J Friedman's RuleFit method.
Definition at line 48 of file MethodRuleFit.h.
Public Member Functions | |
MethodRuleFit (const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="") | |
standard constructor | |
MethodRuleFit (DataSetInfo &theData, const TString &theWeightFile) | |
constructor from weight file | |
virtual | ~MethodRuleFit (void) |
destructor | |
void | AddWeightsXMLTo (void *parent) const |
add the rules to XML node | |
const Ranking * | CreateRanking () |
computes ranking of input variables | |
const std::vector< TMVA::DecisionTree * > & | GetForest () const |
Double_t | GetGDErrScale () const |
Int_t | GetGDNPathSteps () const |
Double_t | GetGDPathEveFrac () const |
Double_t | GetGDPathStep () const |
Double_t | GetGDValidEveFrac () const |
Double_t | GetLinQuantile () const |
Double_t | GetMaxFracNEve () const |
TDirectory * | GetMethodBaseDir () const |
Double_t | GetMinFracNEve () const |
Double_t | GetMvaValue (Double_t *err=nullptr, Double_t *errUpper=nullptr) |
returns MVA value for given event | |
Int_t | GetNCuts () const |
Int_t | GetNTrees () const |
TMVA::DecisionTree::EPruneMethod | GetPruneMethod () const |
Double_t | GetPruneStrength () const |
Int_t | GetRFNendnodes () const |
Int_t | GetRFNrules () const |
const TString | GetRFWorkDir () const |
const RuleFit * | GetRuleFitConstPtr () const |
RuleFit * | GetRuleFitPtr () |
SeparationBase * | GetSeparationBase () const |
const SeparationBase * | GetSeparationBaseConst () const |
const std::vector< TMVA::Event * > & | GetTrainingEvents () const |
Double_t | GetTreeEveFrac () const |
virtual Bool_t | HasAnalysisType (Types::EAnalysisType type, UInt_t numberClasses, UInt_t) |
RuleFit can handle classification with 2 classes. | |
virtual TClass * | IsA () const |
virtual void | ReadWeightsFromStream (std::istream &)=0 |
void | ReadWeightsFromStream (std::istream &istr) |
read rules from an std::istream | |
virtual void | ReadWeightsFromStream (TFile &) |
void | ReadWeightsFromXML (void *wghtnode) |
read rules from XML node | |
virtual void | Streamer (TBuffer &) |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
void | Train (void) |
Bool_t | UseBoost () const |
void | WriteMonitoringHistosToFile (void) const |
write special monitoring histograms to file (here ntuple) | |
Public Member Functions inherited from TMVA::MethodBase | |
MethodBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="") | |
standard constructor | |
MethodBase (Types::EMVA methodType, DataSetInfo &dsi, const TString &weightFile) | |
constructor used for Testing + Application of the MVA, only (no training), using given WeightFiles | |
virtual | ~MethodBase () |
destructor | |
void | AddOutput (Types::ETreeType type, Types::EAnalysisType analysisType) |
TDirectory * | BaseDir () const |
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are stored | |
virtual void | CheckSetup () |
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) | |
DataSet * | Data () const |
DataSetInfo & | DataInfo () const |
virtual void | DeclareCompatibilityOptions () |
options that are used ONLY for the READER to ensure backward compatibility they are hence without any effect (the reader is only reading the training options that HAD been used at the training of the .xml weight file at hand | |
void | DisableWriting (Bool_t setter) |
Bool_t | DoMulticlass () const |
Bool_t | DoRegression () const |
void | ExitFromTraining () |
Types::EAnalysisType | GetAnalysisType () const |
UInt_t | GetCurrentIter () |
virtual Double_t | GetEfficiency (const TString &, Types::ETreeType, Double_t &err) |
fill background efficiency (resp. | |
const Event * | GetEvent () const |
const Event * | GetEvent (const TMVA::Event *ev) const |
const Event * | GetEvent (Long64_t ievt) const |
const Event * | GetEvent (Long64_t ievt, Types::ETreeType type) const |
const std::vector< TMVA::Event * > & | GetEventCollection (Types::ETreeType type) |
returns the event collection (i.e. | |
TFile * | GetFile () const |
const TString & | GetInputLabel (Int_t i) const |
const char * | GetInputTitle (Int_t i) const |
const TString & | GetInputVar (Int_t i) const |
TMultiGraph * | GetInteractiveTrainingError () |
const TString & | GetJobName () const |
virtual Double_t | GetKSTrainingVsTest (Char_t SorB, TString opt="X") |
virtual Double_t | GetMaximumSignificance (Double_t SignalEvents, Double_t BackgroundEvents, Double_t &optimal_significance_value) const |
plot significance, \( \frac{S}{\sqrt{S^2 + B^2}} \), curve for given number of signal and background events; returns cut for maximum significance also returned via reference is the maximum significance | |
UInt_t | GetMaxIter () |
Double_t | GetMean (Int_t ivar) const |
const TString & | GetMethodName () const |
Types::EMVA | GetMethodType () const |
TString | GetMethodTypeName () const |
virtual TMatrixD | GetMulticlassConfusionMatrix (Double_t effB, Types::ETreeType type) |
Construct a confusion matrix for a multiclass classifier. | |
virtual std::vector< Float_t > | GetMulticlassEfficiency (std::vector< std::vector< Float_t > > &purity) |
virtual std::vector< Float_t > | GetMulticlassTrainingEfficiency (std::vector< std::vector< Float_t > > &purity) |
virtual const std::vector< Float_t > & | GetMulticlassValues () |
Double_t | GetMvaValue (const TMVA::Event *const ev, Double_t *err=nullptr, Double_t *errUpper=nullptr) |
const char * | GetName () const |
UInt_t | GetNEvents () const |
UInt_t | GetNTargets () const |
UInt_t | GetNvar () const |
UInt_t | GetNVariables () const |
virtual Double_t | GetProba (const Event *ev) |
virtual Double_t | GetProba (Double_t mvaVal, Double_t ap_sig) |
compute likelihood ratio | |
const TString | GetProbaName () const |
virtual Double_t | GetRarity (Double_t mvaVal, Types::ESBType reftype=Types::kBackground) const |
compute rarity: | |
virtual void | GetRegressionDeviation (UInt_t tgtNum, Types::ETreeType type, Double_t &stddev, Double_t &stddev90Percent) const |
virtual const std::vector< Float_t > & | GetRegressionValues () |
const std::vector< Float_t > & | GetRegressionValues (const TMVA::Event *const ev) |
Double_t | GetRMS (Int_t ivar) const |
virtual Double_t | GetROCIntegral (PDF *pdfS=nullptr, PDF *pdfB=nullptr) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification | |
virtual Double_t | GetROCIntegral (TH1D *histS, TH1D *histB) const |
calculate the area (integral) under the ROC curve as a overall quality measure of the classification | |
virtual Double_t | GetSeparation (PDF *pdfS=nullptr, PDF *pdfB=nullptr) const |
compute "separation" defined as | |
virtual Double_t | GetSeparation (TH1 *, TH1 *) const |
compute "separation" defined as | |
Double_t | GetSignalReferenceCut () const |
Double_t | GetSignalReferenceCutOrientation () const |
virtual Double_t | GetSignificance () const |
compute significance of mean difference | |
const Event * | GetTestingEvent (Long64_t ievt) const |
Double_t | GetTestTime () const |
const TString & | GetTestvarName () const |
virtual Double_t | GetTrainingEfficiency (const TString &) |
const Event * | GetTrainingEvent (Long64_t ievt) const |
virtual const std::vector< Float_t > & | GetTrainingHistory (const char *) |
UInt_t | GetTrainingROOTVersionCode () const |
TString | GetTrainingROOTVersionString () const |
calculates the ROOT version string from the training version code on the fly | |
UInt_t | GetTrainingTMVAVersionCode () const |
TString | GetTrainingTMVAVersionString () const |
calculates the TMVA version string from the training version code on the fly | |
Double_t | GetTrainTime () const |
TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) |
const TransformationHandler & | GetTransformationHandler (Bool_t takeReroutedIfAvailable=true) const |
TString | GetWeightFileName () const |
retrieve weight file name | |
Double_t | GetXmax (Int_t ivar) const |
Double_t | GetXmin (Int_t ivar) const |
Bool_t | HasMVAPdfs () const |
void | InitIPythonInteractive () |
Bool_t | IsModelPersistence () const |
virtual Bool_t | IsSignalLike () |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event would be selected as signal or background | |
virtual Bool_t | IsSignalLike (Double_t mvaVal) |
uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event with this mva output value would be selected as signal or background | |
Bool_t | IsSilentFile () const |
virtual void | MakeClass (const TString &classFileName=TString("")) const |
create reader class for method (classification only at present) | |
TDirectory * | MethodBaseDir () const |
returns the ROOT directory where all instances of the corresponding MVA method are stored | |
virtual std::map< TString, Double_t > | OptimizeTuningParameters (TString fomType="ROCIntegral", TString fitType="FitGA") |
call the Optimizer with the set of parameters and ranges that are meant to be tuned. | |
void | PrintHelpMessage () const |
prints out method-specific help method | |
void | ProcessSetup () |
process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) | |
void | ReadStateFromFile () |
Function to write options and weights to file. | |
void | ReadStateFromStream (std::istream &tf) |
read the header from the weight files of the different MVA methods | |
void | ReadStateFromStream (TFile &rf) |
write reference MVA distributions (and other information) to a ROOT type weight file | |
void | ReadStateFromXMLString (const char *xmlstr) |
for reading from memory | |
void | RerouteTransformationHandler (TransformationHandler *fTargetTransformation) |
virtual void | Reset () |
virtual void | SetAnalysisType (Types::EAnalysisType type) |
void | SetBaseDir (TDirectory *methodDir) |
void | SetFile (TFile *file) |
void | SetMethodBaseDir (TDirectory *methodDir) |
void | SetMethodDir (TDirectory *methodDir) |
void | SetModelPersistence (Bool_t status) |
void | SetSignalReferenceCut (Double_t cut) |
void | SetSignalReferenceCutOrientation (Double_t cutOrientation) |
void | SetSilentFile (Bool_t status) |
void | SetTestTime (Double_t testTime) |
void | SetTestvarName (const TString &v="") |
void | SetTrainTime (Double_t trainTime) |
virtual void | SetTuneParameters (std::map< TString, Double_t > tuneParameters) |
set the tuning parameters according to the argument This is just a dummy . | |
void | SetupMethod () |
setup of methods | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
virtual void | TestClassification () |
initialization | |
virtual void | TestMulticlass () |
test multiclass classification | |
virtual void | TestRegression (Double_t &bias, Double_t &biasT, Double_t &dev, Double_t &devT, Double_t &rms, Double_t &rmsT, Double_t &mInf, Double_t &mInfT, Double_t &corr, Types::ETreeType type) |
calculate <sum-of-deviation-squared> of regression output versus "true" value from test sample | |
bool | TrainingEnded () |
void | TrainMethod () |
virtual void | WriteEvaluationHistosToFile (Types::ETreeType treetype) |
writes all MVA evaluation histograms to file | |
void | WriteStateToFile () const |
write options and weights to file note that each one text file for the main configuration information and one ROOT file for ROOT objects are created | |
Public Member Functions inherited from TMVA::IMethod | |
IMethod () | |
virtual | ~IMethod () |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
Public Member Functions inherited from TMVA::Configurable | |
Configurable (const TString &theOption="") | |
constructor | |
virtual | ~Configurable () |
default destructor | |
void | AddOptionsXMLTo (void *parent) const |
write options to XML file | |
template<class T > | |
void | AddPreDefVal (const T &) |
template<class T > | |
void | AddPreDefVal (const TString &optname, const T &) |
void | CheckForUnusedOptions () const |
checks for unused options in option string | |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc) |
template<class T > | |
OptionBase * | DeclareOptionRef (T &ref, const TString &name, const TString &desc="") |
template<class T > | |
TMVA::OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc) |
template<class T > | |
OptionBase * | DeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc="") |
const char * | GetConfigDescription () const |
const char * | GetConfigName () const |
const TString & | GetOptions () const |
MsgLogger & | Log () const |
virtual void | ParseOptions () |
options parser | |
void | PrintOptions () const |
prints out the options set in the options string and the defaults | |
void | ReadOptionsFromStream (std::istream &istr) |
read option back from the weight file | |
void | ReadOptionsFromXML (void *node) |
void | SetConfigDescription (const char *d) |
void | SetConfigName (const char *n) |
void | SetMsgType (EMsgType t) |
void | SetOptions (const TString &s) |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
void | WriteOptionsToStream (std::ostream &o, const TString &prefix) const |
write options to output stream (e.g. in writing the MVA weight files | |
Public Member Functions inherited from TNamed | |
TNamed () | |
TNamed (const char *name, const char *title) | |
TNamed (const TNamed &named) | |
TNamed copy ctor. | |
TNamed (const TString &name, const TString &title) | |
virtual | ~TNamed () |
TNamed destructor. | |
void | Clear (Option_t *option="") override |
Set name and title to empty strings (""). | |
TObject * | Clone (const char *newname="") const override |
Make a clone of an object using the Streamer facility. | |
Int_t | Compare (const TObject *obj) const override |
Compare two TNamed objects. | |
void | Copy (TObject &named) const override |
Copy this to obj. | |
virtual void | FillBuffer (char *&buffer) |
Encode TNamed into output buffer. | |
const char * | GetName () const override |
Returns name of object. | |
const char * | GetTitle () const override |
Returns title of object. | |
ULong_t | Hash () const override |
Return hash value for this object. | |
TClass * | IsA () const override |
Bool_t | IsSortable () const override |
void | ls (Option_t *option="") const override |
List TNamed name and title. | |
TNamed & | operator= (const TNamed &rhs) |
TNamed assignment operator. | |
void | Print (Option_t *option="") const override |
Print TNamed name and title. | |
virtual void | SetName (const char *name) |
Set the name of the TNamed. | |
virtual void | SetNameTitle (const char *name, const char *title) |
Set all the TNamed parameters (name and title). | |
virtual void | SetTitle (const char *title="") |
Set the title of the TNamed. | |
virtual Int_t | Sizeof () const |
Return size of the TNamed part of the TObject. | |
void | Streamer (TBuffer &) override |
Stream an object of class TObject. | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
Public Member Functions inherited from TObject | |
TObject () | |
TObject constructor. | |
TObject (const TObject &object) | |
TObject copy ctor. | |
virtual | ~TObject () |
TObject destructor. | |
void | AbstractMethod (const char *method) const |
Use this method to implement an "abstract" method that you don't want to leave purely abstract. | |
virtual void | AppendPad (Option_t *option="") |
Append graphics object to current pad. | |
virtual void | Browse (TBrowser *b) |
Browse object. May be overridden for another default action. | |
ULong_t | CheckedHash () |
Check and record whether this class has a consistent Hash/RecursiveRemove setup (*) and then return the regular Hash value for this object. | |
virtual const char * | ClassName () const |
Returns name of class to which the object belongs. | |
virtual void | Delete (Option_t *option="") |
Delete this object. | |
virtual Int_t | DistancetoPrimitive (Int_t px, Int_t py) |
Computes distance from point (px,py) to the object. | |
virtual void | Draw (Option_t *option="") |
Default Draw method for all objects. | |
virtual void | DrawClass () const |
Draw class inheritance tree of the class to which this object belongs. | |
virtual TObject * | DrawClone (Option_t *option="") const |
Draw a clone of this object in the current selected pad with: gROOT->SetSelectedPad(c1) . | |
virtual void | Dump () const |
Dump contents of object on stdout. | |
virtual void | Error (const char *method, const char *msgfmt,...) const |
Issue error message. | |
virtual void | Execute (const char *method, const char *params, Int_t *error=nullptr) |
Execute method on this object with the given parameter string, e.g. | |
virtual void | Execute (TMethod *method, TObjArray *params, Int_t *error=nullptr) |
Execute method on this object with parameters stored in the TObjArray. | |
virtual void | ExecuteEvent (Int_t event, Int_t px, Int_t py) |
Execute action corresponding to an event at (px,py). | |
virtual void | Fatal (const char *method, const char *msgfmt,...) const |
Issue fatal error message. | |
virtual TObject * | FindObject (const char *name) const |
Must be redefined in derived classes. | |
virtual TObject * | FindObject (const TObject *obj) const |
Must be redefined in derived classes. | |
virtual Option_t * | GetDrawOption () const |
Get option used by the graphics system to draw this object. | |
virtual const char * | GetIconName () const |
Returns mime type name of object. | |
virtual char * | GetObjectInfo (Int_t px, Int_t py) const |
Returns string containing info about the object at position (px,py). | |
virtual Option_t * | GetOption () const |
virtual UInt_t | GetUniqueID () const |
Return the unique object id. | |
virtual Bool_t | HandleTimer (TTimer *timer) |
Execute action in response of a timer timing out. | |
Bool_t | HasInconsistentHash () const |
Return true is the type of this object is known to have an inconsistent setup for Hash and RecursiveRemove (i.e. | |
virtual void | Info (const char *method, const char *msgfmt,...) const |
Issue info message. | |
virtual Bool_t | InheritsFrom (const char *classname) const |
Returns kTRUE if object inherits from class "classname". | |
virtual Bool_t | InheritsFrom (const TClass *cl) const |
Returns kTRUE if object inherits from TClass cl. | |
virtual void | Inspect () const |
Dump contents of this object in a graphics canvas. | |
void | InvertBit (UInt_t f) |
Bool_t | IsDestructed () const |
IsDestructed. | |
virtual Bool_t | IsEqual (const TObject *obj) const |
Default equal comparison (objects are equal if they have the same address in memory). | |
virtual Bool_t | IsFolder () const |
Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). | |
R__ALWAYS_INLINE Bool_t | IsOnHeap () const |
R__ALWAYS_INLINE Bool_t | IsZombie () const |
void | MayNotUse (const char *method) const |
Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). | |
virtual Bool_t | Notify () |
This method must be overridden to handle object notification (the base implementation is no-op). | |
void | Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const |
Use this method to declare a method obsolete. | |
void | operator delete (void *ptr) |
Operator delete. | |
void | operator delete (void *ptr, void *vp) |
Only called by placement new when throwing an exception. | |
void | operator delete[] (void *ptr) |
Operator delete []. | |
void | operator delete[] (void *ptr, void *vp) |
Only called by placement new[] when throwing an exception. | |
void * | operator new (size_t sz) |
void * | operator new (size_t sz, void *vp) |
void * | operator new[] (size_t sz) |
void * | operator new[] (size_t sz, void *vp) |
TObject & | operator= (const TObject &rhs) |
TObject assignment operator. | |
virtual void | Paint (Option_t *option="") |
This method must be overridden if a class wants to paint itself. | |
virtual void | Pop () |
Pop on object drawn in a pad to the top of the display list. | |
virtual Int_t | Read (const char *name) |
Read contents of object with specified name from the current directory. | |
virtual void | RecursiveRemove (TObject *obj) |
Recursively remove this object from a list. | |
void | ResetBit (UInt_t f) |
virtual void | SaveAs (const char *filename="", Option_t *option="") const |
Save this object in the file specified by filename. | |
virtual void | SavePrimitive (std::ostream &out, Option_t *option="") |
Save a primitive as a C++ statement(s) on output stream "out". | |
void | SetBit (UInt_t f) |
void | SetBit (UInt_t f, Bool_t set) |
Set or unset the user status bits as specified in f. | |
virtual void | SetDrawOption (Option_t *option="") |
Set drawing option for object. | |
virtual void | SetUniqueID (UInt_t uid) |
Set the unique object id. | |
void | StreamerNVirtual (TBuffer &ClassDef_StreamerNVirtual_b) |
virtual void | SysError (const char *method, const char *msgfmt,...) const |
Issue system error message. | |
R__ALWAYS_INLINE Bool_t | TestBit (UInt_t f) const |
Int_t | TestBits (UInt_t f) const |
virtual void | UseCurrentStyle () |
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. | |
virtual void | Warning (const char *method, const char *msgfmt,...) const |
Issue warning message. | |
virtual Int_t | Write (const char *name=nullptr, Int_t option=0, Int_t bufsize=0) |
Write this object to the current directory. | |
virtual Int_t | Write (const char *name=nullptr, Int_t option=0, Int_t bufsize=0) const |
Write this object to the current directory. | |
Static Public Member Functions | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TMVA::MethodBase | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TMVA::IMethod | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TMVA::Configurable | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TNamed | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
Static Public Member Functions inherited from TObject | |
static TClass * | Class () |
static const char * | Class_Name () |
static constexpr Version_t | Class_Version () |
static const char * | DeclFileName () |
static Longptr_t | GetDtorOnly () |
Return destructor only flag. | |
static Bool_t | GetObjectStat () |
Get status of object stat flag. | |
static void | SetDtorOnly (void *obj) |
Set destructor only flag. | |
static void | SetObjectStat (Bool_t stat) |
Turn on/off tracking of objects in the TObjectTable. | |
Protected Member Functions | |
void | GetHelpMessage () const |
get help message text | |
void | Init (void) |
default initialization | |
void | InitEventSample (void) |
write all Events from the Tree into a vector of Events, that are more easily manipulated. | |
void | InitMonitorNtuple () |
initialize the monitoring ntuple | |
void | MakeClassLinear (std::ostream &) const |
print out the linear terms | |
void | MakeClassRuleCuts (std::ostream &) const |
print out the rule cuts | |
void | MakeClassSpecific (std::ostream &, const TString &) const |
write specific classifier response | |
void | TrainJFRuleFit () |
training of rules using Jerome Friedmans implementation | |
void | TrainTMVARuleFit () |
training of rules using TMVA implementation | |
Protected Member Functions inherited from TMVA::MethodBase | |
virtual std::vector< Double_t > | GetDataMvaValues (DataSet *data=nullptr, Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false) |
get all the MVA values for the events of the given Data type | |
const TString & | GetInternalVarName (Int_t ivar) const |
virtual std::vector< Double_t > | GetMvaValues (Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false) |
get all the MVA values for the events of the current Data type | |
const TString & | GetOriginalVarName (Int_t ivar) const |
const TString & | GetWeightFileDir () const |
Bool_t | HasTrainingTree () const |
Bool_t | Help () const |
Bool_t | IgnoreEventsWithNegWeightsInTraining () const |
Bool_t | IsConstructedFromWeightFile () const |
Bool_t | IsNormalised () const |
virtual void | MakeClassSpecificHeader (std::ostream &, const TString &="") const |
void | NoErrorCalc (Double_t *const err, Double_t *const errUpper) |
void | SetNormalised (Bool_t norm) |
void | SetWeightFileDir (TString fileDir) |
set directory of weight file | |
void | SetWeightFileName (TString) |
set the weight file name (depreciated) | |
void | Statistics (Types::ETreeType treeType, const TString &theVarName, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &) |
calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as they are or for normalised variables (in the range of 0-1) if "norm" is set to kTRUE | |
Bool_t | TxtWeightsOnly () const |
Bool_t | Verbose () const |
Protected Member Functions inherited from TMVA::Configurable | |
void | EnableLooseOptions (Bool_t b=kTRUE) |
const TString & | GetReferenceFile () const |
Bool_t | LooseOptionCheckingEnabled () const |
void | ResetSetFlag () |
resets the IsSet flag for all declare options to be called before options are read from stream | |
void | WriteOptionsReferenceToFile () |
write complete options to output stream | |
Protected Member Functions inherited from TObject | |
virtual void | DoError (int level, const char *location, const char *fmt, va_list va) const |
Interface to ErrorHandler (protected). | |
void | MakeZombie () |
Private Member Functions | |
void | DeclareOptions () |
define the options (their key words) that can be set in the option string know options. | |
void | ProcessOptions () |
process the options specified by the user | |
template<typename T > | |
Int_t | VerifyRange (const T &var, const T &vmin, const T &vmax) |
template<typename T > | |
Bool_t | VerifyRange (MsgLogger &mlog, const char *varstr, T &var, const T &vmin, const T &vmax) |
template<typename T > | |
Bool_t | VerifyRange (MsgLogger &mlog, const char *varstr, T &var, const T &vmin, const T &vmax, const T &vdef) |
Private Attributes | |
std::vector< TMVA::Event * > | fEventSample |
the complete training sample | |
std::vector< DecisionTree * > | fForest |
the forest | |
TString | fForestTypeS |
forest generation: how the trees are generated | |
Double_t | fGDErrScale |
GD path: stop. | |
Int_t | fGDNPathSteps |
GD path: number of steps. | |
Double_t | fGDPathEveFrac |
GD path: fraction of subsamples used for the fitting. | |
Double_t | fGDPathStep |
GD path: step size in path. | |
Double_t | fGDTau |
GD path: def threshold fraction [0..1]. | |
Double_t | fGDTauMax |
GD path: max threshold fraction [0..1]. | |
Double_t | fGDTauMin |
GD path: min threshold fraction [0..1]. | |
Double_t | fGDTauPrec |
GD path: precision of estimated tau. | |
UInt_t | fGDTauScan |
GD path: number of points to scan. | |
Double_t | fGDValidEveFrac |
GD path: fraction of subsamples used for the fitting. | |
Double_t | fLinQuantile |
quantile cut to remove outliers - see RuleEnsemble | |
Double_t | fMaxFracNEve |
ditto max | |
Double_t | fMinFracNEve |
min fraction of number events | |
Double_t | fMinimp |
rule/linear: minimum importance | |
TString | fModelTypeS |
rule ensemble: which model (rule,linear or both) | |
TTree * | fMonitorNtuple |
pointer to monitor rule ntuple | |
Int_t | fNCuts |
grid used in cut applied in node splitting | |
Double_t | fNTCoefficient |
ntuple: rule coefficient | |
Double_t | fNTImportance |
ntuple: rule importance | |
Int_t | fNTNcuts |
ntuple: rule number of cuts | |
Int_t | fNTNvars |
ntuple: rule number of vars | |
Double_t | fNTPbb |
ntuple: rule P(tag b, true b) | |
Double_t | fNTPbs |
ntuple: rule P(tag b, true s) | |
Double_t | fNTPsb |
ntuple: rule P(tag s, true b) | |
Double_t | fNTPss |
ntuple: rule P(tag s, true s) | |
Double_t | fNTPtag |
ntuple: rule P(tag) | |
Int_t | fNTrees |
number of trees in forest | |
Double_t | fNTSSB |
ntuple: rule S/(S+B) | |
Double_t | fNTSupport |
ntuple: rule support | |
Int_t | fNTType |
ntuple: rule type (+1->signal, -1->bkg) | |
TMVA::DecisionTree::EPruneMethod | fPruneMethod |
forest generation: method used for pruning - see DecisionTree | |
TString | fPruneMethodS |
forest generation: prune method - see DecisionTree | |
Double_t | fPruneStrength |
forest generation: prune strength - see DecisionTree | |
Int_t | fRFNendnodes |
max number of rules (only Friedmans module) | |
Int_t | fRFNrules |
max number of rules (only Friedmans module) | |
TString | fRFWorkDir |
working directory from Friedmans module | |
RuleFit | fRuleFit |
RuleFit instance. | |
TString | fRuleFitModuleS |
which rulefit module to use | |
Double_t | fRuleMinDist |
rule min distance - see RuleEnsemble | |
SeparationBase * | fSepType |
the separation used in node splitting | |
TString | fSepTypeS |
forest generation: separation type - see DecisionTree | |
Double_t | fSignalFraction |
scalefactor for bkg events to modify initial s/b fraction in training data | |
Double_t | fTreeEveFrac |
fraction of events used for training each tree | |
Bool_t | fUseBoost |
use boosted events for forest generation | |
Bool_t | fUseRuleFitJF |
if true interface with J.Friedmans RuleFit module | |
Additional Inherited Members | |
Public Types inherited from TMVA::MethodBase | |
enum | EWeightFileType { kROOT =0 , kTEXT } |
Public Types inherited from TObject | |
enum | { kIsOnHeap = 0x01000000 , kNotDeleted = 0x02000000 , kZombie = 0x04000000 , kInconsistent = 0x08000000 , kBitMask = 0x00ffffff } |
enum | { kSingleKey = (1ULL << ( 0 )) , kOverwrite = (1ULL << ( 1 )) , kWriteDelete = (1ULL << ( 2 )) } |
enum | EDeprecatedStatusBits { kObjInCanvas = (1ULL << ( 3 )) } |
enum | EStatusBits { kCanDelete = (1ULL << ( 0 )) , kMustCleanup = (1ULL << ( 3 )) , kIsReferenced = (1ULL << ( 4 )) , kHasUUID = (1ULL << ( 5 )) , kCannotPick = (1ULL << ( 6 )) , kNoContextMenu = (1ULL << ( 8 )) , kInvalidObject = (1ULL << ( 13 )) } |
Public Attributes inherited from TMVA::MethodBase | |
Bool_t | fSetupCompleted |
TrainingHistory | fTrainHistory |
Protected Types inherited from TObject | |
enum | { kOnlyPrepStep = (1ULL << ( 3 )) } |
Protected Attributes inherited from TMVA::MethodBase | |
Types::EAnalysisType | fAnalysisType |
UInt_t | fBackgroundClass |
bool | fExitFromTraining = false |
std::vector< TString > * | fInputVars |
IPythonInteractive * | fInteractive = nullptr |
temporary dataset used when evaluating on a different data (used by MethodCategory::GetMvaValues) | |
UInt_t | fIPyCurrentIter = 0 |
UInt_t | fIPyMaxIter = 0 |
std::vector< Float_t > * | fMulticlassReturnVal |
Int_t | fNbins |
Int_t | fNbinsH |
Int_t | fNbinsMVAoutput |
Ranking * | fRanking |
std::vector< Float_t > * | fRegressionReturnVal |
Results * | fResults |
UInt_t | fSignalClass |
DataSet * | fTmpData = nullptr |
temporary event when testing on a different DataSet than the own one | |
const Event * | fTmpEvent |
Protected Attributes inherited from TMVA::Configurable | |
MsgLogger * | fLogger |
! message logger | |
Protected Attributes inherited from TNamed | |
TString | fName |
TString | fTitle |
#include <TMVA/MethodRuleFit.h>
TMVA::MethodRuleFit::MethodRuleFit | ( | const TString & | jobName, |
const TString & | methodTitle, | ||
DataSetInfo & | theData, | ||
const TString & | theOption = "" |
||
) |
standard constructor
Definition at line 70 of file MethodRuleFit.cxx.
TMVA::MethodRuleFit::MethodRuleFit | ( | DataSetInfo & | theData, |
const TString & | theWeightFile | ||
) |
constructor from weight file
Definition at line 120 of file MethodRuleFit.cxx.
|
virtual |
destructor
Definition at line 168 of file MethodRuleFit.cxx.
|
virtual |
add the rules to XML node
Implements TMVA::MethodBase.
Definition at line 593 of file MethodRuleFit.cxx.
|
static |
|
inlinestaticconstexpr |
Definition at line 210 of file MethodRuleFit.h.
|
virtual |
computes ranking of input variables
Implements TMVA::MethodBase.
Definition at line 578 of file MethodRuleFit.cxx.
|
privatevirtual |
define the options (their key words) that can be set in the option string know options.
<string>
available values are:<float>
gradient-directed path: fit threshold, default<float>
gradient-directed path: precision of estimated tau<float>
gradient-directed path: step size<float>
gradient-directed path: number of steps<float>
stop scan when error>scale*errmin<float>
minimum fraction of events in a splittable node<float>
maximum fraction of events in a splittable node<float>
number of trees in forest.<string>
available values are:<float>
min distance allowed between rules<float>
minimum rule importance accepted<string>
model to be used available values are:<default>
<string>
directory where Friedmans module (rf_go.exe) is installed<int>
maximum number of rules allowed<int>
average number of end nodes in the forest of trees Implements TMVA::MethodBase.
Definition at line 228 of file MethodRuleFit.cxx.
|
inlinestatic |
Definition at line 210 of file MethodRuleFit.h.
|
inline |
Definition at line 92 of file MethodRuleFit.h.
|
inline |
Definition at line 105 of file MethodRuleFit.h.
|
inline |
Definition at line 103 of file MethodRuleFit.h.
|
inline |
Definition at line 106 of file MethodRuleFit.h.
|
inline |
Definition at line 104 of file MethodRuleFit.h.
|
inline |
Definition at line 107 of file MethodRuleFit.h.
|
protectedvirtual |
get help message text
typical length of text line: "|--------------------------------------------------------------|"
Implements TMVA::IMethod.
Definition at line 751 of file MethodRuleFit.cxx.
|
inline |
Definition at line 109 of file MethodRuleFit.h.
|
inline |
Definition at line 100 of file MethodRuleFit.h.
|
inline |
Definition at line 90 of file MethodRuleFit.h.
|
inline |
Definition at line 99 of file MethodRuleFit.h.
|
virtual |
returns MVA value for given event
Implements TMVA::MethodBase.
Definition at line 617 of file MethodRuleFit.cxx.
|
inline |
Definition at line 101 of file MethodRuleFit.h.
|
inline |
Definition at line 93 of file MethodRuleFit.h.
|
inline |
Definition at line 97 of file MethodRuleFit.h.
|
inline |
Definition at line 98 of file MethodRuleFit.h.
|
inline |
Definition at line 113 of file MethodRuleFit.h.
|
inline |
Definition at line 112 of file MethodRuleFit.h.
|
inline |
Definition at line 111 of file MethodRuleFit.h.
|
inline |
Definition at line 89 of file MethodRuleFit.h.
|
inline |
Definition at line 88 of file MethodRuleFit.h.
|
inline |
Definition at line 96 of file MethodRuleFit.h.
|
inline |
Definition at line 95 of file MethodRuleFit.h.
|
inline |
Definition at line 91 of file MethodRuleFit.h.
|
inline |
Definition at line 94 of file MethodRuleFit.h.
|
virtual |
RuleFit can handle classification with 2 classes.
Implements TMVA::IMethod.
Definition at line 177 of file MethodRuleFit.cxx.
|
protectedvirtual |
default initialization
Implements TMVA::MethodBase.
Definition at line 396 of file MethodRuleFit.cxx.
|
protected |
write all Events from the Tree into a vector of Events, that are more easily manipulated.
This method should never be called without existing trainingTree, as it the vector of events from the ROOT training tree
Definition at line 421 of file MethodRuleFit.cxx.
|
protected |
initialize the monitoring ntuple
Definition at line 375 of file MethodRuleFit.cxx.
|
inlinevirtual |
Reimplemented from TMVA::MethodBase.
Definition at line 210 of file MethodRuleFit.h.
|
protected |
print out the linear terms
Definition at line 715 of file MethodRuleFit.cxx.
|
protected |
print out the rule cuts
Definition at line 657 of file MethodRuleFit.cxx.
|
protectedvirtual |
write specific classifier response
Reimplemented from TMVA::MethodBase.
Definition at line 638 of file MethodRuleFit.cxx.
|
privatevirtual |
process the options specified by the user
Implements TMVA::MethodBase.
Definition at line 266 of file MethodRuleFit.cxx.
|
virtual |
Implements TMVA::MethodBase.
|
virtual |
read rules from an std::istream
Implements TMVA::MethodBase.
Definition at line 601 of file MethodRuleFit.cxx.
|
inlinevirtual |
Reimplemented from TMVA::MethodBase.
Definition at line 266 of file MethodBase.h.
|
virtual |
read rules from XML node
Implements TMVA::MethodBase.
Definition at line 609 of file MethodRuleFit.cxx.
|
virtual |
Reimplemented from TMVA::MethodBase.
|
inline |
Definition at line 210 of file MethodRuleFit.h.
|
virtual |
Implements TMVA::MethodBase.
Definition at line 443 of file MethodRuleFit.cxx.
|
protected |
training of rules using Jerome Friedmans implementation
Definition at line 535 of file MethodRuleFit.cxx.
|
protected |
training of rules using TMVA implementation
Definition at line 467 of file MethodRuleFit.cxx.
|
inline |
Definition at line 85 of file MethodRuleFit.h.
|
inlineprivate |
Definition at line 218 of file MethodRuleFit.h.
|
inlineprivate |
Definition at line 228 of file MethodRuleFit.h.
|
inlineprivate |
Definition at line 250 of file MethodRuleFit.h.
|
virtual |
write special monitoring histograms to file (here ntuple)
Reimplemented from TMVA::MethodBase.
Definition at line 628 of file MethodRuleFit.cxx.
|
private |
the complete training sample
Definition at line 156 of file MethodRuleFit.h.
|
private |
the forest
Definition at line 180 of file MethodRuleFit.h.
|
private |
forest generation: how the trees are generated
Definition at line 191 of file MethodRuleFit.h.
|
private |
GD path: stop.
Definition at line 203 of file MethodRuleFit.h.
|
private |
GD path: number of steps.
Definition at line 202 of file MethodRuleFit.h.
|
private |
GD path: fraction of subsamples used for the fitting.
Definition at line 194 of file MethodRuleFit.h.
|
private |
GD path: step size in path.
Definition at line 201 of file MethodRuleFit.h.
|
private |
GD path: def threshold fraction [0..1].
Definition at line 196 of file MethodRuleFit.h.
|
private |
GD path: max threshold fraction [0..1].
Definition at line 199 of file MethodRuleFit.h.
|
private |
GD path: min threshold fraction [0..1].
Definition at line 198 of file MethodRuleFit.h.
|
private |
GD path: precision of estimated tau.
Definition at line 197 of file MethodRuleFit.h.
|
private |
GD path: number of points to scan.
Definition at line 200 of file MethodRuleFit.h.
|
private |
GD path: fraction of subsamples used for the fitting.
Definition at line 195 of file MethodRuleFit.h.
|
private |
quantile cut to remove outliers - see RuleEnsemble
Definition at line 208 of file MethodRuleFit.h.
|
private |
ditto max
Definition at line 185 of file MethodRuleFit.h.
|
private |
min fraction of number events
Definition at line 184 of file MethodRuleFit.h.
|
private |
rule/linear: minimum importance
Definition at line 204 of file MethodRuleFit.h.
|
private |
rule ensemble: which model (rule,linear or both)
Definition at line 206 of file MethodRuleFit.h.
|
private |
pointer to monitor rule ntuple
Definition at line 160 of file MethodRuleFit.h.
|
private |
grid used in cut applied in node splitting
Definition at line 186 of file MethodRuleFit.h.
|
private |
ntuple: rule coefficient
Definition at line 162 of file MethodRuleFit.h.
|
private |
ntuple: rule importance
Definition at line 161 of file MethodRuleFit.h.
|
private |
ntuple: rule number of cuts
Definition at line 164 of file MethodRuleFit.h.
|
private |
ntuple: rule number of vars
Definition at line 165 of file MethodRuleFit.h.
|
private |
ntuple: rule P(tag b, true b)
Definition at line 170 of file MethodRuleFit.h.
|
private |
ntuple: rule P(tag b, true s)
Definition at line 169 of file MethodRuleFit.h.
|
private |
ntuple: rule P(tag s, true b)
Definition at line 168 of file MethodRuleFit.h.
|
private |
ntuple: rule P(tag s, true s)
Definition at line 167 of file MethodRuleFit.h.
|
private |
ntuple: rule P(tag)
Definition at line 166 of file MethodRuleFit.h.
|
private |
number of trees in forest
Definition at line 181 of file MethodRuleFit.h.
|
private |
ntuple: rule S/(S+B)
Definition at line 171 of file MethodRuleFit.h.
|
private |
ntuple: rule support
Definition at line 163 of file MethodRuleFit.h.
|
private |
ntuple: rule type (+1->signal, -1->bkg)
Definition at line 172 of file MethodRuleFit.h.
|
private |
forest generation: method used for pruning - see DecisionTree
Definition at line 189 of file MethodRuleFit.h.
|
private |
forest generation: prune method - see DecisionTree
Definition at line 188 of file MethodRuleFit.h.
|
private |
forest generation: prune strength - see DecisionTree
Definition at line 190 of file MethodRuleFit.h.
|
private |
max number of rules (only Friedmans module)
Definition at line 179 of file MethodRuleFit.h.
|
private |
max number of rules (only Friedmans module)
Definition at line 178 of file MethodRuleFit.h.
|
private |
working directory from Friedmans module
Definition at line 177 of file MethodRuleFit.h.
|
private |
RuleFit instance.
Definition at line 155 of file MethodRuleFit.h.
|
private |
which rulefit module to use
Definition at line 175 of file MethodRuleFit.h.
|
private |
rule min distance - see RuleEnsemble
Definition at line 207 of file MethodRuleFit.h.
|
private |
the separation used in node splitting
Definition at line 183 of file MethodRuleFit.h.
|
private |
forest generation: separation type - see DecisionTree
Definition at line 187 of file MethodRuleFit.h.
|
private |
scalefactor for bkg events to modify initial s/b fraction in training data
Definition at line 157 of file MethodRuleFit.h.
|
private |
fraction of events used for training each tree
Definition at line 182 of file MethodRuleFit.h.
|
private |
use boosted events for forest generation
Definition at line 192 of file MethodRuleFit.h.
|
private |
if true interface with J.Friedmans RuleFit module
Definition at line 176 of file MethodRuleFit.h.