Class for boosting a TMVA method.
This class is meant to boost a single classifier. Boosting means training the classifier a few times. Every time the weights of the events are modified according to how well the classifier performed on the test sample.
Definition at line 58 of file MethodBoost.h.
Public Member Functions | |
MethodBoost (const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="") | |
MethodBoost (DataSetInfo &dsi, const TString &theWeightFile) | |
virtual | ~MethodBoost (void) |
destructor | |
Bool_t | BookMethod (Types::EMVA theMethod, TString methodTitle, TString theOption) |
just registering the string from which the boosted classifier will be created | |
void | CleanBoostOptions () |
const Ranking * | CreateRanking () |
Int_t | GetBoostNum () |
Double_t | GetMvaValue (Double_t *err=nullptr, Double_t *errUpper=nullptr) |
return boosted MVA response | |
virtual Bool_t | HasAnalysisType (Types::EAnalysisType type, UInt_t numberClasses, UInt_t) |
Boost can handle classification with 2 classes and regression with one regression-target. | |
virtual TClass * | IsA () const |
void | SetBoostedMethodName (TString methodName) |
virtual void | Streamer (TBuffer &) |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
void | Train (void) |
Public Member Functions inherited from TMVA::MethodCompositeBase | |
MethodCompositeBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="") | |
MethodCompositeBase (Types::EMVA methodType, DataSetInfo &dsi, const TString &weightFile) | |
virtual | ~MethodCompositeBase (void) |
delete methods | |
void | AddWeightsXMLTo (void *parent) const |
Double_t | GetMvaValue (const TMVA::Event *const ev, Double_t *err=nullptr, Double_t *errUpper=nullptr) |
Double_t | GetMvaValue (Double_t *err=nullptr, Double_t *errUpper=nullptr) |
return composite MVA response | |
virtual Double_t | GetMvaValue (Double_t *errLower=nullptr, Double_t *errUpper=nullptr)=0 |
virtual void | ReadWeightsFromStream (std::istream &)=0 |
void | ReadWeightsFromStream (std::istream &istr) |
text streamer | |
virtual void | ReadWeightsFromStream (TFile &) |
void | ReadWeightsFromXML (void *wghtnode) |
XML streamer. | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
Public Member Functions inherited from TMVA::MethodBase | |
MethodBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="") | |
standard constructor | |
MethodBase (Types::EMVA methodType, DataSetInfo &dsi, const TString &weightFile) | |
constructor used for Testing + Application of the MVA, only (no training), using given WeightFiles | |
virtual | ~MethodBase () |
destructor | |
void | AddOutput (Types::ETreeType type, Types::EAnalysisType analysisType) |
TDirectory * | BaseDir () const |
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are stored | |
DataSet * | Data () const |
DataSetInfo & | DataInfo () const |
void | DisableWriting (Bool_t setter) |
Bool_t | DoMulticlass () const |
Bool_t | DoRegression () const |
void | ExitFromTraining () |
Types::EAnalysisType | GetAnalysisType () const |
UInt_t | GetCurrentIter () |
virtual Double_t | GetEfficiency (const TString &, Types::ETreeType, Double_t &err) |
fill background efficiency (resp. | |
const Event * | GetEvent () const |
const Event * | GetEvent (const TMVA::Event *ev) const |
const Event * | GetEvent (Long64_t ievt) const |
const Event * | GetEvent (Long64_t ievt, Types::ETreeType type) const |
const std::vector< TMVA::Event * > & | GetEventCollection (Types::ETreeType type) |
returns the event collection (i.e. | |
TFile * | GetFile () const |
const TString & | GetInputLabel (Int_t i) const |
const char * | GetInputTitle (Int_t i) const |
const TString & | GetInputVar (Int_t i) const |
TMultiGraph * | GetInteractiveTrainingError () |
const TString & | GetJobName () const |
virtual Double_t | GetKSTrainingVsTest (Char_t SorB, TString opt="X") |
virtual Double_t | GetMaximumSignificance (Double_t SignalEvents, Double_t BackgroundEvents, Double_t &optimal_significance_value) const |
plot significance, \( \frac{S}{\sqrt{S^2 + B^2}} \), curve for given number of signal and background events; returns cut for maximum significance also returned via reference is the maximum significance | |
UInt_t | GetMaxIter () |
Double_t | GetMean (Int_t ivar) const |
const TString & | GetMethodName () const |
Types::EMVA | GetMethodType () const |
TString | GetMethodTypeName () const |
virtual TMatrixD | GetMulticlassConfusionMatrix (Double_t effB, Types::ETreeType type) |
Construct a confusion matrix for a multiclass classifier. | |
virtual std::vector< Float_t > | GetMulticlassEfficiency (std::vector< std::vector< Float_t > > &purity) |
virtual std::vector< Float_t > | GetMulticlassTrainingEfficiency (std::vector< std::vector< Float_t > > &purity) |
virtual const std::vector< Float_t > & | GetMulticlassValues () |
Double_t | GetMvaValue (const TMVA::Event *const ev, Double_t *err=nullptr, Double_t *errUpper=nullptr) |
const char * | GetName () const |
UInt_t | GetNEvents () const |
UInt_t | GetNTargets () const |
UInt_t | GetNvar () const |
UInt_t | GetNVariables () const |
virtual Double_t | GetProba (const Event *ev) |
virtual Double_t | GetProba (Double_t mvaVal, Double_t ap_sig) |
compute likelihood ratio | |
const TString | GetProbaName () const |
virtual Double_t | GetRarity (Double_t mvaVal, Types::ESBType reftype=Types::kBackground) const |
compute rarity: | |
virtual void | GetRegressionDeviation (UInt_t tgtNum, Types::ETreeType type, Double_t &stddev, Double_t &stddev90Percent) const |
virtual const std::vector< Float_t > & | GetRegressionValues () |
const std::vector< Float_t > & | GetRegressionValues (const TMVA::Event *const ev) |
Double_t | GetRMS (Int_t ivar) const |
virtual Double_t | GetROCIntegral (PDF *pdfS=nullptr, PDF *pdfB=nullptr) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification | |
virtual Double_t | GetROCIntegral (TH1D *histS, TH1D *histB) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification | |
virtual Double_t | GetSeparation (PDF *pdfS=nullptr, PDF *pdfB=nullptr) const |
compute "separation" defined as | |
virtual Double_t | GetSeparation (TH1 *, TH1 *) const |
compute "separation" defined as | |
Double_t | GetSignalReferenceCut () const |
Double_t | GetSignalReferenceCutOrientation () const |
virtual Double_t | GetSignificance () const |
compute significance of mean difference | |
const Event * | GetTestingEvent (Long64_t ievt) const |
Double_t | GetTestTime () const |
const TString & | GetTestvarName () const |
virtual Double_t | GetTrainingEfficiency (const TString &) |
const Event * | GetTrainingEvent (Long64_t ievt) const |
virtual const std::vector< Float_t > & | GetTrainingHistory (const char *) |
UInt_t | GetTrainingROOTVersionCode () const |
TString | GetTrainingROOTVersionString () const |
calculates the ROOT version string from the training version code on the fly | |
UInt_t | GetTrainingTMVAVersionCode () const |
TString | GetTrainingTMVAVersionString () const |
calculates the TMVA version string from the training version code on the fly | |
Double_t | GetTrainTime () const |
TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) |
const TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) const |
TString | GetWeightFileName () const |
retrieve weight file name | |
Double_t | GetXmax (Int_t ivar) const |
Double_t | GetXmin (Int_t ivar) const |
Bool_t | HasMVAPdfs () const |
void | InitIPythonInteractive () |
Bool_t | IsModelPersistence () const |
virtual Bool_t | IsSignalLike () |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event would be selected as signal or background | |
virtual Bool_t | IsSignalLike (Double_t mvaVal) |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event with this mva output value would be selected as signal or background | |
Bool_t | IsSilentFile () const |
virtual void | MakeClass (const TString &classFileName=TString("")) const |
create reader class for method (classification only at present) | |
TDirectory * | MethodBaseDir () const |
returns the ROOT directory where all instances of the corresponding MVA method are stored | |
virtual std::map< TString, Double_t > | OptimizeTuningParameters (TString fomType="ROCIntegral", TString fitType="FitGA") |
call the Optimizer with the set of parameters and ranges that are meant to be tuned. | |
void | PrintHelpMessage () const |
prints out method-specific help method | |
void | ProcessSetup () |
process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) | |
void | ReadStateFromFile () |
Function to write options and weights to file. | |
void | ReadStateFromStream (std::istream &tf) |
read the header from the weight files of the different MVA methods | |
void | ReadStateFromStream (TFile &rf) |
write reference MVA distributions (and other information) to a ROOT type weight file | |
void | ReadStateFromXMLString (const char *xmlstr) |
for reading from memory | |
void | RerouteTransformationHandler (TransformationHandler *fTargetTransformation) |
virtual void | Reset () |
virtual void | SetAnalysisType (Types::EAnalysisType type) |
void | SetBaseDir (TDirectory *methodDir) |
void | SetFile (TFile *file) |
void | SetMethodBaseDir (TDirectory *methodDir) |
void | SetMethodDir (TDirectory *methodDir) |
void | SetModelPersistence (Bool_t status) |
void | SetSignalReferenceCut (Double_t cut) |
void | SetSignalReferenceCutOrientation (Double_t cutOrientation) |
void | SetSilentFile (Bool_t status) |
void | SetTestTime (Double_t testTime) |
void | SetTestvarName (const TString &v="") |
void | SetTrainTime (Double_t trainTime) |
virtual void | SetTuneParameters (std::map< TString, Double_t > tuneParameters) |
set the tuning parameters according to the argument This is just a dummy . | |
void | SetupMethod () |
setup of methods | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
virtual void | TestMulticlass () |
test multiclass classification | |
virtual void | TestRegression (Double_t &bias, Double_t &biasT, Double_t &dev, Double_t &devT, Double_t &rms, Double_t &rmsT, Double_t &mInf, Double_t &mInfT, Double_t &corr, Types::ETreeType type) |
calculate <sum-of-deviation-squared> of regression output versus "true" value from test sample | |
bool | TrainingEnded () |
void | TrainMethod () |
void | WriteStateToFile () const |
write options and weights to file note that each one text file for the main configuration information and one ROOT file for ROOT objects are created | |
Public Member Functions inherited from TMVA::IMethod | |
IMethod () | |
virtual | ~IMethod () |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
Public Member Functions inherited from TMVA::Configurable | |
Configurable (const TString &theOption="") | |
constructor | |
virtual | ~Configurable () |
default destructor | |
void | AddOptionsXMLTo (void *parent) const |
write options to XML file | |
template<class T > | |
void | AddPreDefVal (const T &) |
template<class T > | |
void | AddPreDefVal (const TString &optname, const T &) |
void | CheckForUnusedOptions () const |
checks for unused options in option string | |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc) |
template<class T > | |
OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc="") |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc) |
template<class T > | |
OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc="") |
const char * | GetConfigDescription () const |
const char * | GetConfigName () const |
const TString & | GetOptions () const |
MsgLogger & | Log () const |
virtual void | ParseOptions () |
options parser | |
void | PrintOptions () const |
prints out the options set in the options string and the defaults | |
void | ReadOptionsFromStream (std::istream &istr) |
read option back from the weight file | |
void | ReadOptionsFromXML (void *node) |
void | SetConfigDescription (const char *d) |
void | SetConfigName (const char *n) |
void | SetMsgType (EMsgType t) |
void | SetOptions (const TString &s) |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
void | WriteOptionsToStream (std::ostream &o, const TString &prefix) const |
write options to output stream (e.g. in writing the MVA weight files | |
Public Member Functions inherited from TNamed | |
TNamed () | |
TNamed (const char *name, const char *title) | |
TNamed (const TNamed &named) | |
TNamed copy ctor. | |
TNamed (const TString &name, const TString &title) | |
virtual | ~TNamed () |
TNamed destructor. | |
void | Clear (Option_t *option="") override |
Set name and title to empty strings (""). | |
TObject * | Clone (const char *newname="") const override |
Make a clone of an object using the Streamer facility. | |
Int_t | Compare (const TObject *obj) const override |
Compare two TNamed objects. | |
void | Copy (TObject &named) const override |
Copy this to obj. | |
virtual void | FillBuffer (char *&buffer) |
Encode TNamed into output buffer. | |
const char * | GetName () const override |
Returns name of object. | |
const char * | GetTitle () const override |
Returns title of object. | |
ULong_t | Hash () const override |
Return hash value for this object. | |
TClass * | IsA () const override |
Bool_t | IsSortable () const override |
void | ls (Option_t *option="") const override |
List TNamed name and title. | |
TNamed & | operator= (const TNamed &rhs) |
TNamed assignment operator. | |
void | Print (Option_t *option="") const override |
Print TNamed name and title. | |
virtual void | SetName (const char *name) |
Set the name of the TNamed. | |
virtual void | SetNameTitle (const char *name, const char *title) |
Set all the TNamed parameters (name and title). | |
virtual void | SetTitle (const char *title="") |
Set the title of the TNamed. | |
virtual Int_t | Sizeof () const |
Return size of the TNamed part of the TObject. | |
void | Streamer (TBuffer &) override |
Stream an object of class TObject. | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
Public Member Functions inherited from TObject | |
TObject () | |
TObject constructor. | |
TObject (const TObject &object) | |
TObject copy ctor. | |
virtual | ~TObject () |
TObject destructor. | |
void | AbstractMethod (const char *method) const |
Use this method to implement an "abstract" method that you don't want to leave purely abstract. | |
virtual void | AppendPad (Option_t *option="") |
Append graphics object to current pad. | |
virtual void | Browse (TBrowser *b) |
Browse object. May be overridden for another default action. | |
ULong_t | CheckedHash () |
Check and record whether this class has a consistent Hash/RecursiveRemove setup (*) and then return the regular Hash value for this object. | |
virtual const char * | ClassName () const |
Returns name of class to which the object belongs. | |
virtual void | Delete (Option_t *option="") |
Delete this object. | |
virtual Int_t | DistancetoPrimitive (Int_t px, Int_t py) |
Computes distance from point (px,py) to the object. | |
virtual void | Draw (Option_t *option="") |
Default Draw method for all objects. | |
virtual void | DrawClass () const |
Draw class inheritance tree of the class to which this object belongs. | |
virtual TObject * | DrawClone (Option_t *option="") const |
Draw a clone of this object in the current selected pad with: gROOT->SetSelectedPad(c1) . | |
virtual void | Dump () const |
Dump contents of object on stdout. | |
virtual void | Error (const char *method, const char *msgfmt,...) const |
Issue error message. | |
virtual void | Execute (const char *method, const char *params, Int_t *error=nullptr) |
Execute method on this object with the given parameter string, e.g. | |
virtual void | Execute (TMethod *method, TObjArray *params, Int_t *error=nullptr) |
Execute method on this object with parameters stored in the TObjArray. | |
virtual void | ExecuteEvent (Int_t event, Int_t px, Int_t py) |
Execute action corresponding to an event at (px,py). | |
virtual void | Fatal (const char *method, const char *msgfmt,...) const |
Issue fatal error message. | |
virtual TObject * | FindObject (const char *name) const |
Must be redefined in derived classes. | |
virtual TObject * | FindObject (const TObject *obj) const |
Must be redefined in derived classes. | |
virtual Option_t * | GetDrawOption () const |
Get option used by the graphics system to draw this object. | |
virtual const char * | GetIconName () const |
Returns mime type name of object. | |
virtual char * | GetObjectInfo (Int_t px, Int_t py) const |
Returns string containing info about the object at position (px,py). | |
virtual Option_t * | GetOption () const |
virtual UInt_t | GetUniqueID () const |
Return the unique object id. | |
virtual Bool_t | HandleTimer (TTimer *timer) |
Execute action in response of a timer timing out. | |
Bool_t | HasInconsistentHash () const |
Return true is the type of this object is known to have an inconsistent setup for Hash and RecursiveRemove (i.e. | |
virtual void | Info (const char *method, const char *msgfmt,...) const |
Issue info message. | |
virtual Bool_t | InheritsFrom (const char *classname) const |
Returns kTRUE if object inherits from class "classname". | |
virtual Bool_t | InheritsFrom (const TClass *cl) const |
Returns kTRUE if object inherits from TClass cl. | |
virtual void | Inspect () const |
Dump contents of this object in a graphics canvas. | |
void | InvertBit (UInt_t f) |
Bool_t | IsDestructed () const |
IsDestructed. | |
virtual Bool_t | IsEqual (const TObject *obj) const |
Default equal comparison (objects are equal if they have the same address in memory). | |
virtual Bool_t | IsFolder () const |
Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). | |
R__ALWAYS_INLINE Bool_t | IsOnHeap () const |
R__ALWAYS_INLINE Bool_t | IsZombie () const |
void | MayNotUse (const char *method) const |
Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). | |
virtual Bool_t | Notify () |
This method must be overridden to handle object notification (the base implementation is no-op). | |
void | Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const |
Use this method to declare a method obsolete. | |
void | operator delete (void *ptr) |
Operator delete. | |
void | operator delete (void *ptr, void *vp) |
Only called by placement new when throwing an exception. | |
void | operator delete[] (void *ptr) |
Operator delete []. | |
void | operator delete[] (void *ptr, void *vp) |
Only called by placement new[] when throwing an exception. | |
void * | operator new (size_t sz) |
void * | operator new (size_t sz, void *vp) |
void * | operator new[] (size_t sz) |
void * | operator new[] (size_t sz, void *vp) |
TObject & | operator= (const TObject &rhs) |
TObject assignment operator. | |
virtual void | Paint (Option_t *option="") |
This method must be overridden if a class wants to paint itself. | |
virtual void | Pop () |
Pop on object drawn in a pad to the top of the display list. | |
virtual Int_t | Read (const char *name) |
Read contents of object with specified name from the current directory. | |
virtual void | RecursiveRemove (TObject *obj) |
Recursively remove this object from a list. | |
void | ResetBit (UInt_t f) |
virtual void | SaveAs (const char *filename="", Option_t *option="") const |
Save this object in the file specified by filename. | |
virtual void | SavePrimitive (std::ostream &out, Option_t *option="") |
Save a primitive as a C++ statement(s) on output stream "out". | |
void | SetBit (UInt_t f) |
void | SetBit (UInt_t f, Bool_t set) |
Set or unset the user status bits as specified in f. | |
virtual void | SetDrawOption (Option_t *option="") |
Set drawing option for object. | |
virtual void | SetUniqueID (UInt_t uid) |
Set the unique object id. | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
virtual void | SysError (const char *method, const char *msgfmt,...) const |
Issue system error message. | |
R__ALWAYS_INLINE Bool_t | TestBit (UInt_t f) const |
Int_t | TestBits (UInt_t f) const |
virtual void | UseCurrentStyle () |
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. | |
virtual void | Warning (const char *method, const char *msgfmt,...) const |
Issue warning message. | |
virtual Int_t | Write (const char *name=nullptr, Int_t option=0, Int_t bufsize=0) |
Write this object to the current directory. | |
virtual Int_t | Write (const char *name=nullptr, Int_t option=0, Int_t bufsize=0) const |
Write this object to the current directory. | |
Protected Member Functions | |
void | GetHelpMessage () const |
Get help message text. | |
Protected Member Functions inherited from TMVA::MethodCompositeBase | |
MethodBase * | GetCurrentMethod () |
MethodBase * | GetCurrentMethod (UInt_t idx) |
UInt_t | GetCurrentMethodIndex () |
IMethod * | GetLastMethod () |
IMethod * | GetMethod (const Int_t index) const |
accessor by index in vector | |
IMethod * | GetMethod (const TString &title) const |
accessor by name | |
IMethod * | GetPreviousMethod () |
Protected Member Functions inherited from TMVA::MethodBase | |
virtual std::vector< Double_t > | GetDataMvaValues (DataSet *data=nullptr, Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false) |
get all the MVA values for the events of the given Data type | |
const TString & | GetInternalVarName (Int_t ivar) const |
virtual std::vector< Double_t > | GetMvaValues (Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false) |
get all the MVA values for the events of the current Data type | |
const TString & | GetOriginalVarName (Int_t ivar) const |
const TString & | GetWeightFileDir () const |
Bool_t | HasTrainingTree () const |
Bool_t | Help () const |
Bool_t | IgnoreEventsWithNegWeightsInTraining () const |
Bool_t | IsConstructedFromWeightFile () const |
Bool_t | IsNormalised () const |
virtual void | MakeClassSpecific (std::ostream &, const TString &="") const |
virtual void | MakeClassSpecificHeader (std::ostream &, const TString &="") const |
void | NoErrorCalc (Double_t *const err, Double_t *const errUpper) |
void | SetNormalised (Bool_t norm) |
void | SetWeightFileDir (TString fileDir) |
set directory of weight file | |
void | SetWeightFileName (TString) |
set the weight file name (depreciated) | |
void | Statistics (Types::ETreeType treeType, const TString &theVarName, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &) |
calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as they are or for normalised variables (in the range of 0-1) if "norm" is set to kTRUE | |
Bool_t | TxtWeightsOnly () const |
Bool_t | Verbose () const |
Protected Member Functions inherited from TMVA::Configurable | |
void | EnableLooseOptions (Bool_t b=kTRUE) |
const TString & | GetReferenceFile () const |
Bool_t | LooseOptionCheckingEnabled () const |
void | ResetSetFlag () |
resets the IsSet flag for all declare options to be called before options are read from stream | |
void | WriteOptionsReferenceToFile () |
write complete options to output stream | |
Protected Member Functions inherited from TObject | |
virtual void | DoError (int level, const char *location, const char *fmt, va_list va) const |
Interface to ErrorHandler (protected). | |
void | MakeZombie () |
Private Member Functions | |
Double_t | AdaBoost (MethodBase *method, Bool_t useYesNoLeaf) |
the standard (discrete or real) AdaBoost algorithm | |
Double_t | Bagging () |
Bagging or Bootstrap boosting, gives new random poisson weight for every event. | |
Double_t | CalcMethodWeight () |
void | CalcMVAValues () |
void | CheckSetup () |
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) | |
void | ClearAll () |
void | CreateMVAHistorgrams () |
MethodBase * | CurrentMethod () |
UInt_t | CurrentMethodIdx () |
void | DeclareCompatibilityOptions () |
options that are used ONLY for the READER to ensure backward compatibility they are hence without any effect (the reader is only reading the training options that HAD been used at the training of the .xml weight file at hand | |
void | DeclareOptions () |
void | FindMVACut (MethodBase *method) |
find the CUT on the individual MVA that defines an event as correct or misclassified (to be used in the boosting process) | |
Double_t | GetBoostROCIntegral (Bool_t, Types::ETreeType, Bool_t CalcOverlapIntergral=kFALSE) |
Calculate the ROC integral of a single classifier or even the whole boosted classifier. | |
void | Init () |
void | InitHistos () |
initialisation routine | |
void | MonitorBoost (Types::EBoostStage stage, UInt_t methodIdx=0) |
fill various monitoring histograms from information of the individual classifiers that have been boosted. | |
void | PrintResults (const TString &, std::vector< Double_t > &, const Double_t) const |
void | ProcessOptions () |
process user options | |
void | ResetBoostWeights () |
resetting back the boosted weights of the events to 1 | |
Double_t | SingleBoost (MethodBase *method) |
void | SingleTrain () |
initialization | |
virtual void | TestClassification () |
initialization | |
virtual void | WriteEvaluationHistosToFile (Types::ETreeType treetype) |
writes all MVA evaluation histograms to file | |
void | WriteMonitoringHistosToFile (void) const |
write special monitoring histograms to file dummy implementation here --------------— | |
Private Attributes | |
Double_t | fAdaBoostBeta |
ADA boost parameter, default is 1. | |
Double_t | fBaggedSampleFraction |
rel.Size of bagged sample | |
TString | fBoostedMethodName |
details of the boosted classifier | |
TString | fBoostedMethodOptions |
options | |
TString | fBoostedMethodTitle |
title | |
UInt_t | fBoostNum |
Number of times the classifier is boosted. | |
TString | fBoostType |
string specifying the boost type | |
Double_t | fBoostWeight |
the weight used to boost the next classifier | |
std::vector< TH1 * > | fBTrainBgdMVAHist |
std::vector< TH1 * > | fBTrainSigMVAHist |
DataSetManager * | fDataSetManager |
DSMTEST. | |
Bool_t | fDetailedMonitoring |
produce detailed monitoring histograms (boost-wise) | |
Bool_t | fHistoricBoolOption |
historic variable, only needed for "CompatibilityOptions" | |
TString | fHistoricOption |
historic variable, only needed for "CompatibilityOptions" | |
Double_t | fMethodError |
estimation of the level error of the classifier | |
Bool_t | fMonitorBoostedMethod |
monitor the MVA response of every classifier | |
TTree * | fMonitorTree |
tree to monitor values during the boosting | |
std::vector< Float_t > * | fMVAvalues |
mva values for the last trained method | |
Double_t | fOverlap_integral |
UInt_t | fRandomSeed |
seed for random number generator used for bagging | |
Double_t | fROC_training |
roc integral of last trained method (on training sample) | |
std::vector< TH1 * > | fTestBgdMVAHist |
std::vector< TH1 * > | fTestSigMVAHist |
std::vector< TH1 * > | fTrainBgdMVAHist |
std::vector< TH1 * > | fTrainSigMVAHist |
TString | fTransformString |
min and max values for the classifier response | |
Friends | |
class | Experimental::Classification |
class | Factory |
class | Reader |
Additional Inherited Members | |
Public Types inherited from TMVA::MethodBase | |
enum | EWeightFileType { kROOT =0 , kTEXT } |
Public Types inherited from TObject | |
enum | { kIsOnHeap = 0x01000000 , kNotDeleted = 0x02000000 , kZombie = 0x04000000 , kInconsistent = 0x08000000 , kBitMask = 0x00ffffff } |
enum | { kSingleKey = (1ULL << ( 0 )) , kOverwrite = (1ULL << ( 1 )) , kWriteDelete = (1ULL << ( 2 )) } |
enum | EDeprecatedStatusBits { kObjInCanvas = (1ULL << ( 3 )) } |
enum | EStatusBits { kCanDelete = (1ULL << ( 0 )) , kMustCleanup = (1ULL << ( 3 )) , kIsReferenced = (1ULL << ( 4 )) , kHasUUID = (1ULL << ( 5 )) , kCannotPick = (1ULL << ( 6 )) , kNoContextMenu = (1ULL << ( 8 )) , kInvalidObject = (1ULL << ( 13 )) } |
Public Attributes inherited from TMVA::MethodBase | |
Bool_t | fSetupCompleted |
TrainingHistory | fTrainHistory |
Protected Types inherited from TObject | |
enum | { kOnlyPrepStep = (1ULL << ( 3 )) } |
Protected Attributes inherited from TMVA::MethodCompositeBase | |
MethodBase * | fCurrentMethod |
UInt_t | fCurrentMethodIdx |
std::vector< IMethod * > | fMethods |
vector of all classifiers | |
std::vector< Double_t > | fMethodWeight |
Protected Attributes inherited from TMVA::MethodBase | |
Types::EAnalysisType | fAnalysisType |
UInt_t | fBackgroundClass |
bool | fExitFromTraining = false |
std::vector< TString > * | fInputVars |
IPythonInteractive * | fInteractive = nullptr |
temporary dataset used when evaluating on a different data (used by MethodCategory::GetMvaValues) | |
UInt_t | fIPyCurrentIter = 0 |
UInt_t | fIPyMaxIter = 0 |
std::vector< Float_t > * | fMulticlassReturnVal |
Int_t | fNbins |
Int_t | fNbinsH |
Int_t | fNbinsMVAoutput |
Ranking * | fRanking |
std::vector< Float_t > * | fRegressionReturnVal |
Results * | fResults |
UInt_t | fSignalClass |
DataSet * | fTmpData = nullptr |
temporary event when testing on a different DataSet than the own one | |
const Event * | fTmpEvent |
Protected Attributes inherited from TMVA::Configurable | |
MsgLogger * | fLogger |
! message logger | |
Protected Attributes inherited from TNamed | |
TString | fName |
TString | fTitle |
#include <TMVA/MethodBoost.h>
TMVA::MethodBoost::MethodBoost | ( | const TString & | jobName, |
const TString & | methodTitle, | ||
DataSetInfo & | theData, | ||
const TString & | theOption = "" ) |
Definition at line 90 of file MethodBoost.cxx.
TMVA::MethodBoost::MethodBoost | ( | DataSetInfo & | dsi, |
const TString & | theWeightFile ) |
Definition at line 117 of file MethodBoost.cxx.
|
virtual |
destructor
Definition at line 143 of file MethodBoost.cxx.
|
private |
the standard (discrete or real) AdaBoost algorithm
Definition at line 867 of file MethodBoost.cxx.
|
private |
Bagging or Bootstrap boosting, gives new random poisson weight for every event.
Definition at line 1031 of file MethodBoost.cxx.
Bool_t TMVA::MethodBoost::BookMethod | ( | Types::EMVA | theMethod, |
TString | methodTitle, | ||
TString | theOption ) |
just registering the string from which the boosted classifier will be created
Definition at line 250 of file MethodBoost.cxx.
|
private |
|
private |
Definition at line 1277 of file MethodBoost.cxx.
|
privatevirtual |
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase)
Reimplemented from TMVA::MethodBase.
Definition at line 328 of file MethodBoost.cxx.
Definition at line 202 of file MethodBoost.h.
void TMVA::MethodBoost::CleanBoostOptions | ( | ) |
Definition at line 531 of file MethodBoost.cxx.
|
private |
|
private |
Definition at line 538 of file MethodBoost.cxx.
|
virtual |
Implements TMVA::MethodCompositeBase.
Definition at line 1087 of file MethodBoost.cxx.
|
inlineprivate |
Definition at line 114 of file MethodBoost.h.
|
inlineprivate |
Definition at line 115 of file MethodBoost.h.
|
privatevirtual |
options that are used ONLY for the READER to ensure backward compatibility they are hence without any effect (the reader is only reading the training options that HAD been used at the training of the .xml weight file at hand
Reimplemented from TMVA::MethodBase.
Definition at line 215 of file MethodBoost.cxx.
|
privatevirtual |
Implements TMVA::MethodCompositeBase.
Definition at line 176 of file MethodBoost.cxx.
Definition at line 202 of file MethodBoost.h.
|
private |
find the CUT on the individual MVA that defines an event as correct or misclassified (to be used in the boosting process)
Definition at line 690 of file MethodBoost.cxx.
|
inline |
Definition at line 88 of file MethodBoost.h.
|
private |
Calculate the ROC integral of a single classifier or even the whole boosted classifier.
The tree type (training or testing sample) is specified by 'eTT'.
If tree type kTraining is set, the original training sample is used to compute the ROC integral (original weights).
Definition at line 1156 of file MethodBoost.cxx.
|
protectedvirtual |
Get help message text.
typical length of text line: "|--------------------------------------------------------------|"
Implements TMVA::IMethod.
Definition at line 1049 of file MethodBoost.cxx.
|
virtual |
return boosted MVA response
Implements TMVA::MethodBase.
Definition at line 1095 of file MethodBoost.cxx.
|
virtual |
Boost can handle classification with 2 classes and regression with one regression-target.
Implements TMVA::IMethod.
Definition at line 166 of file MethodBoost.cxx.
|
privatevirtual |
Implements TMVA::MethodBase.
Definition at line 264 of file MethodBoost.cxx.
|
private |
initialisation routine
Definition at line 271 of file MethodBoost.cxx.
Reimplemented from TMVA::MethodCompositeBase.
Definition at line 202 of file MethodBoost.h.
|
private |
fill various monitoring histograms from information of the individual classifiers that have been boosted.
of course.... this depends very much on the individual classifiers, and so far, only for Decision Trees, this monitoring is actually implemented
Definition at line 1305 of file MethodBoost.cxx.
|
private |
|
privatevirtual |
process user options
Implements TMVA::MethodCompositeBase.
Definition at line 663 of file MethodBoost.cxx.
|
private |
resetting back the boosted weights of the events to 1
Definition at line 569 of file MethodBoost.cxx.
|
inline |
Definition at line 86 of file MethodBoost.h.
|
private |
Definition at line 850 of file MethodBoost.cxx.
|
private |
initialization
Definition at line 670 of file MethodBoost.cxx.
Reimplemented from TMVA::MethodCompositeBase.
|
inline |
Definition at line 202 of file MethodBoost.h.
|
privatevirtual |
|
virtual |
Implements TMVA::MethodCompositeBase.
Definition at line 351 of file MethodBoost.cxx.
|
privatevirtual |
writes all MVA evaluation histograms to file
Reimplemented from TMVA::MethodBase.
Definition at line 637 of file MethodBoost.cxx.
|
privatevirtual |
write special monitoring histograms to file dummy implementation here --------------—
Reimplemented from TMVA::MethodBase.
Definition at line 579 of file MethodBoost.cxx.
|
friend |
Definition at line 61 of file MethodBoost.h.
Definition at line 59 of file MethodBoost.h.
Definition at line 60 of file MethodBoost.h.
|
private |
ADA boost parameter, default is 1.
Definition at line 159 of file MethodBoost.h.
|
private |
rel.Size of bagged sample
Definition at line 161 of file MethodBoost.h.
|
private |
details of the boosted classifier
Definition at line 163 of file MethodBoost.h.
|
private |
options
Definition at line 165 of file MethodBoost.h.
|
private |
title
Definition at line 164 of file MethodBoost.h.
|
private |
Number of times the classifier is boosted.
Definition at line 153 of file MethodBoost.h.
|
private |
string specifying the boost type
Definition at line 154 of file MethodBoost.h.
|
private |
the weight used to boost the next classifier
Definition at line 182 of file MethodBoost.h.
|
private |
Definition at line 174 of file MethodBoost.h.
|
private |
Definition at line 173 of file MethodBoost.h.
|
private |
DSMTEST.
Definition at line 193 of file MethodBoost.h.
|
private |
produce detailed monitoring histograms (boost-wise)
Definition at line 157 of file MethodBoost.h.
|
private |
historic variable, only needed for "CompatibilityOptions"
Definition at line 195 of file MethodBoost.h.
|
private |
historic variable, only needed for "CompatibilityOptions"
Definition at line 194 of file MethodBoost.h.
|
private |
estimation of the level error of the classifier
Definition at line 183 of file MethodBoost.h.
|
private |
monitor the MVA response of every classifier
Definition at line 167 of file MethodBoost.h.
|
private |
tree to monitor values during the boosting
Definition at line 181 of file MethodBoost.h.
|
private |
mva values for the last trained method
Definition at line 191 of file MethodBoost.h.
|
private |
Definition at line 189 of file MethodBoost.h.
|
private |
seed for random number generator used for bagging
Definition at line 160 of file MethodBoost.h.
|
private |
roc integral of last trained method (on training sample)
Definition at line 185 of file MethodBoost.h.
|
private |
Definition at line 178 of file MethodBoost.h.
|
private |
Definition at line 176 of file MethodBoost.h.
|
private |
Definition at line 171 of file MethodBoost.h.
|
private |
Definition at line 170 of file MethodBoost.h.
|
private |
min and max values for the classifier response
Definition at line 156 of file MethodBoost.h.