Class to perform two class classification. 
The first step before any analysis is to prepare the data, to do that you need to create an object of TMVA::DataLoader, in this object you need to configure the variables and the number of events to train/test. The class TMVA::Experimental::Classification needs a TMVA::DataLoader object, optional a TFile object to save the results and some extra options in a string like "V:Color:Transformations=I;D;P;U;G:Silent:DrawProgressBar:ModelPersistence:Jobs=2" where: V = verbose output Color = coloured screen output Silent = batch mode: boolean silent flag inhibiting any output from TMVA Transformations = list of transformations to test. DrawProgressBar = draw progress bar to display training and testing. ModelPersistence = to save the trained model in xml or serialized files. Jobs = number of ml methods to test/train in parallel using MultiProc, requires to call Evaluate method. Basic example. 
{
 
   }
      std::cout << "ERROR: could not open data file" << std::endl;
   }
 
   
 
 
 
   dataloader->AddVariable(
"myvar1 := var1+var2", 
'F');
 
   dataloader->AddVariable(
"myvar2 := var1-var2", 
"Expression 2", 
"", 
'F');
 
   dataloader->AddVariable(
"var3", 
"Variable 3", 
"units", 
'F');
 
   dataloader->AddVariable(
"var4", 
"Variable 4", 
"units", 
'F');
 
 
   dataloader->AddSpectator(
"spec1 := var1*2", 
"Spectator 1", 
"units", 
'F');
 
   dataloader->AddSpectator(
"spec2 := var1*3", 
"Spectator 2", 
"units", 
'F');
 
 
   
 
   dataloader->SetBackgroundWeightExpression(
"weight");
 
 
 
                                             "UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=2");
 
 
 
   c->SetTitle(
"ROC-Integral Curve");
 
 
      roc->SetLineColorAlpha(i + 1, 0.1);
 
   }
   mg->Draw("AL");
   mg->GetXaxis()->SetTitle(" Signal Efficiency ");
   mg->GetYaxis()->SetTitle(" Background Rejection ");
   c->BuildLegend(0.15, 0.15, 0.3, 0.3);
 
 
   delete cl;
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
R__EXTERN TSystem * gSystem
 
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
virtual void BookMethod(TString methodname, TString methodtitle, TString options="")
Method to book the machine learning method to perform the algorithm.
 
std::vector< ClassificationResult > & GetResults()
Return the vector of TMVA::Experimental::ClassificationResult objects.
 
virtual void Evaluate()
Method to perform Train/Test over all ml method booked.
 
A TMultiGraph is a collection of TGraph (or derived) objects.
 
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
 
A TTree represents a columnar dataset.
 
void classification(UInt_t jobs=4)