight file More...
 
void ReadStateFromXMLString (const char *xmlstr)
 for reading from memory More...
 
virtual void WriteEvaluationHistosToFile (Types::ETreeType treetype)
 writes all MVA evaluation histograms to file More...
 
virtual Double_t GetEfficiency (const TString &, Types::ETreeType, Double_t &err)
 fill background efficiency (resp. More...
 
virtual Double_t GetTrainingEfficiency (const TString &)
 
virtual std::vector< Float_tGetMulticlassEfficiency (std::vector< std::vector< Float_t > > &purity)
 
virtual std::vector< Float_tGetMulticlassTrainingEfficiency (std::vector< std::vector< Float_t > > &purity)
 
virtual Double_t GetSignificance () const
 compute significance of mean difference significance = |<S> - |/Sqrt(RMS_S2 + RMS_B2) More...
 
virtual Double_t GetROCIntegral (TH1D *histS, TH1D *histB) const
 calculate the area (integral) under the ROC curve as a overall quality measure of the classification More...
 
virtual Double_t GetROCIntegral (PDF *pdfS=0, PDF *pdfB=0) const
 calculate the area (integral) under the ROC curve as a overall quality measure of the classification More...
 
virtual Double_t GetMaximumSignificance (Double_t SignalEvents, Double_t BackgroundEvents, Double_t &optimal_significance_value) const
 plot significance, S/Sqrt(S^2 + B^2), curve for given number of signal and background events; returns cut for maximum significance also returned via reference is the maximum significance More...
 
virtual Double_t GetSeparation (TH1 *, TH1 *) const
 compute "separation" defined as <s2> = (1/2) Int_-oo..+oo { (S(x) - B(x))^2/(S(x) + B(x)) dx } More...
 
virtual Double_t GetSeparation (PDF *pdfS=0, PDF *pdfB=0) const
 compute "separation" defined as <s2> = (1/2) Int_-oo..+oo { (S(x) - B(x))^2/(S(x) + B(x)) dx } More...
 
virtual void GetRegressionDeviation (UInt_t tgtNum, Types::ETreeType type, Double_t &stddev, Double_t &stddev90Percent) const
 
const TStringGetJobName () const
 
const TStringGetMethodName () const
 
TString GetMethodTypeName () const
 
Types::EMVA GetMethodType () const
 
const char * GetName () const
 Returns name of object. More...
 
const TStringGetTestvarName () const
 
const TString GetProbaName () const
 
TString GetWeightFileName () const
 retrieve weight file name More...
 
void SetTestvarName (const TString &v="")
 
UInt_t GetNvar () const
 
UInt_t GetNVariables () const
 
UInt_t GetNTargets () const
 
const TStringGetInputVar (Int_t i) const
 
const TStringGetInputLabel (Int_t i) const
 
const TStringGetInputTitle (Int_t i) const
 
Double_t GetMean (Int_t ivar) const
 
Double_t GetRMS (Int_t ivar) const
 
Double_t GetXmin (Int_t ivar) const
 
Double_t GetXmax (Int_t ivar) const
 
Double_t GetSignalReferenceCut () const
 
Double_t GetSignalReferenceCutOrientation () const
 
void SetSignalReferenceCut (Double_t cut)
 
void SetSignalReferenceCutOrientation (Double_t cutOrientation)
 
TDirectoryBaseDir () const
 returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are stored More...
 
TDirectoryMethodBaseDir () const
 returns the ROOT directory where all instances of the corresponding MVA method are stored More...
 
void SetMethodDir (TDirectory *methodDir)
 
void SetBaseDir (TDirectory *methodDir)
 
void SetMethodBaseDir (TDirectory *methodDir)
 
UInt_t GetTrainingTMVAVersionCode () const
 
UInt_t GetTrainingROOTVersionCode () const
 
TString GetTrainingTMVAVersionString () const
 calculates the TMVA version string from the training version code on the fly More...
 
TString GetTrainingROOTVersionString () const
 calculates the ROOT version string from the training version code on the fly More...
 
TransformationHandlerGetTransformationHandler (Bool_t takeReroutedIfAvailable=true)
 
const TransformationHandlerGetTransformationHandler (Bool_t takeReroutedIfAvailable=true) const
 
void RerouteTransformationHandler (TransformationHandler *fTargetTransformation)
 
DataSetData () const
 
DataSetInfoDataInfo () const
 
UInt_t GetNEvents () const
 temporary event when testing on a different DataSet than the own one More...
 
const EventGetEvent () const
 
const EventGetEvent (const TMVA::Event *ev) const
 
const EventGetEvent (Long64_t ievt) const
 
const EventGetEvent (Long64_t ievt, Types::ETreeType type) const
 
const EventGetTrainingEvent (Long64_t ievt) const
 
const EventGetTestingEvent (Long64_t ievt) const
 
const std::vector< TMVA::Event * > & GetEventCollection (Types::ETreeType type)
 returns the event collection (i.e. More...
 
virtual Bool_t IsSignalLike ()
 uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event would be selected as signal or background More...
 
virtual Bool_t IsSignalLike (Double_t mvaVal)
 uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event with this mva output value would tbe selected as signal or background More...
 
Bool_t HasMVAPdfs () const
 
virtual void SetAnalysisType (Types::EAnalysisType type)
 
Types::EAnalysisType GetAnalysisType () const
 
Bool_t DoRegression () const
 
Bool_t DoMulticlass () const
 
void DisableWriting (Bool_t setter)
 
- Public Member Functions inherited from TMVA::IMethod
 IMethod ()
 
virtual ~IMethod ()
 
- Public Member Functions inherited from TMVA::Configurable
 Configurable (const TString &theOption="")
 
virtual ~Configurable ()
 default destructur More...
 
virtual void ParseOptions ()
 options parser More...
 
void PrintOptions () const
 prints out the options set in the options string and the defaults More...
 
const char * GetConfigName () const
 
const char * GetConfigDescription () const
 
void SetConfigName (const char *n)
 
void SetConfigDescription (const char *d)
 
template<class T >
OptionBaseDeclareOptionRef (T &ref, const TString &name, const TString &desc="")
 
template<class T >
OptionBaseDeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc="")
 
template<class T >
void AddPreDefVal (const T &)
 
template<class T >
void AddPreDefVal (const TString &optname, const T &)
 
void CheckForUnusedOptions () const
 checks for unused options in option string More...
 
const TStringGetOptions () const
 
void SetOptions (const TString &s)
 
void WriteOptionsToStream (std::ostream &o, const TString &prefix) const
 write options to output stream (e.g. in writing the MVA weight files More...
 
void ReadOptionsFromStream (std::istream &istr)
 read option back from the weight file More...
 
void AddOptionsXMLTo (void *parent) const
 write options to XML file More...
 
void ReadOptionsFromXML (void *node)
 
void SetMsgType (EMsgType t)
 
template<class T >
TMVA::OptionBaseDeclareOptionRef (T &ref, const TString &name, const TString &desc)
 
template<class T >
TMVA::OptionBaseDeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc)
 
- Public Member Functions inherited from TObject
 TObject ()
 
 TObject (const TObject &object)
 TObject copy ctor. More...
 
TObjectoperator= (const TObject &rhs)
 TObject assignment operator. More...
 
virtual ~TObject ()
 TObject destructor. More...
 
virtual void AppendPad (Option_t *option="")
 Append graphics object to current pad. More...
 
virtual void Browse (TBrowser *b)
 Browse object. May be overridden for another default action. More...
 
virtual const char * ClassName () const
 Returns name of class to which the object belongs. More...
 
virtual void Clear (Option_t *="")
 
virtual TObjectClone (const char *newname="") const
 Make a clone of an object using the Streamer facility. More...
 
virtual Int_t Compare (const TObject *obj) const
 Compare abstract method. More...
 
virtual void Copy (TObject &object) const
 Copy this to obj. More...
 
virtual void Delete (Option_t *option="")
 Delete this object. More...
 
virtual Int_t DistancetoPrimitive (Int_t px, Int_t py)
 Computes distance from point (px,py) to the object. More...
 
virtual void Draw (Option_t *option="")
 Default Draw method for all objects. More...
 
virtual void DrawClass () const
 Draw class inheritance tree of the class to which this object belongs. More...
 
virtual TObjectDrawClone (Option_t *option="") const
 Draw a clone of this object in the current pad. More...
 
virtual void Dump () const
 Dump contents of object on stdout. More...
 
virtual void Execute (const char *method, const char *params, Int_t *error=0)
 Execute method on this object with the given parameter string, e.g. More...
 
virtual void Execute (TMethod *method, TObjArray *params, Int_t *error=0)
 Execute method on this object with parameters stored in the TObjArray. More...
 
virtual void ExecuteEvent (Int_t event, Int_t px, Int_t py)
 Execute action corresponding to an event at (px,py). More...
 
virtual TObjectFindObject (const char *name) const
 Must be redefined in derived classes. More...
 
virtual TObjectFindObject (const TObject *obj) const
 Must be redefined in derived classes. More...
 
virtual Option_tGetDrawOption () const
 Get option used by the graphics system to draw this object. More...
 
virtual UInt_t GetUniqueID () const
 Return the unique object id. More...
 
virtual const char * GetIconName () const
 Returns mime type name of object. More...
 
virtual Option_tGetOption () const
 
virtual char * GetObjectInfo (Int_t px, Int_t py) const
 Returns string containing info about the object at position (px,py). More...
 
virtual const char * GetTitle () const
 Returns title of object. More...
 
virtual Bool_t HandleTimer (TTimer *timer)
 Execute action in response of a timer timing out. More...
 
virtual ULong_t Hash () const
 Return hash value for this object. More...
 
virtual Bool_t InheritsFrom (const char *classname) const
 Returns kTRUE if object inherits from class "classname". More...
 
virtual Bool_t InheritsFrom (const TClass *cl) const
 Returns kTRUE if object inherits from TClass cl. More...
 
virtual void Inspect () const
 Dump contents of this object in a graphics canvas. More...
 
virtual Bool_t IsFolder () const
 Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). More...
 
virtual Bool_t IsEqual (const TObject *obj) const
 Default equal comparison (objects are equal if they have the same address in memory). More...
 
virtual Bool_t IsSortable () const
 
Bool_t IsOnHeap () const
 
Bool_t IsZombie () const
 
virtual Bool_t Notify ()
 This method must be overridden to handle object notification. More...
 
virtual void ls (Option_t *option="") const
 The ls function lists the contents of a class on stdout. More...
 
virtual void Paint (Option_t *option="")
 This method must be overridden if a class wants to paint itself. More...
 
virtual void Pop ()
 Pop on object drawn in a pad to the top of the display list. More...
 
virtual void Print (Option_t *option="") const
 This method must be overridden when a class wants to print itself. More...
 
virtual Int_t Read (const char *name)
 Read contents of object with specified name from the current directory. More...
 
virtual void RecursiveRemove (TObject *obj)
 Recursively remove this object from a list. More...
 
virtual void SaveAs (const char *filename="", Option_t *option="") const
 Save this object in the file specified by filename. More...
 
virtual void SavePrimitive (std::ostream &out, Option_t *option="")
 Save a primitive as a C++ statement(s) on output stream "out". More...
 
virtual void SetDrawOption (Option_t *option="")
 Set drawing option for object. More...
 
virtual void SetUniqueID (UInt_t uid)
 Set the unique object id. More...
 
virtual void UseCurrentStyle ()
 Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. More...
 
virtual Int_t Write (const char *name=0, Int_t option=0, Int_t bufsize=0)
 Write this object to the current directory. More...
 
virtual Int_t Write (const char *name=0, Int_t option=0, Int_t bufsize=0) const
 Write this object to the current directory. More...
 
voidoperator new (size_t sz)
 
voidoperator new[] (size_t sz)
 
voidoperator new (size_t sz, void *vp)
 
voidoperator new[] (size_t sz, void *vp)
 
void operator delete (void *ptr)
 Operator delete. More...
 
void operator delete[] (void *ptr)
 Operator delete []. More...
 
void SetBit (UInt_t f, Bool_t set)
 Set or unset the user status bits as specified in f. More...
 
void SetBit (UInt_t f)
 
void ResetBit (UInt_t f)
 
Bool_t TestBit (UInt_t f) const
 
Int_t TestBits (UInt_t f) const
 
void InvertBit (UInt_t f)
 
virtual void Info (const char *method, const char *msgfmt,...) const
 Issue info message. More...
 
virtual void Warning (const char *method, const char *msgfmt,...) const
 Issue warning message. More...
 
virtual void Error (const char *method, const char *msgfmt,...) const
 Issue error message. More...
 
virtual void SysError (const char *method, const char *msgfmt,...) const
 Issue system error message. More...
 
virtual void Fatal (const char *method, const char *msgfmt,...) const
 Issue fatal error message. More...
 
void AbstractMethod (const char *method) const
 Use this method to implement an "abstract" method that you don't want to leave purely abstract. More...
 
void MayNotUse (const char *method) const
 Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). More...
 
void Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const
 Use this method to declare a method obsolete. More...
 
- Public Member Functions inherited from TMVA::IFitterTarget
 IFitterTarget ()
 
virtual ~IFitterTarget ()
 
virtual void ProgressNotifier (TString, TString)
 
- Public Member Functions inherited from TMVA::ConvergenceTest
 ConvergenceTest ()
 constructor More...
 
 ~ConvergenceTest ()
 destructor More...
 
void SetConvergenceParameters (Int_t steps, Double_t improvement)
 
void SetCurrentValue (Float_t value)
 
Float_t GetCurrentValue ()
 
void ResetConvergenceCounter ()
 
Bool_t HasConverged (Bool_t withinConvergenceBand=kFALSE)
 gives back true if the last "steps" steps have lead to an improvement of the "fitness" of the "individuals" of at least "improvement" More...
 
Float_t Progress ()
 returns a float from 0 (just started) to 1 (finished) More...
 
Float_t SpeedControl (UInt_t ofSteps)
 this function provides the ability to change the learning rate according to the success of the last generations. More...
 

Protected Member Functions

void MakeClassSpecific (std::ostream &, const TString &) const
 write specific classifier response More...
 
void GetHelpMessage () const
 get help message text More...
 
- Protected Member Functions inherited from TMVA::MethodANNBase
std::vector< Int_t > * ParseLayoutString (TString layerSpec)
 parse layout specification string and return a vector, each entry containing the number of neurons to go in each successive layer More...
 
virtual void BuildNetwork (std::vector< Int_t > *layout, std::vector< Double_t > *weights=NULL, Bool_t fromFile=kFALSE)
 build network given a layout (number of neurons in each layer) and optional weights array More...
 
void ForceNetworkInputs (const Event *ev, Int_t ignoreIndex=-1)
 force the input values of the input neurons force the value for each input neuron More...
 
Double_t GetNetworkOutput ()
 
void PrintMessage (TString message, Bool_t force=kFALSE) const
 print messages, turn off printing by setting verbose and debug flag appropriately More...
 
void ForceNetworkCalculations ()
 calculate input values to each neuron More...
 
void WaitForKeyboard ()
 wait for keyboard input, for debugging More...
 
Int_t NumCycles ()
 
TNeuronGetInputNeuron (Int_t index)
 
TNeuronGetOutputNeuron (Int_t index=0)
 
void CreateWeightMonitoringHists (const TString &bulkname, std::vector< TH1 * > *hv=0) const
 
- Protected Member Functions inherited from TMVA::MethodBase
void NoErrorCalc (Double_t *const err, Double_t *const errUpper)
 
virtual void ReadWeightsFromStream (TFile &)
 
void SetWeightFileName (TString)
 set the weight file name (depreciated) More...
 
const TStringGetWeightFileDir () const
 
void SetWeightFileDir (TString fileDir)
 set directory of weight file More...
 
Bool_t IsNormalised () const
 
void SetNormalised (Bool_t norm)
 
Bool_t Verbose () const
 
Bool_t Help () const
 
const TStringGetInternalVarName (Int_t ivar) const
 
const TStringGetOriginalVarName (Int_t ivar) const
 
Bool_t HasTrainingTree () const
 
virtual void MakeClassSpecificHeader (std::ostream &, const TString &="") const
 
void Statistics (Types::ETreeType treeType, const TString &theVarName, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &)
 calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as they are or for normalised variables (in the range of 0-1) if "norm" is set to kTRUE More...
 
Bool_t TxtWeightsOnly () const
 
Bool_t IsConstructedFromWeightFile () const
 
Bool_t IgnoreEventsWithNegWeightsInTraining () const
 
- Protected Member Functions inherited from TMVA::Configurable
Bool_t LooseOptionCheckingEnabled () const
 
void EnableLooseOptions (Bool_t b=kTRUE)
 
void WriteOptionsReferenceToFile ()
 write complete options to output stream More...
 
void ResetSetFlag ()
 resets the IsSet falg for all declare options to be called before options are read from stream More...
 
const TStringGetReferenceFile () const
 
MsgLoggerLog () const
 
- Protected Member Functions inherited from TObject
void MakeZombie ()
 
virtual void DoError (int level, const char *location, const char *fmt, va_list va) const
 Interface to ErrorHandler (protected). More...
 

Private Member Functions

void DeclareOptions ()
 define the options (their key words) that can be set in the option string know options: TrainingMethod <string> Training method available values are: BP Back-Propagation <default> GA Genetic Algorithm (takes a LONG time) More...
 
void ProcessOptions ()
 process user options More...
 
void Train (Int_t nEpochs)
 
void Init ()
 default initializations More...
 
void InitializeLearningRates ()
 initialize learning rates of synapses, used only by backpropagation More...
 
Double_t CalculateEstimator (Types::ETreeType treeType=Types::kTraining, Int_t iEpoch=-1)
 calculate the estimator that training is attempting to minimize More...
 
void BFGSMinimize (Int_t nEpochs)
 train network with BFGS algorithm More...
 
void SetGammaDelta (TMatrixD &Gamma, TMatrixD &Delta, std::vector< Double_t > &Buffer)
 
void SteepestDir (TMatrixD &Dir)
 
Bool_t GetHessian (TMatrixD &Hessian, TMatrixD &Gamma, TMatrixD &Delta)
 
void SetDir (TMatrixD &Hessian, TMatrixD &Dir)
 
Double_t DerivDir (TMatrixD &Dir)
 
Bool_t LineSearch (TMatrixD &Dir, std::vector< Double_t > &Buffer, Double_t *dError=0)
 
void ComputeDEDw ()
 
void SimulateEvent (const Event *ev)
 
void SetDirWeights (std::vector< Double_t > &Origin, TMatrixD &Dir, Double_t alpha)
 
Double_t GetError ()
 
Double_t GetMSEErr (const Event *ev, UInt_t index=0)
 
Double_t GetCEErr (const Event *ev, UInt_t index=0)
 
void BackPropagationMinimize (Int_t nEpochs)
 minimize estimator / train network with backpropagation algorithm More...
 
void TrainOneEpoch ()
 train network over a single epoch/cyle of events More...
 
void Shuffle (Int_t *index, Int_t n)
 Input: index: the array to shuffle n: the size of the array Output: index: the shuffled indexes This method is used for sequential training. More...
 
void DecaySynapseWeights (Bool_t lateEpoch)
 decay synapse weights in last 10 epochs, lower learning rate even more to find a good minimum More...
 
void TrainOneEvent (Int_t ievt)
 train network over a single event this uses the new event model More...
 
Double_t GetDesiredOutput (const Event *ev)
 get the desired output of this event More...
 
void UpdateNetwork (Double_t desired, Double_t eventWeight=1.0)
 update the network based on how closely the output matched the desired output More...
 
void UpdateNetwork (const std::vector< Float_t > &desired, Double_t eventWeight=1.0)
 update the network based on how closely the output matched the desired output More...
 
void CalculateNeuronDeltas ()
 have each neuron calculate its delta by backpropagation More...
 
void UpdateSynapses ()
 update synapse error fields and adjust the weights (if in sequential mode) More...
 
void AdjustSynapseWeights ()
 just adjust the synapse weights (should be called in batch mode) More...
 
void TrainOneEventFast (Int_t ievt, Float_t *&branchVar, Int_t &type)
 fast per-event training More...
 
void GeneticMinimize ()
 create genetics class similar to GeneticCut give it vector of parameter ranges (parameters = weights) link fitness function of this class to ComputeEstimator instantiate GA (see MethodCuts) run it then this should exist for GA, Minuit and random sampling More...
 
void GetApproxInvHessian (TMatrixD &InvHessian, bool regulate=true)
 
void UpdateRegulators ()
 
void UpdatePriors ()
 

Private Attributes

bool fUseRegulator
 
bool fCalculateErrors
 
Double_t fPrior
 
std::vector< Double_tfPriorDev
 
Int_t fUpdateLimit
 
ETrainingMethod fTrainingMethod
 
TString fTrainMethodS
 
Float_t fSamplingFraction
 
Float_t fSamplingEpoch
 
Float_t fSamplingWeight
 
Bool_t fSamplingTraining
 
Bool_t fSamplingTesting
 
Double_t fLastAlpha
 
Double_t fTau
 
Int_t fResetStep
 
Double_t fLearnRate
 
Double_t fDecayRate
 
EBPTrainingMode fBPMode
 
TString fBpModeS
 
Int_t fBatchSize
 
Int_t fTestRate
 
Bool_t fEpochMon
 
Int_t fGA_nsteps
 
Int_t fGA_preCalc
 
Int_t fGA_SC_steps
 
Int_t fGA_SC_rate
 
Double_t fGA_SC_factor
 
std::vector< std::pair< Float_t, Float_t > > * fDeviationsFromTargets
 
Float_t fWeightRange
 

Static Private Attributes

static const Int_t fgPRINT_ESTIMATOR_INC = 10
 
static const Bool_t fgPRINT_SEQ = kFALSE
 
static const Bool_t fgPRINT_BATCH = kFALSE
 

Additional Inherited Members

- Static Public Member Functions inherited from TObject
static Long_t GetDtorOnly ()
 Return destructor only flag. More...
 
static void SetDtorOnly (void *obj)
 Set destructor only flag. More...
 
static Bool_t GetObjectStat ()
 Get status of object stat flag. More...
 
static void SetObjectStat (Bool_t stat)
 Turn on/off tracking of objects in the TObjectTable. More...
 
- Public Attributes inherited from TMVA::MethodBase
const EventfTmpEvent
 
Bool_t fSetupCompleted
 
- Static Protected Member Functions inherited from TMVA::MethodBase
static MethodBaseGetThisBase ()
 return a pointer the base class of this method More...
 
- Protected Attributes inherited from TMVA::MethodANNBase
TObjArrayfNetwork
 
TObjArrayfSynapses
 
TActivationfActivation
 
TActivationfOutput
 
TActivationfIdentity
 
TRandom3frgen
 
TNeuronInputfInputCalculator
 
std::vector< Int_tfRegulatorIdx
 
std::vector< Double_tfRegulators
 
EEstimator fEstimator
 
TString fEstimatorS
 
TH1FfEstimatorHistTrain
 
TH1FfEstimatorHistTest
 
std::vector< TH1 * > fEpochMonHistS
 
std::vector< TH1 * > fEpochMonHistB
 
std::vector< TH1 * > fEpochMonHistW
 
TMatrixD fInvHessian
 
bool fUseRegulator
 
Int_t fRandomSeed
 
Int_t fNcycles
 
TString fNeuronType
 
TString fNeuronInputType
 
- Protected Attributes inherited from TMVA::MethodBase
RankingfRanking
 
std::vector< TString > * fInputVars
 
Int_t fNbins
 
Int_t fNbinsMVAoutput
 
Int_t fNbinsH
 
Types::EAnalysisType fAnalysisType
 
std::vector< Float_t > * fRegressionReturnVal
 
std::vector< Float_t > * fMulticlassReturnVal
 
UInt_t fSignalClass
 
UInt_t fBackgroundClass
 
- Protected Attributes inherited from TMVA::ConvergenceTest
Float_t fCurrentValue
 
Float_t fImprovement
 current value More...
 
Int_t fSteps
 minimum improvement which counts as improvement More...
 

#include <TMVA/MethodMLP.h>

+ Inheritance diagram for TMVA::MethodMLP:
+ Collaboration diagram for TMVA::MethodMLP:

Member Enumeration Documentation

Enumerator
kSequential 
kBatch 

Definition at line 119 of file MethodMLP.h.

Enumerator
kBP 
kBFGS 
kGA 

Definition at line 118 of file MethodMLP.h.

Constructor & Destructor Documentation

TMVA::MethodMLP::MethodMLP ( const TString jobName,
const TString methodTitle,
DataSetInfo theData,
const TString theOption,
TDirectory theTargetDir = 0 
)
TMVA::MethodMLP::MethodMLP ( DataSetInfo theData,
const TString theWeightFile,
TDirectory theTargetDir = 0 
)

constructor from a weight file

Definition at line 103 of file MethodMLP.cxx.

TMVA::MethodMLP::~MethodMLP ( )
virtual

destructor nothing to be done

Definition at line 127 of file MethodMLP.cxx.

Member Function Documentation

void TMVA::MethodMLP::AdjustSynapseWeights ( )
private

just adjust the synapse weights (should be called in batch mode)

Definition at line 1379 of file MethodMLP.cxx.

void TMVA::MethodMLP::BackPropagationMinimize ( Int_t  nEpochs)
private

minimize estimator / train network with backpropagation algorithm

Definition at line 1000 of file MethodMLP.cxx.

void TMVA::MethodMLP::BFGSMinimize ( Int_t  nEpochs)
private

train network with BFGS algorithm

Definition at line 459 of file MethodMLP.cxx.

Double_t TMVA::MethodMLP::CalculateEstimator ( Types::ETreeType  treeType = Types::kTraining,
Int_t  iEpoch = -1 
)
private

calculate the estimator that training is attempting to minimize

Definition at line 270 of file MethodMLP.cxx.

void TMVA::MethodMLP::CalculateNeuronDeltas ( )
private

have each neuron calculate its delta by backpropagation

Definition at line 1273 of file MethodMLP.cxx.

void TMVA::MethodMLP::ComputeDEDw ( )
private

Definition at line 660 of file MethodMLP.cxx.

Double_t TMVA::MethodMLP::ComputeEstimator ( std::vector< Double_t > &  parameters)

this function is called by GeneticANN for GA optimization

Definition at line 1338 of file MethodMLP.cxx.

void TMVA::MethodMLP::DecaySynapseWeights ( Bool_t  lateEpoch)
private

decay synapse weights in last 10 epochs, lower learning rate even more to find a good minimum

Definition at line 1163 of file MethodMLP.cxx.

void TMVA::MethodMLP::DeclareOptions ( )
privatevirtual

define the options (their key words) that can be set in the option string know options: TrainingMethod <string> Training method available values are: BP Back-Propagation <default> GA Genetic Algorithm (takes a LONG time)

LearningRate <float> NN learning rate parameter DecayRate <float> Decay rate for learning parameter TestRate <int> Test for overtraining performed at each #th epochs

BPMode <string> Back-propagation learning mode available values are: sequential <default> batch

BatchSize <int> Batch size: number of events/batch, only set if in Batch Mode, -1 for BatchSize=number_of_events

Reimplemented from TMVA::MethodANNBase.

Definition at line 173 of file MethodMLP.cxx.

Double_t TMVA::MethodMLP::DerivDir ( TMatrixD Dir)
private

Definition at line 788 of file MethodMLP.cxx.

Double_t TMVA::MethodMLP::EstimatorFunction ( std::vector< Double_t > &  parameters)
virtual

interface to the estimate

Implements TMVA::IFitterTarget.

Definition at line 1330 of file MethodMLP.cxx.

void TMVA::MethodMLP::GeneticMinimize ( )
private

create genetics class similar to GeneticCut give it vector of parameter ranges (parameters = weights) link fitness function of this class to ComputeEstimator instantiate GA (see MethodCuts) run it then this should exist for GA, Minuit and random sampling

Definition at line 1301 of file MethodMLP.cxx.

void TMVA::MethodMLP::GetApproxInvHessian ( TMatrixD InvHessian,
bool  regulate = true 
)
private

Definition at line 1453 of file MethodMLP.cxx.

Double_t TMVA::MethodMLP::GetCEErr ( const Event ev,
UInt_t  index = 0 
)
private

Definition at line 983 of file MethodMLP.cxx.

Double_t TMVA::MethodMLP::GetDesiredOutput ( const Event ev)
private

get the desired output of this event

Definition at line 1232 of file MethodMLP.cxx.

Double_t TMVA::MethodMLP::GetError ( )
private

Definition at line 929 of file MethodMLP.cxx.

void TMVA::MethodMLP::GetHelpMessage ( ) const
protectedvirtual

get help message text

typical length of text line: "|--------------------------------------------------------------|"

Implements TMVA::IMethod.

Definition at line 1660 of file MethodMLP.cxx.

Bool_t TMVA::MethodMLP::GetHessian ( TMatrixD Hessian,
TMatrixD Gamma,
TMatrixD Delta 
)
private

Definition at line 750 of file MethodMLP.cxx.

Double_t TMVA::MethodMLP::GetMSEErr ( const Event ev,
UInt_t  index = 0 
)
private

Definition at line 966 of file MethodMLP.cxx.

Double_t TMVA::MethodMLP::GetMvaValue ( Double_t err = 0,
Double_t errUpper = 0 
)
virtual

get the mva value generated by the NN

Reimplemented from TMVA::MethodANNBase.

Definition at line 1494 of file MethodMLP.cxx.

Bool_t TMVA::MethodMLP::HasAnalysisType ( Types::EAnalysisType  type,
UInt_t  numberClasses,
UInt_t  numberTargets 
)
virtual

MLP can handle classification with 2 classes and regression with one regression-target.

Implements TMVA::IMethod.

Definition at line 134 of file MethodMLP.cxx.

bool TMVA::MethodMLP::HasInverseHessian ( )
inline

Definition at line 121 of file MethodMLP.h.

void TMVA::MethodMLP::Init ( void  )
privatevirtual

default initializations

Implements TMVA::MethodBase.

Definition at line 146 of file MethodMLP.cxx.

void TMVA::MethodMLP::InitializeLearningRates ( )
private

initialize learning rates of synapses, used only by backpropagation

Definition at line 256 of file MethodMLP.cxx.

Bool_t TMVA::MethodMLP::LineSearch ( TMatrixD Dir,
std::vector< Double_t > &  Buffer,
Double_t dError = 0 
)
private

Definition at line 803 of file MethodMLP.cxx.

void TMVA::MethodMLP::MakeClassSpecific ( std::ostream &  fout,
const TString className 
) const
protectedvirtual

write specific classifier response

Reimplemented from TMVA::MethodANNBase.

Definition at line 1649 of file MethodMLP.cxx.

void TMVA::MethodMLP::ProcessOptions ( )
privatevirtual

process user options

Reimplemented from TMVA::MethodANNBase.

Definition at line 225 of file MethodMLP.cxx.

void TMVA::MethodMLP::SetDir ( TMatrixD Hessian,
TMatrixD Dir 
)
private

Definition at line 771 of file MethodMLP.cxx.

void TMVA::MethodMLP::SetDirWeights ( std::vector< Double_t > &  Origin,
TMatrixD Dir,
Double_t  alpha 
)
private

Definition at line 913 of file MethodMLP.cxx.

void TMVA::MethodMLP::SetGammaDelta ( TMatrixD Gamma,
TMatrixD Delta,
std::vector< Double_t > &  Buffer 
)
private

Definition at line 635 of file MethodMLP.cxx.

void TMVA::MethodMLP::Shuffle ( Int_t index,
Int_t  n 
)
private

Input: index: the array to shuffle n: the size of the array Output: index: the shuffled indexes This method is used for sequential training.

Definition at line 1145 of file MethodMLP.cxx.

void TMVA::MethodMLP::SimulateEvent ( const Event ev)
private

Definition at line 697 of file MethodMLP.cxx.

void TMVA::MethodMLP::SteepestDir ( TMatrixD Dir)
private

Definition at line 737 of file MethodMLP.cxx.

void TMVA::MethodMLP::Train ( void  )
inlinevirtual

Implements TMVA::MethodANNBase.

Definition at line 112 of file MethodMLP.h.

Referenced by Train().

void TMVA::MethodMLP::Train ( Int_t  nEpochs)
private

Definition at line 416 of file MethodMLP.cxx.

void TMVA::MethodMLP::TrainOneEpoch ( )
private

train network over a single epoch/cyle of events

Definition at line 1098 of file MethodMLP.cxx.

void TMVA::MethodMLP::TrainOneEvent ( Int_t  ievt)
private

train network over a single event this uses the new event model

Definition at line 1213 of file MethodMLP.cxx.

void TMVA::MethodMLP::TrainOneEventFast ( Int_t  ievt,
Float_t *&  branchVar,
Int_t type 
)
private

fast per-event training

Definition at line 1177 of file MethodMLP.cxx.

void TMVA::MethodMLP::UpdateNetwork ( Double_t  desired,
Double_t  eventWeight = 1.0 
)
private

update the network based on how closely the output matched the desired output

Definition at line 1242 of file MethodMLP.cxx.

void TMVA::MethodMLP::UpdateNetwork ( const std::vector< Float_t > &  desired,
Double_t  eventWeight = 1.0 
)
private

update the network based on how closely the output matched the desired output

Definition at line 1258 of file MethodMLP.cxx.

void TMVA::MethodMLP::UpdatePriors ( )
private

Definition at line 1399 of file MethodMLP.cxx.

void TMVA::MethodMLP::UpdateRegulators ( )
private

Definition at line 1413 of file MethodMLP.cxx.

void TMVA::MethodMLP::UpdateSynapses ( )
private

update synapse error fields and adjust the weights (if in sequential mode)

Definition at line 1357 of file MethodMLP.cxx.

Member Data Documentation

Int_t TMVA::MethodMLP::fBatchSize
private

Definition at line 219 of file MethodMLP.h.

EBPTrainingMode TMVA::MethodMLP::fBPMode
private

Definition at line 217 of file MethodMLP.h.

TString TMVA::MethodMLP::fBpModeS
private

Definition at line 218 of file MethodMLP.h.

bool TMVA::MethodMLP::fCalculateErrors
private

Definition at line 192 of file MethodMLP.h.

Referenced by HasInverseHessian().

Double_t TMVA::MethodMLP::fDecayRate
private

Definition at line 216 of file MethodMLP.h.

std::vector<std::pair<Float_t,Float_t> >* TMVA::MethodMLP::fDeviationsFromTargets
private

Definition at line 231 of file MethodMLP.h.

Bool_t TMVA::MethodMLP::fEpochMon
private

Definition at line 221 of file MethodMLP.h.

Int_t TMVA::MethodMLP::fGA_nsteps
private

Definition at line 224 of file MethodMLP.h.

Int_t TMVA::MethodMLP::fGA_preCalc
private

Definition at line 225 of file MethodMLP.h.

Double_t TMVA::MethodMLP::fGA_SC_factor
private

Definition at line 228 of file MethodMLP.h.

Int_t TMVA::MethodMLP::fGA_SC_rate
private

Definition at line 227 of file MethodMLP.h.

Int_t TMVA::MethodMLP::fGA_SC_steps
private

Definition at line 226 of file MethodMLP.h.

const Bool_t TMVA::MethodMLP::fgPRINT_BATCH = kFALSE
staticprivate

Definition at line 244 of file MethodMLP.h.

const Int_t TMVA::MethodMLP::fgPRINT_ESTIMATOR_INC = 10
staticprivate

Definition at line 242 of file MethodMLP.h.

const Bool_t TMVA::MethodMLP::fgPRINT_SEQ = kFALSE
staticprivate

Definition at line 243 of file MethodMLP.h.

Double_t TMVA::MethodMLP::fLastAlpha
private

Definition at line 210 of file MethodMLP.h.

Double_t TMVA::MethodMLP::fLearnRate
private

Definition at line 215 of file MethodMLP.h.

Double_t TMVA::MethodMLP::fPrior
private

Definition at line 193 of file MethodMLP.h.

std::vector<Double_t> TMVA::MethodMLP::fPriorDev
private

Definition at line 194 of file MethodMLP.h.

Int_t TMVA::MethodMLP::fResetStep
private

Definition at line 212 of file MethodMLP.h.

Float_t TMVA::MethodMLP::fSamplingEpoch
private

Definition at line 204 of file MethodMLP.h.

Float_t TMVA::MethodMLP::fSamplingFraction
private

Definition at line 203 of file MethodMLP.h.

Bool_t TMVA::MethodMLP::fSamplingTesting
private

Definition at line 207 of file MethodMLP.h.

Bool_t TMVA::MethodMLP::fSamplingTraining
private

Definition at line 206 of file MethodMLP.h.

Float_t TMVA::MethodMLP::fSamplingWeight
private

Definition at line 205 of file MethodMLP.h.

Double_t TMVA::MethodMLP::fTau
private

Definition at line 211 of file MethodMLP.h.

Int_t TMVA::MethodMLP::fTestRate
private

Definition at line 220 of file MethodMLP.h.

ETrainingMethod TMVA::MethodMLP::fTrainingMethod
private

Definition at line 200 of file MethodMLP.h.

TString TMVA::MethodMLP::fTrainMethodS
private

Definition at line 201 of file MethodMLP.h.

Int_t TMVA::MethodMLP::fUpdateLimit
private

Definition at line 198 of file MethodMLP.h.

bool TMVA::MethodMLP::fUseRegulator
private

Definition at line 191 of file MethodMLP.h.

Float_t TMVA::MethodMLP::fWeightRange
private

Definition at line 233 of file MethodMLP.h.


The documentation for this class was generated from the following files: